Lyapunov Exponents

M compact space / manifold $\mathbb{R} \mathbb{C}$ $\pi: \mathrm{Z} \longrightarrow \mathrm{M}$ finite - dim vector bundle $f: \mathrm{M} \longrightarrow \mathrm{M}$ cont transf / homeo

Linear cocycle over f

continuous and linear
(isomorphism) on fibers

Lyapunov Exponents

M compact space / manifold $\mathbb{R} \mathbb{C}$ $\pi: \mathrm{Z} \longrightarrow \mathrm{M}$ finite - dim vector bundle $f: \mathrm{M} \longrightarrow \mathrm{M}$ cont transf / homeo

Linear cocycle

 over $f$$$
\mathfrak{G} \xrightarrow{\mathrm{F}} \underset{G}{G}
$$

$$
\underset{\mathrm{M}}{\boldsymbol{\downarrow} \xrightarrow[f]{\longrightarrow}} \stackrel{\downarrow}{\mathrm{M}}
$$

continuous and linear
(isomorphism) on fibers
Ex: $\mathscr{G}=\mathrm{Mx} \mathbb{R}^{\mathrm{d}}$ or $\mathrm{Mx} \mathbb{C}^{\mathrm{d}}$

$$
\mathrm{F}(x, \mathrm{v})=(f(x), A(x) \mathrm{v})
$$

where $A: \mathrm{M} \longrightarrow \mathrm{G}, \mathrm{G} \leq \mathrm{GL}(\mathrm{d})$

$$
\mathrm{F}^{\mathrm{n}}(x, \mathrm{v})=\left(f^{\mathrm{n}}(x), A^{\mathrm{n}}(x) \mathrm{v}\right)
$$

with $\quad A^{\mathrm{n}}(x)=A\left(f^{\mathrm{n}-1} x\right) \ldots A(f x) A(x)$

Oseledets the:

for any f-invariant probability μ and μ-almost every $x \in \mathrm{M}$

$$
\begin{aligned}
& \exists \mathfrak{E}_{x}=\mathrm{E}_{x}^{1} \oplus \ldots \oplus \mathrm{E}_{x}^{\mathrm{k}} \\
& \exists \lambda_{1}(x)>\ldots>\lambda_{\mathrm{k}}(x)
\end{aligned}
$$

s.t. $\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|\mathrm{~F}_{x}^{n} \mathrm{v}\right\|=\lambda_{i}(x)$ for all $\mathrm{v} \in \mathrm{E}_{x}^{i} \backslash\{0\}$

Oseledets thm:

for any f-invariant probability μ and μ-almost every $x \in \mathrm{M}$

$$
\begin{aligned}
& \exists \mathfrak{E}_{x}=\mathrm{E}_{x}^{1} \oplus \ldots \oplus \mathrm{E}_{x}^{\mathrm{k}} \\
& \exists \lambda_{1}(x)>\ldots>\lambda_{\mathrm{k}}(x)
\end{aligned} \quad \mathrm{k}=\mathrm{k}(x)
$$

s.t. $\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|\mathrm{~F}_{x}^{n} \mathrm{v}\right\|=\lambda_{i}(x)$ for all $\mathrm{v} \in \mathrm{E}_{x}^{i} \mid\{0\}$
s $\quad x \longmapsto \mathrm{E}_{x}^{i}$ and $x \longmapsto \lambda_{i}(x)$ are just measurable
$\chi\left(\mathrm{E}_{x}^{i}, \mathrm{E}_{x}^{j}\right)$ is not bounded from zero
k and $\operatorname{dim} \mathrm{E}_{x}^{i}$ depend on x

1) How do the λ_{i} depend on F ?

2) How often do $\lambda_{i}=0$?
$\mathrm{C}^{r}(\mathrm{M}, \mathrm{G}) \quad r \geq 0$

1) How do the λ_{i} depend on F ?

2) How often do $\lambda_{i}=0$?
$\mathrm{C}^{r}(\mathrm{M}, \mathrm{G}) \quad r \geq 0$
Ex: (dynamical cocycles)
$f: \mathrm{M} \rightarrow \mathrm{M}$ diffeomorphism

$$
\mathscr{G}=\mathrm{TM} \quad \mathrm{~F}=\mathrm{D} f
$$

$$
\begin{array}{r}
\operatorname{Diff}_{\mu}^{r}(\mathrm{M}) \quad \operatorname{Symp}_{\omega}^{r}(\mathrm{M}) \\
r \geq 1
\end{array}
$$

Ex: (random matrices)

Let $\alpha_{0}, \alpha_{1}, \ldots$ be i. i. d. random variables in $\mathrm{SL}(\mathrm{d})$, with probability distribution v. What can be said of
(*) $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\alpha_{n-1} \ldots \alpha_{1} \alpha_{0}\right\|$?

Ex: (random matrices)
Let $\alpha_{0}, \alpha_{1}, \ldots$ be i. i. d. random variables in $\mathrm{SL}(\mathrm{d})$, with probability distribution v. What can be said of
(*) $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\alpha_{n-1} \ldots \alpha_{1} \alpha_{0}\right\|$?

Furstenberg: if $\operatorname{supp}(v)$ is rich enough then $(*)>0$ almost surely

Ex: (random matrices)

Let $\alpha_{0}, \alpha_{1}, \ldots$ be i. i. d. random variables in SL(d), with probability distribution v. What can be said of
(*) $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\alpha_{n-1} \ldots \alpha_{1} \alpha_{0}\right\|$?

Furstenberg: if $\operatorname{supp}(v)$ is rich enough then $(*)>0$ almost surely
$M=\operatorname{supp}(v)^{\mathbb{Z}} \quad \mu=v^{\mathbb{Z}}$
$\mathcal{G}=\mathrm{Mx} \mathbb{R}^{\mathrm{d}}$ or $\mathrm{Mx} \mathbb{C}^{\mathrm{d}}$
$f: \mathrm{M} \rightarrow \mathrm{M} \quad$ shift map
$A: \mathrm{M} \rightarrow \mathrm{SL}(\mathrm{d}),\left(\alpha_{n}\right)_{n} \longmapsto \alpha_{0}$
then $(*)=\lambda_{1} \quad$ for the corresponding cocycle

Ex: (random matrices)

Let $\alpha_{0}, \alpha_{1}, \ldots$ be i. i. d. random variables in SL(d), with probability distribution v. What can be said of
(*) $\lim _{n \rightarrow \infty} \frac{1}{n} \log \underbrace{\| \alpha_{n-1} \ldots \alpha_{1} \alpha_{0}}_{A^{n}(x), x=\left(\alpha_{n}\right)_{n}} \|$?
Furstenberg: if $\operatorname{supp}(v)$ is rich enough then $(*)>0$ almost surely
$M=\operatorname{supp}(v)^{\mathbb{Z}} \quad \mu=v^{\mathbb{Z}}$
$\mathcal{G}=M \times \mathbb{R}^{\mathrm{d}}$ or $\mathrm{Mx} \mathbb{C}^{\mathrm{d}}$
$f: \mathrm{M} \rightarrow \mathrm{M} \quad$ shift map
$A: \mathrm{M} \rightarrow \mathrm{SL}(\mathrm{d}),\left(\alpha_{n}\right)_{n} \longmapsto \alpha_{0}$
then $(*)=\lambda_{1} \quad$ for the corresponding cocycle

Ex: Let $M=S^{1}$

$$
\begin{aligned}
& f: \mathrm{M} \rightarrow \mathrm{M} \text { expanding map } \\
& \text { e.g. } \theta \rightarrow \mathrm{k} \theta \bmod 1
\end{aligned}
$$

$f(0)=0$
μ ergodic with supp $\mu=\mathrm{M}$ $A: \mathrm{M} \rightarrow \mathrm{SL}(2, \mathbb{R})$ $A(\theta)=A_{0} \cdot\left(\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$

Ex: Let $\mathrm{M}=\mathrm{S}^{1}$

$$
\begin{aligned}
& f: \mathrm{M} \rightarrow \mathrm{M} \text { expanding map } \\
& \text { e.g. } \theta \rightarrow \mathrm{k} \theta \bmod 1
\end{aligned}
$$

$f(0)=0$
μ ergodic with supp $\mu=\mathrm{M}$
$A: \mathrm{M} \rightarrow \mathrm{SL}(2, \mathbb{R})$ $A(\theta)=A_{0} \cdot\left(\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
A_{0} hyperbolic
Thm: Assume $\operatorname{deg}(f) \neq 2,3$.
There exists a C^{0} neigbourhood $\mathfrak{\psi}$ of A such that

1) for generic (dense G_{δ}) $B \in \mathscr{Q}$

$$
\lambda_{1}=0(\Rightarrow \mathrm{k}=1) \text { a.e. }
$$

2) for every Hölder continuous $B \in \mathscr{Q}$

$$
\lambda_{1}>0>\lambda_{2}=-\lambda_{1} \quad \text { a.e. }
$$

Thm1 (Bochi, V) d=2 : Mañé, Bochi

Assume (f, μ) is ergodic, and $\mathrm{G} \leq \mathrm{SL}$ (d) acts transitively on the projective space.

Thm1 (Bochi, V) d=2:Mañé, Bochi

Assume (f, μ) is ergodic, and $\mathrm{G} \leq \mathrm{SL}$ (d) acts transitively on the projective space. Then there exists a residual $\mathcal{R} \subset \mathrm{C}^{0}(\mathrm{M}, \mathrm{G})$ s.t. for every $A \in \mathscr{R}$ either a) all Lyapunov exponents are equal to zero a.e.

Thm1 (Bochi, V) d=2 : Mañé, Bochi

Assume (f, μ) is ergodic, and $\mathrm{G} \leq \mathrm{SL}$ (d) acts transitively on the projective space. Then there exists a residual $\mathcal{R} \subset \mathrm{C}^{0}(\mathrm{M}, \mathrm{G})$ s.t. for every $A \in \mathcal{R}$ either a) all Lyapunov exponents are equal to zero a.e.
or b) the Oseledets splitting is dominated

Thm1 (Bochi, V) d=2:Mañé, Bochi

Assume (f, μ) is ergodic, and $\mathrm{G} \leq \mathrm{SL}$ (d) acts transitively on the projective space. Then there exists a residual $\mathcal{R} \subset \mathrm{C}^{0}(\mathrm{M}, \mathrm{G})$ s.t. for every $A \in \mathcal{R}$ either a) all Lyapunov exponents are equal to zero a.e.
or b) the Oseledets splitting is dominated

- it admits a continuous extension to $\operatorname{supp}(\mu)$
- angles are bounded from
zero

Ex: $\mathrm{M}=\mathrm{S}^{1}$

$f: \mathrm{M} \rightarrow \mathrm{M}$ continuous
μ ergodic with $\operatorname{supp}(\mu)=\mathrm{M}$
$A: \mathrm{M} \rightarrow \mathrm{SL}(2, \mathbb{R})$
such that

$$
\operatorname{deg}(f)-1 \nless 2 \operatorname{deg}(A)(*)
$$

Then, generically in the homotopy class of A, all Lyapunov exponents are zero a.e.

Ex: $\mathrm{M}=\mathrm{S}^{1}$

$f: \mathrm{M} \rightarrow \mathrm{M}$ continuous μ ergodic with $\operatorname{supp}(\mu)=M$ $A: \mathrm{M} \rightarrow \mathrm{SL}(2, \mathbb{R})$
such that

$$
\operatorname{deg}(f)-1 \nless 2 \operatorname{deg}(A)(*)
$$

Then, generically in the homotopy class of A, all Lyapunov exponents are zero a.e.

Reason: $(*) \Rightarrow$ the cocycle has no continuous invariant sub-bundle

Comments on the proof of thm1:
$\lambda_{1}(x)>\ldots>\lambda_{\mathrm{k}}(x)$ Lyapunov exps
$\hat{\lambda}_{1}(x)>\ldots>\hat{\lambda}_{k}(x)$ Lyapunov exps counted with multiplicity $\operatorname{dim} \mathrm{E}_{x}^{i}$
$\hat{\lambda}_{i}(A)=\int_{\mathrm{M}} \hat{\lambda}_{i}(x) \mathrm{d} \mu$

Comments on the proof of thm1:

$\lambda_{1}(x)>\ldots>\lambda_{\mathrm{k}}(x)$ Lyapunov exps
$\hat{\lambda}_{1}(x)>\ldots>\hat{\lambda}_{\mathrm{k}}(x)$ Lyapunov exps counted with multiplicity $\operatorname{dim} \mathrm{E}_{x}^{i}$
$\hat{\lambda}_{i}(A)=\int_{\mathrm{M}} \hat{\lambda}_{i}(x) \mathrm{d} \mu$
Thm2 (Bochi, V)
A is a point of continuity of
$\mathrm{C}^{0}(\mathrm{M}, \mathrm{G}) \ni B \rightarrow\left(\hat{\lambda}_{1}(B), \ldots, \hat{\lambda}_{\mathrm{d}}(B)\right)$ I
a) all Lyapunov exponents are equal to zero a.e.

> or else
b) the Oseledets decomposition is dominated

Comments on the proof of thm1:

$\lambda_{1}(x)>\ldots>\lambda_{\mathrm{k}}(x)$ Lyapunov exps
$\hat{\lambda}_{1}(x)>\ldots>\hat{\lambda}_{\mathrm{k}}(x)$ Lyapunov exps counted with multiplicity $\operatorname{dim} \mathrm{E}_{x}^{l}$
$\hat{\lambda}_{i}(A)=\int_{\mathrm{M}} \hat{\lambda}_{i}(x) \mathrm{d} \mu$
Thm2 (Bochi, V)
A is a point of continuity of

$$
\mathrm{C}^{0}(\mathrm{M}, \mathrm{G}) \ni B \rightarrow\left(\hat{\lambda}_{1}(B), \ldots, \hat{\lambda}_{\mathrm{d}}(B)\right)
$$ ॥

a) all Lyapunov exponents are equal to zero a.e.
or else
b) the Oseledets decomposition is dominated
\{continuity points\} contains dense G_{δ}

Ex: $\mathrm{M}=\mathrm{S}^{1}$

$$
\begin{aligned}
& f: \mathrm{M} \rightarrow \mathrm{M}, f(\theta)=\theta+\omega, \omega \notin \mathbb{Q} \\
& \mathrm{A}(\theta)=\left(\begin{array}{cc}
\mathrm{V}(\theta)-\mathrm{E} & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Schrödinger cocycle

Ex: $\mathrm{M}=\mathrm{S}^{1}$

$$
\begin{aligned}
& f: \mathrm{M} \rightarrow \mathrm{M}, f(\theta)=\theta+\omega, \omega \notin \mathbb{Q} \\
& \mathrm{A}(\theta)=\left(\begin{array}{cc}
\mathrm{V}(\theta)-\mathrm{E} & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Schrödinger cocycle

A is a point of continuity of Lyapunov exponents ॥
either the exponents are zero
or $\quad \mathrm{E} \notin$ spectrum of associated Schrödinger operator

What about dynamical cocycles ?

$$
\mathrm{F}=\mathrm{D} f \quad \mathrm{M} \text { manifold }
$$

What about dynamical cocycles?

$$
\mathrm{F}=\mathrm{D} f \quad \mathrm{M} \text { manifold }
$$

Thm3 (Bochi, V) $\mathrm{d}=2$: Mañé, Bochi There exists a residual $\mathcal{R} \subset \operatorname{Diff}_{\mu}^{l}(\mathrm{M})$ in the space of volume preserving diffeomorphisms, such that for every $f \in \mathcal{R}$ and μ - almost every $x \in \mathrm{M}$
either a) all Lyapunov exponents are zero at x

or b) the Oseledets decomposition is dominated on the orbit of x

Thm4 (Bochi, V)
There is a residual $\mathcal{R} \subset \operatorname{Symp}_{\omega}^{l}(\mathrm{M})$ in the space of symplectic diffeomorphisms such that for every $f \in \mathcal{R}$
either a) almost every point has zero as Lyapunov exponent
(multiplicity ≥ 2)
or b) f is Anosov

very strong restrictions on the manifold !

What about $A \in \mathrm{C}^{\mathrm{r}}(\mathrm{M}, \mathrm{G})$

$$
\begin{gathered}
f \in \operatorname{Diff}_{\mu}^{r+1}(\mathrm{M}) \quad \mathrm{F}=\mathrm{D} f \\
\text { for } r>0 ?
\end{gathered}
$$

$$
\begin{gathered}
\text { What about } A \in \mathrm{C}^{\mathrm{r}}(\mathrm{M}, \mathrm{G}) \\
f \in \operatorname{Diff}_{\mu}^{r+1}(\mathrm{M}) \quad \mathrm{F}=\mathrm{D} f \\
\text { for } r>0 ?
\end{gathered}
$$

Assume (f, μ) is hyperbolic (non-uniformly)

- all exponents of DF non-zero
- μ ergodic, non-atomic, with local product structure

$$
G=S L(d) \quad \text { or } \quad \operatorname{Symp}(2 d)
$$

Thm5

For every $r>0$ the set of $A \in \mathrm{C}^{\mathrm{r}}(\mathrm{M}, \mathrm{G})$ with positive Lyapunov exponents contains an open dense set.

Moreover, its complement has ∞ - codimension.

Thm5

For every $r>0$ the set of $A \in \mathrm{C}^{\mathrm{r}}(\mathrm{M}, \mathrm{G})$ with positive Lyapunov exponents contains an open dense set.

Moreover, its complement has ∞ - codimension.
it is contained in finite unions of closed submanifolds with arbitrary codimension

Bonatti, Gomez-Mont, V:
same conclusion when $f \in$ Axiom A and the cocycle is partially hyperbolic

One key ingredient:
Consider $f: \mathrm{M} \rightarrow \mathrm{M}$ uniformly
expanding and supp $(\mu)=\mathrm{M}$ and $\mathrm{r}=$ Lipschitz

One key ingredient:

Consider $f: \mathrm{M} \rightarrow \mathrm{M}$ uniformly expanding and supp $(\mu)=\mathrm{M}$ and $\mathrm{r}=$ Lipschitz

The cocycle A is bundle-free if
$\forall \eta \geq 1$ there exists no Lipschitz map
$\mathrm{M}_{\text {э }} x \mapsto\left\{\xi_{1}(x), \ldots, \xi_{\eta}(x)\right\}=\xi(x)$
distinct points in $\mathbb{R} p^{d-1}$
invariant under A

$$
A(x) . \xi(x)=\xi(f(x)) \quad \forall x \in \mathrm{M}
$$

Ex: $\mathrm{M}=\mathrm{S}^{1}$

$$
f: \mathrm{M} \rightarrow \mathrm{M} \quad A: \mathrm{M} \rightarrow \mathrm{SL}(2, \mathbb{R})
$$

such that $\operatorname{deg}(f)-1 \ 2 \operatorname{deg}(A)$
Then A is bundle-free

Ex: $\mathrm{M}=\mathrm{S}^{1}$

$$
f: \mathrm{M} \rightarrow \mathrm{M} \quad A: \mathrm{M} \rightarrow \mathrm{SL}(2, \mathbb{R})
$$

such that $\operatorname{deg}(f)-1 \ 2 \operatorname{deg}(A)$
Then A is bundle-free
Thm
Assume $A \in \mathrm{C}^{\text {Lipschitz }}$ satisfies

1) A is bundle-free
2) there is $\mathrm{p} \in \operatorname{Fix}\left(f^{\mathrm{k}}\right), \mathrm{k} \geq 1$ such that all eigenvalues of $A^{\mathrm{k}}(\mathrm{p})$ have distinct norms
Then $\lambda_{1}(A)>0$.
Both conditions contain open and dense set, the complement has ∞-codimension

What are the continuity points of Lyapunov exponents in $\mathrm{C}^{r}(\mathrm{M}, \mathrm{G})$?

What are the continuity points of Lyapunov exponents in $\mathrm{C}^{r}(\mathrm{M}, \mathrm{G})$?

ongoing, Avila, Bochi, V

- bundle-free cocycles are continuity points
- discontinuities do exist, at least for small $r>0$

What are the continuity points of Lyapunov exponents in $\mathrm{C}^{r}(\mathrm{M}, \mathrm{G})$?

ongoing, Avila, Bochi, V

- bundle-free cocycles are continuity points
- discontinuities do exist, at least for small $r>0$

Lower estimates of exponents?

