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The observation of many experimental systems shows that, even when the
time-evolution is described by some deterministic process (e.g. a smooth trans-
formation or an ordinary differential equation), the behaviour of the system may
be very hard to understand in deterministic terms, and a stochastic analysis may
be a more fruitful approach. Here we restrict ourselves to discrete-time dynam-
ical systems, namely, smooth or piecewise smooth transformations f : M → M
on some compact manifold M (possibly with boundary). However, most of the
questions and results have natural extensions for flows or semi-flows.

A main goal is to describe the evolution of “observable” quantities of the
system, that is, of real (or complex) functions ϕ defined on the phase space
M and having some degree of regularity. Quite often, the sequence ϕ(f j(x))
of observations for a typical trajectory f j(x) behaves rather erratically as time j
varies. This can be illustrated by the following table where the values of ϕ(f j(x)),
corresponding to f : [0, 1] → [0, 1], f(x) = 3 ∗ x mod 1, and ϕ(z) = z, are listed
for x = 1/

√
2 and 0 ≤ j < 60

0.707107, 0.121320, 0.363961, 0.091883, 0.275649, 0.826948,
0.480843, 0.442530, 0.327591, 0.982774, 0.948322, 0.844967,
0.534901, 0.604702, 0.814105, 0.442315, 0.326945, 0.980836,
0.942508, 0.827525, 0.482574, 0.447722, 0.343166, 0.029497,
0.088491, 0.265472, 0.796417, 0.389252, 0.167755, 0.503266,
0.509797, 0.529390, 0.588171, 0.764512, 0.293537, 0.880612,
0.641835, 0.925504, 0.776511, 0.329534, 0.988603, 0.965809,
0.897426, 0.692277, 0.076830, 0.230491, 0.691473, 0.074419,
0.223257, 0.669772, 0.009317, 0.027950, 0.083851, 0.251553,
0.754660, 0.263979, 0.791938, 0.375814, 0.127441, 0.382322

Our approach is to regard such a sequence as essentially random and to focus
on studying its statistical properties. Of particular interest are those properties
which are intrinsic to the dynamical system (i.e. independent of the choice of x),
even more if they are robust under small modifications of the system.
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Physical measures

A first, basic question concerns the existence of asymptotic time averages

Ex(ϕ) = lim
n→+∞

1

n

n−1∑
j=0

ϕ(f j(x)) (1)

for “many” points x ∈ M . Clearly, Ex(ϕ) exists whenever x is a periodic point
of f , i.e. whenever fk(x) = x for some k ≥ 1. More generally, Birkhoff’s ergodic
theorem asserts that asymptotic time averages exist for almost every point, with
respect to any f -invariant probability measure. This is most relevant if f is
volume-preserving, that is, leaves invariant some smooth (Lebesgue) measure
on the manifold M . However, arbitrary invariant measures may lack physical
meaningfulness. In general, we take “many” above to mean “positive measure
set” with respect to some Lebesgue measure.

Furthermore, one wants to understand if and when time averages can be
independent of the initial point. Suppose that, for every continuous function
ϕ : M → IR, the average Ex(ϕ) exists and is independent of the point x taken in
some positive measure set B ⊂M . Then

ϕ 7→ E(ϕ) = Ex(ϕ) (any x ∈ B)

defines a non-negative linear operator on the space C0(M, IR) of real continuous
functions which, by the representation theorem, can be thought of as a Borel
measure µ on M :∫

ϕdµ = E(ϕ) = lim
n→+∞

1

n

n−1∑
j=0

ϕ(f j(x)) (any x ∈ B).

Observe that such a measure µ can be “physically observed” by computing time
averages of continuous functions for randomly chosen points x ∈ M (positive
probability of getting x ∈ B).

This motivates the following definition. An f -invariant probability measure
µ is a physical , or SRB - (for Sinai-Ruelle-Bowen-) measure for f if there exists
a positive Lebesgue measure set of points x ∈M such that∫

ϕdµ = E(ϕ) = lim
n→+∞

1

n

n−1∑
j=0

ϕ(f j(x)) for every ϕ ∈ C0(M, IR). (2)

The set of points x ∈ M satisfying (2) is called the (ergodic) basin of µ, and is
denoted B(µ). The previous considerations can then be summarized in
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Problem 1. Given U ⊂M such that f(U) ⊂ U , investigate the existence of
some SRB-measure µ with B(µ) ⊂ U . Study the uniqueness and the ergodicity
of µ. Describe its basin B(µ).

SRB-measures are believed to exist in great generality (the assumption that
such a measure exists is usually implicit in numerical studies of experimental
systems), but actual constructions are known only for certain classes of systems,
which we refer below. Also, the following simple counterexample, due to Bowen,
shows that this is a matter of some subtlety.

Example 1. The example consists of a vector field in the plane with two
saddle-points A1, A2 exhibiting a double saddle-connection. The two saddle-
connections bound an open, lens-shaped region L containing another equilibrium
point B, which is a source. The trajectory X t(z) of any point z ∈ L \ {B} accu-
mulates on the boundary of L as time t→ +∞. However, given any continuous
ϕ with ϕ(A1) 6= ϕ(A2), the time average

lim
T→+∞

1

T

∫ T

0

ϕ(X t(z)) dt

does not exist (for any such z).

It is an important open question whether examples such as these can be made
generic (Bowen’s counterexample has codimension 2 in the space of flows).

Independence

From now on we let U ⊂ M be some open set with f(U) ⊂ U . We suppose
that f admits a unique SRB-measure µ with B(µ) ⊂ U , and we analyse the
system (f |U, µ).

The next step is to try and understand how fast memory of the past is lost
by the system as time evolves. In more precise terms, one wants to know to what
extent observations ϕ(fn(x)) made at some instant n� 1 are affected by initial
values ψ(x) of some given observable ψ (possibly with ψ = ϕ). This is naturally
expressed by means of the correlation functions

Cn(ϕ, ψ) =

∫
(ϕ ◦ fn)ψ dµ−

∫
ϕdµ ·

∫
ψ dµ. (3)

Note that Cn(ϕ, ψ) = 0 corresponds, in probabilistic terms, to ϕ◦fn and ψ being
independent random variables. We say that (f, µ) is mixing if Cn(ϕ, ψ) → 0 for
every pair (ϕ, ψ): the value of ϕ◦fn becomes less and less dependent of the value
of ψ as time goes to infinity. We say that (f, µ) is exponentially mixing (or, has
exponential decay of correlations) if this “loss of memory” occurs exponentially
fast: there is τ < 1 and for each (ϕ, ψ) there is C > 0 such that

|Cn(ϕ, ψ)| ≤ Cτn for all n ≥ 1. (4)
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The following very simple examples are meant to illustrate these ideas. First,
a word of warning: one usually takes ϕ, ψ varying in some convenient Banach
space of observables F , and then the previous definitions are relative to that space
(e.g. the existence and the value of τ may depend on F). The particular choice
of the Banach space varies with the context, F may not contain characteristic
functions.

Example 2. Let M = [0, 1], f be given by f(x) = 1 − |2x − 1|, and µ be
Lebesgue measure. It is not difficult to find τ < 1 such that given any pair of
intervals I, J ⊂M there is C > 0 such that ϕ = χI , ψ = χJ satisfy (4).

Example 3. On the other hand, if M = S1, f is a rigid rotation, and µ is
Lebesgue measure, then Cn(χI , χJ) does not converge to zero, for any intervals
I, J ⊂ S1.

An important difference between these two examples concerns hyperbolicity:
in the first case f is uniformly expanding, while in the second one f completely
lacks hyperbolicity. In fact, an important theme in what follows is that a small
amount of hyperbolicity (together with topological mixing, say) suffices for ex-
ponential decay of correlations. The next example shows that this theme should
be taken with some precaution.

Example 4. Let M = [0, 1] and f be continuous and satisfy i) f is mono-
tone increasing and smooth on [0, 1/2) and monotone decreasing and smooth on
(1/2, 1]; ii) f(0) = f(1) = 0 and f ′(0) = 1 but |f ′(x)| > 1 for every x /∈ 0, 1/2.
One can show that f does not admit finite SRB-measures but does have an infi-
nite SRB-measure µ. Moreover, (f, µ) has polynomial decay of correlations (i.e.
(4) holds if the righthand side is replaced by Cn−d for some d ≥ 1), but it is not
exponentially mixing.

Another important characterization of (almost) independence of successive
observations is through the central limit theorem, which describes the oscillations
of finite-time averages

1

n

n−1∑
j=0

ϕ(f j(x))

around their expected value
∫
ϕdµ. The usual central limit theorem from prob-

ability theory asserts that if X0, . . . , Xn, . . . are independent, identically dis-
tributed random variables then, for any open interval I ⊂ IR, the probability
of

√
n

(
1

n

n−1∑
j=0

Xj − E

)
∈ I, E = E(X0),

converges to
1√
2πσ

∫
I

e
−t2
2σ2 dt, σ2 = E(X2

0 ),
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as n→ +∞.
Going back to our dynamical context, we say that an observable ϕ satisfies

the central limit theorem for (f, µ) if there is σ > 0 such that, for every interval
I ⊂ IR,

µ

{
x ∈M :

√
n

(
1

n

n−1∑
j=0

ϕ(f j(x))−
∫
ϕdµ

)
∈ I

}
→ 1√

2πσ

∫
I

e
−t2
2σ2 dt, (5)

as n→ +∞. It should come as no surprise that this holds when ϕ has sufficiently
fast decay of correlations.

We summarize the discussion in this section in

Problem 2. Determine whether (f, µ) satisfies the mixing properties and
or the central limit theorem, for all the observables in some appropriate Banach
space. Estimate the rate of decay of the correlation functions.

Stochastic stability

Very often, the mathematical formulation f : M → M of a given physical
process involves simplifications, where a “main” part of the process is isolated
(this is what f is meant to describe) and external influences are discarded as to
complex to be taken in consideration and, hopefully, too small to be relevant.
Clearly, this procedure requires a justification, specially if, as often happens, the
simplified system f turns out to be structurally unstable (meaning that arbitrarily
close transformations g may have completely different dynamical behaviour).

In many instances where such external influences are not completely known, or
are too complex to be effectivelly expressed in deterministic terms, one can think
of them as a kind of random “noise”. One then speaks of stochastic stability if
the adjunction of small noise has only a small effect on the asymptotic behaviour
of f . In more precise terms, for each small ε > 0 one considers iterates

xj = fj ◦ · · · ◦ f1(x), x ∈ U, j ≥ 0,

where the fi are chosen randomly and independently from each other in the ε-
neighbourhood of f , according to some given distribution law. It is convenient
to assume that f(Ū) ⊂ U , to ensure that fi(U) ⊂ U for every i. Then, under
general conditions there exist probability measures µε such that

lim
1

n

n−1∑
j=0

ϕ(xj) =

∫
ϕdµε (6)

for all continuous ϕ : M → IR and “many” (positive probability) random tra-
jectories (xj)j≥0 with x0 ∈ U . We say that (f |U, µ) is stochastically stable if µε
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converges to µ in the weak∗-sense, that is,∫
ϕdµε →

∫
ϕdµ for all ϕ ∈ C0(M, IR) (7)

as ε → 0 (if µε is not unique then we require convergence to µ for all such
stationary measures with B(µε) ⊂ U).

Unlike structural stability, stochastic stability is likely to hold for quite general
systems. In fact, another informal theme inspired by the results we mention below
is that systems with exponential decay of correlations tend to be stochastically
stable: known counterexamples, such as the next one, are non-generic in some
way or the other.

Example 5. (see [BaY]) The example is a continuous piecewise affine and
expanding map f : [0, 1]→ [0, 1]: there are c1 = 0 < c2 < c3 = 1/2 < c4 < c5 = 1
and σi > 1, i = 1, 2, 3, 4, such that f ′(x) = (−1)iσi > 1 for all x ∈ [ci, ci+1].
Moreover, f(1/2) = 1/2 and, due to the presence of this periodic turning point,
the map f is not stochastically stable.

Problem 3. Obtain general conditions ensuring stochastic stability.

Further understanding of the dynamics (resonances, distribution of periodic
points, . . . ) can be obtained from other important invariants, such as the cor-
relation spectrum or dynamical zeta functions . Although we do not treat these
invariants explicitly here, their study is closely related to that of the problems
we stated above.

Fairly complete answers to those problems are now available for uniformly
hyperbolic systems and for certain classes of nonuniformly hyperbolic systems.
Here we focus on some recent results in the latter context. See e.g. [Bo], [Ki1],
[Ki2], [BaY], and references therein for the rich theory concerning the uniformly
hyperbolic case as well as for general background.

Unimodal maps of the interval

In this section we briefly discuss our joint work with V. Baladi [BaV] on
the ergodic properties of certain nonuniformly hyperbolic maps of the interval
f : I → I.

For simplicity, let us take f to be quadratic i.e. f(x) = a − x2 (all the
arguments hold for general unimodal maps with negative schwarzian derivative
and nondegenerate critical point). We formulate the nonuniform hyperbolicity
property in terms of the orbit of the critical point c = 0: let us assume that

1.
∣∣(fk)′(f(c))

∣∣ ≥ λkc (positive Lyapunov exponent);

2.
∣∣fk(c)− c∣∣ ≥ e−αk (exponential recurrence bound)
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for every k ≥ 1 and for some constants 0 < α� 1 < λc. We also suppose that f
is topologically mixing (on the interval f 2(I)).

This formulation is motivated by [BC1], [BC2], where it is proved that 1 and
2 above are satisfied by quadratic maps for a positive measure set of values of the
parameter a. It follows from condition 1 and [Si] that f can not have attracting
periodic orbits. On the other hand, maps fs(x) = f(x) + s with small s may
exhibit such periodic attractors and so, in particular, f is structurally unstable.
Quite in contrast, f is stochastically stable (in a strong sense), as we shall see.

It is now well-known that condition 1 implies the conclusion of [Ja]: f admits
an invariant probability measure µ0 which is absolutely continuous with respect
to the Lebesgue measure m on I. Moreover, µ0 is unique, ergodic, and equivalent
to m restricted to f 2(I). As a consequence of the ergodic theorem, µ0 is an
SRB-measure:

1

n

n−1∑
j=0

ϕ(f j(x))→
∫
ϕdµ0 as t→ +∞

for every continuous function ϕ and m-almost all x ∈ I.
Now we want to consider the effect of adding random noise to the iteration

of f : we want to compare the asymptotic behaviour of f j with that of fsj ◦ · · · ◦
fs1 , where s1, . . . , sj, . . . are chosen randomly and independently in some small
interval [−ε, ε]. We denote by θε the corresponding probability distribution. In
this context there exists a unique stationary measure µε, satisfying

1

n

n−1∑
j=0

ϕ(fsj ◦ · · · fs1(x))→
∫
ϕdµε as t→ +∞

for every continuous function ϕ, m-almost all x ∈ I, and almost all choices of
(sj)j≥1. Moreover, µε is absolutely continuous with respect to Lebesgue measure.

Remark. All these facts we have been listing, concerning the measures µ0

and µε, are recovered as by-products of the proof of Theorems A and B below.

Theorem A [BaV]

dµε
dm
→ dµ0

dm
in L1(m) as ε→ 0 (strong stochastic stability).

In particular (f, µ) is stochastically stable.

We also state a result concerning decay of correlations, both for the unper-
tubed system (f, µ) and for its random perturbations. Correlation functions
Cn,ε(ϕ, ψ) for the random perturbation scheme are defined by

Cn,ε(ϕ, ψ) =

∫
(Un

ε ϕ)ψ dµε −
∫
ϕdµε ·

∫
ψ dµε (8)

where (Uεϕ)(x) =
∫
ϕ(ft(x))θε(t) dt (compare (Uϕ)(x) = ϕ(f(x)).
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Theorem B [BaV] Both f and its random perturbation schemes (fs)|s|≤ε, are
exponentially mixing, with mixing rates τ , τε, uniformly bounded away from 1.

Not all the content of Theorems A and B is new in [BaV]. Weak stochastic
stability for quadratic maps was first proved by [KK], for uncountably many
parameters, and by [BY1], for a positive measure set of parameters (but see
also [Co], where strong stability was already considered). Exponential decay of
correlations for (unperturbed) quadratic maps was proved independently by [KN]
and [Yo].

Hénon-like maps

To conclude, let us comment on the ergodic properties of attractors of dissi-
pative diffeomorphims. Theorems C and D below are part of an ongoing work in
collaboration with M. Benedicks.

The kind of systems we want to consider is inspired by the Hénon model

f(x, y) = (1− ax2 + y, bx),

which combines hyperbolic dynamics, for x far from zero, with “folding” be-
haviour near x = 0. In [BC2] it was proved that given any small enough b > 0
there exists a positive measure set of values of a for which f has a “strange
attractor”: a compact f -invariant set Λ containing dense orbits on which the
norm of the derivative grows exponentially fast. Then [MV] showed that at-
tractors with similar properties occur in very general contexts of bifurcations of
dynamical systems. See also [DRV] for a more global construction. Henceforth,
Hénon-like strange attractors will always refer to nonuniformly attractors such as
those constructed in these papers.

It was proved in [BY2] that Hénon-like strange attractors support a unique
invariant probability measure µ which is ergodic, has a positive Lyapunov expo-
nent and, most important, induces absolutely continuous conditional measures
along unstable manifolds (absolute continuity is with respect to the riemannian
measure on the unstable manifold). Then standard arguments show that µ is an
SRB-measure:

1

n

n−1∑
j=0

ϕ(f j(x))→
∫
ϕdµ as t→ +∞

for a positive (two-dimensional) Lebesgue measure subset of points x in the (topo-
logical) basin B(Λ) of Λ. Recall that B(Λ) is the set of points whose trajectories
accumulate on Λ as time goes to +∞.

Of course, one would like to know whether this property holds for a full
measure subset of B(Λ) and this is part of the content of the next theorem.
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Theorem C Through Lebesgue almost every point in B(Λ) there is a local stable
manifold which intersects Λ. Moreover,

1

n

n−1∑
j=0

ϕ(f j(x))→
∫
ϕdµ as t→ +∞,

for every continuous function ϕ and for Lebesgue almost every x ∈ B(Λ).

As before, Lebesgue refers to the two-dimensional Lebesgue measure. Also,
by a stable manifold we mean a curve which is exponentially contracted under
all positive iterates of f .

Recently, Benedicks-Young have announced a proof of exponential mixing
and the central limit theorem for Hénon-like strange attractors. These results,
together with our next statement, joint with Benedicks, conclude the study of
Problems 1-3 in this context of strongly dissipative diffeomorphisms.

Theorem D Hénon-like strange attractors are stochastically stable.

More precisely, we consider (f, µ), where µ is an SRB-measure as in [BY2],
and we prove that this system is stable under random perturbations fs(x, y) =
f(x, y) + s, where s takes values in a small neighbourhood of 0 ∈ IR2. Note that
Theorems C and D are somewhat related: since Λ is not invariant under the
perturbed maps fs, some control of the basin of µ is necessary to prove stochastic
stability.

References

[BaY] V. Baladi and L.-S. Young, On the spectra of randomly perturbed expand-
ing maps , Comm. Math. Phys. 156 (1993), 355–385.

[BaV] V. Baladi and M. Viana Strong stochastic stability and rate of mixing
for unimodal maps , preprint IMPA 1995, to appear Annales E.N.S..

[BC1] M. Benedicks and L. Carleson, On iterations of 1−ax2 on (−1, 1), Ann.
Math. 122 (1985), 1–25.

[BC2] M. Benedicks and L. Carleson, The dynamics of the Hénon map, Annals
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