POSITIVE LYAPUNOV EXPONENTS FOR
LORENZ-LIKE FAMILIES WITH CRITICALITIES

par
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Résumé. — We introduce a class of one-parameter families of real maps extend-
ing the classical geometric Lorenz models. These families combine singular dynamics
(discontinuities with infinite derivative) with critical dynamics (critical points) and
are based on the behaviour displayed by Lorenz flows over a fairly wide range of
parameters. Our main result states that — nonuniform — expansion is the prevalent
form of dynamics even after the formation of the criticalities.

REsUME. Nous introduisons une classe de familles d’applications réelles dependant
d’un parameétre qui étend les modeles geometrique classiques de Lorenz. Ces familles
combinent des dynamiques singuliéres (des discontinuités avec des derivés infinies)
avec des dynamiques critiques (points critiques) et sont basées sur le comportement
du flot de Lorenz pour un ensemble de parameétre important. Notre résultat principal
dit qu’une expansion non-uniforme est le type de dynamique que ’on retrouve le plus
souvent méme s’il se forment des points critiques.

1. Introduction and statement of results

Numerical analysis of the now famous system of differential equations

T=—-o0x+o0y
(1) y=rr—y—zz
Z=—-bz+xy

for parameter values r = 28, 0 = 10, b ~ 8/3, led Lorenz [11] to identify sensitive
dependence of orbits with respect to the corresponding initial points as a main source
of unpredictability in deterministic dynamical systems. His observations were then
interpreted by [1], [6], who described expanding (“strange”) attractors in certain
geometric models for the behaviour of (1). Conjecturedly, such an attractor exists
also for Lorenz’ original equations, although this has not yet been proved.

Further study of (1) revealed that relatively small variations of these parameter
values may lead to quite different, albeit even more complex, dynamical features.
Indeed, already as r is increased past r =~ 30 Poincaré return maps cease to be
described by the cusp-type pictures corresponding to the geometric models, instead
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they exhibit “folded cusps”, or “hooks”; moreover, these hooks persist in a large
window of values of r (extending beyond r = 50), see [15] for a thorough discussion.
Trying to understand this folding process and its effect on the behaviour of the flow
was, in fact, a main motivation behind Hénon’s model of strange attractor for maps
in two dimensions, [7], [8]. In constructing this model he focused on the dynamics
near the fold, in particular disregarding trajectories which pass close to equilibrium
points.

Here we aim at a more global understanding of the dynamics of Lorenz flows, ac-
counting for the interaction between singular behaviour (corresponding to trajectories
near equilibria) and critical behaviour (near folding regions). Indeed, we introduce a
one-dimensional prototype for this problem, largely inspired by the observations in
[15], which we call Lorenz-like families with criticalities. Apart from their present
motivation, these families of maps are also of interest in their own right, as models
of rich nonsmooth dynamics in dimension one. Moreover, in an ongoing work we are
further pushing the present constructions and conclusions to the context of smooth
flows in three-dimensional space, cf. comments below.

Let us begin by explaining what we mean by Lorenz-like families with criticalities.
We consider one-parameter families {p,} of real maps of the form

_Jex)—a ifzx>0
%a(@) = {—ap(—x) +a ifzr<0

where ¢ : Rt — RT is smooth and satisfies:

L1 : o(z) = ¢(z*) for all z > 0, where 0 < A < 1/2 and ¢ is a smooth map
defined on R with ¢(0) =0 and ¢'(0) # 0;

L2 : there exists some ¢ > 0 such that ¢'(c) = 0;

L3 : ¢"(z) <0 for all z > 0.

As we already mentioned, this definition is motivated by a fair amount of numerical
and analytical data concerning the behaviour of Lorenz flows. In particular, the
condition A < 1/2 corresponds to the fact that, for the parameter region we are
interested in, the expanding eigenvalue A, of (1) at the origin is more than twice
stronger than the weakest contracting eigenvalue s (that is A, + 2As > 0).
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FIGURE 1. Lorenz-like families with criticalities
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For small values of the parameter the maximal invariant set of ¢, in the interval
[—a,a] is a hyperbolic Cantor set. Under certain natural conditions, implied by L4
and L5 below, the entire interval [—a, a] becomes forward invariant as a crosses some
value a; > 0. This situation persists for a certain range of parameter values and
corresponds to the class of maps usually associated to the ”Lorenz attractor” (see [5],
[6], [1]). The dynamics of such maps is relatively well understood: they admit an
invariant measure which is absolutely continuous with respect to Lebesgue and has
positive metric entropy; they are not structurally stable but are fully persistent in
the sense that any small perturbation also admits an absolutely continuous invariant
measure of positive entropy.

We are mainly interested in studying the bifurcation which occurs as the parameter
crosses the value a = ¢. With this in mind, we add two natural assumptions on ¢
which ensure that a Lorenz attractor persists for all a < c.

Let z_s; denote the unique point in (0,¢) such that ¢'(z ) = V/2; sometimes we
also write as = z_ 5. Then we suppose

L4 : 0< @u(z,s5) < pala) <z s forall a € (az,c].
The last inequality implies that given any y with |y| € [z /3,a) there exists a unique

x € [—a,a] such that ¢,(z) = y. Note that £ and y have opposite signs. Moreover,
the first inequality implies that |z| < z /. Our last assumption is

L5 : |(¢2)'(x)| > 2 for all x € [—¢,c] \ {0} such that |¢.(z)| € [z s3,(]

Observe that this is automatic if ¢.(z) = z,/; (because |z| is strictly smaller than
T /3, by the previous remarks) and also if ¢.(x) is close to ¢ (then z is close to zero
and 50 |(¢2)'(2)] ~ a1 & ).

It is straightforward to check that L1-L5 are satisfied by a nonempty open set of
one-parameter families, where openness is meant with respect to the C? topology in
the space of real maps 9. Moreover, we shall show that these hypotheses do imply
that ¢, is essentially uniformly expanding for all parameters up to c¢:

Proposition 1.1. — Given any a € [a1, (],
1. the interval [—a, a] is forward invariant and ¢|[—a,a] is transitive
2. [(gn) ()] > min{v/2, | @)}V for all 3 € [—a,a] such that pi(z) # 0
for every 7 =0,1,...,n—1.

After the bifurcation a = ¢ such uniform expansivity is clearly impossible, due to
the presence of the critical point in the domain of the map. However, our main result
states that — nonuniform — expansivity persists, in a measure-theoretical sense, and is
even the prevalent form of dynamics after the bifurcation. We denote c¢;(a) = ¢i(c)
for each j > 1.
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Theorem. — Let {p,} be a Lorenz-like family satisfying conditions L1-L5. Then
there are o > 0 and AT C R such that |(¢%)'(c1(a))| > e for alla € AT and j > 1
and
+
lim m(AT N e, c+€))

e—0 £

=1 (m = Lebesgue measure on R).

Moreover, there is o1 > 0 such that if a € A* then for m-almost all © € [—a,a] we
have lim sup Llog (¢})'(x) > 01 as n — oo.

Measure theoretic persistence of positive Lyapunov exponents (outside the class of
uniformly expanding maps) was first proved by Jakobson [9], for maps in the quadratic
family f,(z) =1 — az? close to parameter values a satisfying ([12])

2 inf
) Bt

O C| >0 (¢ = critical point = 0).

There exist today many proofs of this theorem, e.g. [4], [2], as well as generalizations
to families of smooth maps with finitely many critical points [16], and to families of
maps in which a single discontinuity coincides with the critical point [14]. A number
of differences should be pointed out in this setting, between smooth maps and our
Lorenz-like maps.

While all proofs of Jakobson’s theorem in the smooth context rely in one way or
the other on the nonrecurrence condition (2), here we need no assumption on the
orbits of the critical points for a = ¢. Instead, we simply take advantage of the strong
expansivity estimates given by Proposition 1.1 for that parameter value.

Various technical complications arise in the present situation from the existence of
discontinuities and of regions where the derivative has arbitrarily large norm. Sev-
eral estimates (including distortion bounds), which in the smooth case rely on the
boundedness and Lipschitz continuity of the derivative, now require nontrivial refor-
mulations together with a detailed study of the recurrence near the discontinuity (and
not only near the critical points).

Lorenz-like families with criticalities undergo codimension-one bifurcations which
mark a direct transition from uniformly expanding dynamics (for a < ¢), to nonuni-
formly expanding dynamics (for a € A1), a kind of bifurcation which does not seem
to be known in the smooth one-dimensional context. The fact that the bifurcation
parameter a = ¢ is a Lebesgue density point for A* is related to the strong form of
expansivity exhibited by ¢.. An interesting question is whether some characterization
of the density points of AT can be given in terms of special hyperbolicity features of
the corresponding maps (e.g. uniformly hyperbolic structure on periodic orbits ?).

We remark here that the symmetry inherent in our definition of Lorenz-like maps,
though partly justified by the symmetry which exists in Lorenz’ system of equations,
is not strictly necessary for the proof of the theorem. We carry out the proof in
the symmetric case in order to simplify the exposition (in particular we shall often
discuss some construction or result with explicit reference to only one of the critical
points with the implicit understanding that the same statements apply to the other
one as well, by symmetry) but all the arguments hold, up to minor modifications, in
a nonsymmetric setting.
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Closing this section, we observe that the dynamics of the Lorenz flows in the
parameter range we want to consider cannot be expected to fully reduce to that of
one-dimensional maps (as happens for the geometric models of the Lorenz attractor
mentioned previously). Indeed, the very phenomenon of “folding” which we want
to encompass in our description, is also an obstruction to the existence of invariant
foliations transverse to the flow. Nevertheless, drawing on the results obtained in
this article we are developing, in a forthcoming paper by the same authors [10], a
natural extension of those geometric models to this wider range of parameters. Such
Lorenz-like flows are amongst the simplest systems in which behaviour arising from
the presence of equilibria interacts with dynamical features related to the presence
of criticalities (homoclinic and heteroclinic tangencies). The understanding of the
bifurcations taking place in this model is probably a necessary step towards a global
description of the dynamics of flows, in the spirit of the program proposed a few years
ago by Palis, see [13].

The proof of our main result is organized as follows. In Section 2 we identify a pair
of conditions on the parameter a which ensure that a € At. Sections 3 and 4 are then
devoted to showing that the set of parameters for which such conditions are satisfied
is large in the sense of the statement of the theorem. The whole global approach is
inspired on [3].

Acknowledgements. This work was started during the Conference on Real and
Complex Dynamics held in Hillergd, Denmark, in the Summer of 1993. It was con-
cluded two years later in the pleasant surroundings of Orsay, during the Colloquium
Adrien Douady. We are thankful to the organizers of both conferences for a fine am-
biance. We are also grateful to Colin Sparrow for stimulating conversations and to
Jacob Palis for his friendship and encouragement. S. Luzzatto was partially supported
by EEC Contract No. ERBCHBGCT 920016 and by a CAPES/ITALIA fellowship.
He is also thankful to IMPA-CNPq/Brazil for its kind hospitality and support during
the preparation of this paper.

2. Positive Lyapunov Exponents

We begin by proving Proposition 1.1. In doing this we focus only on a € [az,]:
the case a < ay corresponds to the situation in [6], and it also follows from (simpler
versions of) these same arguments.

2.1. Proof of Proposition 1.1. — The invariance of [—a, a] is an immediate con-
sequence of lim; 0 [pa ()| = a, |@a(£a)| < 7,5 < a (recall L4), and the monotonicity
of ¢, on (—a,0) and (0, a).

Next, let 2 and 1 < j < n —1 be as in part (2). If ¢} (2)| < z ;5 then we have
ol (@3 (z))| > V2. If |@i(z)| > z s then, by L4, there exists a unique z € [—c,(]
such that ¢.(2) = ¢l (z) = ¢a(¢i t(z)). Moreover, z and ¢ !(z) have the same
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sign (opposite to that of ¢J (z)) and |z| > |p% 1 ()|, because a < c. Using L5 we get
|(92) (i~ (@))] =l¢' (97 (@) ¢ (9] (2))]
>[¢'(2) ' (0} (@)] = 1(£2)'(2)] > 2.

Part (2) follows directly from these remarks and it is easy to see that one even gets
a somewhat better bound, with v/2 replaced by some slightly larger constant 6.

To prove transitivity, we let Up, Vo C [—a, a] be arbitrary open sets and show that
e (Uo) N Vo # O for some n > 0. Suppose, without loss of generality, that 0 ¢ Up
and Uy C (—z 5, s5) (recall L4). As long as 0 ¢ ¢ (Up), write U; = ¢4 (Up) and
notice that |U;| > 67|Up|. Thus we must have 0 € ¢,(Uy,—1) for some k; > 1.
Let Uy, denote the largest connected component of ¢,(Ug,—1) \ {0} and observe
that [Ug,| > 1|¢a(Uk,—1)| > 6% |Us|. Suppose first that Uy, C (z7,z"), where
27 < 0 < 2T are the preimages of zero under ¢,; observe that |2z%| < T 5 as a
consequence of the first inequality in 4. Then we proceed as before, with Uy replaced
by Uy,. More precisely, we define Uy, y; = % (Uy,) until the first iterate ko > ki for
which 0 € ¢, (Ug,—1); at that point we take Uy, to be the largest component of

04 (Ug,—1) and repeat the whole procedure again. As long as Uy, C (27, 2%) we have
kiy1 > ki + 2, hence

Ukisa| > 10a(Uk;—1)|/2 > 854275 Uy, |/2 > 6°|UL, | /2
grows exponentially with ¢. Thus, one eventually reaches some k = k; for which Uy
contains either (z7,0) or (0,27). In the first case ,(Uy) contains (0,a) D (0,27) and
then 2 (Uy) contains (—a,0), which ensures that either ¢, (Uy) or ¢2(Uy) intersect
Vo. The second case is entirely analogous so the proof of the proposition is complete.

Now we fix a number of constants to be used in the sequel of our argument. Recall
that 0 < A < 1/2. We take o9 > 0 and ¢ > 0 such that 0 < 20 < g¢ < log v/2 and
also choose

v>1and d,¢>0suchthat 1 <y+d+¢<1/2\

We will be choosing § small with respect to A and ¢ small with respect to §. We
remark for future reference that this implies v+ 6 + ¢ < 1/A — 1. Then, we let
0 < a < B be small, depending on the previous constants (the precise conditions are
stated throughout the proof wherever they are required).

By conditions L1-L3 there exist 71,72 > 0 such that

@I e el _
z—0 |;1:|)‘ z—c |.’E—C|2

For each i = 1,2, we fix constants n; = n; — v and n;" = 5; + v, where v is some
small positive number (once more, precise conditions are to be stated along the way).
Then we have

M1 : for all  # 0 close enough to the origin,
ny |z < @o(x) +a < nf |z if z >0,
—if [z} < palz) —a < =y far ifz <O,
and g AzAH < [gg ()] < af A
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M2 : for all z close enough to the critical point ¢

1y (& = 0)? < lpa(e) — pa(O)] < 15 (x — )
and 25 |o — | < |l (@)] < 20 |o — cf

and a similar fact holds for all x close enough to —c.

Now, for each small € > 0 we let A?H A%, AL° denote the £7- neighbourhoods of
the origin and of the critical points ¢ and —c, respectively. We define partitions of
A% and AT® by writing I = [7e”",e7e ") and

A% ={o}u U I° and AT = {£c}U U I*e,
lr|>1 lr|>1

where I? = I, and I°, = —I,, for each r > 1, and the I}¢ = I? £ ¢ are simply
the translates of the I?. We shall always assume that € > 0 is small enough so that
AS and Afc are contained in the regions for which M1 and M2 are valid. Moreover,
we let r. = [dloge™!] (here [z] is the integer part of ) and we consider restricted
neighbourhoods

A'={otu |J 17 and A**={igu |J I

[r|>re+1 |r|>re+1

(of radius ~ €719) of the origin and the critical points. We shall also need an even
smaller neighbourhood (of radius ~ e2(7+9)+¢) of the origin. So let

A, ={0}u U I, rs = [(7v + 25 + 1) log1/e].
[r|>rs+1

We shall prove below that the preimages of the critical neighbourhoods Afc are always
contained in this smallest neighbourhood of the origin, i.e. ;1 (AT¢) C A .

2.2. Breaking the hyperbolic structure. — The loss of expansivity occurring
after the bifurcation a = ¢ and caused by the critical points entering the domain of
the map is, in some sense, local: for ¢ < a < ¢+ ¢, it occurs only in a neighbourhood
of the critical points of size 719 < e. More precisely, any piece of orbit that does
not intersect A*¢ has an exponentially growing derivative. Proving this fact requires
two preliminary lemmas. First we determine the position and size of the preimage of
A*¢ for a convenient range of parameter values. Then we estimate the accumulated
derivative of points which pass close to the discontinuity or to the critical points. In
all that follows we write p = 27,

Lemma 2.1. — Ife > 0 is sufficiently small then (e/n)* < lpoie (£e)| < (e/n7)>
and

o (W)
lozte(£0)|

for every y € AT¢ and a € ¢+ pe,c+ €.
+

1
< <e
€
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Proof By symmetry it suffices to consider the preimages of points in AS. Using
the second inequality in M1,

—n ot (@) <e—(c+e) < -y |pete(e)
which immediately gives the first claim. To prove the second one notice that, for any
y and a as in the statement, y —a = (c —a) — (¢ —y) € [ — €7, —pe + €"] and so,
using M1 in the same way as before,

1 1
e\ _ e+e"\?*
(ps—n—+) s|soa1(y>|s( ) .

1 m
Combining with the first part of the present lemma, we get
1 1
(ﬂpa—ﬂ) Y lp, " () < (£e+e”’) x
e T e @l T\ e
The left hand side is close to 1/2, and hence larger than 1/e, if € is small (and v has
been fixed sufficiently small, recall the definition of mﬂ:) Analogously, the right hand

side is smaller than e if € and v are small enough. The proof is complete. O
Now we define r. = r.(¢) > 1 by the condition ¢, (c) € I°, . Observe that

1 1
x X
3) ! (%) <e¥em™ < (i)
€\ Ui

by the first part of the previous lemma. Moreover, the second part gives

I,

(4) e (A I, Ul UI’, _,, foreveryac€ [c+ pe,c+el
Notice that we have from (3) e~ < g'/A=7p, /X which yields
re > (1/A—7)logl/e +1/Xlogn; > (v + 26 +)logl/e

if € is small enough. This shows, as promised above, that cp;l(Af) C A2,

Lemma 2.2. — For everya € [c+ pe,c+e] andx € I, |r| > 1,
1. if pa(x) ¢ AEC then |(2) ()| > const(e7e™")2A—1 > e200ehlrl,
2. if pa(x) € A_T_C, with @q(z) € IFiC,
then
@' ()| > const(e7e ™)AL > e70eAI"!
and
(02 (z)| > 7T =% e Pl > g200e 17l

Proof We consider r,7 > 1, the other cases being entirely analogous. For the sake
of clearness let us split the proof of (1) into three different cases.

Suppose first that 7 < r. — 2. Then, in view of (4), |z — ¢ (£c)| > |L41| =
(1—1/e)e"e". Thus, by the mean value theorem,

lpa(@) | > |z =, (£c)| - inf{'(2) : 2 € [z, 051 (c)]}
> (1—1/e)e”e "ny AeVe T )AL
> kls'y)\e—rA’
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with k1 = (1 — 1/e)n; Ae* L. Tt follows, using M1, M2,

12)' (@) > e (@)leh(pa(@)] > my AeTe ™) 12, ke te ™
> k2677(172/\)er(172)\) > e2a'oeﬁr’

where ky = 2n; Ae*‘ln; k1 and, for the last inequality, we suppose 8 < 1— 2\ and €
sufficiently small.

Clearly, exactly the same argument works for |r| > r, — 2 where we have even
greater expansion.

Finally, suppose that ¢, (z) € IE° C Afc. Clearly,

|90;($)| > n;)\(a'ye—r—i-l),\—l > n;)\e)\—le—'y(l—)\)er(l—/\) > eaoeﬂr
if 8 and e are small. Moreover, by (4), e7e~"~! < |z| < £7e~"<*2, which gives

[(02)' (@] > lea(@)lh (o (@) 2 AeTe e +2)A 12, Ve T

Z k567>‘e(1_)‘)"'c€_7‘ Z k5€7>\+(1_)‘)(7_%) (’,’h_) %_le_F

> k6677§+1eﬂ= > 6200647
where ks = 2n; AeX* V5 and ke = ks(n; )X ! and we use the relation (3) in the
fourth inequality. O
Lemma 2.3. — For anya € [c+ pe,c+¢€] and x € [—a,a],

L if {@l()}12) NAEe = § then |(o7)' (z)| > min{e?, |¢], (z)| e =1);
2. if, in addition, o7 (z) € ATC then |(¢7)'(z)| > e”om.

Proof Denote z; = @i (), for 0 < j <n — 1. We claim that given any j > 1 either
o (25)| > e or |(¢3) (xj—1)| > €??°. This is obvious if |z;| < z sz, because we get
Il (x5)] = [¢'(z;)| > €. From now on we consider z; > = s, the case z; < —z 5
being entirely analogous. If z; 1 € AY then |(p2)'(zj_1)| > €*?° by part (1) of the
previous lemma. Therefore, we may suppose z;_1 ¢ A, that is |zj_1| > €7. Then,
recall M1, M2, ¢ — p.(zj_1) > 1y €’ and so |¢'(¢c(zj-1))| > 2n; 0y €. Hence,
using also @q(zj_1) — pc(zj—1) =a—c <e, we get

(02" (@j-1)| _|¢'(Pal@; 1))

1(2) (zj—1)| ¢ (pe(zj-1))

51 ¢’ (¢a(zj-1)) = @' (Pe(zi-1)) S 1 kel M,
l¢" (¢c(zj-1))]

where k7 = k/(2n; n; ), with k a Lipschitz constant for ¢’ on {z > z 5 — €0} (eo is
some small constant, we take € < gp). Since 1 — Ay > 0, the left hand term is larger
that e%?¢/2 if ¢ is small enough and then the claim follows from L5. Moreover, the
first statement in the lemma is a direct consequence of our claim (cf. the proof of
lemma 2.1).

In order to deduce the second part of the lemma we may suppose |} (z)| < e,
for otherwise there is nothing to prove. Observe also that if ¢”(x) € Afc then, by

(3), (4), we have |l (o™ 1(z))| > kse' %, with kg = Ae2AD (7).
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Moreover, by hypothesis, ¢ A%¢ and so |¢, (z)| > ny Ae7+9. Altogether, writing
k9 = Th_ )\kSJ

[(wa)' (@) > |@,(= )|€"°(” @' (P2~ @)| > koe™ el =%
Z k967+6+1—7 oo(n—2) Z eaon’

if € is small enough. O

2.3. Recovering expansion. — Now we deal with the expansion losses occurring
when trajectories pass close to some of the critical points £c¢. More precisely, we
consider points z € A*°. Assuming that the critical trajectories satisfy (exponential)
expansivity and bounded recurrence conditions (during a convenient number of iter-
ates, depending on |z +¢|), we show that the small value of ¢/, () is fully compensated
in the subsequent iterates, during which the trajectory of x remains close to that of
the critical point (and so exhibits rapidly increasing derivative).

For each j > 0 let ¢; = ¢j(a) = ¢i(+c) and denote d(c;) = min{|cj|,|c; £ ¢|}. In
what follows € > 0 is fixed and we suppose a € [c + pe,c + €].

Lemma 2.4. — There exists 6 = 0(8 — a) > 0 such that the following estimates
hold. Let x € IX¢ for some |r| > r.. Suppose that there is n > |r|/a such that

(5) d(cj) > e and |(p3) (c1)| > €%, forall1<j<n—1.

Then there exists an integer p = p(x) > 1 such that
1. For all y1,21 € [pa(x), va(£c)] and for all 1 <k < p,

L 1e8) (z)l
5 < o] <
2. p< 2r|+ $ylog2)/o <n—1;
3. (a) |(<p”+1)( )l 26257/"6‘1‘25/")’;
(b) |(p2t!)(z)| > e Bloeri=(an/2);
(c) |(90p+1) (z)| > eo0+Bp > eBlp+1)

Proof We suppose z € I¢ with r > 1, the remaining cases being treated in precisely
the same way. Define p = p(z) > 1 as the maximum integer such that

(6) |z; —¢i| <eve Pt forall1<i<p

where z; = ¢! (z). Recall that we fix 8 > a. Therefore, (6) and the first condition
in (5) ensure that the intervals [z;,¢;], 1 < ¢ < p, do not contain the origin nor any
of the critical points £c. Therefore, ¢! : [z1,¢1] = [Zit1,¢i41] is a diffeomorphism
for all 1 <4 < p. In particular, given any y1,2; € [21,c¢1] we have y;, z; € [z;,¢;] for
1 <i < p, where y; = ¢! (y) and 2z; = ¢i(z). By the chain rule,

k! k k
Vm“)=ﬂ 11

@8 ()| 3 paie)

©a(2i)
©h (yi)

Pa(zi) = ¢a(y:)
oh (yi)

1+
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and so part (1) will follow if we show that

k
(7) >

i=1

!

0o (i) — @i (ys)
©h(yi)

is bounded by some constant depending only on 8 — a. By the mean value theorem
there exists, for each 1 < ¢ < k some &; € [z;, yi] s.t.

Y e Pl

‘SOQ(Zz') —Pai) | _ |12 — yilea (&) ?a (&)
@0 (yi) Pa(i) v (yi)
Thus it is sufficient to show that |¢! (&) /¢, (yi)| < conste7e®! to conclude that the
terms of the sum (7) are decreasing exponentially and so the entire sum is bounded
by a constant independent of k. We fix some small constant &' > 0 independent of ¢.
The norm of ¢!/(x) is bounded above and below outside (—¢’,¢’) by some constant
C = sup{|¢l(z)| : = ¢ (—€',€")}. For simplicity, and without loss of generality, we
shall assume that this supremum is actually achieved at ¢’. Inside (—¢',¢') we have
by the form of the map ¢ that | (z)| < ;F A(A — 1)|z|}~2.
We distinguish two cases. If [z;, ¢;]N (—¢',€") = 0 then we have |¢},(y;)| > 21y |yi —
c| > 2n, 7 (e — ePt) > 21, (1 — €2 P)eVe™ and so

‘%’ &) c
oY) | ~ 2my (1 — e F)

—7 e

as desired. If [z;,¢;] N (—€',€') # B we have the following estimates. To simplify
the notation we shall suppose that [z;,¢;] C (0,¢). The other case [z;,¢;] C (—¢,0)
is dealt with similarly. Taking €' small and since [z; — ¢;] < €Y we can suppose
that [z, ¢;] is contained in the neighbourhood of 0 for which conditions M1 and M2
hold. We have [, (3:)] > [, (ci + 79| > np Ale; + e P and [p!/(&)] <
| (c; — e7e B < nf A(A = 1)(c; — e7ePH)A~2. This gives

‘@Z(fz) < nr(A-1) (Cz' —egre P
ehwi)| —  nr ci +eveBi

This follows from the fact that |c;| > £7e~%% and therefore (c;—e7e™#!)~! < (e~ %)~ (1—
e7el®=A)1) =1 < const (€7e~*%)~! and that (c; — e %%)/(c; + £7e~P%) < const. In-
deed this last fact follows from observing that ¢; — e7e B! > Ve~ — gVe=Fi >
gle®(1—gVel@=Fi > (1—e2F)gVe and similarly ¢; +7e P! < (14e*F)ere~
which together give (c; — e7e P9 /(c; + e7e %) < (1 —e*P)/(1 4+ e*F) = const.
This proves (1).

Starting the proof of (2), let ¢ = min{p,n — 1}. As z € IS, we have |z — ¢| >
g’e " and so |z1 — c1| > m5e?’e 2". Then, in view of the second condition in
(5) and the distortion estimate we have just proved, the mean value theorem yields
nye2le 279 el < |z, — ¢, < £7e P9, Thus

A1
) (c; — e P~ < const (€7e” ).

< 2r+7log%+a+log(n2_/0)

3 1
< z Z
< py _(2r+2710g6)/0
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as long as ¢ is sufficiently small. Since we also take an > r > [dlog %] > 1, we find
that ¢ < (2an + 3yan/26) < n (if « is small), so that it must be ¢ = p. In this way
we have proved that p < (2r + 2ylog 1) < n, as claimed in part (2) of the lemma.
Now, by the definition of p we have |z,11 — cpy1| > €?7e B®+D) . Thus, using part
(1) in conjunction with the mean value theorem,
eYe—Bp+1)

1(L‘+1—C+1
(@) ()] > B =Gl

> conste Ve PP,
0 |zi—cal T Onye2rer+2 T

Since |@},(z)| > 2ny e"e” ", we find
(8) (@2 (@)] > const e 4.
Using part (2) we immediately get

B 3 1 28 38 1 38 28
e" PP > er— o (2rtzylog ) 5 o(1-)r—S7 log ¢ > 57 o(1-50)r

This proves the first statement in part (3) since
|((,DZ+1)I($) > Const63ﬂ'y/20'e(1—25/a)r > 62/37/06(1—2[3/0')7'.

Using part (2) again together with an > r > [§log 1] > 1, we get

2 1 1 4 2 1
Bp < —B(an + %2an+ 520411 —log g) < —ﬂan — —Blog— <
o

1
g0 o e =T, €
as long as we take 8 < odA/8 (we also used § + v+ 1 < 1/X). Replacing in (8),
and supposing ¢ sufficiently small, we get the second statement in part (3). Finally
notice that |r| > [0log1/e] and therefore p < 2/o(r + ylogl/e) < (1 + ~/d)|r| and
|| > p/(1+v/d). therefore we have

(P (z)| > const e” PP > const e TH7 AP > (B+D)

if B is small. This completes the proof of part (3) and of the lemma. O

2.4. Proving positive Lyapunov exponents. — We can now state the main
results of this section, asserting that, under two convenient assumptions on the pa-
rameter a to be stated below, the critical trajectories exhibit exponential growth of
the derivative and, in fact, the same is true for most trajectories of ¢,.

As before, we write ¢; = cj(a) = ¢i(c), for j > 1. For the time being we fix some
n > 1 and assume that

CP1(n) : d(c;) = min{|c;|,|c; £c|} >e’e  forall 1 < j < n.
and

EG(n—1) : |(¢?)(c1)| > €% forall 1 < j<n—1.
Then we define sequences of integers v;, p;, by v1 = inf{v > 1:¢, € A*¢} and

i) p; = p(cy;), as given by lemma 2.4;

i) vy = inf{v > v; + p; : ¢, € AT},
(CP1(n) ensures that ¢,, € I for some |r| < av; < an). We take s > 0 maximum
such that v; < n. Then either v, <n < vs; + ps or v; < vy + ps < n. Now we define
P, =p; +---+ps_1 in the first case and P, = p; +---+ ps_1 + ps in the second one.
Then we further assume that
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CP2(n) : Pj<Ziforalll<j<n.
All iterates occurring during a binding period [v; + 1, v; + p;] are called bound iterates.
All others (including returns »;) are called free iterates.
Lemma 2.5. — Suppose that some parameter a € [c + pe,c + €] satisfies CP1(n),
CP2(n), and EG(n —1). Then it also satisfies

EG(n) : |(¢}) (c1)| > e” for all1 < j <n.

Proof We let v;, p;, be as above and define o = v; — 1 and ¢; = v;41 — (v; +p; + 1)
for 1 <i<s—1.If n > vz + ps we also write gs = n — (vs + ps). Then

s—1

9) 1) (en)l = lpf) ()] TTU R ) (o)

i=1
()" (Cvtper) ) 1 (05~ (c0)
The first factor on the right can be estimated as follows. Since @, (cy,) = ¢, € AT®,

relations (3) and (4) yield |/, (cqo)| > const (€7e~"<)A~1 > const ex~1. Hence, using
also the first part of lemma 2.3,

[(p2)' ()] = 1) (en)l[(a)' (€ao)| > const et
(note that the last inequality in L4 implies |c1| < z, /5 and so |¢(c1)| > V2 > e
for all a close to ¢). On the other hand, lemma 2.4(3) and lemma 2.3(2) give, for
1<i<s—1,

(@) (ev)l > €7 and  [(9F) (cupapitr)| 2 7%

For estimating the last factor in (9), we distinguish two cases. If n > vs + ps then
we use lemmas 2.4(3) and 2.3(1) once more and get

|(a™" ) (ev.) = [(h ™) (v )l - 108 (cvrtpos)]
> e PP minfe™, ), (cy,+p,+1) [}V

> const e708Ps 7+ o004

the final bound remains valid when n = v, + p;, i.e. ¢s = 0). Replacing in (9),
he final bound i lid wh i 0). Replacing in (9
(10) ()" (ex)| > comstel 70 (Eino ouaet Sia(outin).

Now, CP2(n) implies (recall that we take oq > 20)

s 8 n
D o0gi+ Y (00 + Bpi) > oo(n — Po) + P, > 005 > on
=0 i=1
and the lemma follows by replacing this in (10) and assuming ¢ sufficiently small.
Suppose now that v; < n < vz + ps. In this case we cannot take advantage of the
estimates in lemma 2.4(3), as we did before. Instead, we use CP1(n), EG(n — 1), and
the distortion estimate in lemma 2.4(1), to conclude that
(a1 (ev.)

A |(‘p27V3 —avs a'(nfus)‘

= |¢'(cw,) ) (cy,+1)| > conste”e const e
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This gives
(11) (™) (c1)| > const 1= 317 (2020 o0ai+ 30521 (c0+Bpi) —avsto(n—v.))
Now,

s—1 s—1

ZUOQZ' + Z(UO + /sz) —avs + O'(TL - Vs) Z

=0 i=1

>oo(vs—P,,) —avs +o(n —vg) > 0—201/3 —avs +o(n—vs) >on

as long as we take 2a < 0¢g — 20. Replacing in (11) (and assuming e small) we get
the conclusion of the lemma also in this case. Our argument is complete. O

Proposition 2.6. — Suppose that some parameter a € [c+pe, c+€] satisfies CP1(n)
and CP2(n) for all n > 1. Then |(¢7) (c1)| > €™ for all n > 1. Moreover, there is
o1 > 0 such that for any x € [—a,a] satisfying @i (z) ¢ {0,%c} for all j > 0 we have
lim sup  log | (¢7)'(2)] > o1

Proof The first claim follows directly from the previous lemma, by induction on n.
Observe that the step n = 1 is an immediate consequence of 1.4 which, as we already
remarked, implies |c1] < 5 and so |} (c1)] > V2 > €.

For the second statement we distinguish two cases according as to whether the
orbit of z accumulates one of the critical points or not. If it does not, the result
follows immediately from the previous lemmas which guarantee that |(¢?)'(z)| >
CeP1,VY j > 0 which immediately implies the result taking o; < (. If the orbit of
does accumulate one of the critical points then we claim that for every N > 0 there
exists an n > N such that |(¢?)'(z)| > €°™. This claim clearly implies the desired
statement. Let p; < po < --- < pp < N be all the returns of z to A*¢ before
time N and let p;i,ps,... be the lengths of the corresponding binding periods. If
N > uy + pr then we have by the same arguments used in the proof of lemma 2.5
that |(¢)!(x)| > e®V which proves the claim in this case. If N € (ug, px), just take
n = pr + pr + 1 and repeat the argument above. This completes the proof of the
claim and of the proposition. O

Remark 2.1. — A refinement of the previous arguments permits to show a stronger
statement: liminf Llog|(¢7)'(z)| > o2 for some 02 > 0 and almost every point z.
First one notes that this holds whenever z satisfies d(f7(z)) = min |f/(z)|, | f/ (z) £ ¢;| >
e~% for all j > 0, by using essentially the same argument as we did above for the
critical orbits. Then, using the distortion bounds we have been deriving, one shows
that for Lebesgue almost every point y there is some k > 0 such that z = f*(y) is as
above.

Finally, we make the simple, yet useful observation.

Lemma 2.7. — Suppose that some parameter a € [c+ pe,c+ €] satisfies CP1(n)
and CP2(n) for somen > 1. Let 1 < p1 < p2 < n be free iterates for the orbit of c.
Then

(942 7) (e (@)] > min{| gl (¢, (o)), €7 Je 2270,
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In particular, if ¢} (cu, ()] > €2, then |(ph2 1) (cy, (a))| > eFle2mrm),

Proof The proof follows easily by arguments almost identical to those used in the
proof of lemma, 2.5. O

3. Partitions and distortion estimates

3.1. Preliminary distortion estimates. — In this section we set up the ma-
chinery which will enable us, in the next section, to estimate the size of the set of
parameters satisfying conditions CP1(n) and CP2(n) for all n > 1. Most of this
analysis deals with properties of the family of maps

¢jtwp — [-c—¢g,c+el, cj(a) = (pé(c)7

where wo = [c+ pe,c+¢] and j > 1. Our first result implies that the derivatives c}(a)
of such maps grow exponentially fast with j, as long as the phase-space derivatives

(%) (c1(a)) = (Bap))(c1(a)) do.
Lemma 3.1. — There isn > 1 such that if |(p2) (c1(a))| > €7 for 1 < j < n, then

1 ci i (a
—<£)||§n forall1<j<n

" |(ph) (e (a)
Proof The arguments are fairly standard. Using the chain rule we can write

c;’—i-l = 6a90a(cj) + awSOa(cj)aaSOa(cj—l) + -+ az‘Pg;_l(cZ)aa‘Pa(cl) + az‘PZ;(cl)cll
and so
Cit1 4 Oatpa(ci)
(12) e Y
(92)'(c1) ; (@i) ()
Note that ¢; =1 and |0,¢4(c;)| = 1 for each i. Hence, our hypothesis implies that
(12) is bounded from above (in norm) by n =Y e 7"

The bound from below requires a more careful analysis. For the time being we
restrict to a = ¢ and note that the first two terms in (12) are both positive (L4 gives
c1 > 0 and so O,p4(c1) > 0, ¢l (c1) > 0, and B4 (c1) - (92) (1) > 0). We distinguish
three cases.

If |} (c2)| > V2 and |}, (c3)| > V2 (i-e. |c;i| <z 5 for i = 2,3) then

(13) 12" ()l > (V2|9 (er)] and  |(@2") ()] > (V2)**((97) (e1)],
by Proposition 1.1. It follows that

Oua(C2k41) 1 >
2 ) 2 P (1‘;2 )20

1<2k+1<j \Pa

AV

and a similar estimate holds for the sum over even indices. Thus the quotient in (12)
is bounded from below by ¢} (a) = 1, which proves the lemma in this case.

Suppose now that |, (c2)| > v/2 and |¢/,(c3)| < v/2. Clearly, we still have the first
estimate in (13) and so the sum of all the terms in (12) corresponding to odd values of ¢
is again nonnegative. In order to bound the sum of the even terms we use Proposition
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1.1 once more and get (recall that |/, (c1)| > v/2 by L4) |(92*) (c1)| > (v/2)?* for each

k. It follows that
0,
Z a;oka c2k 0 Z
1<2k<j ((p“ ) k=2

Hence (12) is bounded from below by 1/2.

The case |¢,(c2)| < V2 and |¢.(c3)| > V/2 is quite similar to the previous one. The
second estimate in (13) is valid here and so the total contribution of the even terms
in (12) is nonnegative. On the other hand, |(©2*=1)(c1)| > (V2)?*~! yields

61190@ Cok— 1 1 2% 1

> 20- Z >-7

kTN 2
1<2k1<j (wa" ) (er V2

and so (12) is bounded from below by 1 —1/v/2 > 1/4.

Note also that we cannot have |¢),(c2)| < v/2 and |¢),(c3)| < V2 simultaneously,
by L5. This means that the lemma is proved for a = ¢. The general case now follows
easily. Fix | > 1 large so that >, , €™ < 1/10 and take ¢ to be small enough so
that

MI'—‘

?;+1(a) B §9+1(C)
(pa)'(c1(a))  (p2)(ci(e)

It follows, immediately, that ¢, (a)/(¢}) (c1(a)) > (1/4) — (1/10) = (3/20) for all
j < 1. Moreover, for j > | we have

IA

1
0 for all j <!l and all a € [c,c +¢].

c_l7'+1 (a) _ C;+1 (a) _ d a‘pa Cz e—g‘z
(2 (e (a)) (soa)%cl(a))‘ =2 e Z: ~ 10
and so ¢4 (a)/(¢1) (1 (a)) > (3/20) = (1/10) = (1/20). 0

It follows from this lemma that as long as the space derivatives (¢?)'(c1(a)) are
growing exponentially for all a belonging to some interval w of parameter values, the
maps ¢; : w — ¢;j(w) are diffeomorphisms, since |c}(a)| > 1/n[(¢})'(c1(a))| # 0. In
particular the same is true for the maps ® : ¢;(w) — ¢j(w) defined by

z = cjoc;(z)
for 0 < 4 < j, even though the space derivatives may not be growing exponentially

between time 7 and time j. We have that

|cj(a)|
(14) ®'(ci(a)) = T
' |ci(a)l
Thanks to this fact we can still estimate the average expansion of the ”intermediate”
images of w.

a€Ew

Lemma 3.2. — Suppose that we have |(¢3) (c1(a))| > €% for all 1 < j < n and
a € w. Then, for all integers 1 < k <1 < n we have for some £ € w

Lo ik |er(w)| 20 ( k!

— c < < c .
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Proof Defining ® : ¢ (w) — ¢;(w) as above, we have by the Mean Value theorem
ler(w)| = |®"(ex (€))]|ck(w)] for some & € w. Thus from Lemma 3.1 and the formula
above for the derivative of ® we have immediately the statement in the lemma. [

3.2. Partitions. — We shall now use the family of maps {c; }, together with Lemma
3.1, to construct two nested families {F), }nen and {E, }nen of subsets of wg

gEn(_:anEn—l C---Cuwo
and a monotone sequence {P,, }nen of families of subintervals of wg
o= Pp =Py g == {wo} (givenw € P, € P, 1 with w C w')

as follows. All the parameters belonging to F,, satisfy CP1(j)d(c;) > €7e~% for all
1 < j < n. Each P, is a partition of F,, into intervals. Moreover, E,, is a union of
elements w € P, such that CP2(j) P; < %j holds for all 1 < j < n and a € w. In view
of Proposition 2.6, the parameters in A} =, .yEn will satisfy EG for all times (we
shall take AT = U.. A7, where the union is over all small values of £ > 0).

The construction of the objects described above is carried out inductively. As the
first step of the induction we simply set Fg = Fy = wp and Py = {wo}. Now suppose
that F,_1,E,_1, Pn_1 have been defined and let us explain how parameters are
excluded at the nth stage and the partition P,, and the sets F,,, E,, are constructed.
For that we consider separately the cases n < rs/a and n > rs/a, see Remark 3.5
below. In what follows we denote A} = A5 UAS UA° and A = A°UA°UA~-.
For r > 0 we let A, denote the £7e "-neighbourhood of the origin and of the critical
points. Recall also that r. = [§log %] and r, = [(y + 26 + ¢) log £].

Suppose first that n < rs/a. Given any w € P,_1 with w C E,_1, there are two
possibilities:

1: If c,(w) does not intersect Ay, then, by definition, w is also an element of

P and it is contained in F), and in F,.

2: If cy(w) N Afan) # 0 then parameters have to be thrown out in order that
CP1(n) hold. We write w} = ¢,;" (A[gn Ncn(w)) and we also let w! be the union
of those connected components of w \ w' whose image under ¢,, is completely
contained in Ay, 1. Both these sets of parameters are excluded from the
sequel of the argument: by definition

E,Nw=F,Nw=w) (w, Uw)
and the elements of P,, contained in w are precisely the connected components
of w\ (w, Uw!). We observe, for future reference, that any such component @
contains an interval of the form I? with |r| = [an] — 1. We call this interval
the host interval of @ at the return n. Moreover this immediately implies that
len(@)] > eVe~lonl,
Thus we have for each k < rs/a and w € P}, a nested sequence of intervals
w=wr Cwr_1C---Cw Cwy withw; € P;,i =0,...,k
and a sequence of escape times

1<pyy<wm<---<vs <k
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defined by the fact that the situation described in case 2 occurs precisely at these
times. The corresponding components w,, € P,, are called escaping components.
By definition we also call the original parameter interval wg = (¢ + £/2,¢ + €) an
escaping component. Notice that case 1 and 2 describe the only situations which can
occur before time 7, /a. Since case 1 does not involve making any changes to existing
parameter intervals (i.e. w; = w;_1 if ¢;(w;_1) satisfies the conditions described in 1)
we have w,, ., C Wy, ;-1 = Wy, ;-2 = -+ = w,,. As we shall see this is not true in
general for iterates larger that rs/c.

Now we treat the case n > r;/a. In order to define P,, F,, E,, we need a
refinement of the partitions {I}}, * = 0, ¢, introduced in the previous section: for
each [r| > 1 we let {I};: 1 <1 < r?} be the partition of I} into r? intervals of equal
length. We suppose that [ is increasing in the same direction as r, i.e. as we get closer
to the singularity or the critical points. As above we associate to every w € P,_1
with w C E,_1 a nested sequence of intervals w = wp_1 C --- C wo and a sequence
of escape times

1<m<--<y<rsgfas<yp <---<vs<n-—1

Each w;, 0 <4 <n —1, is just the element of P; that contains w. For j <1 the v;
are exactly the escape times described above. However, for [ < j < s — 1 we also have
between two consecutive escape times a (possibly empty) sequence of return times

Vi <o < Hrj < < Hg(j),5 < Vi1

and similarly for j = s we have vs < po,s < -+ < fig(s),s < n — 1. Moreover to each
such sequence of return times is associated a sequence of integers po,j, p1,5, - - - , Pg(5),j =
0.

As part of the inductive step of our construction we also explain when and how
Vst1, H(s)+1,s and Py(s)41,s are introduced, assuming that such sequences are defined
for all iterates up to n — 1. We consider four cases separately:

3 : If q(s) > 0 and pg(s)41 < 1 < pg(s) + Py(s) then w € Py and w C E,, C F,.

Moreover, we leave the sequences unchanged.
4 : If c,(w) does not intersect A*® U A% or if this intersection is completely
contained in one of the extreme subintervals of AT¢ U A? | i.e.

en(W) N(ATUAL ) C I 1) (re1)2 Y TE 1) rern)e

then once more we let w € P, and w C E, C F},, and we keep the sequences
unchanged.

From now on we assume that neither 3 nor 4 hold.

5 : If ¢, (w) intersects A*c U A‘T)S but does not properly contain any subinterval
Iff with |r| > r. or I}, with |r| > r,, we set w € P, and w C F,,. Moreover,
we let fig(5)+1 = 1 and py(s)41 = min{p(c,(a)): a € w}, recall Lemma 2.4, if
cn(w) NA) =0, and py(s)4+1 = 0 otherwise. We say that n is an (inessential)
return for w € P, and that py(,)41 is the length of the associated binding period.
Note that c,(w) is contained in the union of at most two I; ,,. We shall prove
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in Lemma 3.4 that CP1(n) is automatically satisfied in this case. Then we take
w C E, if all a € w satisfy CP2(n) and E, Nw = () otherwise.

6 : If ¢, (w) intersects AU AY and contains some Iflc with |r| > 7. or I} with
|r| > rs, we carry out the following construction. We start by excluding the
parameters which do not satisfy CP1(n). More precisely, we let w! = ¢, (AanN
¢n(w)) and w! be the union of the connected components of w\ w, whose image
under ¢, contains no subinterval I3 .. By definition Fj, Nw = @ = w \ (w, Uwy).
Then we partition @ into subintervals @ = (Up wr;) U (U;@;) where the first
union runs over some subset of pairs (r,l) with r. < |r| < [an] or rs < |r| < [an]
(depending on whether n is a return to A*¢ or A®), the second one involves at
most two @;, and

a: cy(wrg) D I but contains no other interval I3, (thus it is contained
in the union of I;7; with the two I7 , adjacent to it). We call I}, the host
interval associated to w,; at time n.

b : ¢, (@) is disjoint from A*°UAY but contains some Irif with |r| = r; or
I?, with |r| = ry. Again we call this interval the host interval associated
to @ and time n.

The elements of P,, contained in w are precisely these w,; and @;. For w,; we
let pg(s)41 = n and py(s)41 = min{p(cn(a)): a € wy;} if * = +c and py(541 =0
if x = 0. In particular n is an essential return time for each w,; € Py. For the
intervals @; described in 6b we let v541 = n. In particular n is an escape time
for @ € P, and these intervals are escaping components. Finally, F,, Nw consists
of the union of the intervals described above which satisfy CP2(n).

This completes the inductive definition of the sets E,, F,, the partitions P,, and
the sequences vj, i1, and p;.

Remark 3.1. — Host intervals can give some indication as to the type of situation
we are dealing with. So, if w € P; has, at time ¢, an associated host interval of the
form I?, |r| = [an] — 1 then this implies that i = v; is an escape time and that w is
created at time v; as a consequence of a situation like the one described in case 2.
Similarly if the host interval is of the form I2,|r| = r, or Iff o|r| = re then ¢ = v;
is also an escape time as described in 6b. On the other hand if the host interval is of
the form I, with [r| > r, + 1,1 <1 <72 or Iflc with |r| > re +1,1 <1 < 72 then
i = uy,; for some k, j and py, ; is either an inessential return as described in case 5 or
an essential return as described in case 6a.

A main difference between the latter two cases is that for essential returns we have
upper and lower bounds for the length of ¢, ;(w) in terms of the associated host
interval. More precisely, recall case 6a, c,, ;(w) contains some I7, and is contained in
the union of I}, and its two adjacent intervals of the form I7 . Therefore we have
ee " [r? < ey, ,; (w)] < 10e7e " /r?. In the case of inessential returns we have the
same upper bound but no a priori lower bound.

,m-

Remark 3.2. — We will sometimes talk about the sequence of escape times and
returns associated to a single parameter value a or a subinterval w' C w € P, which
does not itself necessarily belong to any partition (although we will always consider
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subsets of intervals which do belong to some P,). In these cases the sequences are
just those associated to the the interval w € P, to which a or w' belong.

Remark 3.3. — We will frequently talk about returning situations or escape times
at time n for some interval w,—1 € P,_1 (and not in P,). In these cases we will just
be referring to the fact that ¢, (w,—1) intersects a neighbourhood of the origin or of
the critical points in a way which is described in one of cases 2,5 or 6 above. Therefore,
at time n some action may be required (parameter exclusions, subdivision of wy—1
into smaller intervals) which yields the final classification of the surviving pieces of
Wn—1 into pieces (now belonging to P,) for which n is either a return (essential or
inessential) or an escape time.

Remark 3.4. — Notice that the definition of the binding period p = p(w) given
here does not completely coincide with the definition given in Lemma 2.4 for a fixed
parameter value a. However all the estimates obtained in that lemma continue to
hold for the slightly shorter binding period defined here.

To simplify the exposition we will often refer to a generic host interval of the form
I,. This will include the host intervals which occur in case 2 which, strictly speaking,
are of the form I¥. Moreover we shall often suppose that » > 0 since most of the

times we are only interested in the norm of r and not its sign.

Remark 3.5. — The condition n < rs/a means that Ay, D Ay, and so c,(@) N
A*c = () for all & € P,. Indeed, cn(a) € AL would imply c,—i(a) € IO with
Ir| & re = (3 —7)loge™' > (2(y 4+ 6) + )loge ! ~ 7, recall (3) and (4), and
S0 ¢n—1(a) € A% . This is a contradiction, as such a parameter a would have been
excluded already at time n — 1. By construction (and the remark we have just made)
all the elements of P, obtained in that case contain some interval I? with |r| = [an].
Combined with Lemma, 2.3 this gives

[(¢2) (c1)| > e® forall1<j<nandac€F,.

Finally, 7;/a can be made arbitrarily large by fixing € and «a sufficiently small.

Remark 3.6. — We shall show below that for w € P,, the distortion
sup{|(¢3)"(c1(a))/(¢y) (c1 ()] : a,b € w}

is bounded above by some constant. It is crucial to the overall argument that this
constant is independent of w as well as of n. The proof of this fact relies on the
exponential growth of the intervals ¢;(w) as well as on the fact that ¢;(w) is small
compared to its distance from the critical points and the discontinuity, where the
distortion explodes. This is why no action is required in case 5 above whereas we
need to cut w into smaller pieces in case 6.

Throughout the rest of the paper we will use C' (resp. C’) to denote a generic small
(resp. large) positive constant independent of €,w or the iterate under consideration.
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Lemma 3.3. — Letw € Pp_1,w C E,_1 and suppose that n is a return for w €
Pn_1. Let v < n—1 be the last essential return or escape time of w before time n and
let Iy, be the host interval associated to v. Then we have the following estimates.

1. If ¥ =0, i.e. if v is a return or escape time associated to A°, and
(a) n=v+1 is a return to A*: |, (w)| > &'ty
(b) n>v+1is areturn to A°:

len(W)| > C(e7e )2 r2 > g1 Blog= (=Bl
(¢) n>v+1 is a return to A*°:
len(W)| > C(e7e ") Ael =3 Jr2 > gl -3 g1=Flog=(1=F/o)r

2. If ¥ = *c¢, i.e. if v is a return or an escape time associated to A*°, and
re <7 < (y+6+1)logl/e then n is necessarily a return to A° and

len(w)| > e /2T > 2HO)+1/2,

3. Ifx=xcandr > (y+d+1)logl/e and
(a) n is a return to A°:

len(w)| > e>1H04207/7g20r/7 [p2 > g1 =Blogm (1B o),

(b) n is a return to A*e:

len(w)| > 6171/A+27+5+267/06726T/U/T2 > gl=1/A7=B/o—(1-B/o)r

Proof The basic strategy of the proof is to estimate |(¢7~")'(c, (a))| for elements
a € w. Applying Lemma 3.2 and the Mean Value theorem we can then carry this
expansion over to parameter space and get

(15) len ()] > inf{|(03 ™) (cv(a))] : @ € w}ew (w)]/n*.
Keeping in mind that the definition of host interval implies |c, (w)| > £7e" /r? we shall
get the desired result in each case.

Suppose first that v is a return to A® and that n = v+ 1 is a return to A*¢, Then
cy(w) C ;1 (A%®) for some a € w and Lemma 2.2 gives |¢/, (¢, (a))| > C(e7e ") 1 >
g!=1/X since r ~ (1/A =) log1/e. Moreover |c, (w)| > Ce'/*/((1/A+7)log1/e)? and
S0

e (@)] > Ce/((1/A+ ) log1/2)? > 1+
for small + > 0. This proves (1a). Now let v be a return to A° and consider first the
situation in which |r| > rs + 1. We have that for all a € w, by Lemmas 2.2 and 2.7
we have

(2 (e (a)] > (£7en) 1 and (") (evsa(a))] > CeP 2.

a
For this last statement we have used the fact that ¢, € A® implies |c, 11| > = vz and
this in turn implies |c,12| < /5 (see condition L4) which in particular means that
|¢'(c,12)| > €®. Applying Lemma 3.2 we get |c,(w)| > C(e7e")?* /n*r? proving the
first inequality in (1b). The second inequality just follows by taking f/o < 1 — 2.
If n is a return to A€ then we have an additional factor of e!~'/* coming from the
large derivative in ¢ ~!(A%°) and we get (1c). If » < 7, we apply the same arguments
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to the subinterval @ C w where ¢, (@) = Iy | and get |cn(@)| > C(e7e ") [nr?
respectively |c,(w)| > Ce'~1/*(e7e~")2X /n?r? which yields the desired result since
len(@)] 2 |en(@)].

Now suppose that v is a return to A*¢. If |r| = r. then the binding period has
zero length by definition and we simply have, defining @ = c,jl(Iifl) Cw,

len(@)| > |en(@)| > CeMo(e7e™me) /nr? > 052(7+5)/n2r§ > g2,
If |r| > r. + 1 we have by by Lemmas 2.4 and 2.7 that, for all a € w,
(16)  [(¢h ) (cu(@))| > €27/7e1 =280 inf{g] (¢, 1 py1 (a)), €70} P D)
(17) > g1 +0+28v/0,(1-28/0)r
if n is a return to A® and |(¢77")(c,(a))| > e~V AtVHI+H2Bv/0(1=28/0)r if it is a

return to A*¢. Notice that in both cases we have used |¢'(cy4p+1(a))| > €774, Now
applying Lemma 3.2 and equations (15)(16) we get

(18) len(w)| > 214287/ 0=267/7 2,2
Now if r < (y+ 6 + ¢)log1/e then we have from (18)

len(W)| > 627+6+257/0+2ﬁ(7+6+b)/U/TZ > e(2r+d)+e/2 > e 27T

If r > (Y46 +¢)log1/e then we write e =287/ = ¢=(1=B/0)re(1=B/7)r and e(1=B/o)r >
g~ (1=B/o)(v+d+1) and therefore, using (18),

2y+6+2B7/oc—(v+6+0)+B/o(v+6+¢) ,—(1—B/o)r y-B/o ,~(1-B/o)r
len(w)| > & e > e1-Pl7¢ .

This concludes the proof of the lemma. [0 We now formulate some easy
consequences of these estimates.

Lemma 3.4. — If n is an inessential return for some w € P,y withw C E,_1,
then CP1(n) holds for every a € w.

Proof We claim that
(19) len(w)| > 6e7elom),

This implies the statement in the lemma for the following reason. Suppose by con-
tradiction that some a € w did not satisfy CP1(n), i.e. d(cp(a)) < 7™ *" and in
particular cn(w)ﬂAf‘an] # 0, % = £¢,0. Then, either ¢, (w) C Afpy-1 OF en(w) D I
The second alternative is not possible since it would contradict the fact that n is an
inessential return. The first alternative cannot happen either since the claim implies
len(w)]| > 2eg7elonl—1 = |Af,ny—1]- Thus we have reduced the proof of the lemma to
that of (19). However this is an easy consequence of Lemma 3.3. Indeed recall that
r < an and therefore if the last essential return ¥ < n — 1 occurred in A° we have

len(w)] > CePe 22T /r2 > 6eVelom],

If v is return to A*¢ and |r| = r. then the result follows immediately from part (2) in
Lemma 3.3 keeping in mind that returns to A*¢ can occur only for iterates n > « /Ts.
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If |r| > r- + 1 we distinguish two cases. Suppose first that |r| > (y + 0 + ¢)log 1/e.
Then

|Cn(LU)| > 627—}-6—}-257/06—7“61—2ﬁ/a’,,,/,r2 > 82'y+6+2ﬁ'y/0—(1—2[3/0')(’y+6+b)e—r
> g1 H2B7/0 -4 2B(y+0+0) /oo 5 c—u/277T 5 Ve o],
Now suppose that r < (y+d + 1)log1/e. Since v < n — 1 is a return to A*¢ we

also have n > ry/a = ([y + 2§ + ¢]/a)log1/e. Therefore it is sufficient to show that
len(w)| > 67T > 2(r+9)+¢ This follows from part (2) of Lemma 3.3 which gives

2v+6+28v/0 ,~2B7/0 29+0+287/0+2B(v+d+i) /o 2(v+0)+e
len ()| > e e >e > 6e .
This concludes the proof of the lemma. O
Lemma 3.5. — Suppose thatw € P,,_1,w C E,,_1 is an escaping component created

at some time v < n — 1. Then, if n is a return for w we have
len(w)] > e/ 2e7e .

In particular n is a return to A° for w and there is a component & C w for which n
15 an escape time.

Proof The statement in the lemma follows immediately from Lemma 3.3. If v is a
return to A*¢ the result is part (2). If v is a return to A° then we have |c,(w)| >
C(eve™m)2X [r2 > e~/ 2eVe™Ts. O

3.3. More distortion estimates. — For the following lemma we fix &' indepen-
dent of €. Let A, and As.sr denote respectively &' and 2¢’ neighbourhoods of the
origin and of the critical points. We suppose that ¢’ is chosen sufficiently small so
that conditions M1 and M2 hold in A,... Let I C [—a,a] be an interval. For each
xz € I define d(z) = min{|z|,|z £+ ¢|} and d(I) = inf{d(z) : x € I}. Finally let
D(I) = sup{|¢" ()/¢'(y)| : =,y € I}. We call an interval admissible if I N A, # 0
implies |I| < ¢€'.

Lemma 3.6. — For any constant C; > 0 there exists a constant Co > 0 such that
if I is an admissible interval then

|I| < Cid(I) = D(I) < Cy/d(I).

Proof If I N A.: = () then both ¢'(x) and ¢"(x) are bounded above and below by
constants which depend only on the map and on &', and the statement in the lemma,
follows immediately. So suppose that I N A # §. Then, since I is an admissible
interval we have |I| < ¢’ and in particular I C A,.. Therefore either I C AY_, or
I C AES. T T C A, then, by condition M1,

" (2)] < Ca(I)*?
and
¢/ (@)] > C(d() = [T > C((1 = CdD ™ > Cd(D .
and so D(I) < Cy/d(I) for some constant Cy > 0. If I C AL then

l¢"(2)| < C and |¢'(2)| > Cd(I)
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which immediately gives D(I) < Cy/d(I). O

Lemma 3.7. —
There ezists a constant A > 1 (independent of € or n) such that if w € Pp_1 with
wC E,_1 and n is a return to AL then

‘ (02)'(c1(a))
(05)' (c1(a))

If n is a return to A° we have the same result for any @, a belonging to a subinterval
@ C w with |, (@)] < max{(e7e=2")2A 2(1+9)},

‘SA foralla,acw and all 0 <k <n-—1.

Proof We shall prove the result for the case k = n — 1. It will be apparent from
the proof that the result holds for all other values of k as well. Write ¢; = ¢ (c) and
& = ¢i(c). By the chain rule

(¢6)'(c1(a)

letting 4; = (L (&) — ¢l (c;)) /¢4 (ci), and thus the proof reduces to showing that
Zle |A;| is bounded above by some constant independent of ¢, n, or w. By the
Mean Value theorem we also have |¢% () — ¢!, (¢;)] < |€ — i@ (€) for some £ € ¢;(w).
Therefore we have

@) (@@)] _ Trl, . ¢a@) = (e T ,
‘ “H” excmmig | SRt

i=1

(20) | 4] < |ei(w)] - D(ciw).

Let 1 < p1 < po < --- < ps < psy1 = n be the essential and inessential returns
(cases 5 and 6a) of w in the time interval [1,n]. Notice that we do not include escape
times in this list. Let pi,...,ps be the corresponding binding periods as defined in
the previous subsection (recall that p; = 0 if y; is a return close to A®) and rq,...,7,
be the values associated to the corresponding time intervals.

We start by considering the case in which the sequence of essential and inessential
returns is empty, e.g. if n < r;/a. Then n is necessarily a return to A° for otherwise
n — 1 would have been such a return. We suppose without loss of generality that
len(w)] < (e7e72m)2A, for otherwise we could restrict ourselves to some subinterval @
for which this condition is satisfied. Let ¢’ be the constant fixed in Lemma 3.6 and
suppose first that ¢;(w) N Ay = 0. Then d(¢;(w)) > €' and |¢! (¢;(w))] > Ce' for
all a € w, and therefore by the standard arguments which we have used repeatedly
above we get |c;(w)| < Ce ("D (g7e~2")2X < Cd(ci(w)). Then by Lemma 3.6 we
get |A;] < Ce=0(™=1). Now suppose that c;(w) N A% # @. A preliminary estimate
for the length of ¢;(w) is given by

(21) es(@)] < e D, w)] < e (Team) & o,

This shows that ¢;(w) is an admissible interval. Now we need to obtain a stronger
estimate to show that it actually satisfies the hypothesis of Lemma 3.6. We distinguish
two cases according as to whether d(c;(w)) > (e7e¢72")%* or d(c;(w)) < (e7e ™)X,
In the first case we have from (21) that the hypothesis of the lemma are satisfied and
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|A;| < Cei(w)]/d(ci(w)) < Ce (1) In the second case we have that the mazimum
distance between ¢;(w) and the origin, for a € w is

lci(W)| + d(ci(w) < 2(e7e™ ) < €.
Therefore ¢;(w) is entirely contained in the region in which condition M1 applies and

it is easy to see by a simple variation of the argument in the proof of Lemma 2.2 that
we have, for any a € w,

[(@2) (ei(a))] > (7em*m)PCAD),
From this we obtain an improved estimate for the size of ¢;(w), namely
|ci(w)| < e o0 (n—1) (E'ye—an)Q)\(Q)\—l) |cn(w)| < e—oo(n—l) (E'ye—an)(2)\)2 .

Then, from this and Lemma 3.6, |4;| < |¢;(w)|/d(ci(w)) < Ce=?¢(»=1) . Now suppose
that ¢;(w) N A?C # (). Since |¢'(ci(a))| & d(c;(w) we have

lei()] < e D (d(ei(w))) Hea(w)] < e D (d(ei(w)) THETe )P

Moreover, in this case we necessarily have d(c;(w)) > (¢7e 9")?* for the following
reason. Since w C FE, 1 and i < n — 1 we have that, by definition, all a € w
satisfy condition CP1 up to time n — 1 and, in particular, at time ¢ — 1. Therefore
d(ci—1(w)) > e7e~(i=1) > gY¢~an_ Then because of the form of the map near the
origin (condition M1) this implies d(c;(w)) > (e7e~ (=) > (¢7e~2")2A, Therefore
c¢i(w) is an admissible interval and we have

ei(w)] < e onn D (Temom) A (eTemam)

which give |4;] < |c;(w)]/d(ci(w)) < Ce ("= Therefore we can sum over all iterates

to get
n—1
ol <
i=0

This proves the lemma if there are no essential or inessential returns for w before time
n.

Now we consider the cases in which there is a non empty sequence of returns. We
start by estimating the values |4,;| for j = 1,...,s. Since ¢, is contained in the
union of three intervals of the form I, we have [c; (w)| < CeVe " /15 < Cd(cy; (w))
and therefore by Lemma 3.6,

D(cw (w)) < é/d(cw (w)) < Cevem.
Substituting in (20) we have
|4, <C /rf

We now consider A; where 4 is not a return iterate. Notice first of all that any
return puj41 to AT is immediately preceded by a return pi; = pi;11—1to A°. Therefore
if i € (p;, jr1) we necessarily have that p;yq is a return to Ags. Therefore we only
need to distinguish two cases according as to whether y; is a return to A? or to A%e,
For the moment we also restrict our attention to values of j < s — 1.

Suppose first that p; is a return to A%. We distinguish two subcases: either
|¢'(ci)| > € for all @ € w or there is some a € w for which |¢'(c;(a))| < €. Then
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Lemma 3.2 gives |(¢#i+1 %) (c;(a))| > e##i+179) in the first subcase and |(pHi+1 %) (¢;(a))| >
g1 t9eBkit1—i=1) jn the second subcase. Moreover applying Lemma 3.2 this gives

les()] < e B, | ()] < ple Bl —Dg2r+dtiy2
and
lei(w)| < n2677+6675(w+17i71)|Cuj+l ()] < ni’e*B(MHl*i*1)57+5+b/7«12,+1

respectively, using the fact that [, ()| < 77Tt /r;‘7+1 and that r;41 > 7, since,
as we mentioned above, p;41 is necessarily a return to AES. Moreover we have that, in
the first case, since i is not a return iterate, d(c;(w)) > 2(*+9+¢, In the second case we
know (from the fact that c;(w) is small and |¢'(c;(a))| < €? for some a € w) that c;(w)
is relatively far from A° and relatively close to &c and therefore since i is not a return
iterate, d(c;(w)) > €7*°. In both cases we have that c;(w) is an admissible interval
and applying Lemma 3.6 and substituting in (20) we get |A;| < Ce=Plki+1=9) /7"]2-Jrl in
each case. Moreover we can sum over all i € (u;, j11) to get

Mi+1—1

Z |4i| < C/ng‘+1-

i=p;+1

Now suppose that p; is a return to A*¢. Then there follows a binding period
(j, j + p;] and a (possibly empty) free period (u; + p;j + 1, puj41). For iterates
i € (u; +p; + 1, pj41) the situation is exactly as in the case considered above and we
have |A;| < Ce Pkix1=9 /2 | and Zf;;;;ﬁl |Ai| < C/r3_;. So it just remains to
consider bound iterates i € (pj, uj + p;).

First of all recall that d(c,, (w)) ~ €”e™" and in particular, for all a € w, |c1(a) —
cu;+1(a)] < C(e7e7")2. By the mean value theorem we have |¢;(w)| = |ey;,, (w)] -
|(p*=#i=1)(¢)| for some ¢ € ¢4, +1(w). Then using the bounded distortion estimate
in Lemma 2.4(1) and the fact that |c;(w)| < €7e#(#i—9 by the definition of binding

period we get |(ipi~ (4 D)(()] < e < e Pl

) |C#j+1 (W = (e7e779)2
all z € ¢,; (w) we then have |(¢* #i)' ()] < g7e Pi—1) Je7e~"i, By Lemma 3.2 this
gives

! Since |¢'(z)| e eTe" " for

76_5(“1_1)

€ —B(s—
e (w)] < e ey, ()] < ee Bluj 1)/7«]2..

Moreover d(c;(w)) > Ve @ #i) — ¢=Bli-wi) > Ceve~ (i) and therefore, substi-
tuting in (20) we get |4;| < Cel® A1) /12 which also yields

Mj+pj
Z |4;| < C/r3.
pi+1
Finally we consider the last piece of orbit (us + ps, ts+1 — 1]. This interval can
be empty if the return psy1 occurs immediately after the end of the binding period,
ie. if pgp1 = ps + ps + 1, or if pgyq is a return to A*¢. Indeed, in the latter case
we also have ps4+1 = ps + ps + 1 keeping in mind that u, is necessarily a return to
A% and that therefore ps = 0 by definition. So suppose that i € (us + ps, ts+1 — 1].
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By the comments above this implies that usy1 is a return to A°. Moreover we are
assuming, by the hypotheses in the lemma, that ¢,,,, C Ag(v 48" Suppose first that

|¢'(ci(a))| < € for some a € w. Then, repeating the exact same arguments used
above we have

|ei(w)] < Cs_("’”)e_ﬂ("_i_l)|Ag(7+6)| < Qe Pln—i—l)gr+d,
Moreover, from Lemma 3.6 we have D(¢;(w)) < Ce~ (19 and so
|Ai] < [es(w)] - D(ci(w)) < CePln=i=),
Now suppose that |¢(c;)| > e®. We distinguish two further subcases according as

to whether d(c;(w)) > €>"*9 or not. Suppose first that d(c;(w)) > €2(7+9) ie.
ci(w) NAY, 5 = 0. Then we have |c;(w)| < e Bn=)2(r+9) and applying Lemma,
3.6,

|Ai] < [es()] - D(ci(w)) < CemPln=d,
If d(ci(w)) < 20719 then we still have |¢;(w)| < e A=) 2(1+9) and, applying Lemma
3.6

D(es(w)) < C/d(ci(w)) < Ce 2+,
Notice however that since ¢;(w) is small (< 2(7+9)) and d(c;(w)) < eOH9)) ¢;(w) is
completely contained in a small neighbourhood of the origin, say c;(w) C A° where the
derivative is very large. In particular we have from Lemma 2.2 that |(¢?)'(c;i(a))| >
e H)=2X) for any a € w. Therefore arguing as above we can obtain a much stronger
bound on the size of ¢;(w), more precisely,

|ei(w)| < e*ﬁ(n7i+2)€(w+6)(172/\)|A2(7+6)| < Qe Bln—i42) (v+0)(1-22) 22(7y+0)
and therefore substituting in (20) we get
|A;] < CetePn=i),

Finally, let R(q) be the set of indices j for which |r;| = ¢ and when R(g) is
nonempty we denote by j(q) the largest of its elements. Notice that for all j € R(q)
we have ¢,; (w) < Ce_ﬁ(“f<4>_“f)|cuj(q)| and therefore we have

n—1 Bstps n—1
doAil= D0 JAl+ DD JAI<C ) ¢+ C0<A
1 1 pstps+1 q:R(q)#0
This completes the proof of the lemma.
O
Lemma 3.8. — There exists a constant B > 1 (independent of € or n) such that if
W € Pp_1 with w C En_1 and n is a return to A then
k! =
‘(‘f’z)l(ﬂ <A forala,a€wandal0<k<n-—1.
() (c1(a))

If n is a return to A we have the same result for any a,a belonging to a subinterval
@ C w with |c,(@)| < max{(e7e—2")2} 2(+9)},

Proof This is a direct consequence of Lemmas 3.1 and 3.7, just take B = An. O
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4. Parameter exclusions

We now wish to estimate the total measure of the parameters excluded during
every step of the induction. We shall treat separately the exclusions due to each one
of the two conditions on the parameter. We shall start by showing that for some
positive constants d1,a; we have

|En-1\ Fol <% |E, 1| < e¥e 7| By

i.e. the proportion of parameters excluded by CP1 at each iteration is exponentially
small as n — oo and as € — 0. Recall that there are no binding periods and therefore
no exclusions due to CP2 for iterates n < N = [rs/a] and that N can be made
arbitrarily large by taking € small. Thus we have E,, = F;, for all n < N and so

(22) |En_1 \ En| <% ™Ey| Vn<N

and, inductively,
|En| > |En 1| — % e | Eo| > |Bo|(1 - ) e”e™™%) Vn<N.
=0
For general n we shall show below that |F, \ E,| < e “"|Ey| and therefore we get
from (22), |E,—1 \ En| < 2e~*1"|Ey|. This then gives, for n > N,

n N
|E,| > |En| — | Eol Z 2e— o1t > |Eo|(1 — 25616—(11@' _ Z 2€—a1i)
=0 1

i=N+1 i=N+1
and
N [e's]
|Boo| 2 [Eol(1=) e™e™® = 37 2e7%) > |Bo|(1 - C(e))
i=0 i=N+1
where C'(e) > 0ase — 0.
4.1. Exclusions due to CP1. — Recall that for each n we need to throw away

parameters a for which ¢, (a) falls into the £7e~*"-neighbourhood of the origin and of
the critical points, which we denoted A,,,. Moreover, if exclusion of these parameters
leads to the formation of small connected components in parameter space (smallness
being expressed in terms of their image under ¢,) then such components are also
excluded.

Given an interval w € P,_1 with w C E,_1, the subset & C w of parameters which
get thrown out at the n'” iteration satisfies ¢, (&) C A[qn)—1. The aim of this section
is to show that the ratio |@|/|w| is exponentially small for small ¢ and large n. In
principle this is achieved by estimating the ratio |¢,(©)|/|cn(w)| and then invoking
the bounded distortion estimates in Lemma 3.8 to show that this ratio is essentially
preserved when pulled back by c;;!. This works well for returns to A*¢ as the bounded
distortion estimates (cf. Lemma 3.8) can then be applied to the entire interval w. For
returns to AY we face the problem that the bounded distortion estimates only apply
to intervals @ which satisfy |c,(@)| < max{(e7e~")?} 2719}, Nevertheless the
next lemma show that this is sufficient for our purposes.
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Lemma 4.1. — There exist constants 61 > 0 and a; > 0 (independent of n or €)
such that

| En—1]
|Fn|

>1—e%e ™" for any w € Pp_1 with w C Ey,_;.

Proof Consider an element w € P,_1,w C E,_;. Let & C w be those parameters
which get excluded at time n for failing to satisfy CP1l. Clearly it is enough to
estimate |@/|w| and we can suppose that n is a returning situation for w otherwise
the statement would be trivially true.

Suppose first that if n is not a return to A*¢ then |c,(w)| < (€7e72™)2A, in par-
ticular the hypotheses of Lemma 3.8 are satisfied. Then we have

|61/ |w] < BlAjan)-1]/len(w)] < 2¢*Be"e™" /[en (w)]-

The estimates for ¢,(w) have all been obtained in Lemma 3.3 and we just need to
consider the various cases. If n is a return to A*¢ we have either |c,(w)| > e'** from
(1) or |e,(w)| > e'=/re1=B/oe=(1=B/7)" from (1c) and (3b). Using the fact that
r < an we clearly get the desired estimate in this case. If n is a return to A° then
(1b) and (3a) give |c,(w)| > e7~P/7e=(1=B/7)" which again yields the statement in
the lemma since 7 < an. Finally case (2) gives |ca(w)| > e7*/?c7e~". Notice that
this case can only occur after a return to A*¢ and such returns can only occur for
large values of n, more precisely for n > r./a > ry/a. Therefore we have

!
E'ye—om/t,_:—L/2E'ye—rs < EL/2e—om—i-rs < EL/2e—n(a—r5/n) < 6L/2e—a n

which proves the result in this case also.

Finally suppose that |c,(w)| > (€7e 2")?A. Let @ C w be such that |c,(@)| =
(e7e~")2A in particular, the hypotheses of Lemma 3.8 are satisfied by @ and we
have

~ ~ A - Ypo—Qan
|| < @ < B| fon) 1] <9685 < geB(ere myI A,
lw| ™ || len(@)] (e7e om)2r
This completes the proof of the lemma. O
4.2. Exclusions due to CP2. — In this section we consider elements w C F,,w €

P, which satisfy CP1(n). We will set up a statistical argument to show that most of
these elements (in measure theoretical terms) have spent a small proportion of their
time in binding periods and therefore also satisfy CP2(n).

Recall from Section 3.2 that a sequence of escape times 0 = vy < -+ < Vgp1 =N is
associated to each element w € P,. Here we set vy = 0 and v,41 = n for notational
convenience and we call these escape times as well. Between any two escape times we
have a (possibly empty) sequence of essential and inessential returns po < --- < pq
with p; = p;; and ¢ = ¢(j). To each such return p; is associated a positive integer
p; > 0, the length of the associated binding period, and an integer r; > 0 determined
by the associated host interval. We let P; = po; + -+ + pqj, Rj = roj + -+ g,
13+ =P +---+P, and R, = Ri1+...R;. In particular 15+ = P, the total number of
iterates before time n belonging to binding periods. From Lemma 2.4 we immediately
get the following
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Lemma 4.2. — For w € P,,w C F,, we have
P, < 2(Ry +3/2log1/e) < 2(1 +’7/5)R+‘
o) o

In particular we can formulate an alternative condition
CP2 : R, <on/4(1+~/d)
which immediately implies CP2: P, < n/2.
Lemma 4.3. — Letw,; € P,;, and w,, ., € P,; be escaping components with w,; C

Wy;,, and suppose that there exists a non empty sequence o < --- < g of essential
returns between time v; and time vjy1. Then

|wl/j+1| S &-Leileij |'

Proof Let wy,, € P, be the subintervals of w,; corresponding to the returns p;, i =
0,...,q. We write
lwyjn | |wpol Wi | Wiy wrj |

B T

(23)

and begin by estimating |w,,|/|w;|. We have |c,, (wi)| > e */2¢7e ", by Lemma 3.5.
By the definition of the components w,,;, notice that the first return after an escape
time is always a return to A%, we have |c,, (wy,)| < 10e7e™ /rZ for some rq > rs. We
distinguish two cases. Suppose first that c,,(w;) C Ay(,45)- Then we can apply the
bounded distortion estimates and we have

(24) |wuo| < Blcuo(wuo)l < IOBsfb/QeT“*TO/TS.
Wy, leuo (W)

If ¢y, (wi) is not completely contained in As(,44) then, using the fact that e’e™" ~
e20+9) we have |cp, (@y,)| > €209 — gVe™s > £200+9)(1 — &) where @ C w; is that
subinterval of w,, whose image is completely contained in Ay, ). Then

|wuol < |wl~t0| < Blcuo (w,uo)| 10Be7e "

wi; | = lwu;| = lewo (@)~ rge2r (1 —et)

<10Be= (20670 /1 < 10Be /e,

We now turn to estimating the ratios |wy,|/|wy,_,| for j =1,...,q. Each time we
need to distinguish as above the cases in which ¢, _, (w,,_, ) is completely contained in
As(y44) so that we can apply the bounded distortion estimates, and the cases in which
this is not true. However, repeating the argument above we see that the estimates
which we obtain in the former cases are always satisfied in the latter. Thus we shall
consider in detail only the situation in which c,,_, (wu,_,) C Ag(y4s)- Suppose that
[tj—1 is a return to A%, Then we have

lwp,; | 10Br} jeve "

W] = PPN

(25) < 1037‘?716(1_2)\)762)‘7‘1_1_Tj
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If pj_1is a return to A*¢ then we have

2 —_ .
(26) | | 10Brj_,e7e™" < 10Br?_ e~ (7+0+287/0) g2Bri—1/o—r;
;o | = r2e27H9+267/0¢=207/ori-1 = i1 '
Recall moreover that if z1; is a return to A*¢ we gain an extra factor of e~/ on the

right hand side of (25) and (26). Finally we have |w;y1|/|wy,| < 1.

Now let § denote the number of returns between uo and p,_1 (inclusive) which
occur in A% and § denote the number of those which occur in A*¢. We do not include
g in this count and therefore we have ¢ = ¢+ ¢+ 1. Let R =Y 7; and R = SF;
and R=Y%_ r; = R+ R+r,. Then we have from (23)(24)(25) (26)

(27) |w’i+1 | < (loB)q+1&_L/2er3&_(172)\)7562)\1%6(//\71)@87(’y+6+2,3'y/¢7)(262,@1:2/06712‘

To simplify this expression we make the following three observations:
i) AR — J(A+1/2)R—(1/2-N)R.
i) (1/A=1) > v+ +2B7/0 and therefore
6(1/>\—1—7—5—257/0)46251}/0 < e2ﬁR/a < e(A+1/2)R;

iii) p1o is a return to A° and therefore ¢ > 1 and R > r,.
From (27) and these observations we get

|"‘|)z+|1| < (IOB)q+16L/2eT'S6(172))767(1/27k)7‘57()\+1/2)7'q e()\+1/2)(}~2+R+rq)7R‘
wil

Now using the fact that ry = [(y + 20 + ¢)log1/e and 7y > r. = [(y + 6)log1/e] we
see that

e(A=1/2)rs—(A+1/2)7 «(A=1/2)(7+20+1)+(A+1/2)(7+6)

SE/\(2'y+36+L)7(6+L)/2 < EL/Q.

Thus we have

|u|Jz+|1 | < (]-OB)q-f-l&_Le(/\-}—l/Qfl)R‘
wil

Finally, since ¢ < R/r. we have (10B)? < ((10B)/<)® and so, taking £ > 0 small we
get

|UJ,‘+1| < ELe—LR_
il
This concludes the proof. O
Now let 77(R) denote the number of possible sequences 71, . ..,r, with r; > dloge™!

and r; +---+7r, = R.
Lemma 4.4. — For € > 0 sufficiently small we have that, for all R € N,
n(R) < /2,
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Proof The result is purely combinatorial. We want to estimate, for each fixed ¢,
R R!
R) < < ——.
(F) < (q> = ¢(R—q)!

Using Stirling’s approximation formula for factorials: v2rkk*e* < k! < v2rkk*e*(1+
1
i), we get

V2rRRReR(1 + L)

R
(E) V2mqqle=1y/2m(R — q)(R — q)F~te~(F-0)
RE
< 2W for small € > 0 (and therefore R large)
R R R 1h( qra]"
L | R S T T 4
g R—q ~ |£ ) R

Now since ¢/R < 1/8log1/e — 0 we have that both (1/(¢/R))%® and (1/(1 — ¢/R))*~%/%

both tend to zero as loge — 0. Thus we get 7, (R) < e(*#/2)/2_ Notice that the value

of g is bounded by ¢ < R/dlog1/e < R, for each R, and so, summing over all possible

values of ¢ we get 7(R) < Y pnq(R) < etF. O
Now let w,, € P,, be an escaping component and let 7j(R) denote the total number

of subintervals w C w,, which are escaping components of the form w,, ,, vj;1 =

vj1i(w) which undergo a sequence of returns po,...,u, between time v; and time

pj+1 with R; = R. Then we have

Lemma 4.5. —
A(R) < e

Proof Notice that the subintervals w can be indexed in a unique way by the se-
quence of host intervals corresponding to the returns puo,..., u,, i.e. by a sequence
(*0,70,00) - - - (*¢,7g, ;) Where x = 0,%cx and 1 < I; < r2. Tt follows that for each
r there exist at most 6r? intervals with r; = r and therefore the previous lemma
immediately gives 7j(R) < 6R2e!ft < 2B, O

For the final step of our argument we introduce the following notation. For w € P,
let w,,, 5 =0,...,s be the escaping components containing w as defined above. Then
define for j =s+1,...,n, w,; = w and call these escaping components as well. Thus
we have a formally defined sequence of nested intervals

W=Wp ="+ Wy, Cwy, C--- Cwy, =wo

associated to each w € P,. For each such Wy, let < wy; >= wy; NE, and let ); denote
the union of all the escaping components of the form w,,. Notice that Qo = wo and

Qn = F,.

Lemma 4.6. —

[ etida < 1+ el
F,

n
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Proof For a given wy; we have

/ efida =[] + 3 IQR)[e T < |w,, |+ 3 ete Ay
<(Uz;]-> R>rg R>r,
<(L+et Y e My, | < (1+e")|wy,l.
R>7r,

Clearly this implies
/ e da < (1 +¢/?)Q;
Qi

and, inductively, the statement in the lemma. O

We are now in a position to estimate the proportion of parameters satisfying C P2’ :
R, < on/4(1 +v/d). This condition is equivalent to e‘F/4 < eton/16(1+7/0) < gén
where £ = 10/16(1 + v/4). Thus we have

m{a€ Fyi etz e < [ eMida < (14 o))
F,
which gives
m{En \ Fn} < (L+¢")"e wol| < e 42wl
taking £ small.
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