Lyapunov Exponents

M compact space / manifold $\mathbb{R} \mathbb{C}$ $\pi: \mathbb{Z} \longrightarrow \mathbb{M}$ finite – dim vector bundle $f: \mathbb{M} \longrightarrow \mathbb{M}$ cont transf / homeo

Lyapunov Exponents

M compact space / manifold $\mathbb{R} \mathbb{C}$ $\pi: \mathbb{Z} \longrightarrow \mathbb{M}$ finite – dim vector bundle $f: \mathbb{M} \longrightarrow \mathbb{M}$ cont transf / homeo

Ex: $\mathcal{E} = M \times \mathbb{R}^d$ or $M \times \mathbb{C}^d$ F(x,v) = (f(x), A(x)v)

where $A: M \longrightarrow G$, $G \le GL(d)$ $F^n(x,v) = (f^n(x), A^n(x)v)$

with $A^{n}(x) = A(f^{n-1}x) \dots A(fx) A(x)$

Oseledets thm:

for any *f*-invariant probability μ and μ -almost every $x \in M$ $\exists \&_x = E_x^1 \oplus \dots \oplus E_x^k$ $\exists \lambda_1(x) > \dots > \lambda_k(x)$ k = k(x)s.t. $\lim_{n \to \pm \infty} \frac{1}{n} \log || F_x^n v || = \lambda_i(x)$ for all $v \in E_x^i \setminus \{0\}$

Oseledets thm:

for any *f*-invariant probability μ and μ -almost every $x \in M$ $\exists \mathcal{E}_{x} = E_{x}^{1} \oplus \ldots \oplus E_{x}^{k}$ $\mathbf{k} = \mathbf{k}(\mathbf{x})$ $\exists \lambda_1(x) > \ldots > \lambda_{l}(x)$ $\lim_{n \to \pm \infty} \frac{1}{n} \log \| \mathbf{F}_x^n \mathbf{v} \| = \lambda_i(x)$ s.t. for all $v \in E_{v}^{i} \setminus \{0\}$ $x \mapsto E'_{x}$ and $x \mapsto \lambda_{i}(x)$ S are just measurable $\langle (\mathbf{E}_{\mathbf{x}}^{i}, \mathbf{E}_{\mathbf{x}}^{j})$ is not bounded from zero k and dim E_x^i depend on x

1) How do the λ_i depend on F? 2) How often do $\lambda_i = 0$? $C^r (M,G) \quad r \ge 0$

1) How do the λ_i depend on F? 2) How often do $\lambda_i = 0$? $C^r(M,G)$ $r \ge 0$ Ex: (dynamical cocycles) $f: M \rightarrow M$ diffeomorphism $\mathcal{E} = TM$ $\mathbf{F} = \mathbf{D}f$ $\operatorname{Symp}_{\omega}^{r}(M)$ $\operatorname{Diff}_{\mu}^{r}(M)$ $r \ge 1$

Let $\alpha_0, \alpha_1, \dots$ be i. i. d. random variables in SL(d), with probability distribution v. What can be said of

(*) $\lim_{n\to\infty} \frac{1}{n} \log \|\alpha_{n-1} \dots \alpha_1 \alpha_0\|$?

Let $\alpha_0, \alpha_1, \dots$ be i. i. d. random variables in SL(d), with probability distribution v. What can be said of

(*) $\lim_{n\to\infty} \frac{1}{n} \log \|\alpha_{n-1} \dots \alpha_1 \alpha_0\|$?

Furstenberg: if supp(v) is rich enough then (*) > 0 almost surely

Let $\alpha_0, \alpha_1, \dots$ be i. i. d. random variables in SL(d), with probability distribution v. What can be said of

(*) $\lim_{n\to\infty} \frac{1}{n} \log \|\alpha_{n-1} \dots \alpha_1 \alpha_0\|?$

Furstenberg: if supp(v) is rich enough
 then (*) > 0 almost surely

 $M = \operatorname{supp}(v)^{\mathbb{Z}} \qquad \mu = v^{\mathbb{Z}}$ $\mathcal{E} = M \times \mathbb{R}^{d} \quad \text{or} \quad M \times \mathbb{C}^{d}$ $f : M \to M \quad \text{shift map}$ $A : M \to SL(d) , (\alpha_{n})_{n} \longmapsto \alpha_{0}$ then (*) = λ_{1} for the corresponding cocycle

Let $\alpha_0, \alpha_1, \dots$ be i. i. d. random variables in SL(d), with probability distribution v. What can be said of

(*)
$$\lim_{n \to \infty} \frac{1}{n} \log \left\| \alpha_{n-1} \dots \alpha_1 \alpha_0 \right\| ?$$
$$A^n(x), x = (\alpha_n)_n$$

Furstenberg: if supp(v) is rich enough then (*) > 0 almost surely

 $M = \operatorname{supp}(v)^{\mathbb{Z}} \qquad \mu = v^{\mathbb{Z}}$ $\mathcal{E} = M \times \mathbb{R}^{d} \quad \text{or} \quad M \times \mathbb{C}^{d}$ $f : M \to M \quad \text{shift map}$ $A : M \to SL(d) , (\alpha_{n})_{n} \longmapsto \alpha_{0}$ then (*) = λ_{1} for the corresponding cocycle Ex: Let $M = S^{1}$ $f: M \rightarrow M$ expanding map $e.g. \theta \rightarrow k \theta \mod 1$ f(0) = 0 μ ergodic with supp $\mu = M$ $A: M \rightarrow SL(2, \mathbb{R})$ $A(\theta) = A_{0} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ A_{0} hyperbolic Ex: Let $M = S^{1}$ $f: M \rightarrow M$ expanding map $e.g. \theta \rightarrow k \theta \mod 1$ f(0) = 0 μ ergodic with supp $\mu = M$ $A: M \rightarrow SL(2, \mathbb{R})$ $A(\theta) = A_{0} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ A_{0} hyperbolic

<u>Thm</u>: Assume $deg(f) \neq 2,3$. There exists a C⁰ neigbourhood \mathfrak{A} of *A* such that

- 1) for generic (dense G_{δ}) $B \in \mathbb{N}$ $\lambda_1 = 0 \ (\Rightarrow k = 1)$ a.e.
- 2) for every Hölder continuous *B* ∈ 𝔄 $\lambda_1 > 0 > \lambda_2 = -\lambda_1$ a.e.

Assume (f,μ) is ergodic, and $G \le SL(d)$ acts transitively on the projective space.

Assume (f,μ) is ergodic, and $G \le SL(d)$ acts transitively on the projective space. Then there exists a residual $\Re \subset C^0(M, G)$ s.t. for every $A \in \Re$ either a) all Lyapunov exponents are equal to zero a.e.

Assume (f,μ) is ergodic, and $G \le SL(d)$ acts transitively on the projective space. Then there exists a residual $\Re \subset C^0(M, G)$ s.t. for every $A \in \Re$ either a) all Lyapunov exponents are equal to zero a.e.

or b) the Oseledets splitting is dominated

Assume (f,μ) is ergodic, and $G \le SL(d)$ acts transitively on the projective space. Then there exists a residual $\mathcal{R} \subset C^0(M, G)$ s.t. for every $A \in \mathcal{R}$ either a) all Lyapunov exponents are equal to zero a.e.

- or b) the Oseledets splitting is dominated
 - it admits a continuous extension to supp(μ)
 - angles are bounded from zero

Ex: $M = S^1$ $f: M \rightarrow M$ continuous μ ergodic with supp (μ) = M $A: M \rightarrow SL(2, \mathbb{R})$

such that

 $\deg(f) - 1 \not\mid 2 \deg(A)$ (*) Then, generically in the homotopy class of *A*, all Lyapunov exponents are zero a.e. Ex: $M = S^1$ $f: M \rightarrow M$ continuous μ ergodic with supp (μ) = M $A: M \rightarrow SL(2, \mathbb{R})$

such that

 $\deg(f) - 1 \not\mid 2 \deg(A) \quad (*)$

Then, generically in the homotopy class of *A*, all Lyapunov exponents are zero a.e.

Reason: (*) ⇒ the cocycle has no continuous invariant sub-bundle

Comments on the proof of thm1:

$$\lambda_1(x) > ... > \lambda_k(x)$$
 Lyapunov exps
 $\hat{\lambda}_1(x) > ... > \hat{\lambda}_k(x)$ Lyapunov exps
counted with multiplicity dim E_x^i
 $\hat{\lambda}_i(A) = \int_M \hat{\lambda}_i(x) d\mu$

Comments on the proof of thm1:

$$\lambda_1(x) > ... > \lambda_k(x)$$
 Lyapunov exps
 $\hat{\lambda}_1(x) > ... > \hat{\lambda}_k(x)$ Lyapunov exps
counted with multiplicity dim \mathbb{E}_x^i
 $\hat{\lambda}_i(A) = \int_M \hat{\lambda}_i(x) d\mu$
Thm2 (Bochi, V)
A is a point of continuity of
 $\mathbb{C}^0(M, \mathbb{G}) \ni B \rightarrow (\hat{\lambda}_1(B), ..., \hat{\lambda}_d(B))$
 $\hat{\mathbb{Q}}$
a) all Lyapunov exponents are equal
to zero a.e.
or else

b) the Oseledets decomposition is dominated

Comments on the proof of thm1:

$$\lambda_1(x) > ... > \lambda_k(x)$$
 Lyapunov exps
 $\hat{\lambda}_1(x) > ... > \hat{\lambda}_k(x)$ Lyapunov exps
counted with multiplicity dim E_x^i
 $\hat{\lambda}_i(A) = \int_M \hat{\lambda}_i(x) d\mu$
Thm2 (Bochi, V)
A is a point of continuity of
 $C^0(M,G) \ni B \rightarrow (\hat{\lambda}_1(B), ..., \hat{\lambda}_d(B))$

a) all Lyapunov exponents are equal to zero a.e.

or else

b) the Oseledets decomposition is dominated

{continuity points} contains dense G_{δ}

Ex: $M = S^1$

 $f: \mathbf{M} \to \mathbf{M}, \ f(\theta) = \theta + \omega, \ \omega \notin \mathbb{Q}$ $\mathbf{A}(\theta) = \begin{pmatrix} \mathbf{V}(\theta) - \mathbf{E} & -1 \\ 1 & 0 \end{pmatrix}$ Schrödinger cocycle

Ex: $\mathbf{M} = \mathbf{S}^1$

 $f: \mathbf{M} \to \mathbf{M}, \ f(\theta) = \theta + \omega, \ \omega \notin \mathbb{Q}$ $\mathbf{A}(\theta) = \begin{pmatrix} \mathbf{V}(\theta) - \mathbf{E} & -1 \\ 1 & 0 \end{pmatrix}$ Schrödinger cocycle

A is a point of continuity of Lyapunov exponents
↓
either the exponents are zero or E ∉ spectrum of associated Schrödinger operator

What about dynamical cocycles ? F = Df M manifold

What about dynamical cocycles ? F = Df M manifold

<u>Thm3</u> (Bochi, V) d = 2 : Mañé, Bochi

There exists a residual $\Re \subset \text{Diff}_{\mu}^{T}(M)$ in the space of volume preserving diffeomorphisms, such that for every $f \in \Re$ and μ - almost every $x \in M$

either a) all Lyapunov exponents are zero at *x*

or b) the Oseledets decomposition is dominated on the orbit of x

<u>Thm4</u> (Bochi, V)

There is a residual $\Re \subset \text{Symp}_{\omega}^{1}$ (M) in the space of symplectic diffeomorphisms such that for every $f \in \Re$

either a) almost every point has zero as Lyapunov exponent (multiplicity ≥ 2)

or b) f is Anosov

very strong restrictions on the manifold !

What about $A \in C^{r}(M,G)$ $f \in Diff_{\mu}^{r+1}(M)$ F = Dffor r > 0?

What about $A \in C^{r}(M,G)$ $f \in Diff_{\mu}^{r+1}(M)$ F = Dffor r > 0?

Assume (f, μ) is hyperbolic (non-uniformly)

- all exponents of DF non-zero
- μ ergodic, non-atomic, with local product structure

G = SL(d) or Symp(2d)

Thm5

For every r > 0 the set of $A \in C^{r}(M,G)$ with positive Lyapunov exponents contains an open dense set.

Moreover, its complement has ∞ - codimension.

Thm5

For every r > 0 the set of $A \in C^{r}(M,G)$ with positive Lyapunov exponents contains an open dense set.

Moreover, its complement has ∞ - codimension.

it is contained in finite unions of closed submanifolds with arbitrary codimension

Bonatti, Gomez-Mont, V:

same conclusion when $f \in Axiom A$ and the cocycle is partially hyperbolic

One key ingredient:

Consider $f : M \rightarrow M$ uniformly expanding and supp $(\mu) = M$ and r = Lipschitz One key ingredient:

Consider $f : M \rightarrow M$ uniformly expanding and supp $(\mu) = M$ and r = Lipschitz

The cocycle A is <u>bundle-free</u> if

 $\forall \eta \geq 1$ there exists no Lipschitz map

$$M \ni x \mapsto \{ \xi_1(x), \dots, \xi_\eta(x) \} = \xi(x)$$

distinct points in $\mathbb{R}p^{d-1}$

invariant under A

 $A(x) \cdot \xi(x) = \xi(f(x)) \quad \forall x \in \mathbf{M}$

Ex: $M = S^1$

 $f: M \rightarrow M$ $A: M \rightarrow SL(2, \mathbb{R})$ such that $\deg(f) - 1 \not| 2 \deg(A)$ Then A is bundle-free Ex: $M = S^1$ $f: M \rightarrow M$ $A: M \rightarrow SL(2, \mathbb{R})$ such that $\deg(f) - 1 \not| 2 \deg(A)$ Then A is bundle-free

<u>Thm</u>

Assume $A \in C^{Lipschitz}$ satisfies

- 1) A is bundle-free
- 2) there is p ∈ Fix(f^k), k ≥ 1 such that all eigenvalues of A^k(p) have distinct norms
 Then λ₁(A) > 0.

Both conditions contain open and dense set, the complement has ∞-codimension

What are the continuity points of Lyapunov exponents in $C^r(M,G)$?

What are the continuity points of Lyapunov exponents in $C^r(M,G)$?

ongoing, Avila, Bochi, V

- bundle-free cocycles are continuity points
- discontinuities do exist, at least for small r > 0

What are the continuity points of Lyapunov exponents in $C^r(M,G)$?

ongoing, Avila, Bochi, V

- bundle-free cocycles are continuity points
- discontinuities do exist, at least for small r > 0

Lower estimates of exponents ?