
THEOREM OF OSELEDETS

We recall some basic facts and terminology relative to linear cocycles and the
multiplicative ergodic theorem of Oseledets [1].

0.1. Cocycles over maps. Let µ be a probability measure on some space M and
f : M →M be a measurable transformation that preserves µ. Let π : E →M be a
finite-dimensional vector bundle endowed with a Riemannian norm ‖ · ‖. A linear

cocycle (or vector bundle morphism) over f is a map F : E → E such that

π ◦ F = f ◦ π

and the action A(x) : Ex → Ef(x) of F on each fiber is a linear isomorphism. It is

often possible to assume that the vector bundle is trivial, meaning that E = M×R
d,

restricting to some full µ-measure subset of M if necessary. Then A(·) takes values
in the linear group GL(d,R) of invertible d × d matrices. Notice that, in general,
the action of the nth iterate is given by An(x) = A(fn−1(x)) · · ·A(f(x)) ·A(x), for
every n ≥ 1. Given any y > 0, we denote log+ y = max{log y, 0}.

Theorem 0.1. Assume the function log+ ‖A(x)‖ is µ-integrable. Then, for µ-

almost every x ∈ M , there exists k = k(x), numbers λ1(x) > · · · > λk(x), and a

filtration Ex = F 1
x > · · · > F k

x > {0} = F k+1
x of the fiber, such that

(1) k(f(x)) = k(x) and λi(f(x)) = λi(x) and A(x) · F i
x = F i

f(x) and

(2) lim
n→+∞

1

n
log ‖An(x)v‖ = λi(x) for all v ∈ F i

x \ F i+1
x and all i = 1, . . . , k.

The Lyapunov exponents λi and the subspaces F i depend in a measurable (but
usually not continuous) fashion on the base point. The statement of the theorem,
including the values of k(x), the λi(x), and the F i(x), is not affected if one replaces
‖ · ‖ by any other Riemann norm ‖| · |‖ equivalent to it in the sense that there exists
some µ-integrable function c(·) such that

(1) e−c(x)‖v‖ ≤ ‖|v|‖ ≤ ec(x)‖v‖ for all v ∈ TxM.

When the measure µ is ergodic, the values of k(x) and of each of the λi(x) are
constant on a full measure subset, and so are the dimensions of the subspaces
F i

x. We call dimF i
x − dimF i+1

x the multiplicity of the corresponding Lyapunov
exponent λi(x). The Lyapunov spectrum of F is the set of all Lyapunov exponents,
each counted with multiplicity. The Lyapunov spectrum is simple if all Lyapunov
exponents have multiplicity 1.
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0.2. The invertible case. If the transformation f is invertible then so is the
cocycle F . Applying Theorem 0.1 also to the inverse F−1 and combining the
invariant filtrations of the two cocycles, one gets a stronger conclusion than in the
general non-invertible case:

Theorem 0.2. Let f : M → M be invertible and both functions log+ ‖A(x)‖ and

log+ ‖A−1(x)‖ be µ-integrable. Then, for µ-almost every point x ∈M , there exists

k = k(x), numbers λ1(x) > · · · > λk(x), and a decomposition Ex = E1
x ⊕ · · · ⊕ Ek

x

of the fiber, such that

(1) A(x) · Ei
x = Ei

f(x) and F i
x = ⊕k

j=iE
j
x and

(2) lim
n→±∞

1

n
log ‖An(x)v‖ = λi(x) for all non-zero v ∈ Ei

x and

(3) lim
n→±∞

1

n
log ∠

(

Ei
fn(x), E

j

fn(x)

)

= 0 for all i, j = 1, . . . , k.

Note that the multiplicity of each Lyapunov exponent λi coincides with the
dimension dimEi

x = dimF i
x − dimF i+1

x of the associated Oseledets subspace Ei
x.

From the conclusion of the theorem one easily gets that

(2) lim
n→±∞

1

n
log |detAn(x)| =

k
∑

i=1

λi(x) dimEi
x.

In most cases we deal with, the determinant is constant equal to 1. Then the sum
of all Lyapunov exponents, counted with multiplicity, is identically zero.

Remark 0.3. The natural extension of a (non-invertible) map f : M →M is defined

on the space M̂ of sequences (xn)n≤0 with f(xn) = xn+1 for n < 0, by

f̂ : M̂ → M̂, (. . . , xn, . . . , x0) 7→ (. . . , xn, . . . , x0, f(x0)).

Let P : M̂ → M be the canonical projection assigning to each sequence (xn)n≤0

the term x0. It is clear that f̂ is invertible and P ◦ f̂ = f ◦ P . Every f -invariant

probability µ lifts to a unique f̂ -invariant probability µ̂ such that P∗µ̂ = µ. Every

cocycle F : E → E over f extends to a cocycle F̂ : Ê → Ê over f̂ , as follows:
Êx̂ = EP (x̂) and Â(x̂) = A(P (x̂)), where Â(x̂) denotes the action of F̂ on the

fiber Êx̂. Clearly,
∫

log+ ‖Â‖ dµ̂ =
∫

log+ ‖A‖ dµ and, assuming the integrals are

finite, the two cocycles F and F̂ have the same Lyapunov spectrum and the same
Oseledets filtration. Moreover,

∫

log+ ‖Â−1‖ dµ̂ =
∫

log+ ‖A−1‖ dµ and when the

integrals are finite we may apply Theorem 0.2 to the cocycle F̂ .

Remark 0.4. Any sum F i
x = ⊕k

j=iE
j
x of Oseledets subspaces corresponding to the

smallest Lyapunov exponents depends only on the forward iterates of the cocycle.
Analogously, any sum of Oseledets subspaces corresponding to the largest Lyapunov
exponents depends only on the backward iterates.

0.3. Symplectic cocycles. Suppose there exists some symplectic form, that is,
some non-degenerate alternate 2-form ωx on each fiber Ex, which is preserved by
the linear cocycle F :

ωf(x)(A(x)u,A(x)v) = ωx(u, v) for all x ∈M and u, v ∈ Ex.

Assume the symplectic form is integrable, in the sense that there exists a µ-
integrable function x 7→ c(x) such that

|ωx(u, v)| ≤ ec(x)‖u‖ ‖v‖ for all x ∈M and u, v ∈ Ex.



THEOREM OF OSELEDETS 3

Remark 0.5. We are going to use the following easy observation. Let µ be an
invariant ergodic probability for a transformation f : M →M , and let φ : M → R

be a µ-integrable function. Then

lim
n→∞

1

n
φ(fn(x)) = 0 µ-almost everywhere.

This follows from the Birkhoff ergodic theorem applied to ψ(x) = φ(f(x)) − φ(x).
Note that the argument remains valid under the weaker hypothesis that the function
ψ be integrable.

Proposition 0.6. If F preserves an integrable symplectic form then its Lyapunov

spectrum is symmetric: if λ is a Lyapunov exponent at some point x then so is −λ,
with the same multiplicity.

This statement can be justified as follows. Consider any i and j such that
λi(x) + λj(x) 6= 0. For all vi ∈ Ei

x and vj ∈ Ej
x,

|ωx(vi, vj)| = |ωfn(x)(A
n(x)vi, An(x)vj)| ≤ ec(fn(x))‖An(x)vi‖‖An(x)vj‖

for all n ∈ Z. Since c(x) is integrable the first factor has no exponential growth:
by Remark 0.5,

lim
n→±∞

1

n
c(fn(x)) = 0 almost everywhere.

The assumption implies that ‖An(x)vi‖‖An(x)vj‖ goes to zero exponentially fast,
either when n → +∞ or when n → −∞. So, the right hand of the previous
inequality goes to zero either when n → +∞ or when n → −∞. Therefore, in
either case, the left hand side must vanish. This proves that

λi(x) + λj(x) 6= 0 ⇒ ωx(vi, vj) = 0 for all vi ∈ Ei
x and vj ∈ Ej

x.

Since the symplectic form is non-degenerate, it follows that for every i there exists
j such that λi(x) + λj(x) = 0. We are left to check that the multiplicities of such
symmetric exponents coincide. We may suppose λi(x) 6= 0, of course. Let s be
the dimension of Ei

x. Using a Gram-Schmidt argument, one constructs a basis

vi
1, . . . , v

i
s of Ei

x and a family of vectors vj
1, . . . , v

j
s in Ej

x such that

(3) ωx(vi
p, v

j
q) =

{

1 if p = q

0 otherwise.

Notice that ωx(vi
p, v

i
q) = 0 = ωx(vj

p, v
j
q) for all p and q, since λi(x) = −λj(x) is

non-zero. The relations (3) imply that the vj
1, . . . , v

j
s are linearly independent, and

so dimEj
x ≥ dimEi

x. The converse inequality is proved in the same way.

0.4. Adjoint linear cocycle. Let π∗ : E∗ → M be another vector bundle which
is dual to π : E →M , in the sense that there exists a nondegenerate bilinear form

E∗
x × Ex 3 (u, v) 7→ u · v ∈ R, for each x ∈M.

The annihilator of a subspace E∗ ⊂ E∗
x is the subspace E ⊂ Ex of all v ∈ Ex such

that u · v = 0 for all u ∈ E∗. We also say that E∗ is the annihilator of E. Notice
that dimE + dimE∗ = dim Ex = dim E∗

x . The norm ‖ · ‖ may be transported from
E to E∗ through the duality:

(4) ‖u‖ = sup{|u · v| : v ∈ Ex with ‖v‖ = 1} for u ∈ E∗
x .
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For x ∈M , the adjoint of A(x) is the linear map A∗(x) : E∗
f(x) → E∗

x defined by

(5) A∗(x)u · v = u ·A(x)v for every u ∈ E∗
f(x) and v ∈ Ex.

The inverses A−1∗(x) : E∗
x 7→ E∗

f(x) define a linear cocycle F−1∗ : E∗ → E∗ over f .

Proposition 0.7. The Lyapunov spectra of F and F−1∗ are symmetric to one

another at each point.

Indeed, the definitions (4) and (5) imply ‖A∗(x)‖ = ‖A(x)‖ and, analogously,
‖A−1∗(x)‖ = ‖A−1(x)‖ for any x ∈ M . Thus, F−1∗ satisfies the integrability
condition in Theorem 0.2 if and only if F does. Let Ex = ⊕k

j=1E
j
x be the Oseledets

decomposition of F at each point x. For each i = 1, . . . , d define

(6) Ei∗
x = annihilator of E1

x ⊕ · · · ⊕ Ei−1
x ⊕ Ei+1

x ⊕ · · · ⊕ Ek
x .

The decomposition E∗
x = ⊕k

j=1E
j∗
x is invariant under F−1∗. Moreover, given any

u ∈ Ei∗
x and any n ≥ 1,

‖A−n∗(x)u‖ = max
‖v‖=1

|A−n∗(x)u · v| = max
‖v‖=1

|u ·A−n(x)v| .

Fix any ε > 0. Begin by considering v ∈ Ei
fn(x). Then A−n(x)v ∈ Ei

x, and so

|u ·A−n(x)v| ≥ c ‖u‖ ‖A−n(x)v‖ ≥ c ‖u‖ e−(λi(x)+ε)n

for every n sufficiently large, where c = c(Ei
x, E

i∗
x ) > 0. Consequently,

(7) lim
n→∞

1

n
log ‖A−n∗(x)u‖ ≥ −(λi(x) + ε).

Next, observe that a general unit vector v ∈ Efn(x) may be written

v =
k

∑

j=1

vj with vj ∈ E
j

fn(x).

Using part 3 of Theorem 0.2, we see that every ‖vj‖ ≤ eεn if n is sufficiently large.
Therefore, given any u ∈ Ei∗

x ,

|u ·A−n(x)v| = |u ·A−n(x)vi| ≤ ‖u‖ e−(λi(x)−ε)n ‖vi‖ ≤ ‖u‖ e−(λi(x)−2ε)n

for every unit vector v ∈ Efn(x), and so

(8) lim
n→∞

1

n
log ‖A−n∗(x)u‖ ≤ −(λi(x) − 2ε).

Since ε > 0 is arbitrary, the relations (7) and (8) show that the Lyapunov exponent
of F−1∗ along Ei∗

x is precisely −λi(x), for every i = 1, . . . , k. Thus, E∗
x = ⊕k

j=1E
j∗
x

must be the Oseledets decomposition of F−1∗ at x. Observe, in addition, that
dimEi∗

x = dimEi
x for all i = 1, . . . , k.

0.5. Cocycles over flows. We call linear cocycle over a flow f t : M →M , t ∈ R

a flow extension F t : E → E , t ∈ R such that π ◦ F t = f t ◦ π and the action
At(x) : Ex → Eft(x) of F t on every fiber is a linear isomorphism. Notice that

At+s(x) = As(f t(x)) ·At(x) for all t, s ∈ R.

Theorem 0.8. Assume log+ ‖At(x)‖ is µ-integrable for all t ∈ R. Then, for µ-

almost every x ∈ M , there exists k = k(x) ≤ d, numbers λ1(x) > · · · > λk(x), and

a decomposition Ex = E0
x ⊕ E1

x ⊕ · · · ⊕ Ek
x of the fiber, such that

(1) At(x) · Ei
x = Ei

ft(x) and E0
x is tangent to the flow lines
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(2) lim
t→±∞

1

t
log ‖At(x)‖ = λi(x) for all non-zero v ∈ Ei

x

(3) lim
t→±∞

1

t
log ∠

(

Ei
ft(x), E

j

ft(x)

)

= 0 for all i, j = 1, . . . , k.

As a consequence, the relation (2) also extends to the continuous time case, as
do the observations made in the previous sections for discrete time cocycles.

An important special case is the derivative cocycle Df t : TM → TM over a
smooth flow f t : M → M . We call Lyapunov exponents and Oseledets subspaces
of the flow the corresponding objects for this cocycle Df t, t ∈ R.

0.6. Induced cocycle. The following construction will be useful later. Let f :
M → M be a transformation, not necessarily invertible, µ be an invariant prob-
ability measure, and D be some positive measure subset of M . Let ρ(x) ≥ 1 be
the first return time to D, defined for almost every x ∈ D. Given any cocycle
F = (f,A) over f , there exists a corresponding cocycle G = (g,B) over the first
return map g(x) = fρ(x)(x), defined by B(x)v = Aρ(x)(x)v.

Proposition 0.9. (1) The normalized restriction µD of the measure µ to the

domain D is invariant under the first return map g.

(2) log+ ‖B±1‖ are integrable for µD if log+ ‖A±1‖ are integrable for µ.

(3) For µ-almost every x ∈ D, the Lyapunov exponents of G at x are obtained

multiplying the Lyapunov exponents of F at x by some constant c(x) ≥ 1.

Proof. First, we treat the case when the transformation f is invertible. For each
j ≥ 1, let Dj be the subset of points x ∈ D such that ρ(x) = j. The {Dj : j ≥ 1}
are a partition of a full measure subset of D, and so are the {f j(Dj) : j ≥ 1}.
Notice also that g | Dj = f j | Dj for all j ≥ 1. For any measurable set E ⊂ D and
any j ≥ 1,

µ
(

g−1(E ∩ f j(Dj))
)

= µ
(

f−j(E ∩ f j(Dj))
)

= µ
(

E ∩Dj

)

,

because µ is invariant under f . It follows that

µ
(

g−1(E)
)

=

∞
∑

j=1

µ
(

g−1(E ∩ f j(Dj))
)

=

∞
∑

j=1

µ
(

E ∩Dj

)

= µ(E).

This implies that µD is invariant under g, as claimed in part (1). Next, from the
definition B(x) = Aρ(x)(x) we conclude that

∫

D

log+ ‖B‖ dµ =

∞
∑

j=1

∫

Dj

log+ ‖Aj‖ dµ ≤

∞
∑

j=1

j−1
∑

i=0

∫

Dj

log+ ‖A ◦ f i‖ dµ.

Since µ is invariant under f and the domains f i(Dj) are pairwise disjoint for all
0 ≤ i ≤ j − 1, it follows that

∫

D

log+ ‖B‖ dµ ≤

∞
∑

j=1

j−1
∑

i=0

∫

fi(Dj)

log+ ‖A‖ dµ ≤

∫

log+ ‖A‖ dµ.

The corresponding bound for the norm of the inverse is obtained in the same way.
This implies part (2) of the proposition. To prove part (3), define

c(x) = lim
k→∞

1

k

k−1
∑

j=0

ρ(f j(x)).
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Notice that ρ is integrable relative to µD:
∫

D

ρ dµ =

∞
∑

j=1

jµ(Dj) =

∞
∑

j=1

j−1
∑

i=0

µ(f i(Dj)) ≤ 1.

Thus, by the ergodic theorem, c(x) is well defined at µD-almost every x. It is clear
from the definition that c(x) ≥ 1. Now, given any vector v ∈ Ex \ {0} and a generic
point x ∈ D,

lim
k→∞

1

k
log ‖Bk(x)v‖ = c(x) lim

n→∞

1

n
log ‖An(x)v‖

(we are assuming log+ ‖A‖ is µ-integrable and so Theorem 0.1 ensures that both
limits exist). This proves part (3) of the proposition, when f is invertible.

Finally, we extend the proposition to the non-invertible case. Let f̂ be the
natural extension of f and µ̂ be the lift of µ (Remark 0.3). Denote D̂ = P−1(D).

It is clear that the f̂ -orbit of a point x̂ ∈ D̂ returns to D̂ at some time n if and only

if the f -orbit of x = P (x̂) returns to D at time n. Thus, the first return map of f̂

to the domain D̂ is
ĝ(x) = f̂ρ(x)(x̂), x = P (x̂),

and so it satisfies P ◦ ĝ = g ◦ P . It is also clear that the normalized restriction µ̂D

of µ̂ to the domain D̂ satisfies P∗µ̂D = µD. By the invertible case, µ̂D is invariant
under ĝ. It follows that µD is invariant under g:

µD(g−1(E)) = µ̂D(P−1g−1(E)) = µ̂D(ĝ−1P−1(E)) = µ̂D(P−1(E)) = µD(E),

for every measurable set E ⊂ D. This settles part (1). Now let F̂ = (f̂ , Â) be the

natural extension of the cocycle F (Remark 0.3) and Ĝ be the cocycle it induces
over ĝ:

Ĝ(x̂, v) = (ĝ(x̂), B̂(x̂)v), B̂(x̂) = Âρ(x)(x̂).

By definition, Â(x̂) = A(x), and so B̂(x̂) = B(x). Consequently,
∫

log+ ‖A‖ dµ =

∫

log+ ‖Â‖ dµ̂ and

∫

log+ ‖B‖ dµD =

∫

log ‖B̂‖ dµ̂D.

By the invertible case, log+ ‖B̂‖ is µ̂D-integrable if log+ ‖Â‖ is µ̂-integrable. It
follows that log+ ‖B‖ is µD-integrable if log+ ‖A‖ is µ-integrable. The same argu-
ment applies to the inverses. This settles part (2) of the proposition. Part (3) also
extends easily to the non-invertible case: as observed in Remark 0.3, the Lyapunov
exponents of F̂ at x̂ coincide with the Lyapunov exponents of F at x. For the same
reasons, the Lyapunov exponents of Ĝ at x̂ coincide with the Lyapunov exponents
of G at x. By the invertible case, the exponents of Ĝ at x̂ are obtained multiplying
the exponents of F̂ at x̂ by some positive factor. Consequently, the exponents of G
at x are obtained multiplying the exponents of F at x by that same factor. This
concludes the proof of the proposition. �
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