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The n-body problem

d2−→ri
dt2

=
∑

i 6=j

Gmimj

−→rj −
−→ri

‖−→rj −
−→ri ‖3

i = 1, 2, . . . , n

can not solved analytically, in general, when n > 2.
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The n-body problem

d2−→ri
dt2

=
∑

i 6=j

Gmimj

−→rj −
−→ri

‖−→rj −
−→ri ‖3

i = 1, 2, . . . , n

can not solved analytically, in general, when n > 2.

Poincaré proposes to use tools from geometry, probability, analysis,
algebra, to describe the qualitative behavior of solutions without
actually computing them.
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Continuous time and discrete time

Flow (associated to a vector field F )

{f t : M → M : t ∈ R} defined by f t(a) = value at time t of the
solution to

dx

dt
= F (x) and x(0) = a.

x(0) = a

x(t) = f t(a)
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Poincaré and Birkhoff
Ergodicity problem
Hyperbolic systems

Beyond hyperbolicity

Continuous time and discrete time

Flow (associated to a vector field F )

{f t : M → M : t ∈ R} defined by f t(a) = value at time t of the
solution to

dx

dt
= F (x) and x(0) = a.

x(0) = a

x(t) = f t(a)

Iteration of an (invertible) transformation

f : M → M invertible map; one denotes by f n the n-fold iterate.
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Return maps and suspensions

One can relate continuous time systems and discrete time systems:
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Return maps and suspensions

One can relate continuous time systems and discrete time systems:

continuous → discrete

x

f (x)

Σ

f : Σ′ → Σ is the first return map of the flow to the cross-section.
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Return maps and suspensions

One can relate continuous time systems and discrete time systems:

continuous → discrete

x

f (x)

Σ

f : Σ′ → Σ is the first return map of the flow to the cross-section.

continuous ← discrete

Every invertible transformation f can be realized as a first return
map of some flow, that we call suspension flow of f .

Marcelo Viana Dynamics: a long century



Poincaré and Birkhoff
Ergodicity problem
Hyperbolic systems

Beyond hyperbolicity

Poincaré recurrence

Theorem (Poincaré)

If f : M → M preserves a probability µ then, given any measurable
set B ⊂ M, the orbit of µ-almost any x ∈ B returns to B.
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Poincaré recurrence

Theorem (Poincaré)

If f : M → M preserves a probability µ then, given any measurable
set B ⊂ M, the orbit of µ-almost any x ∈ B returns to B.

E

B

M

f (E)

f 2(E)

Let E = {points whose orbits never return to B}. Then µ(E ) = 0:
∑

n µ(E ) =
∑

n µ(f n(E )) = µ
(

⋃

n f n(E )
)

≤ µ(M) = 1.
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Twist maps

Theorem (Poincaré-Birkhoff)

Assume f : A→ A preserves the boundary and the area measure
and twists the radii. Then there is p ∈ A such that f (p) = p.

a

b

f (a)

f (b)
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Transverse homoclinic intersections

Theorem (Birkhoff)

Any transverse homoclinic point q associated to a saddle point p is
accumulated by periodic points, f ki (pi ) = pi , with periods ki →∞.

qp

pi
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The ergodic hypothesis

Boltzmann: In the long run, a system of molecules will assume all
conceivable micro-states that are compatible with the conservation
of energy.
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The ergodic hypothesis

Boltzmann: In the long run, a system of molecules will assume all
conceivable micro-states that are compatible with the conservation
of energy.

Reformulation: Over long periods of time, the time spent by the
system in some region of the phase space of microstates with the
same energy is proportional to the volume of that region.

In other words, all micro-states with the same energy should be
equally probable, in the long run. Is this so ?
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The ergodic theorem

Theorem (von Neumann, Birkhoff)

Assume f : M → M preserves a probability µ. Then, for any
integrable function ψ : M → R, the time-average

ψ̃(x) = lim
n→∞

1

n
(ψ(f (x)) + · · ·+ ψ(f n(x)))

exists for µ-almost every point x.
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The ergodic theorem

Theorem (von Neumann, Birkhoff)

Assume f : M → M preserves a probability µ. Then, for any
integrable function ψ : M → R, the time-average

ψ̃(x) = lim
n→∞

1

n
(ψ(f (x)) + · · ·+ ψ(f n(x)))

exists for µ-almost every point x.

If one takes ψ = characteristic function of some set B ⊂ M, then
ψ̃(x) is the time the orbit of x spends in the set B .
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The ergodic theorem

Theorem (von Neumann, Birkhoff)

Assume f : M → M preserves a probability µ. Then, for any
integrable function ψ : M → R, the time-average

ψ̃(x) = lim
n→∞

1

n
(ψ(f (x)) + · · ·+ ψ(f n(x)))

exists for µ-almost every point x.

If one takes ψ = characteristic function of some set B ⊂ M, then
ψ̃(x) is the time the orbit of x spends in the set B .

The system is ergodic if the time-averages are constant µ-almost
everywhere.
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Geodesic flows on surfaces

p v

p(t)
f t(v)

Theorem (Hedlund, Hopf)

The geodesic flow on a surface with negative curvature is ergodic,
relative to the Liouville measure.
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KAM theory

Theorem (Kolmogorov, Arnold, Moser)

If f : A→ A is a C∞ area preserving twist map, there exists a
subset of A with positive area consisting of closed curves that are
fixed by f . In particular, f is not ergodic.

This is a manifestation of a very general phenomenon that applies,
in particular, to volume preserving (symplectic) transformations
and flows in any dimension.
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The horseshoe

Theorem (Smale)

If f has some transverse homoclinic point then some iterate f N

exhibits a horseshoe.

f N
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Poincaré and Birkhoff
Ergodicity problem
Hyperbolic systems

Beyond hyperbolicity

The horseshoe

Theorem (Smale)

If f has some transverse homoclinic point then some iterate f N

exhibits a horseshoe.

f N

So, f has periodic points with arbitrarily large periods (Birkhoff).
This explains how an infinite number of periodic points can coexist
in a robust fashion.
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Hyperbolicity

The limit set of f : M → M is the closure L(f ) of the set of all
accumulation points of all orbits (forward and backward).
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Hyperbolicity

The limit set of f : M → M is the closure L(f ) of the set of all
accumulation points of all orbits (forward and backward).

The transformation is hyperbolic if the tangent space admits a
splitting

TxM = E s
x ⊕ Eu

x

at every point x ∈ L(f ), invariant under the derivative and such
that Df contracts E s and Df −1 contracts Eu, at uniform rates.
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Hyperbolicity

The limit set of f : M → M is the closure L(f ) of the set of all
accumulation points of all orbits (forward and backward).

The transformation is hyperbolic if the tangent space admits a
splitting

TxM = E s
x ⊕ Eu

x

at every point x ∈ L(f ), invariant under the derivative and such
that Df contracts E s and Df −1 contracts Eu, at uniform rates.

When L(f ) = M, we say f is globally hyperbolic or Anosov.
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Geodesic flows on manifolds

Theorem (Anosov)

1 The geodesic flow on any manifold with negative sectional
curvature is globally hyperbolic (and preserves the Liouville
volume measure).

2 Every globally hyperbolic system that preserves the volume
measure is ergodic.
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Dynamical decomposition

Theorem (Smale, Newhouse)

If f is hyperbolic then L(f ) = Λ1 ∪ · · · ∪ ΛN where the Λi are
invariant, disjoint, and indecomposable (contain dense orbits).
The forward/backward accumulation set of the orbit of every
x ∈ M is contained in some Λi .
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Dynamical decomposition

Theorem (Smale, Newhouse)

If f is hyperbolic then L(f ) = Λ1 ∪ · · · ∪ ΛN where the Λi are
invariant, disjoint, and indecomposable (contain dense orbits).
The forward/backward accumulation set of the orbit of every
x ∈ M is contained in some Λi .

Λi is an attractor if the basin of attraction

B(Λi) = {x ∈ M whose forward orbit accumulates in Λi}

has positive volume (then it is a neighborhood of Λi).

The basins of the attractors of a hyperbolic transformation cover a
full volume set.
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Physical measures

Theorem (Sinai, Ruelle, Bowen)

Given any hyperbolic attractor Λ, there exists a probability µSRB

supported on Λ such that every time-average

lim
n

(ψ(f (x) + · · · + ψ(f n(x))) =

∫

ψ dµSRB

at volume-almost every point x in the basin of attraction of Λ.
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Beyond hyperbolicity ?

However, many important dynamical systems are not hyperbolic.

To what extent can we develop a similarly rich theory for very
general dynamical systems?

Dynamics beyond uniform hyperbolicity, Bonatti, D́ıaz, Viana,
Springer Verlag.
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Homoclinic tangencies

Only two mechanisms are known that yield robustly non-hyperbolic
behavior:

p

p

q

q

H
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Heterodimensional cycles

Only two mechanisms are known that yield robustly non-hyperbolic
behavior:

p1
p2

q
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Strong density conjecture

Conjecture (Palis)

Every dynamical system can be approximated by one which either
is hyperbolic, has a homoclinic tangency, or a heterodimensional
cycle.
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Hénon strange attractor

The Hénon map is defined by fa,b(x , y) = (1− ax2 + by , x) where
a and b are parameters. Hénon observed that it seems to have a
“strange” attractor:
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Abundance of strange attractors

Theorem (Benedicks, Carleson, Young, Viana)

For a positive measure set of parameters a and b,

BC the Hénon map has a strange (non-hyperbolic) attractor Λ

BY the attractor Λ supports some physical measure µphys

BV ψ̃(x) =
∫

ψ dµphys for volume-almost all x ∈ B(Λ) and all ψ

BV the dynamics in the basin is stable under random noise.
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Poincaré and Birkhoff
Ergodicity problem
Hyperbolic systems

Beyond hyperbolicity

Abundance of strange attractors

Theorem (Benedicks, Carleson, Young, Viana)

For a positive measure set of parameters a and b,

BC the Hénon map has a strange (non-hyperbolic) attractor Λ

BY the attractor Λ supports some physical measure µphys

BV ψ̃(x) =
∫

ψ dµphys for volume-almost all x ∈ B(Λ) and all ψ

BV the dynamics in the basin is stable under random noise.

Theorem (Mora, Viana)

Hénon-like strange attractors occur, in a persistent way, whenever
a dissipative homoclinic tangency is unfolded.

There is considerable recent progress by Wang, Young.
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Poincaré and Birkhoff
Ergodicity problem
Hyperbolic systems

Beyond hyperbolicity

Lorenz strange attractors

The Lorenz flow is defined by the system of differential equations

ẋ = −σx + σy σ = 10
ẏ = ρx − y − xz ρ = 28
ż = xy − βz β = 8/3

Lorenz Attractor

25-25

50

-5

Title: Lorenz System
Date: Fri Jun 18 12:24:00 1999
 Range = [ -25, 25 ];    Range = [ -5, 50 ]
Initial Conditions: ( x, y, z, time )=( 0.1, 0.1, 0.1, 0 )
Parameters: ( sigma, rho, beta )=( 10, 28, 2.6666667 )
Num Pts = 10001;  Time Step = 0.01
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Robust strange attractors

Theorem (Morales, Pujals, Pacifico)

Every robust attractor Λ of a flow in 3 dimensions is either
hyperbolic or Lorenz-like (singular-hyperbolic): the latter occurs
precisely if the attractor contains some equilibrium point.

Robust means that there exists a neighborhood U of Λ such that
the set of points whose orbits never leave U

is indecomposable (dense orbits), for any perturbation of the
original flow

and coincides with Λ for the original flow.
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Robust strange attractors

Theorem (Morales, Pujals, Pacifico)

Every robust attractor Λ of a flow in 3 dimensions is either
hyperbolic or Lorenz-like (singular-hyperbolic): the latter occurs
precisely if the attractor contains some equilibrium point.

Robust means that there exists a neighborhood U of Λ such that
the set of points whose orbits never leave U

is indecomposable (dense orbits), for any perturbation of the
original flow

and coincides with Λ for the original flow.

Theorem (Tucker)

The Lorenz original equations do exhibit a strange attractor.
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Partial hyperbolicity

A transformation is partially hyperbolic if the tangent space admits
an invariant splitting

Tx = E s
x ⊕ E c

x ⊕ Eu
x

at every point, such that Df | E s is a contraction, Df | Eu is an
expansion, and Df | E c is “in between” the two, with uniform
rates.
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Partial hyperbolicity

A transformation is partially hyperbolic if the tangent space admits
an invariant splitting

Tx = E s
x ⊕ E c

x ⊕ Eu
x

at every point, such that Df | E s is a contraction, Df | Eu is an
expansion, and Df | E c is “in between” the two, with uniform
rates.
This notion turns out to be crucial for understanding

robust indecomposability: Bonatti, D́ıaz, Pujals, Ures, Viana,
Arbieto, Matheus, Horita, Tahzibi

stable ergodicity: Grayson, Pugh, Shub, Wilkinson, Burns,
Dolgopyat, Nitika, Torok, Xia, Bonatti, Matheus, Viana,
Rodriguez-Herz (F & J), Ures
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Two conjectures

Finiteness of attractors (Palis)

Every dynamical system is approximated by one having only finitely
many attractors, and these attractors support physical measures.
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Two conjectures

Finiteness of attractors (Palis)

Every dynamical system is approximated by one having only finitely
many attractors, and these attractors support physical measures.

Hyperbolicity and physical measures (Viana)

If there is an invariant splitting TxM = E 1
x ⊕ E 2

x at volume-almost
every point, such that Df n | E 1 is eventually contracting, and
Df n | E 2 is eventually expanding, then the system admits some
physical measure.
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