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To Floris, whose work has been a continuous source of inspiration

The expression intermittency describes a mechanism of transition
from simple behaviour to turbulence in dissipative convective fluids,
and many other dissipative dynamical systems. The pioneer work of
Pomeau, Manneville [26] analyzed intermittency in the Lorenz model,
as well as in families of systems unfolding a saddle-node, a flip, or a
Hopf bifurcation. Their article presented numerical evidence indicating
that in these bifurcations the Lyapunov exponent grows continuously
from zero beyond the bifurcation threshold.

A conceptual formulation of intermittency in a broad setting was
proposed by Floris Takens in [30]: An arc (1-parameter family) of
diffeomorphisms (¢,), on a manifold has an intermittency bifurcation
for = gy at a compact invariant set K if

e for every pu < po the diffeomorphism ¢, has an attracting com-
pact set K, (not necessarily transitive), converging to K in the
Hausdorff sense when p tends to po from below;

e for ;1 > pip close to g there are no ¢,-attracting sets near K, yet
the ¢,-orbit of Lebesgue almost every point in a neighbourhood
of K returns close to K infinitely often.

Such bifurcations are accompanied by profound changes of the dy-
namics, both at the local level (in a neighbourhood of the compact set
K) and at the global level. As we shall see, these global changes are
mainly influenced by the way points return to the vicinity of K, for the
bifurcation parameter.

The best studied situations correspond to the case where the set K
consists of a unique fixed (or periodic) orbit, of saddle-node type: one
multiplier is equal to 1, all the others are less than 1 in norm. This
is also the setting we have in mind in this review, specially when the
global recurrence stems from the presence of a cycle, that is periodic
points with cyclic intersections of their stable and unstable manifolds.
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Other interesting cases include, for example, transitions from Anosov
to derived from Anosov diffeomorphisms [29, 32], as well as certain
bifurcations of partially hyperbolic sets in dimension 3 or bigger.

1. SADDLE-NODES OF DIFFEOMORPHISMS

1.1. Definitions and basic facts. A saddle-node of a C" diffeomor-
phism ¢ : M — M is a fixed (or periodic) point P of ¢, such that
D¢(P) has a multiplier equal to 1 and all the others less than 1 in
norm. The tangent space TpM splits into two Dg¢-invariant spaces,
the one-dimensional central space E¢, which is the eigenspace associ-
ated to the multiplier 1, and the stable space E*®, corresponding to the
remaining multipliers.

By normal hyperbolicity theory [11, 19|, there are locally invariant
immersed central manifold W€ and strong stable manifold W**, tangent
at P to F° and to E*%, respectively. The stable manifold is unique and
of class C". In general, there are several central manifolds, and they
may be less smooth than the diffeomorphism ¢.
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FiGure 1. Local dynamics at a saddle-node bifurcation

It is part of the definition of saddle-node that, for some choice of W€,
the restriction of ¢ to the central manifold has a non-vanishing 2-jet
at P: there is a coordinate z on W¢ (with P corresponding to x = 0)
such that

o(z) =z + az®+ O(|z*) with a # 0.

Then P is a semi-attractor restricted to W€, as depicted at the center
of Figure 1, and it also follows that the central manifold is of class C.
The unstable manifold W* of P is an immersed half-line contained in
We. The stable manifold W?# is a closed half-space with W*® as its
boundary.

Moreover, there is a unique ¢-invariant foliation of the stable mani-
fold of P by co-dimension 1 sub-manifolds having W?* as a leaf. It is
called the strong stable foliation F*°° of the saddle-node.
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1.2. Unfolding saddle-nodes. Saddle-nodes are obtained by collaps-
ing a saddle S, and a periodic attractor (node) A, into a single point,
as described in Figure 1. Afterwards, the periodic points disappear and
there is no attracting set in the region where the saddle-node P was
formed. The first part of Takens’ definition of intermittency is fulfilled
taking K = P and K, to be the closure of the separatrix connecting
S, to A,. To have the second one, we shall assume later that the
saddle-node is part of a cycle.

An arc of diffeomorphisms (¢,), unfolds generically a saddle-node
P of a diffeomorphism ¢ = ¢,, if it cuts the hyper-surface of diffeo-
morphisms with a saddle-node point transversely at ¢. Here is an
alternative formulation, in terms of local expressions.

One considers a continuation W7 of the central manifold W¢, for
nearby parameter values (this exists because the invariant manifold W
is normally hyperbolic [11] for the diffeomorphism ¢ = ¢,,). Generic
unfolding means that, up to a convenient choice of coordinates x in
W, and a re-parameterization of the family, the restriction of ¢, to
W has the form

Su(e) =z +p+ar®+Brp+yu’ +O(u + ).

After re-parameterization, the bifurcation parameter has become p =
0. From now on we shall always consider py = 0.

The notion of saddle-node may be extended to include other non-
hyperbolic periodic points obtained by collapsing two saddle-points
with different stable dimensions: they have a unique multiplier equal
to 1, and all the others are different from 1 in norm. See [7] for results
in this setting.

1.3. Saddle-node cycles. A diffeomorphism ¢ has a saddle-node k-
cycle, k € N, if there are a saddle-node py and hyperbolic periodic sad-
dles p1, ..., pk—1, such that W*(p;_;) intersects transversely W?*(p;) for
every j and W*(pg_1) meets W*(py). The cycle is critical if W*(pj_1)
is non-transverse to the strong stable foliation of the saddle-node. Oth-
erwise, it is called non-critical. Figure 2 exhibits three different types
of saddle-node cycles: from left to right we have a critical 1-cycle, a
critical saddle-node horseshoe, and a non-critical 2-cycle (non-critical
saddle-node horseshoe).

An arc of diffeomorphisms (¢,), unfolds generically a saddle-node
cycle of ¢ = ¢y if it unfolds generically the saddle-node p, involved in
that cycle. This is a remarkably rich mechanism of bifurcation. For
instance,
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FIGURE 2. Saddle-node cycles

Theorem 1.1. (Newhouse, Palis, Takens [19]) If an arc (¢,), of sur-
face diffeomorphisms unfolds generically a critical saddle-node cycle of
0o, then there is a sequence of parameters v, — 0 such that, for every
Up, the diffeomorphism ¢,, has a homoclinic tangency which is unfolded
generically by the family (¢,),.

This result extends to arbitrary dimension, see [8]. Moreover, the
converse is also true (L. Mora): the generic unfolding of a homoclinic
tangency by a family of surface diffeomorphisms always includes the
formation and generic unfolding of critical saddle-node cycles.

From Theorem 1.1 one deduces that any phenomena occurring dur-
ing a homoclinic bifurcation (e.g. the creation of attractors) are also
present when a critical saddle-node cycle is unfolded. However, saddle-
node bifurcations have a very distinctive feature, that we state as the
following informal principle: persistent phenomena (positive Lebesgue
measure of values of ) are, actually, prevalent (positive Lebesgue den-
sity at u = 0). More precise statements and an explanation of the
mechanism behind this property are provided in the next sections.

1.4. Persistence and prevalence. Let (¢,), be an arc of diffeomor-
phisms on a manifold M, going through some bifurcation at y = 0.
Let P be some dynamical property, like hyperbolicity, co-existence of
infinitely many sinks, or presence of non-hyperbolic strange attractors.

The property P is persistent after the bifurcation if for every € > 0
the subset E. C [0,¢] of parameter values for which ¢, verifies P has
positive Lebesgue measure. P is called prevalent at the bifurcation if

|E|

liminf —— > 0,
£—0 £

where |E.| denotes the Lebesgue measure of E.. Finally, P is fully
prevalent if the limit is 1.

For instance, Newhouse, Palis, Takens [18, 20, 21] prove that hy-
perbolicity is fully prevalent in arcs of surface diffeomorphisms unfold-
ing homoclinic tangencies associated to hyperbolic sets with Hausdorff
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dimension less than 1. This is not true if the Hausdorff dimension
is bigger than 1, by Palis, Yoccoz [23], but the union of hyperbolic-
ity and persistent tangencies (Newhouse’s phenomenon [17]) is always
fully prevalent at homoclinic bifurcations in dimension 2, by Moreira,
Yoccoz [15].

In the same setting, Mora, Viana [13] proved that existence of non-
hyperbolic strange attractors is a persistent phenomenon. By a recent
result of Palis, Yoccoz [25], it can not be prevalent. On the other hand,
as we shall see in a while, non-hyperbolic strange attractors are always
a prevalent phenomenon in the unfolding of critical saddle-node cycles.
This is a striking realization of the informal principle we stated before:
In saddle-node bifurcations, persistent properties tend to be prevalent.

This remarkable feature results from the existence of a repetition
pattern in parameter space that is characteristic of intermittency bifur-
cations: One can find sequences u, converging to the bifurcation value
0 such that the arcs obtained by restricting the parameter to each in-
terval [fi,41, tin] have roughly the same dynamics for all large n, up to
convenient parameterization.

This is properly explained by means of the following construction of
Newhouse, Palis, Takens [19], that plays a crucial role in the sequel.
For clarity, we shall restrict ourselves to the case of surface diffeomor-
phisms. However, this construction extends to any dimension [8].

2. TRANSITION MAPS

Let (¢,), be an arc of diffeomorphisms unfolding generically a saddle-
node of ¢ = ¢. Fix, once and for all, a continuation W of a central
manifold, and a coordinate system z in each W so that

bu(@) =z +p+ oz’ + Bxp+yp’+O(ul® + [z).

It is no restriction to assume « > 0. Then, for u = 0, the subsets {z <
0} and {z > 0} of the central manifold of the saddle-node are contained
in its stable and unstable manifolds, respectively. See Figure 1.

2.1. Finite-time transition maps. For u = 0, the presence of the
fixed point prevents the transition of orbits from the left {x < 0} to the
right hand side {z > 0}. However, this obstruction disappears when
the parameter . becomes positive. We can then define transition maps,
in the following way.

Fix compact fundamental domains D~ C {z < 0} and D" C {z >
0} of ¢, restricted to W ;. Their dependence on p is not relevant here,
so we omit it in our notations. For each p > 0 let £ = k(u) be the
smallest integer such that ¢f(D~) intersects DT. As p decreases to
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zero, more and more iterates are needed for D~ to reach DT, which
means that k(u) — oo as p tends to zero from above. There is a
decreasing sequence of parameters u,, — 0 such that k(u) = n for all
€ [finy1, pin) and ¢ (D7) = DT. See Figure 3.

0
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FIGURE 3. Dynamical normalizations of parameter space

It is useful to identify points in {z < 0} if they are in the same
orbit of ¢,, and similarly in {z > 0}, and we shall often do it in the
sequel. This identification turns D~ and D™ into smooth circles. For
each large n and p € [tny1, pin), we consider the circle map

Tn(p,-): D~ — D
induced by the nth iterate ¢}, and call it the time-n transition map of
the saddle-node arc (¢,),-

The repetition pattern we announced before comes from the fact that
these arcs of finite-time transitions behave roughly the same when n
is large: up to dynamically defined normalizations of the domain in

parameter space, the arcs 7, converge to some limit 7, when n tends
to infinity.

2.2. Parameter normalization and infinite-time transition. A
1-parameter family of vector fields (X,), is a saddle node arc if (in
local coordinates around the origin) the vector fields are of the form

Xu(x) = p+a®+Bap+yu® +O(u®+ ),
for some constants «, 3,y with a > 0.

The arc (X,), is adapted to (¢,), if ¢,(x) coincides with X (z) for
all 4 > 0 and x close to zero, where X}L is the time-1 flow map of the
vector field X, ([19] use a weaker condition, the present definition is
from [8]). For the existence of adapted arcs of vector fields see [12, 33].

Let us write D~ = [a, ¢,(a)] and DT = [b, ¢,,(b)] with a < 0 < b. By
the definition of the y,, the point ¢7*"(a) coincides with the right end-
point ¢, (b) of D*, whereas ¢7."! (a) coincides with the left end-point
b of D*. Moreover,

[:U’n—H: ,un] S p QSZ_H(G) € D*
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is increasing (if n is large).

For each pu € [pny1, in] we denote &,(u) the time the flow of the
adapted arc of vector fields X, takes to go from ¢7*'(a) to @,(b).
That is,

X9 (@) = 0ub) & XpEW(a) =

&, Maps [fin11, ty) onto [0, 1] in a decreasing fashion. We define the nth
parameter space normalization v, : [0, 1] = [fn41, pn] to be the inverse
of this map &,.

The adapted arc (X,), also allows us to exhibit infinite-time transi-
tion maps T : [0,1] x D~ — D% given by

Too(0,2) = X377 (b),

where t(z) is the time the flow spends from a to z, that is, X2 (a) = .
Keep in mind that we think of D~ and D™ as circles, under identifica-
tions of points in the same orbit.

Note that, if one takes ¢(x) mod 1 as a new coordinate in D~ and,
similarly, considers the time the flow of X, takes to go from b to any
point in D~ as a new coordinate in D™, these T, (o, -) become circle
isometries. In fact, each T, (o, -) is obtained composing T (0, -) with
the rigid rotation of angle —o.

2.3. Convergence and distortion properties. Let 7}, be the arcs
of transformations from D~ to DT obtained by re-parameterizing the
finite-time transitions 7}, according to v,:

T,: [0,1] x D~ — D", T,(0,z) = T(v,(0), ).

That is, T, (o, -) is the map induced by the restriction of Dy (o) (z) to the
central manifold, in the quotient spaces obtained by identifying points
in the same orbit, on {x < 0} and on {z > 0}. Here is the convergence
statement we had announced:

Theorem 2.1. (Newhouse, Palis, Takens [19], Diaz, Rocha, Viana
[8]) The sequence of maps

T,:10,1] x D~ — D*
converges to Twy: [0,1] x D™ — D* in the C"-topology when n — co.

Most important for the kind of problems we want to deal with, the
re-parameterizations v, have uniformly bounded distortion:

Proposition 2.2. ([8, Proposition 2.2]) For every ¢ > 0 there is ng
such that
|un(A)]

n — Mnt1

(1-¢)|4| < < (1+4¢)|A|
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for every measurable subset A of [0,1] and every n > ny.

We have been concerned only with the dynamics restricted to the
central manifold. The reason is that the dynamics of the transition
maps transverse to W vanishes when p approaches zero: all that is
left is the dynamics along the central manifold, described by 7%,. Here
is a more precise explanation.

Consider neighbourhoods C~ and C* of D~ and D*. If C~ and C*
are conveniently chosen, their quotients after identification of points in
the same orbit (that we continue denoting in the same way) are diffeo-
morphic to cylinders D* x [—1,1]. Define Tn(o, -) to be the map from
C~ to C induced by the diffeomorphism ¢ () (now we do not
restrict to the central manifold). Since our diffeomorphisms are con-
tracting transversely to the central manifold, the image of T, (0,-) gets
closer and closer to the equator D™ x {0} of C* when n increases. In-
deed, we have the following higher dimensional version of Theorem 2.1:

Theorem 2.3. ([8, Theorem 2.6]) The sequence T,: [0,1] x C~ —
xC™T converges to the arc

Te:[0,1] x O~ = CF, Tulo,z,y) = (Ta(o, z),0)

in the C" topology, when n — oo.

3. GLOBAL ASPECTS: GHOST DYNAMICS

Now we analyze the unfolding a saddle-node cycles, from the global
point of view. The situation when the saddle-node is the unique peri-
odic point involved in the cycle deserves a separate treatment.

3.1. A return map for 1-cycles. Let (¢,), be an arc of diffeomor-
phisms generically unfolding a critical 1-cycle. Fix fundamental do-
mains D~ and D™, as in the previous section. We assume that the
unstable manifold of the saddle-node P is contained in its stable man-
ifold. Then there exists [ > 1 such that ¢4(D%) is contained in the
region {z < 0}, inside the local stable manifold of P. See Figure 4.

Fix fundamental regions C~ D D~ and C™ D D, as before, such
that ¢! (C*) is contained in {z < 0} for every y close to zero, and the
orbit of any point of ¢!, (C*) has a representative in C": it suffices that
that Ct be sufficiently short, and C'~ be long enough along the vertical
(strong-stable) direction. Then, identifying points in the same ¢, orbit
as we have been doing, there is a well defined arc of smooth maps

v,:CT—C~
from the cylinder C* to the cylinder C~, induced by ¢,
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FIGURE 4. Ghost circle maps

Moreover, if 7 denotes the projection from the stable manifold onto
W€ along the leaves of the strong-stable foliation, we can define a
smooth circle map

@bo : Dt = D~
from the circle D* to the circle D™, induced by 7o ¢}. Observe that if
the cycle is critical then this circle map exhibits (at least two) critical
points. This is the case Figure 4 refers to, and the one we are most
interested in for the time being.

Composing the ¥, with the transition maps that were introduced
before, we obtain arcs of global return maps

R,: [0,1] x CT = C*, Ru(0,-) =Tn(0,) 0 Uy (o) ()

These maps encode the whole dynamics of the diffeomorphisms ¢,
close to the cycle. Moreover, by Theorems 2.1 and 2.3, the sequence
R, converges, in the C" topology, to the arc of ghost maps

Ry: [0,1]xCt = C*, Ry(o,z,y) = Too(a, o(2),0) = (T (0,10(x)), 0).

It is important to observe that, since the last variable y plays no role
in R, we may also think of it as an arc of circle maps:

Ry: [0,1] x DT = D, Ry (0,7) = Teo (0, %o(x))-

Thus, the unfolding of the saddle-node cycle may, to some extent, be
reduced to a 1-dimensional problem: From understanding the dynamics
of these circle maps Ry (0,-), one may draw conclusions about the
behaviour of ¢, for small ;2 > 0. Next comes an important application
of this idea.

3.2. Prevalence of hyperbolicity. Suppose P is a robust property,
that is, the set of dynamical systems that satisfy P is open. Suppose, in
addition, that P holds for some ghost circle map Ry (o,-) : D* — D*.
Then, by robustness, P is satisfied by R,(c,-) for every large n and
every o in some interval J C [0,1]. Since each R,(o,-) is a quotient
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map of an iterate of ¢,,(,) (identification of points in the same orbit),
we conclude that, up to convenient translation, property P is satisfied
by ¢, for all parameters y in the set E = |, v, (J).

On the other hand, by the bounded distortion property in Proposi-
tion 2.2,

B0 B, ]|

| [Mng1; in]|
for every large n. So, E has positive density at © = 0. In other words,
the property P is prevalent at the bifurcation for the arc (¢,),-

For instance, take P to be hyperbolicity (Axiom A plus strong trans-
versality [29]). It is not difficult to ensure, for a critical saddle-node arc
(¢u)u, that some ghost circle map Ry (0, ) is hyperbolic. For instance,
one may choose R (1/2,-) such that it has exactly two critical points,
both contained in the basin of attraction of a fixed point sy, and the
norm of the derivative is larger than 1 outside neighbourhoods of the
critical points contained in the basin of sy. Then the non-wandering
set of Rx(1/2,-) is hyperbolic (implying the Axiom A) and the map
satisfies the strong transversality condition. It follows, by robustness of
hyperbolicity, that ¢, is hyperbolic for a sizable subset of parameters
1. Along these lines one gets

1
> (1-e)|J] 2 5171

Theorem 3.1. (Diuz, Rocha, Viana [8]) There exists an open set of
arcs of diffeomorphisms unfolding a critical saddle-node 1-cycle for
which hyperbolicity is a prevalent property at the bifurcation.

This result extends to critical saddle-node [-cycles, any [ > 1 [8].

Question 3.2. Is prevalence of hyperbolicity a generic property (open
and dense) among arcs of diffeomorphisms unfolding critical saddle-

node cycles with finitely many criticalities (for the ghost circle maps)
?

One way to prove this would be to show that given a generic multi-
modal map R of the circle (finitely many critical points), there exists o
such that R — o (composition with the rotation by —o) is hyperbolic.

3.3. Saddle-node horseshoes. The kind of systems described in the
central part of Figure 2 was first treated by Zeeman [34], and was
pointed out by Takens [30] as an important model of intermittency.
One considers a 2-dimensional disk D and an embedding ¢: D — D
whose limit set in D consists of a horseshoe A and a periodic attractor.
Then one lets the attractor and the accessible fixed point of the horse-
shoe collapse into a saddle-node. At the bifurcation, the limit set Ag
is topologically conjugate to the initial horseshoe, but it is no longer
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hyperbolic, as it contains the saddle-node. Since Ay has a dense subset
of periodic points, the diffeomorphism exhibits saddle-node [-cycles for
any [ > 2.

A key difference with respect to the case of 1-cycles we discussed
above is that now the unstable manifold of the saddle-node P is not
completely contained in its stable manifold: for instance, W*(P) in-
tersects the stable manifolds of all the other periodic points in the
non-hyperbolic horseshoe Ay. This means that there is no family of
global returns maps, as we were able to construct in the previous case.

Wss(P) Ros(0,°)
D~ D+[ I W (P)
D
$6(1)
T

FIGURE 5. Saddle-node horseshoes: partially defined
ghost maps

However, it is possible to construct partially defined return maps,
as follows. One fixes fundamental domains D~ and D™ as before, and
considers a maximal open subinterval I of D" contained in W*(P) and
whose extremes are points of the strong stable manifold W#*(P). Then
one defines, in much the same way as before, an arc of ghost return
maps R (0,:) from I to DT. In the example described in Figure 5,
the return maps have a unique critical point. Note that the norm of
the derivative goes to infinity at the boundary of I. The convergence
Theorems 2.1, 2.3 remain valid on compact subsets of I.

Partially defined ghost maps are used by Costa [4] in her proof that
global strange attractors are a prevalent phenomena in the unfolding of
saddle-node horseshoes, in a robust (open) class of cases. Prevalence
of hyperbolicity had been proven in [8], for another robust class. A
detailed study of these return maps R (0o, ) is carried out by Diaz,
Rios [6], who provide a geometric model for the unfolding of saddle-
node horseshoes. Another use of partially defined return maps, by
Diaz, Ures [9], will be discussed in a forthcoming section.

In a related setting, Crovisier [5] shows, in great generality, that
saddle-node horseshoes give rise to true (hyperbolic) horseshoes when
the saddle-node is unfolded in the direction of negative parameters.
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Cao, Kiriki [3] study the unfolding of non-critical horseshoes, as on the
right hand side of Figure 2.

4. PREVALENCE OF LOCAL AND GLOBAL STRANGE ATTRACTORS

An attractor of a diffeomorphism ¢ : M — M is a compact invariant
subset A of M that is transitive (dense orbits) and whose basin (or
stable set)

We(A) ={x e M: ¢"(z) > A asn — +oo}

has positive Lebesgue measure. A repeller of f is just an attractor
of the inverse map f~!. One calls the attractor strange if orbits in
the basin are sensitive with respect to initial conditions: almost every
pair of orbits starting in nearby points diverge from each other as time
increases.

In this section we discuss saddle-node cycles as a privileged mecha-
nism for creating strange attractors, specially non-hyperbolic ones.

4.1. A general prevalence result. According to Theorem 1.1, the
generic unfolding of a critical saddle-node cycle always involves the for-
mation and generic unfolding of homoclinic tangencies. On the other
hand, Mora, Viana [13]| prove, based on the work of Benedicks, Car-
leson [1], that the presence of non-hyperbolic strange attractors is a
persistent phenomenon in generic arcs of surface diffeomorphisms un-
folding a homoclinic tangency. See also [28, 31] for the extension to
arbitrary dimension. It follows that strange attractors are persistent
also in the unfolding of saddle-node critical cycles.

In view of the ideas discussed in Section 3.2, one may expect the
presence of strange attractors to be a prevalent phenomenon in this
setting of saddle-node cycles. However, one should stress that the
situation is much more subtle than in the case of hyperbolicity, that
we settled in Section 3.2, because in the present context one lacks
robustness: the sets of systems constructed in [1, 13, 31], for which
strange attractors are known to exist, have empty interior. Thus, a
delicate analysis of the bifurcation mechanisms is needed to justify
that expectation:

Theorem 4.1. (Diaz, Rocha, Viana [8]) Ezistence of non-hyperbolic
strange attractors is a prevalent property at the bifurcation for every
arc of diffeomorphisms (¢,), unfolding generically a critical saddle-
node cycle.
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4.2. Global strange attractors. The strange attractors obtained by
the previous construction have a local nature: they are periodic, with
high periods, and their basins have a large number of connected com-
ponents, with small total Lebesgue measure. This is entirely in the
nature of things: without further assumptions about the geometry at
the bifurcation, the set of points whose forward orbits remain forever
close to the cycle may have small volume, for all positive values of the
parameter of .

FiGURE 6. Global invariant region for 1-cycles

On the other hand, in some relevant cases one can identify a global re-
gion around the cycle that remains forward invariant for all parameters
close to zero. An important example, corresponding to a saddle-node
1-cycle, is described in Figure 6, where the invariant region is an annu-
lus. In such cases, it is natural to ask whether a unique attractor can
be found, in a persistent or even prevalent way, that accounts for the
whole dynamical behaviour, in the sense that its basin contains the en-
tire invariant region. The first construction of non-hyperbolic strange
attractors with such a global character was given by the following

Theorem 4.2. (Diaz, Rocha, Viana [8]) Presence of a global non-
hyperbolic strange attractor is prevalent at the bifurcation for an open
class of arcs of diffeomorphisms unfolding a critical saddle-node 1-
cycle.

Other constructions appeared subsequently, including [4] in the set-
ting of saddle-node horseshoes, where one may take a disk as the for-
ward invariant region.

5. PERSISTENCE OF TANGENCIES

In this section we discuss fractal dimensions and the phenomenon of
persistent tangencies in the context of saddle-node bifurcations.
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5.1. Fractal dimensions in homoclinic bifurcations. Starting in
the early seventies, works of Newhouse, Palis, Takens [18, 21, 20] and,
later, also Yoccoz, Moreira [23, 15], have unveiled a deep connection be-
tween fractal dimensions (such as the Hausdorff dimension) of invariant
sets, and the frequency of hyperbolicity in the unfolding of homoclinic
tangencies of surface diffeomorphisms. Let us outline this connection.

One considers a homoclinic tangency associated to a periodic point P
contained in a horseshoe A. See Figure 7. The existence of a homoclinic
tangency implies that the invariant (stable and unstable) foliations of
A are tangent along a differentiable curve v containing the homoclinic
point in its interior and transverse to both foliations. The intersection
of v with the leaves of the foliations corresponding to points of the
hyperbolic set A defines two Cantor sets A® and A™.

Y Y
A we(A)

w(A)

FIGURE 7. Persistent tangencies between invariant foliations

Given an arc (¢,), of diffeomorphisms unfolding the tangency, one
considers the corresponding intersections A}, and A}, of v with the stable
and unstable leaves through the points of the hyperbolic continuation
Ay of A. Clearly, if the sets A}, and A} have non-empty intersection
there is a homoclinic tangency associated to A,. Identifying v with an
interval of R one can think of A}, and A}, as y-translations of the cantor
sets A® and A™.

Newhouse [16] introduced a notion of thickness, that allowed him to
give a sufficient criterion for two Cantor sets to intersect. It is defined
as follows. Consider the process of construction of the Cantor set by,
successively removing the corresponding gaps, in a non-increasing order
of their lengths. Each time a gap is removed, compute the ratio between
the lengths of the two remaining nearby intervals and the length of the
gap itself. The thickness is the infimum of all these ratii.

Newhouse’s gap lemma [16] states that two Cantor sets such that
the product of their thicknesses is larger than 1 must intersect, unless
one of them is contained in a gap of the other. Building on this, he
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was able to construct examples of arcs of diffeomorphisms (¢,), gener-
ically unfolding a homoclinic tangency of ¢ = ¢g such that for a dense
subset of a whole interval [0,¢] of values of y the diffeomorphism ¢,
has another homoclinic tangency. One speaks of interval of persistent
tangencies. Later, in [17], he proved that persistent tangencies occur in
any generic unfolding of any homoclinic tangency by an arc of surface
diffeomorphisms.

Then, the series of papers by Newhouse, Palis, Takens, Yoccoz, Mor-
eira mentioned above identified the Hausdorff dimension as a key fractal
invariant determining the frequency of hyperbolicity in the unfolding
of homoclinic tangencies on surfaces. In general terms, hyperbolicity s
prevalent at the bifurcation if and only if the Hausdorff dimension of
the horseshoe A is less than 1.

More recent results of Moreira, Palis, Viana [14, 24] and Romero [28]
have shown that this principle remains valid on manifolds with arbi-
trary dimension. In dimension larger than 2 there are other mechanisms
(not involving fractal dimensions explicitly) yielding persistence of tan-
gencies in the C! topology, see Bonatti, Diaz [2]. Moreover, Rios [27]
extended many of the previous results to the unfolding of homoclinic
tangencies accumulated by periodic points (the homoclinic orbit is con-
tained in the limit set of the diffeomorphism).

5.2. Thick horseshoes in saddle-node cycles. Saddle-node cycles
exhibit some original features, from the point of view of the discussion
in the previous section. One of the most striking is the possibility of
thick horseshoes to be created, “out of nowhere”, immediately after
the bifurcation. In fact, such horseshoes may be seen as a kind of
continuation of thick invariant sets of the ghost return maps. Let us
explain this in the case of critical 1-cycles.

We may construct examples of critical saddle-node 1-cycles such that
the ghost circle map R..(o,-) has a hyperbolic Cantor set with large
thickness for some subset of parameters o € [0,1]. For instance, one
may take for R (0o,-) a circle map such that the derivative is larger
than 1 in norm outside two intervals A; and A, (around the critical
points) with length 6 bounded by some small § > 0. Then the maximal
invariant set A, of Ry (o, ) in the complement of A;UA, is hyperbolic
and its thickness is of order of 1/4.

Then, using the convergence Theorems 2.1 and 2.3, and the contin-
uous dependence of the thickness on the diffeomorphism [17], one gets
that the diffeomorphism ¢,, u = vg(o) has a hyperbolic set with stable
thickness (transverse thickness of the stable foliation) of order 1/4, for
every large k.
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This observation is at the origin of a result of Diaz, Ures [9] we are
going to state next, saying that the unfolding of certain saddle-node
cycles leads to an interval of persistence of tangencies immediately after
the bifurcation (the interval is of the form [0, £¢] for some £y > 0), even
if the Hausdorff dimension of the limit set at the bifurcation is smaller
than 1.

However, the previous construction is not sufficient to prove such a
result. One problem is that it proves the existence of thick horseshoes
only for certain subintervals in the space of parameters y. Another,
more serious, difficulty is that the hyperbolic sets one gets in this way
might have very small unstable thickness, and so the gap lemma might
not apply to them.

5.3. Thick horseshoes from saddle-node horseshoes. These dif-
ficulties can be bypassed for certain robust classes of arcs of diffeo-
morphisms unfolding a saddle-node horseshoe: one obtains hyperbolic
sets with large product of stable and unstable thicknesses for all small
values of the parameter pu, even if the saddle-node horseshoes itself is
thin.

As we have seen in Section 3.3, in this situation ghost return maps
Ry (0, ) may be defined on convenient subintervals I of the fundamen-
tal domain D*. The end-points of I correspond to points of the strong
stable manifold of the saddle-node and that the norm of the derivative
of Roo(0,-) goes to infinity at the end-points. See Figures 5 and 8.

RN

p+ | [ ]]

I

FI1GURE 8. Thick invariant Cantor sets for the maps R (o, -)

One proves that, in an open class of cases, the map R (o,-) has a
hyperbolic Cantor set A, with large stable thickness, for every param-
eter 0. In fact, the stable thickness admits a lower bound M that is of
the order of 1/|B| where B is the smallest of the following intervals: the
connected components of (D" \ I) and an interval around the critical
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point outside of which the derivative is larger than 1. Assuming the
gap of the initial horseshoe is big enough, we can take I proportionally
big in D, and then we can make M as large as we like.

Next, one has to ensure that the unstable thickness remains bounded
from zero, by some small constant that may be fixed independently of
M. For this one argues that almost all (a subset with nearly the same
thickness) of the initial saddle-node horseshoe persists, as a hyper-
bolic horseshoe, after the unfolding of the saddle-node. This uses also
the continuity of the thickness with the dynamics. Since the unstable
thickness of the saddle-node horseshoe is positive, we conclude that the
unstable thickness of these hyperbolic sub-horseshoe are bounded from
zero by some m > 0.

Since M and m depend on the geometry of the saddle-node horseshoe
in different directions (respectively stable and unstable), we may indeed
increase M without reducing m, so that their product is larger than 1.
This is a main ingredient in the proof of

Theorem 5.1. (Diaz, Ures [9]) For every € > 0 there is an open set
of arcs (¢,), unfolding at ;. = 0 a critical saddle-node horseshoe of
Hausdorff dimension less that 1/2 + ¢ such that some (0, yo] is an
interval of persistence of tangencies.

Let us observe that a saddle-node horseshoe always has Hausdorff
dimension strictly bigger than 1/2, by [10].

Question 5.2. Is there a necessary and sufficient condition involving
fractal dimensions of the saddle-node horseshoe A, guaranteeing the

existence of an interval J of the form (0, ug) of persistence of tangencies
?

A corresponding question was originally asked by Palis and Takens
[22, Section 7], in the context of homoclinic bifurcations. As we ex-
plained, in that context the frequency of hyperbolicity is essentially
determined by the Hausdorff dimension of the hyperbolic set associ-
ated to the tangency. Here, in view of the previous observations, a
natural approach would be to consider not only the dimension of the
saddle-node horseshoe but also the dimensions of the hyperbolic sets
of the circle maps Ry (0, ).

Question 5.3. Does there exist a non-empty open subset of the space
O(M) of arcs (¢,), of difftomorphisms unfolding generically a critical
saddle-node 1-cycle such that for any arc in this subset the diffeomor-
phisms ¢, are non-hyperbolic for all small > 07

This final question should be related to the problem of the density
of hyperbolic surface diffeomorphisms in the C* topology.
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