
LYAPUNOV EXPONENTS OF LINEAR COCYCLES OVER

MARKOV SHIFTS
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Abstract. The Lyapunov exponents of GL(2)-cocycles over Markov shifts
depend continuously on the underlying data, that is, on the matrix coefficients

and the Markov measure transition probabilities.

1. Introduction

The notion of Lyapunov exponent goes back to the late 19th century work of A.
M. Lyapunov [12] on the stability of solutions of differential equations: the so-called
first method of Lyapunov amounts to saying that, under suitable conditions, one
has exponential stability whenever the exponents are all negative.

It turns out that these numbers encode very important information on the be-
havior of the dynamical system. A striking illustration of this fact is the theory of
(non-uniformly) hyperbolic systems, initiated by Oseledets [14] and Pesin [15, 16].
In a few words, it asserts that smooth diffeomorphisms and flows whose Lyapunov
exponents do not vanish exhibit a very rich geometric structure, including invariant
stable and unstable laminations that are absolutely continuous (see for instance [5,
Appendic C]), from which a refined description of the dynamics can be drawn.

In this work we are particularly concerned with the dependence of Lyapunov
exponents on the underlying system. In addition to its intrinsic interest, this prob-
lem is also connected to the issue of when do Lyapunov exponents vanish. For
example Bourgain, Jitomirskaya [7, 6] proved that the Lyapunov exponent of cer-
tain Schrödinger cocycles with analytic potential vary continuously with the energy
parameter and used that fact to obtain an explicit lower bound for the Lyapunov
exponent. From this they deduced that such cocycles have Anderson localization.

While there is a number of other situations where Lyapunov exponents are known
to vary continuously, and even analytically, under perturbations of the system
(see [17, Section 10.6] and the references therein), it is also known that in gen-
eral their behavior is rather wild. Again, an especially striking illustration is the
discovery, due to Mañé [13], that in the realm of C1 area-preserving surface diffeo-
morphisms the only continuity points for the Lyapunov exponents are the Anosov
maps (which exist only on the torus) and those maps whose exponents vanish al-
most every point. A complete proof was given by Bochi [1] and this has also been
extended to arbitrary dimension, by Bochi, Viana [3, 2].

The derivative of a C1 diffeomorphism is a C0 linear cocycle, of course. For
cocycles that are better than just continuous, the picture seems to be richer and is
far from being understood. In this direction, the second author conjectured around
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2004 that the Lyapunov exponents vary continuously restricted to the subset of
fiber-bunched Hölder-continuous GL(2)-cocycles. For definitions and more precise
statements, see [5, Section 12.4] and [17, Section 10.6]. The fiber-bunching condition
can not be omitted, as observed in [17, Section 9.3]. But continuity should hold
within any family of cocycles admitting invariant holonomies.

The first result was obtained in 2009 by Bocker, Viana [4], who proved continuity
for locally constant cocycles over a Bernoulli shift. It is this result that we now
extend to the Markov case: The Lyapunov exponents of GL(2)-cocycles over Markov
shifts depend continuously on the matrix coefficients and the transition probabilities.
The complete statement is given in Theorem A below.

Our method is very different from the one in [4] and may be viewed as an
extension of the method used in [17, Chapter 10] to give an alternative proof of
the theorem of Bocker-Viana. In either case, the starting point is the notion of
stationary measure and the fact that the stationary measures completely determine
the Lyapunov exponents (see Furstenberg [8] and Ledrappier [11]). Then, both
arguments are based on estimating the stationary measures of nearby cocycles, to
prove that they can not accumulate too much on the neighborhood of a single point.
This, they achieve in very different ways.

Now, the notion of stationary measure does not really make sense outside of the
Bernoulli case. In the present Markov setting, we are able to substitute it with
the notion of stationary measure vector, which we introduce here. While this is
a fairly straightforward extension of the notion of stationary measure, stationary
measure vectors are a lot more difficult to handle because, in a few words, we need
the different vector components to be quite homogeneous. Indeed, a good part of
our efforts in Sections 8 through 9 is devoted to establishing such homogeneity.

This notion of stationary measure vector has a natural counterpart in the general
setting of the conjecture mentioned previously, and the methods we develop here
should be useful for proving that conjecture. But the analysis of stationary measure
vectors in such generality has yet to be carried out in full.

This work is organized as follows. In Section 2 we give the precise context and
statement of our main result. In Section 3 we define stationary measure vector
and prove a few useful properties. In Sections 4 and 5 we adapt to our setting an
argument of Furstenberg, Kifer [10] showing that any possible discontinuity point
must exhibit an invariant subspace that is a kind of repeller for the action of the
cocycle in projective space. Our task is then to show that continuity holds even in
the presence of such a repeller. In Section 6 we reduce this task to proving a key
statement, Theorem 6.1. In Section 7 we recall the notion of energy of a measure,
which has a central role in our arguments. Then, in Sections 8 and 9, we use it to
prove Theorem 6.1, thus completing the proof.

2. Statement of main result

Let X = {1, . . . , q} and f : M → M be the shift map on M = XN. We
use x = (in)n to represent a generic element of M . For any m ≥ 0, n ≥ 1 and
j0, . . . , jn−1 ∈ X , denote

[m; j0, . . . , jn−1] = {x ∈M : im+s = js for 0 ≤ s ≤ n− 1}.

Let P = (Pi,j)i,j∈X be a stochastic matrix and assume that P is aperiodic, that
is, there exists N ≥ 1 such that PN

i,j > 0 for all i, j ∈ X . By Perron-Fröbenius,
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there exists a unique vector p = (pi)i∈X such that

pi > 0 and
∑

s∈X

ps = 1 and
∑

s∈X

psPs,j = pj for every i, j ∈ X .

Let µ be the associated Markov measure on M : given any m ≥ 0 and n ≥ 1,

µ([m; j0, . . . , jn−1]) = pj0Pj0,j1 · · ·Pjn−2,jn−1
for every j0, . . . , jn−1 ∈ X .

Then µ is invariant under f and the system (f, µ) is mixing.
We use u, v, w to represent the lines spanned by vectors u, v, w ∈ R

d \ {0}. Let
d ≥ 2 and A : X → GL(d). Consider the linear cocycle

F : M × R
d → M × R

d, (x, v) 7→ (f(x), A(i0)v)

and the associated projective cocycle

P(F ) : M × P(Rd) →M × P(Rd), (x, v) 7→ (f(x), A(i0)v).

Here and in what follows we use the same notation for an element of GL(d) and for
its action in projective space.

Denote An(x) = A(in−1) · · ·A(i1)A(i0), for each x ∈M and n ≥ 1. By Fursten-
berg, Kesten [9], there exist numbers λ+(A,P ) ≥ λ−(A,P ) such that

λ+(A,P ) = lim
n

1

n
log ‖An(x)‖

λ−(A,P ) = lim
n

1

n
log ‖An(x)−1‖−1

for µ-almost every x ∈M .

They are called the extremal Lyapunov exponents of F relative to µ. We are going
to prove:

Theorem A. For d = 2, the functions (A,P ) 7→ λ±(A,P ) are continuous, relative
to the natural (coefficient-induced) topology in the space of pairs (A,P ).

The special case of this theorem when µ is a Bernoulli measure, that is, when
Pi,j = pj for every i, j ∈ X , is contained in the main result of Bocker, Viana [4]. Re-
cently, Avila, Eskin, Viana announced that, still in the Bernoulli case, the theorem
holds in arbitrary dimension d ≥ 2. Although their paper has not yet appeared,
the 2-dimensional version of their approach has been presented in [17, Chapter 10]
and that was the starting point for our analysis of the Markov case.

It is well known (see [17, Section 9.1]) that the functions λ+ and λ− are, respec-
tively, upper semi-continuous and lower semi-continuous. Thus, continuity holds
automatically at any point such that λ−(A,P ) = λ+(A,P ). In what follows we
assume that λ−(A,P ) < λ+(A,P ). We are going to prove continuity for λ+: to
deduce the corresponding statement for λ− just use Lemma 4.1 below.

When the stochastic matrix P is just irreducible (for every i, j ∈ X there exists
N ≥ 1 such that PN

i,j > 0), our arguments remain valid to show that A 7→ λ±(A,P )
are continuous. Moreover, one recovers continuous dependence on both variables,
as in the conclusion of the theorem, under the additional assumption that the prob-
ability vector p is chosen depending continuously on the matrix in a neighborhood
of P (this is automatic in the aperiodic case).

Most steps in the proof of Theorem A are valid for arbitrary dimension d. We
specialize to d = 2 only when necessary.
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3. Measure vectors

The following simple notions have a central part in our arguments. We consider
vectors η = (ηi)i∈X where each ηi is a (positive) measure on P(Rd). With any such
vector, we associate the skew-product measure m = µ⋉ η defined on M ×P(Rd) by

(1) m =
∑

i∈X

(

µ | [0; i]
)

× ηi.

We call η a unit vector if every ηi is a probability measure on P(Rd). Then m is a
probability measure on M × P(Rd).

Let P be the operator defined in the space of measure vectors η by

(2) (Pη)j(D) =
∑

i∈X

piPi,j

pj

ηi

(

A(i)−1(D)
)

for any j ∈ X and any measurable D ⊂ P(Rd). We say that η is P -stationary if it
is a fixed point for P , that is, if it satisfies

∑

i∈X

piPi,jηi(A(i)−1(D)) = pjηj(D)

for every j ∈ X and every measurable D ⊂ P(Rd). In the Bernoulli case, this means
that

∑

i∈X piηi(A(i)−1(D)) = ηj(D) for every j and every D. Then the ηj are all
equal, and one recovers the more usual notion of stationary measure.

Proposition 3.1. A unit vector η is P -stationary if and only if the probability
measure m = µ⋉ η is P(F )-invariant.

Proof. For any j, j2, . . . , jn ∈ X and any measurable set D ⊂ P(Rd),

P(F )−1
(

[0; j, j2, . . . , jn] ×D
)

=
⋃

i∈X

[0; i, j, j2, . . . , jn] ×A(i)−1(D).

Thus, using the definition (1),

P(F )∗m
(

[0; j, j2, . . . , jn] ×D
)

=
∑

i∈X

µ
(

[0; i, j, j2, . . . , jn]
)

ηi

(

A(i)−1(D)
)

.

The right-hand side may be written as

∑

i∈X

piPi,j

pj

µ([0; j, j2, . . . , jn])ηi

(

A(i)−1(D)
)

= µ([0; j, j2, . . . , jn])(Pη)j(D).

This proves that P(F )∗
(

µ⋉ η
)

= µ⋉ Pη. The claim is a consequence. �

The set of unit vectors η = (ηi)i∈X has a natural topology induced by the weak∗

topology in the space of probability measures on P(Rd).

Proposition 3.2. The set of P -stationary unit vectors η is non-empty, compact
and convex.

Proof. First, note that the operatorP is continuous. Indeed, if (ηn)n is a sequence of
unit vectors converging to some η then, given any continuous function φ : P(Rd) →
R,

∫

φd(Pηn)j =
∑

i∈X

piPi,j

pj

∫

(φ ◦A(i)) dηn,i
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for every j ∈ X and every n ≥ 1. Since ηn,i → ηi in the weak∗ topology, the
expression on the right-hand side converges to

∑

i∈X

piPi,j

pj

∫

(φ ◦A(i)) dηi =

∫

φd(Pη)j .

This proves that (Pηn)j converges to (Pη)j in the weak∗ topology, for every j ∈ X ,
as claimed.

Next, let ξ be an arbitrary unit vector and define, for j ∈ X and n ≥ 1,

ηn,j =
1

n

n−1
∑

l=0

(P lξ)j .

Let η be an accumulation vector of the sequence (ηn)n, where ηn = (ηn,j)j∈X .
Observe that

(Pηn)j =
1

n

n−1
∑

l=0

(P l+1ξ)j = ηn,j +
1

n
(Pnξ)j −

1

n
ξj .

So, given any continuous function φ : M → R,

lim
n

∫

φd(Pηn)j = lim
n

(

∫

φdηn,j +
1

n

∫

φd(Pnξ)j −
1

n

∫

φdξj
)

=

∫

φdηj .

This means that ηj = limn(Pηn)j . We also have limn(Pηn)j = (Pη)j , by the
continuity of the operator P . It follows that (Pη)j = ηj for every j ∈ X , which
means that η is P -stationary. This proves that stationary vectors do exist.

Let (ηn)n be a sequence of P -stationary unit vectors converging to η. For each j ∈
X and n ≥ 1, we have (Pηn)j = ηn,j and limn ηn,j = ηj . As we have already seen,
limn(Pηn)j = (Pη)j . Then (Pη)j = ηj , which means that η is a P -stationary unit
vector. This implies the set of P -stationary unit vectors is closed and, consequently,
is compact.

Let η1 and η2 be P -stationary unit vectors and consider η = a1η1 + a2η2. For
each j ∈ X , we have

ηj(D) = a1η1,j(D) + a2η2,j(D) = a1(Pη1)j(D) + a2(Pη2)j(D)

=
∑

i∈X

a1
piPi,j

pj

η1,i

(

A(i)−1(D)
)

+
∑

i∈X

a2
piPi,j

pj

η2,i

(

A(i)−1(D)
)

=
∑

i∈X

piPi,j

pj

ηi

(

A(i)−1(D)
)

= (Pη)j(D).

This proves that the set of P -stationary unit vectors is convex. �

Proposition 3.3. The set {(P, η) : η is a P -stationary unit vector} is closed.

Proof. Let (Pk, ηk)k>0 be a sequence converging to (P, η), where each ηk is a Pk-
stationary unit vector. This means that, for any j ∈ X and k ≥ 1

ηk,j = (Pkηk)j =
∑

i∈X

pk,iPk,i,j

pk,j

Ak(i)∗ηk,i

Then, given any continuous function φ : P(Rd) → R,
∫

φdηk,j =
∑

i∈X

pk,iPk,i,j

pk,j

∫

(φ ◦Ak(i)) dηk,i.



6 ELAÍS C. MALHEIRO AND MARCELO VIANA

The left-hand side converges to
∫

φdηj and the right-hand side converges to

∑

i∈X

piPi,j

pj

∫

(φ ◦A(i)) dηi =

∫

φd(Pη)j ,

because pk,i and Pk,i,j and ηk,j and Ak(i) converge, respectively, to pi and Pi,j and
ηj and A(i). Thus, ηj = (Pη)j for every j ∈ X . This means that η is a P -stationary
unit vector. �

A P -stationary vector η is atomic if there exists v ∈ P(Rd) such that {v} has
positive ηi-measure for some i ∈ X . Then v is an atom of η.

Proposition 3.4. If η is an atomic P -stationary unit vector then there exists a
finite non-empty set L ⊂ P(Rd) such that A(i)v ∈ L and ηi({v}) > 0 for every
v ∈ L and every i ∈ X.

Proof. Let δ be the largest ηi-measure of any point v ∈ P(Rd) for any i ∈ X . By
assumption, δ > 0. Let L be the set of all w ∈ P(Rd) such that ηj({w}) = δ for
some j ∈ X . Notice that L is non-empty and #L ≤ #X/δ < ∞, because the ηi

are probability measures. Since

ηj

(

{w}
)

=
∑

i∈X

piPi,j

pj

ηi

(

{A(i)−1w}
)

and
∑

i∈X

piPi,j

pj

= 1,

we have that

(3) ηj

(

{w}
)

= δ ⇒ ηi

(

{A(i)−1w}
)

= δ for every i ∈ X .

In particular, A(i)−1(L) ⊂ L for every i ∈ X . Since L is finite, this means that
A(i)−1(L) = L for every i ∈ X . So, given any v ∈ L and i ∈ X , we can find w ∈ L
such that v = A(i)−1w. By (3), it follows that ηi({v}) = δ. �

Consider the continuous function Φ : M × P(Rd) → R defined by

(4) Φ(x, v) = log
‖A(x)v‖

‖v‖
= log

‖A(i0)v‖

‖v‖
.

Clearly,
∫

Φ d(µ⋉ η) =
∑

i∈X

pi

∫

log
‖A(i)v‖

‖v‖
dηi(v).

Results closely related to the next proposition are discussed in [17, Chapter 6],
mostly in the Bernoulli context. The proposition is true in any dimension, but we
choose to restrict ourselves to the case d = 2, which is simpler and suffices for all
our purposes.

Proposition 3.5.

λ+(A,P ) = max
{

∫

Φ d(µ⋉ η) : η is a P -stationary unit vector
}

.

Proof. Let m be an arbitrary P(F )-invariant probability measure on M × P(R2).
For every (x, v) and every n ≥ 1,

1

n

n−1
∑

j=0

Φ(P(F )j(x, v)) =
1

n
log

‖An(x)v‖

‖v‖
≤

1

n
log ‖An(x)‖.
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Let Φ̃(x, v) denote the limit of the left-hand side. This is well-defined m-almost ev-

erywhere, by the ergodic theorem, and the previous inequality implies that Φ̃(x, v) ≤
λ+(A,P ). So,

(5)

∫

Φ dm =

∫

Φ̃ dm ≤ λ+(A,P ).

In particular, λ+(A,P ) is an upper bound for the integral of Φ relative to any P(F )-
invariant measure of the form m = µ⋉ η. We are left to prove that the equality in
(5) does hold for some such measure.

It is convenient to consider the natural extension of the cocycle F

F̂ : M̂ × R
2 → M̂ × R

2, F̂ (x̂, v) = (f̂(x̂), A(i0)v),

where f̂ : M̂ → M̂ is the shift on M̂ = XZ. Denote by µ̂ the f̂ -invariant Markov
measure defined on M̂ by the stochastic matrix P . Clearly, (F̂ , µ̂) has the same
Lyapunov exponents as (F, µ). Since we assume that λ−(A,P ) < λ+(A,P ), the

Oseledets decomposition of (F̂ , µ̂) has the form

R
2 = Eu

x̂ ⊕ Es
x̂, with dimEu

x̂ = dimEs
x̂ = 1

(the invariant bundles Eu and Es are associated with the Lyapunov exponents

λ+(A,P ) and λ−(A,P ), respectively) for µ̂-almost every x̂ = (in)n∈Z ∈ M̂ .

Let P(F̂ ) : M̂ × R
2 → M̂ × R

2 be the projective cocycle associated with F̂ .

Let π : M̂ → M and Π : M̂ × P(R2) → M × P(R2), Π(x̂, v) = (π(x̂), v) and

π1 : M × P(R2) → M and π̂1 : M̂ × P(R2) → M̂ be the canonical projections. If

m̂ is a P(F̂ )-invariant measure projecting down to µ̂ (under π̂1) then m = Π∗m̂ is
an P(F )-invariant measure projecting down to µ (under π1): that is an immediate

consequence of the relations P(F ) ◦ Π = Π ◦ P(F̂ ) and π1 ◦ Π = π ◦ π̂1.

Take m̂ to be the probability measure on M̂ × P(R2) defined by

m̂(C ×D) = µ̂
(

{x̂ ∈ C : Eu
x̂ ∈ D}

)

,

for any measurable sets C ⊂ M̂ and D ⊂ P(R2). In other words, m̂ projects
down to µ̂ and its conditional probabilities along the fibers are given by the Dirac
masses at the unstable subspace Eu

x̂ . It is clear that m̂ is P(F̂ )-invariant, since the

measure µ̂ is f̂ -invariant and the unstable bundle Eu is F̂ -invariant. So, m is a
P(F )-invariant probability measure.

Next, we prove that m is a skew-product measure. The key observation is that,
since the unstable subspace Eu

x̂ is determined by the negative iterates of the cocycle
alone, each the conditional probability

m̂x̂ = δEu
x̂

depends only on the negative component x− = (in)n<0 of x̂ ∈ M̂ .

Moreover, the Markov measure µ̂ is a product measure restricted to each cylinder
[0; i] ⊂ M̂ : there are probability measures µ−

i and µ+
i on M− = X{n<0} and

M+ = X{n>0}, respectively, such that

µ̂ | [0; i] = pi (µ−
i × µ+

i ).
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Given i ∈ X and measurable sets C− ⊂M−, C+ ⊂M+ and D ⊂ P(R2),

m̂(C− × {i} × C+ ×D) =

∫

C−×{i}×C+

m̂x̂(D) dµ̂(x̂)

= piµ
+
i (C+)

∫

C−

m̂x−(D) dµ−
i (x−)

whereas

µ̂(C− × {i} × C+) = pi µ
−
i (C−)µ+

i (C+).

In particular, the quotient between these two numbers is independent of C+. Any
subset C of the one-sided cylinder [0; i] ⊂M may be written as C = {i}×C+ with
C+ ⊂M+. Then,

ηi(D) =
m(C ×D)

µ(C)
=
m̂(M− × {i} × C+ ×D)

µ̂(M− × {i} × C+)

is independent of C and defines a probability measure ηi on P(R2). Let η be the
measure vector formed by these probabilities. For any measurable C ⊂ M and
D ⊂ P(R2),

m
(

C ×D
)

=
∑

i∈X

m((C ∩ [0; i]) ×D) =
∑

i∈X

µ(C ∩ [0; i]) × ηi(D).

This proves that m = µ⋉ η.
Finally, consider the function Ψ : M̂ × P(Rd) → R defined by

Ψ(x̂, v) = log
||A(i0)v||

||v||
= Φ(π(x̂), v).

Clearly,
∫

Φ dm =
∫

Ψ dm̂ =
∫

Ψ̃ dm̂, where Ψ̃ is the Birkhoff time average:

Ψ̃(x̂, v) = lim
n

1

n

n−1
∑

j=0

Ψ(P(F̂ )j(x̂, v)) = lim
n

1

n
log

‖An(x)v‖

‖v‖
.

Since the conditional probabilities of m̂ are concentrated on the Oseledets subspaces
Eu

x̂ , we have Ψ̃(x̂, v) = λ+(A,P ) for m̂-almost every (x̂, v). It follows that
∫

Φ dm =
λ+(A,P ).

This completes the proof of Proposition 3.5. �

4. Invariant subspaces

Consider any sequence (Ak, Pk)k converging to (A,P ). Let pk be the probability
vector associated with each Pk. Moreover,

Lemma 4.1. λ+(Ak, Pk) + λ−(Ak, Pk) converges to λ+(A,P ) + λ−(A,P ).

Proof. By the theorem of Oseledets [14] and the ergodicity of (f, µ),

λ+(A,P ) + λ−(A,P ) = lim
n

1

n
log | detAn(x)| =

∫

log | detA| dµ

for µ-almost every x, and analogously for λ+(Ak, Pk)+λ−(Ak, Pk) for every k. Now
observe that

∫

log | detAk| dµk =
∑

i∈X

pk,i log | detAk(i)|
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converges to
∑

i∈X

pi log | detA(i)| =

∫

log | detA| dµ

when k → ∞. �

For each k, let Φk : M × P(Rd) → R be defined as in (4), with Ak in the place
of A. Moreover, let ηk = (ηk,i)i∈X be a Pk-stationary unit vector that realizes the
largest Lyapunov exponent for (Ak, Pk):

λ+(Ak, Pk) =

∫

Φk d(µk ⋉ ηk) =
∑

i∈X

pk,i

∫

log
‖Ak(i)v‖

‖v‖
dηk,i(v).

Up to restricting to a subsequence, we may suppose that (ηk)k converges to some η
in the weak∗ topology. By Proposition 3.3, the vector η is P -stationary. Moreover,

∫

Φk d(µk ⋉ ηk) converges to

∫

Φ d(µ⋉ η).

If η realizes λ+(A,P ) then we are done. In all that follows we suppose that

(6)

∫

Φ d(µ⋉ η) < λ+(A,P ).

Proposition 4.2. Under assumption (6), there exists L ∈ P(R2) such that

(7) ηi({L}) > 0 and A(i)L = L for every i ∈ X

and, for µ-almost all x ∈M ,

(8) lim
n

1

n
log ‖An(x)v‖ =

{

λ−(A,P ) if v ∈ L \ {0}
λ+(A,P ) if v ∈ R

2 \ L.

Proof. By Proposition 3.1, the skew-product m = µ ⋉ η is P(F )-invariant. So, we
may use the ergodic theorem to conclude that

Φ̃
(

x, v
)

= lim
n

1

n

n−1
∑

j=0

Φ
(

P(F )j(x, v)
)

= lim
n

1

n
log ‖An(x)v‖

exists for m-almost every point, is constant on the orbits of P(F ) and satisfies
∫

Φ̃ dm =
∫

Φ dm. Thus, (6) implies that Φ̃ < λ+(A,P ) on some subset with
positive measure for m.

Lemma 4.3. For µ-almost every x ∈ M there exists a unique Lx ∈ P(R2) such

that Φ̃(x, Lx) < λ+(A,P ). Moreover,

(9) Lf(x) = A(x)Lx for µ-almost every x ∈M .

Proof. Consider Z = {(x, v) ∈ M × P(R2) : Φ̃(x, v) < λ+(A,P )}. This is a
measurable, P(F )-invariant set with positive measure for m. Hence, the projection
Z = {x ∈ M : (x, v) ∈ Z for some v} is a measurable f -invariant set with positive
measure for µ. Since (f, µ) is ergodic, it follows that µ(Z) = 1. This proves
existence. Next, given any x ∈ M , suppose that there exist two distinct points v1
and v2 in projective space such that Φ̃(x, vi) < λ+(A,P ) for i = 1, 2. Since every
vector in R

2 may be written as linear combination of v1 and v2, it follows that

lim
n

1

n
log ‖An(x)‖ < λ+(A,P ).
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By the definition of λ+(A,P ), this can only happen on a subset with zero measure

for µ. That proves uniqueness. Property (9) follows, since the function Φ̃ is constant
on the orbits of P(F ). �

Lemma 4.4. There is L ∈ P(R2) such that Lx = L for µ-almost every x ∈M .

Proof. Let Z∗ be the union over i ∈ X of the set of all x ∈ [0; i] ∩ Z such that Lx

is an atom of ηi. Observe that µ(Z∗) > 0, because

∑

i∈X

∫

[0;i]

ηi

(

{Lx}
)

dµ(x) = m
(

{(x, Lx) : x ∈M}
)

= m
(

Z
)

> 0.

Given any x ∈ Z∗, consider i, j ∈ X such that x ∈ [0; i, j]. If Pi,j = 0 then
µ([0; i, j]) = 0. Otherwise, using (9),

pjηj

(

{Lf(x)}
)

=
∑

s∈X

psPs,jηs

(

{A(s)−1Lf(x)}
)

≥ piPi,jηi

(

{Lx}
)

> 0,

and so f(x) ∈ Z∗. This proves that Z∗ is f -invariant up to measure zero. By the
ergodicity of (f, µ), it follows that µ(Z∗) = 1.

Since the ηi are finite measures, they have at most countably many atoms. In
particular, there exists a ∈ P(Rd) such that Za = {x ∈ Z∗ : Lx = a} has positive
µ-measure. Then, for any k ≥ 1, we may find nk and jk,0, . . . , jk,nk

such that

µ
(

Za ∩ [0; jk,0, . . . , jk,nk
]
)

µ
(

[0; jk,0, . . . , jk,nk
]
) ≥ 1 −

1

k
.

Let bk = A(jk,nk−1) · · ·A(jk,0)a. Then, using (9) once more,

µ
(

Zbk
∩ [0; jk,nk

]
)

µ
(

[0; jk,nk
]
) ≥

µ
(

fnk(Za ∩ [0; jk,0, . . . , jk,nk
])
)

µ
(

fnk([0; jk,0, . . . , jk,nk
])
)

=
µ
(

Za ∩ [0; jk,0, . . . , jk,nk
]
)

µ
(

[0; jk,0, . . . , jk,nk
]
) ≥ 1 −

1

k
.

In particular, for k ≥ 2,

µ(Zbk
) ≥ (1 − k−1)pjk,nk

≥ min
i∈X

pi

2
> 0.

Clearly, there are only finitely many values of bk for which this inequality can hold.
Then, since jk,nk

also takes values in a finite set X , we may choose a subsequence
kl → ∞ for which the values of jkl,nkl

and bkl
remain constant. In this way we find

j ∈ X and b ∈ P(Rd) such that

µ
(

Zb ∩ [0; j]
)

µ
(

[0; j]
) = 1.

Equivalently, Lx = b for µ-almost every x ∈ [0; j]. Then, iterating once more,
Ly = A(j)b for µ-almost every y ∈ X (the image of any full µ-measure subset of
[0; j] has full µ-measure in X). This implies that Lx takes a unique value on a full
µ-measure set, as claimed. �

We are ready to complete the proof of the proposition. Claim (7) follows from

µ(ZA(j)b) = 1 and (9). By construction, Φ̃(x, v) = λ+(A,P ) for v 6= L and

Φ̃(x, L) < λ+(A,P ) for µ-almost all x ∈ M . By the Oseledets theorem, Φ̃ only
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takes the values λ±(A,P ). It follows that Φ̃(x, L) = λ−(A,P ) for µ-almost all
x ∈M . This gives claim (8). �

5. Probabilistic repellers

For any α ∈ GL(d), we denote by Dα(v) the derivative at a point v ∈ P(Rd) of
the action of α in the projective space. The tangent space to the projective space
at v is canonically identified with the hyperplane v⊥ ⊂ R

d orthogonal to v. Then
the derivative is given by

(10) Dα(v)v̇ =
projα(v) α(v̇)

‖α(v)‖/‖v‖
for every v̇ ∈ v⊥

where projw : u 7→ u − w(u · w)/(w · w) denotes the orthogonal projection to the
hyperplane orthogonal to w. This implies the following estimate:

(11)
1

‖α‖ ‖α−1‖
≤

‖Dα(v)v̇‖

‖v̇‖
≤ ‖α‖ ‖α−1‖ for every non-zero v̇ ∈ v⊥.

For n ≥ 1, we will write DAn(x, v) to mean Dα(v) with α = An(x).
We call v ∈ P(Rd) an invariant point for A if A(i)v = v for every i ∈ X . We call

v a P -expanding point for A if it is invariant for A and there exist l ≥ 1 and c > 0
such that

(12)

∫

[0;i]

log ‖DAl(x, v)−1‖−1 dµ(x) ≥ 4cpi for every i ∈ X .

Keep in mind that ‖α−1‖−1 is the co-norm of an (invertible) matrix α:

‖α−1‖−1 = inf
{‖α(v)‖

‖v‖
: v 6= 0

}

.

Remark 5.1. If v is an invariant point for A and η is a P -stationary vector then

ηj({v}) =
∑

i∈X

piPi,j

pj

ηi({v}) for every j ∈ X .

Since
∑

i∈X piPi,j/pj = 1 for every j ∈ X , this implies that the value of ηj({v}) is
the same for all j ∈ X . In particular, if v is an atom of η then it is an atom of ηj ,
with the same weight for every j ∈ X .

Proposition 5.2. Let v ∈ P(Rd) be an invariant point for A and suppose that
there exist a < b such that, for µ-almost every x ∈M ,

(1) limn
1
n

log ‖An(x)v‖ ≤ a for any v ∈ v

(2) limn
1
n

log ‖An(x)w‖ ≥ b for any w /∈ v.

Then v is a P -expanding point for A.

Proof. By assumption, A(i)v = v for every i ∈ X . Let A⊥ be the linear cocycle
induced by A on the orthogonal complement v⊥, that is,

A⊥(x)v̇ = projv A(x)v̇ for each v̇ ∈ v⊥.

The second hypothesis implies (see [17, Proposition 4.14]) that the Lyapunov ex-
ponents of A⊥ are bounded below by b. In other words, the smallest Lyapunov
exponent

lim
n

1

n
log ‖(A⊥)n(x)−1‖−1 ≥ b
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for µ-almost every x ∈M . The expression (10) implies

‖DAn(x, v)−1‖−1 ≥
‖(A⊥)n(x)−1‖−1

‖An(x)v‖

for any unit vector v ∈ v. Then, using the first hypothesis, it follows that

lim
n

1

n
log ‖DAn(x, v)−1‖−1 ≥ b− a > 0

for µ-almost every x ∈ M . It can be easily seen from (11) that the sequence on
the left-hand side is uniformly bounded. So, we may use the bounded convergence
theorem to conclude that

lim
n

1

n

∫

[0;i]

log ‖DAn(x, v)−1‖−1 dµ(x) ≥ (b− a)pi

for every i ∈ X . Fix any c > 0 and then take l ≥ 1 large enough so that
∫

[0;i]

log ‖DAl(x, v)−1‖−1 dµ(x) ≥ l
b− a

2
pi ≥ 4cpi

for every i ∈ X . �

Proposition 5.3. Let v ∈ P(Rd) be a P -expanding point for A and c > 0 and l ≥ 1
be as in (12). Then, assuming that δ > 0 is small enough,

∫

[0;i]

‖DAl(x, v)−1‖δ dµ(x) ≤ (1 − 3cδ)pi for every i ∈ X.

Proof. Fix i ∈ X . The function

δ 7→ ψi(δ) =

∫

[0;i]

‖DAl(x, v)−1‖δ dµ(x)

is differentiable and the derivative is given by

(13) ψ′
i(δ) =

∫

[0;i]

‖DAl(x, v)−1‖δ log ‖DAl(x, v)−1‖ dµ(x).

In particular, by the inequality (12),

ψ′
i(0) =

∫

[0;i]

log ‖DAl(x, v)−1‖ dµ(x) ≤ −4cpi.

Now, the factor ‖DAl(x, v)−1‖δ in (13) is close to 1, uniformly in x and v̇, if δ is
close to zero. It follows that ψ′

i(δ) ≤ −3cpi for every small δ > 0. Since ψi(0) = pi,
this gives the claim. �

6. Proof of Theorem A

The core of the proof of Theorem A is the following statement, whose proof will
be given in Sections 7 through 9:

Theorem 6.1. Suppose that v ∈ P(Rd) is a P -expanding point for A. Let (Ak, Pk)k

be a sequence converging to (A,P ) and, for each k ≥ 1, let ηk be a Pk-stationary
unit vector. Suppose that (ηk)k converges to some η in the weak∗ topology. If v is
an atom for η then ηk must be atomic for all large k.
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The second part of property (7) in Proposition 4.2 means that L is an invariant
point for A. In view of property (8) in that same proposition, Proposition 5.2
implies that L is also a P -expanding point for A. By Theorem 6.1 applied to this
point, ηk has some atom for every large k. Then, by Proposition 3.4, there exists
a finite set Lk ⊂ P(R2) such that Ak(i)v ∈ Lk and ηk,i({v}) > 0 for every v ∈ Lk

and every i ∈ X .
We claim that #Lk ≤ 2 if k is large. That can be seen as follows. The existence

of an invariant subspace L implies that no matrix A(i) is elliptic. If all the A(i)
were either parabolic matrices (necessarily with the same eigenspace) or multiples
of the identity, then we would have λ−(A,P ) = λ+(A,P ), which is assumed not to
be the case. Thus, there exists i ∈ X such that A(i) is hyperbolic. Since the set
of hyperbolic matrices is open, it follows that Ak(i) is hyperbolic for all large k.
Now it suffices to notice that for a hyperbolic 2× 2 matrix, any finite invariant set
consists of either one or two eigenspaces.

Suppose that Lk has a single element Lk. Define Φk : M × P(R2) → R by
Φk(x, v) = log(‖Ak(x)v‖/‖v‖). We claim that

(14)

∫

Φk(x, Lk) dµ(x) = λ+(Ak, Pk).

To prove this, let ζk = (ζk,i)i∈X , where ζk,i is the Dirac mass at the point Lk, for
every i ∈ X . Observe that ζk is Pk-stationary, and so, using the ergodic theorem
for µk ⋉ ζk,

(15)

∫

Φk(x, Lk) dµk(x) =

∫

Φ̃k(x, Lk) dµk(x).

We also have that Φ̃k(x, v) = λ+(Ak, Pk) for (µk ⋉ ηk)-almost every (x, v), because

• Φ̃k(x, v) ≤ λ+(Ak, Pk) for (µk ⋉ ηk)-almost every (x, v);

• our choice of ηk means that
∫

Φ̃k d(µk ⋉ ηk) = λ+(Ak, Pk).

Since Lk is an atom for ηk, it follows that Φ̃k(x, Lk) = λ+(Ak, Pk) for µk-almost
every x ∈M . Together with (15), this implies (14).

Up to restricting to a subsequence, we may assume that (Lk)k converges to some
L0 ∈ P(R2). Then A(i)L0 = L0 for every i ∈ X . Let ζ0 = (ζ0,i)i∈X where ζ0,i is
the Dirac mass at L0 for every i ∈ X . Note that ζ0 is P -stationary, and so the
ergodic theorem gives that

(16)

∫

Φ(x, L0) dµ(x) =

∫

Φ̃(x, L0) dµ(x).

Clearly, (Φk)k converges uniformly to k when k → ∞. So, (14) yields

(17) λ+(Ak, Pk) →

∫

Φ(x, L0) dµ(x).

According to Proposition 4.2, there are two possibilities:

(i) If L0 6= L then the right-hand side of (16) is equal to λ+(A,P ). Then (17)
means that λ+(Ak, Pk) converges to λ+(A,P ), which contradicts (6).

(ii) If L0 = L then the right-hand side of (16) is equal to λ−(A,P ). Then
λ+(Ak, Pk) → λ−(A,P ) and, by Lemma 4.1, λ−(Ak, Pk) → λ+(A,P ).
This is a contradiction, as λ− ≤ λ+ and the inequality is strict at (A,P ).

We have shown that, for k large, Lk can not consist of a single point.
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Now suppose that Lk consists of two points, Lk and L′
k. The arguments are

similar. Let ζk = (ζk,i)i∈X with ζk,i = (δLk
+ δL′

k
)/2. Arguing as we did for (14),

we find that

(18)

∫

1

2

(

Φk(x, Lk) + Φk(x, L′
k)

)

dµk(x) = λ+(Ak, Pk).

We may assume that (Lk)k and (L′
k)k converge to subspaces L0 and L′

0, respectively.
Let ζ0 = (ζ0,i)i∈X with ζ0,i = (δL0

+ δL′

0
)/2. Then

(19)

∫

1

2

(

Φ(x, L0) + Φ(x, L′
0)

)

dµ(x) =

∫

1

2

(

Φ̃(x, L0) + Φ̃(x, L′
0)

)

dµ(x)

and, taking the limit in (18),

λ+(Ak, Pk) →

∫

1

2

(

Φ(x, L0) + Φ(x, L′
0)

)

dµ(x).

If L0 and L′
0 are both different from L then the right-hand side of (19) is equal to

λ+(A,P ) and we reach a contradiction just as we did in case (i) of the previous
paragraph. Now suppose that L0 = L. We may assume that, for each k large,
there exists ik ∈ X such that Ak(ik)Lk = L′

k: otherwise, we could take Lk = {Lk}
instead, and that case has already been dealt with. Passing to the limit along a
convenient subsequence, we find i0 ∈ X such that A(i0)L0 = L′

0. By the second
part of (7), this implies that L′

0 is also equal to L. Then the right-hand side of (19)
is equal to λ−(A,P ), and we reach a contradiction just as we did in case (ii) of the
previous paragraph. So, for k large, Lk can not consist of two points either.

This reduces the proof of Theorem A to proving Theorem 6.1.

7. Couplings and energy

In this section we prepare the proof of Theorem 6.1. Let v be a P -expanding
point for A and assume that it is an atom for η. According to Remark 5.1, there
exists κ > 0 such that ηi({v}) = κ for every i ∈ X . Let U ⊂ P(Rd) be an open
neighborhood of v such that

ηi

(

Ū
)

<
10

9
κ for every i ∈ X.

Fix constants c > 0, l ≥ 1 and δ > 0 as in Proposition 5.3 and take k to be
large enough that the conclusion of the proposition holds (further conditions will
be imposed on k along the way). Since Al is continuous and Al

k converges to Al

(uniformly) when k → ∞, there exists an open neighborhood U1 ⊂ U of v such
that

(20) sup
z∈U1

‖DAl
k(x, z)−1‖δ ≤ (1 + cδ)‖DAl(x, v)−1‖δ

for every x ∈M and every large k. Reducing U1 if necessary, we may also assume
that

(21) Al
k(x)−1(Ū1) ⊂ U for every x ∈M and every k large.

Let d be the distance on P(Rd) defined by the angle between two directions, nor-
malized in such a way that the diameter is 1. By the mean value theorem and



LYAPUNOV EXPONENTS OF LINEAR COCYCLES OVER MARKOV SHIFTS 15

(20),

d(u,w)δ ≤ d(Al
k(x)u,Al

k(x)w)δ sup
z∈U1

‖DAl
k(x, z)−1‖δ

≤ d(Al
k(x)u,Al

k(x)w)δ (1 + cδ) ‖DAl(x, v)−1‖δ

for any pair of distinct points u,w ∈ U1, any x ∈M and any large k. Then,
∫

[0;i]

d(Al
k(x)u,Al

k(x)w)−δ dµk(x)

≤ (1 + cδ) d(u,w)−δ

∫

[0;i]

‖DAl(x, v)−1‖δ dµk(x)

≤ (1 + 2cδ) d(u,w)−δ

∫

[0;i]

‖DAl(x, v)−1‖δ dµ(x)

(the last inequality uses the fact that µk → µ and assumes that k is large enough).
Using Proposition 5.3, we conclude that

(22)

∫

[0;i]

d(Al
k(x)u,Al

k(x)w)−δ dµk(x) ≤ (1 + 2cδ) d(u,w)−δ (1 − 3cδ) pk,i

≤ (1 − cδ) pk,i d(u,w)−δ

for any i ∈ X , any pair of distinct points u,w ∈ U1, and any large k.
For any measure ξ on P(Rd)2 and any δ > 0, define the δ-energy of ξ to be

Eδ(ξ) =

∫

Ψ dξ,

where

Ψ(u,w) =

{

d(u,w)−δ if (u,w) ∈ U1 × U1

1 otherwise.

Let πs : P(Rd) × P(Rd) → P(Rd) be the projection on the s-th coordinate, for
s = 1, 2. The mass ‖η‖ of a measure η on P(Rd) is defined by ‖η‖ = η(P(Rd)). If
η1 and η2 are measures on P(Rd) with the same mass, a coupling of η1 and η2 is a
measure ξ on P(Rd) × P(Rd) such that (πs)∗ξ = ηs for s = 1, 2. Define:

eδ(η1, η2) = inf{Eδ(ξ) : ξ a coupling of η1 and η2}.

A self-coupling of a measure η is a coupling of η1 = η and η2 = η. We call a
self-coupling symmetric if it is invariant under the involution ι : (x, y) 7→ (y, x).
Define the δ-energy of η to be

(23) eδ(η) = eδ(η, η) = inf{Eδ(ξ) : ξ a self-coupling of η}.

Remark 7.1. The function ξ 7→ Eδ(ξ) is lower semi-continuous. Indeed, it is not
difficult to find bounded continuous functions Ψn : P(Rd) × P(Rd) → R increasing
to Ψ as n → ∞. Then, given (ξk)k → ξ and ε > 0, we may fix n such that
∫

Ψn dξ ≥
∫

Eδ(ξ)− ε (if the energy is infinite, replace the right-hand side by ε−1).
Then, by the definition of weak∗ topology,

lim inf
k

Eδ(ξk) ≥ lim inf
k

∫

Ψn dξk ≥

∫

Ψn dξ ≥ Eδ(ξ) − ε

(≥ ε−1 if the energy is infinite). Making ε→ 0 one gets lower semi-continuity.
As a consequence, the infimum in (23) is always achieved. Moreover, that remains

true if we restrict to symmetric self-couplings: just note that if ξ is a self-coupling
of η then ξ′ = (ξ + ι∗ξ)/2 is a symmetric self-coupling of η and Eδ(ξ) = Eδ(ξ

′). As
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a further consequence, the function η 7→ eδ(η) is lower semi-continuous. Indeed,
given (ηk)k → η, take self-couplings (ξk)k with Eδ(ξk) = eδ(ηk). Up to restricting
to a subsequence, (ξk)k converges to some ξ, which is necessarily a self-coupling of
η, and

eδ(η) ≤ Eδ(ξ) ≤ lim inf
k

Eδ(ξk) = lim inf
k

eδ(ηk).

This proves lower semi-continuity.

Lemma 7.2. For any measure η in P(Rd) and any δ > 0:

(1) If η({u}) > ‖η‖/2 for some u ∈ U1 then eδ(η) = ∞.
(2) If η({u}) < ‖η‖/2 for every u ∈ Ū1 then eδ(η) <∞.

Proof. First we prove (1). Take u as in the hypothesis. For any self-coupling ξ of
η, we have

ξ({u}c × P(Rd)) = η({u}c) = ξ(P(Rd) × {u}c).

Taking the union, ξ({(u, u)}c) ≤ 2η({u}c) < η(P(Rd)) = ξ(P(Rd)2). This implies
that (u, u) is an atom for ξ. Hence Eδ(ξ) = ∞, as claimed in (1).

A result analogous to (2) was proven in [17, Lemma 10.7], for a slightly different
notion of energy. Exactly the same arguments can be used in the present situation
to construct a self-coupling ξ of η which gives zero weight to a neighborhood of
{(u, u) : u ∈ Ū1} and, hence, has finite δ-energy. �

Let η = (ηi)i∈X be a measure vector on P(Rd) and ξ = (ξi)i∈X be a measure
vector on P(Rd) × P(Rd). We say that ξ is a (symmetric) self-coupling of η if ξi is
a (symmetric) self-coupling of ηi for every i ∈ X . Then we define

Eδ(ξ) =
∑

i∈X

piEδ(ξi)

and

eδ(η) = inf
{

Eδ(ξ) : ξ a self-coupling of η
}

=
∑

i∈X

pieδ(ηi)

(of course, this depends on the probability vector p). It follows from Remark 7.1
that the function η 7→ eδ(η) is lower semi-continuous in the space of P -stationary
measure vectors. Moreover, for (ηk)k as in Theorem 6.1,

(24) lim inf
k

eδ(ηk) = lim inf
k

∑

i∈X

pk,ieδ(ηk,i) ≥
∑

i∈X

pieδ(ηi) = eδ(η).

8. The large atom case

We split the proof of Theorem 6.1 into two cases, depending on the value of
κ = ηi({v}). In this section we treat the case κ > 9/10.

Proposition 8.1. There exists C > 0 such that, for every large k, given any
symmetric self-coupling ξk of ηk, there exists a symmetric self-coupling ξ′′k of ηk

satisfying

Eδ(ξ
′′
k ) ≤ C + (1 − cδ)Eδ(ξk).

The present case of Theorem 6.1 can be deduced as follows. Suppose that there
exists a subsequence (kj)j → ∞ such that ηkj

has no atoms and, hence, eδ(ηkj
) is

finite. Then, Proposition 8.1 gives that

eδ(ηkj
) ≤ C/(cδ) for every large j.
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By the lower semi-continuity property (24), it follows that eδ(η) ≤ C/(cδ). How-
ever, by Lemma 7.2, the assumption κ > 9/10 implies that eδ(η) = ∞. This
contradiction proves that ηk does have some atom for every large k.

In the remainder of this section we prove Proposition 8.1. Let ξk be a self-
coupling of ηk. The construction of the self-coupling ξ′′k will be done in two steps.
Fix open neighborhoods U3 ⊂ Ū3 ⊂ U2 ⊂ Ū2 ⊂ U1 of the point v. The first step is:

Lemma 8.2. There exists C1 > 0 such that, assuming k is sufficiently large, given
any self-coupling ξk of ηk there exists a self-coupling ξ′k of ηk satisfying

(a) ξ′k,i(U
c
2 × U c

2 ) = 0 for every i ∈ X;

(b) Eδ(ξ
′
k,i) ≤ Eδ(ξk,i) + C1 for every i ∈ X.

Proof. For each i ∈ X , let ζk,i be the projection of (ξk,i | U
c
2 × U c

2) and η3
k,i be the

projection of (ξk,i | U3 × U3), on either coordinate. Then take

ξ′k,i = ξk,i − (ξk,i | U
c
2 × U c

2) −
‖ζk,i‖

‖η3
k,i‖

(ξk,i | U3 × U3)

+
1

‖η3
k,i‖

[

ζk,i × η3
k,i + η3

k,i × ζk,i

]

Assuming k is sufficiently large, ηk,i(U3) > (8/9)κ > 8/10 for all i ∈ X . Then,
‖ξk,i | U3 × U3‖ > 6/10. It follows that

‖η3
k,i‖ = ‖ξk,i | U3 × U3‖ >

6

10
and ‖ζk,i‖ ≤ ‖ηk,i | U

c
2‖ <

2

10
.

In particular, ‖ζk,i‖ < ‖η3
k,i‖, which ensures that ξk,i is a positive measure. Next,

notice that the projection of ξ′k,i on either coordinate is equal to

ηk,i − ζk,i −
‖ζk,i‖

‖η3
k,i‖

η3
k,i + ζk,i +

‖ζk,i‖

‖η3
k,i‖

η3
k,i = ηk,i.

So, ξ′k,i is indeed a self-coupling of ηk,i. Finally, it is clear that

(25) Eδ(ξ
′
k,i) ≤ Eδ(ξk,i) +

1

‖η3
k,i‖

Eδ(ζk,i × η3
k,i + η3

k,i × ζk,i).

The measure (ζk,i ×η
3
k,i +η3

k,i× ζk,i) is concentrated on the set (U c
2 ×U3∪U3×U

c
2),

which is at positive distance from the diagonal. Thus, its energy is uniformly
bounded. We have already seen that ‖η3

k,i‖ is bounded away from zero. Thus, the

last term in (25) is uniformly bounded, and that yields the claim in the lemma. �

Let Pk denote the operator defined as in (2), with (A,P ) replaced with (Ak, Pk).
The second, and final step of our construction uses the diagonal action Pk of Pk,
defined as follows:

(Pkξ)j(D1 ×D2) =
∑

i∈X

pk,iPk,i,j

pk,j

ξi
(

Ak(i)−1(D1) ×Ak(i)−1(D2)
)

for any j ∈ X and any measurable D ⊂ P(Rd). Equivalently,

(26) pk,j

∫

Φ d(Pkξ)j =
∑

i∈X

∫

[0;i,j]

∫

Φ
(

Ak(x)u,Ak(x)w
)

dξi(u,w) dµk(x)
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for any measurable function Φ : P(Rd) × P(Rd) → [0,∞) (the two sides of the
equality may be infinite). It is clear that

(27) (πs)∗ ◦ Pk = Pk ◦ (πs)∗ for s = 1, 2.

Take ξ′′k = Pl
kξ

′
k. Notice that ξ′′k is a symmetric measure and a self-coupling of ηk:

the previous relation gives that

(πs)∗ξ
′′
k = P l

k((πs)∗ξ
′
k) = P l

kηk = ηk for s = 1, 2.

Lemma 8.3. There exists C2 > 0 such that, assuming k is sufficiently large,

Eδ(ξ
′′
k ) ≤ (1 − cδ)Eδ(ξ

′
k) + C2.

Proof. From the definition of Pk in (26) we get that

pk,j

∫

Ψ dξ′′k,j =
∑

i∈X

∫

[0;i]∩[l;j]

∫

Ψ
(

Al
k(x)u,Al

k(x)w
)

dξ′k,i

(

u,w
)

dµk

(

x
)

.

for every j ∈ X . Thus, adding over j,

(28) Eδ(ξ
′′
k ) =

∑

i∈X

∫

[0;i]

∫

Ψ
(

Al
k(x)u,Al

k(x)w
)

dξ′k,i

(

u,w
)

dµk

(

x
)

.

If (u,w) ∈ (U1 × U1), then Ψ(u,w) = d(u,w)−δ . Using (22), we get that

(29)

∫

[0;i]

Ψ(Al
k(x)u,Al

k(x)w) dµk(x) ≤

∫

[0;i]

d(Al
k(x)u,Al

k(x)w)−δ dµk(x)

≤ (1 − cδ) pk,i Ψ(u,w).

Now suppose that (u,w) /∈ (U1 × U1). By the property in Lemma 8.2(a), we only
need to consider (u,w) /∈ (U c

2 × U c
2 ). Then (u,w) ∈ U2 × U c

1 ∪ U c
1 × U2. Since

the latter set is at positive distance from the diagonal, it follows that d(u,w) is
uniformly bounded from below. Hence, there exists C2 > 0 such that

(30) Ψ(Al
k(x)u,Al

k(x)w) ≤ d(Al
k(x)u,Al

k(x)w)−δ ≤ C2.

for every x ∈M . Using (29) and (30), together with Fubini, we get that (28) yields

Eδ(ξ
′′
k ) ≤

∑

i∈X

∫

I1

(1 − cδ)pk,iΨ(u,w) dξ′k,i(u,w) +

∫

Ic
1

C2pk,i dξ
′
k,i(u,w)

where I1 = {(u,w) ∈ U1 × U1}. Then,

Eδ(ξ
′′
k ) ≤ (1 − cδ)

∑

i∈X

pk,iEδ(ξ
′
k,i) + C2pk,i = (1 − cδ)Eδ(ξ

′
k) + C2

as claimed. �

Combining Lemmas 8.2 and 8.3, we find that

Eδ(ξ
′′
k ) ≤ (1 − cδ)Eδ(ξk) + C with C = (1 − cδ)C1 + C2.

This finishes the proof of Proposition 8.1.
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9. The small atom case

We are left to consider κ ≤ 9/10. This is similar to the previous case, but the
analysis must be localized on suitable neighborhoods of v, inside which the relative
weight of the atom is close to 1, and the precise choice of such neighborhoods turns
out to be much more delicate than one would anticipate. We do as follows.

Since κ ≤ 9/10, we have ηk,i(Ū) < (10/9)κ ≤ 1 for every i ∈ X and every large
k. Suppose that ηk is non-atomic for arbitrarily large values of k. Up to restricting
to a subsequence, we may suppose that this is the case for every k. Then every ηk,i

is a continuous measure and so we may find Vk,i ⊃ Ū such that ηk,i(Vk,i) = (10/9)κ.
We denote

Vk = (Vk,i)i∈X and ηk | Vk = (ηk,i | Vk,i)i∈X for each k ≥ 1.

The construction we have just described is designed to get the following fact, which
will be needed in a while:

Lemma 9.1. P l
k(ηk | V c

k )j(Vk,j) = P l
k(ηk | Vk)j(V

c
k,j) for every j ∈ X.

Proof. Clearly,

(31)
P l

k(ηk | Vk)j(P(R2)) = P l
k(ηk | Vk)j(Vk,j) + P l

k(ηk | Vk)j(V
c

k,j)

ηk,j(Vk,j) = (P l
kηk)j(Vk,j) = P l

k(ηk | Vk)j(Vk,j) + P l
k(ηk | V c

k )j(Vk,j).

Now, the definition of Pk in (2) gives that

P l
k(ηk | Vk)j(P(R2)) =

∑

i∈X

1

pk,j

∫

[0;i]∩[l;j]

ηk,i

(

Al
k(x)−1(P(R2)) ∩ Vk,i

)

dµk(x)

=
∑

i∈X

1

pk,j

∫

[0;i]∩[l;j]

ηk,i

(

Vk,i

)

dµk(x).

The key observation is that, by construction, ηk,i(Vk,i) is independent of i and k.
Thus the previous equality may be rewritten as

(32)

P l
k(ηk | Vk)j(P(R2)) =

∑

i∈X

1

pk,j

∫

[0;i]∩[l;j]

ηk,j

(

Vk,j

)

dµk(x)

=
1

pk,j

∫

[l;j]

ηk,j

(

Vk,j

)

dµk(x) = ηk,j(Vk,j).

The claim is a direct consequence of (31) and (32). �

We are going to prove the following localized version of Proposition 8.1:

Proposition 9.2. There exists C > 0 such that, for every large k, given any
symmetric self-coupling ξk of ηk | Vk, there exists a symmetric self-coupling ξ′′k of
ηk | Vk satisfying

Eδ(ξ
′′
k ) ≤ C + (1 − cδ)Eδ(ξk).

The present case of Theorem 6.1 may be deduced as follows. Since the ηk have
no atoms, the energy eδ(ηk | Vk) is finite. Then, Proposition 9.2 gives that

eδ(ηk | Vk) ≤ C/(cδ) for every large j.
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Let η̂ = (η̂i)i∈X be any accumulation point of (ηk | Vk). Then eδ(η̂) ≤ C/(cδ), by
the lower semi-continuity property (24). For any small open neighborhood W of L
and any i ∈ X ,

η̂i(W̄ ) ≥ lim sup
k

ηk,i(Vk,i ∩ W̄ ) = lim sup
k

ηk,i(W̄ ) ≥ lim inf
k

ηk,i(W ) ≥ ηi(W )

because ηk,i | Vk,i converges to η̂i and ηk,i converges to ηi in the weak∗ topology.
Making W → {L}, we obtain that η̂i({L}) ≥ κ = (9/10)‖η̂i‖ for all i ∈ X . This
implies that eδ(η̂) = ∞, contradicting the previous conclusion. This contradiction
proves that ηk does have some atom for all k sufficiently large.

In the remainder of this section we prove Proposition 9.2. Let U,U1, U2, U3 be
as before. The first step is:

Lemma 9.3. There exists C1 > 0 such that, assuming k is sufficiently large, given
any self-coupling ξk of ηk | Vk there exists a self-coupling ξ′k of ηk | Vk satisfying

(a) ξ′k,i

(

(Vk,i \ U2) × (Vk,i \ U2)) = 0 for every i ∈ X;

(b) Eδ(ξ
′
k,i) ≤ Eδ(ξk,i) + C1 for every i ∈ X.

Proof. Analogous to Lemma 8.2, with Vk,i \ U2 in the place of U c
2 . �

We also have the following variation of Lemma 8.3:

Lemma 9.4. There exists C2 > 0 such that, assuming k is sufficiently large,

Eδ(P
l
kξ

′
k) ≤ (1 − cδ)Eδ(ξ

′
k) + C2.

Proof. Analogous to Lemma 8.3, with Vk,i \ U2 in the place of U c
2 . �

Now we come to a main difference with respect to the more global situation
treated in Section 8. Using (27) one gets that

ξ̃k = Pl
kξ

′
k is a symmetric self-coupling of P l

k(ηk | Vk).

However, this does not mean that ξ̃k is a self-coupling of (ηk | Vk) as the latter
measure need not be Pk-stationary.

To bypass this difficulty, we begin by relating (ηk | Vk) to the projection of ξ̃k
or, more precisely, to

η1
k = projection of (ξ̃k | Vk × Vk).

The next lemma shows that η1
k ≤ (ηk | Vk) and describes the difference between

the two vectors.

Lemma 9.5. (ηk | Vk) = η1
k + Ik +Ok with

(1) Ik = restriction of P l
k(ηk | V c

k ) to Vk;

(2) Ok = is the projection of (ξ̃k | Vk × V c
k ) on the first coordinate;

(3) ‖Ok,j‖ ≤ ‖Ik,j‖ ≤ (2/9)κ for every j ∈ X and k sufficiently large.

Proof. On the one hand,

π1∗ξ̃k = P l
k(ηk | Vk) = P l

k(ηk) − P l
k(ηk | V c

k ) = ηk − P l
k(ηk | V c

k )

because ηk is P l
k-stationary. Restricting to Vk we get that

(π1∗ξ̃k) | Vk = (ηk | Vk) − Ik.

On the other hand,

(π1∗ξ̃k) | Vk = π1∗

(

ξ̃k | Vk × Vk

)

+ π1∗

(

ξ̃k | Vk × V c
k

)

= η1
k +Ok.
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Combining two equalities one gets that (ηk | Vk) = η1
k + Ik +Ok.

We are left to proving the estimates in part (3) of the statement. Let j ∈ X be
fixed. By Lemma 9.1,

‖Ik,j‖ = P l
k(ηk | V c

k )j(Vk,j) = P l
k(ηk | Vk)j(V

c
k,j).

Since ξ̃k is a self-coupling of P l
k(ηk | Vk),

P l
k(ηk | Vk)j(V

c
k,j) = ξ̃k(P(R2) × V c

k,j) ≥ ξ̃k(Vk,j × V c
k,j) = ‖Ok,j‖.

These two inequalities ensure that ‖Ok,j‖ ≤ ‖Ik,j‖.
Finally, the first part of the lemma implies that Ik,j ≤ ηk,j | Vk,j for every j ∈ X .

Since ηk,j(Vk,j) = (10/9)κ and lim infk ηk,j(U1) ≥ ηj(U1) ≥ κ, this implies that

Ik,j(Vk,j \ U1) ≤ ηk,j(Vk,j \ U1) <
2

9
κ for every large k.

The condition (21) ensures that Al
k(x)−1(U1) ⊂ U ⊂ Vk,i for every x ∈ [0; i], every

i ∈ X and every large k. Thus,

Ik,j(U1) = P l
k(ηk | V c

k )j(U1)

=
∑

i∈X

1

pk,j

∫

[0;i]∩[l;j]

ηk,i

(

V c
k,i ∩A

l
k(x)−1(U1)

)

dµk(x) = 0

for every large k. These two facts imply that ‖Ik,j‖ = Ik,j(Vk,j \ U1) ≤ (2/9)κ, as
claimed. �

According to Lemma 9.5, the difference (ηk | Vk) − η1
k is positive and relatively

small. This suggests that we try and construct the self-coupling ξ′′k of (ηk | Vk) we

are looking for by adding suitable correcting terms to the restriction of ξ̃k to the
Vk × Vk. These correcting terms should be concentrated outside a neighborhood of
the diagonal, if possible, so that their contribution to the total energy is bounded.
We choose ξ′′k = (ξ′′k,i)i∈X , with

(33)

ξ′′k,i =
[

(ξ̃k,i | Vk,i × Vk,i) −
‖ζk,i‖

‖η3
k,i‖

(ξ̃k,i | U3 × U3)
]

+
1

‖Ik,i‖

[

(Ok,i | U2) × Ik,i + Ik,i × (Ok,i | U2)
]

+
1

‖η3
k,i‖

[

(ζk,i × η3
k,i) + (η3

k,i × ζk,i)
]

where η3
k,i is the projection of (ξ̃k,i | U3 × U3) on either coordinate and

ζk,i =
(

1 −
‖Ok,i | U2‖

‖Ik,i‖

)

Ik,i + (Ok,i | U
c
2).

Lemma 9.6. ξ′′k is a symmetric self-coupling of (ηk | Vk).

Proof. Let i ∈ X be fixed. It is clear that the three terms on the right-hand side
of (33) are symmetric. Moreover,

‖Ok,i | U2‖ ≤ ‖Ok,i‖ ≤ ‖Ik,i‖.

This ensures that ζk,i is a positive measure. Clearly, the last two terms in (33)
are positive. To see that the first term is also positive, it suffices to check that
‖ζk,i‖ < ‖η3

k,i‖. That can be done as follows.
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Fix an open neighborhood U4 ⊂ U3 such that Al(x)Ū4 ⊂ U3 for every x ∈ M .
Assuming k is large enough,

ηk,i(U4) >
8

9
ηi(U4) ≥

8

9
κ for every i ∈ X .

Since ηk,i(Vk,i) = (10/9)κ, this implies that ξ′k,i(U4 × U4) ≥ (5/9)κ. Increasing k

again, if necessary, Al
k(x)−1(U3) ⊃ U4 for every x ∈M . Hence,

‖η3
k,j‖ = ξ̃k,j(U3 × U3) ≥

∑

i∈X

1

pk,j

∫

[0;i]∩[l;j]

ξ′k,i(U4 × U4) dµk(x) ≥
5

9
κ.

So, the claim that ‖ζk,i‖ ≤ ‖η3
k,i‖ is an immediate consequence of

‖ζk,i‖ ≤ ‖Ik,i‖ + ‖Ok,i‖ ≤
4

9
κ.

Next, observe that the projection of ξ′′k,i on either coordinate is equal to

[

η1
k,i −

‖ζk,i‖

‖η3
k,i‖

η3
k,i

]

+
[

(Ok,i | U2) +
‖Ok,i | U2‖

‖Ik,i‖
Ik,i

]

+
[

ζk,i +
‖ζk,i‖

‖η3
k,i‖

η3
k,i

]

and that adds up to η1
k,i + Ik,i + Ok,i = ηk,i | Vk,i. So, ξ′′k,i is a self-coupling of

ηk,i | Vk,i as we wanted to prove. �

Lemma 9.7. There exists C3 > 0 such that

Eδ(ξ
′′
k,i) ≤ Eδ(ξ̃k,i) + C3 for every i ∈ X and k sufficiently large.

Proof. Notice that the supports of the two correcting terms

1

‖Ik,i‖

[

(Ok,i | U2) × Ik,i + Ik,i × (Ok,i | U2)
]

and
1

‖η3
k,i‖

[

(ζk,i × η3
k,i) + (η3

k,i × ζk,i)
]

are uniformly away from the diagonal of P(Rd)2. Indeed, Ok,i | U2 is concentrated
on U2 while Ik,i is concentrated on U c

1 , as we have seen. Similarly, ζk,i is concen-
trated on U c

2 while η3
k,i is concentrated on U3. Moreover, the masses of these two

correcting terms are uniformly bounded (by 1, say). Thus, the δ-energy of their
sum is bounded by some constant C3 > 0, for every large k. Finally, it is clear that
the δ-energy of the first term in (33) is bounded by Eδ(ξ̃k,i | Vk,i ×Vk,i). Therefore,

Eδ(ξ
′′
k,i) ≤ Eδ(ξ̃k,i | Vk,i × Vk,i) + C3 ≤ Eδ(ξ̃k,i) + C3,

as claimed. �

By Lemmas 9.3, 9.4 and 9.7,

Eδ(ξ
′′
k ) ≤ (1 − cδ)Eδ(ξk) + (1 − cδ)C1 + C2 + C3.

for every large k. This proves Proposition 9.2 for C = (1 − cδ)C1 + C2 + C3.
The proof of Theorem 6.1 is complete.
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