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Abstract

We prove that certain parametrized families of one-dimensional maps
with infinitely many critical points exhibit global chaotic behavior in a per-
sistent way: for a positive Lebesgue measure set of parameter values the
map is transitive and almost every orbit has positive Lyapunov exponent.
An application of these methods yields a proof of existence and even per-
sistence of global spiral attractors for smooth flows in three dimensions, to
be given in [PRV].

Figure 1: An infinite-modal map
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1 Introduction

Our main goal in this paper is to study the dynamics of certain parametrized
families (f,), of one-dimensional maps with infinite critical set. In this Introduc-
tion we outline and motivate the objects and results involved, precise definitions
and statements are postponed to Section 2.

The kind of maps we want to consider is described in Figure 1: they are
smooth everywhere, except at some distinguished point 0; most important, this
point is accumulated by critical points of the map, exponentially fast and from
both sides. More precisely, the figure corresponds to the initial map fy: the graph
of f, for p # 0 is obtained by translating the lefthand side and the righthand
side, vertically, in opposite directions; in particular, 0 becomes a discontinuity.

This class of systems is motivated by a problem in the dynamics of flows in
three dimensions: the unfolding of saddle-focus homoclinic connections, see [Sh]
and Figure 2. Roughly speaking, one-dimensional maps f, as we treat here can be
obtained by considering first-return maps of the flow to appropriate cross-sections
and “forgetting” one of the variables. This last step results in considerable sim-
plification of the dynamics, nevertheless the maps f, retain a large share of the
complexity of the corresponding flow and, thus, provide important insight to its
behavior, as we shall see.
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Figure 2: Double saddle-focus homoclinic connections

Our main result asserts that, despite the existence of infinitely many regions of
contraction, chaotic (expanding) dynamics is persistent among the maps f,: for
a positive Lebesgue measure set of values of u, f,, has positive Lyapunov exponent
at every critical value and, indeed, at Lebesgue almost all points in its domain;
moreover, f, is transitive, i.e., has dense orbits. This will be restated in a more
precise form as Theorem A, in Section 2.

Persistence of chaotic dynamics for one-dimensional maps was fist proved by
Jakobson [Ja], who considered quadratic maps ¢, (xz) = 1 — pz? for values of the



parameter close to 4 = 2. Since then, other approaches have been introduced,
and extensions to various settings of smooth maps with finitely many critical
points have been obtained. On the other hand, to the best of our knowledge,
this is the first time such a statement of global “chaotic” behavior is given for
infinite-modal maps.

Another new ingredient here concerns the behavior of the critical orbits for
the unperturbed map fy. Indeed, in virtually every case where chaotic dynamics
has been described for smooth unimodal or multimodal maps, one starts by as-
suming closeness to a system where all the critical points are nonrecurrent. This
plays a key role in ensuring a fair amount of expansion during early iterates,
thus providing a starting point for the recursive argument. Clearly, the present
situation does not provide such a control of the critical orbits: the origin 0, where
critical points accumulate, is a fixed (and so recurrent) point for fj.

As a consequence, the proof of Theorem A has two main steps. First, we
bypass the recurrent behavior of the critical orbits, to ensure that all of them do
exhibit initial expansion. We do this by making parameter exclusions right from
the first iterates, which has no analog in the previously mentioned situations.
In a second stage, we control the way critical trajectories return to the vicinity
of critical points, to guarantee that the expansion is preserved in all subsequent
iterates. This is done through additional exclusions of the parameters and is
inspired by the arguments in [BC, Section 2], extended to deal with the presence
of infinitely many criticalities. We believe that the present methods are interesting
by themselves and will find applications in a broader context.

As already mentioned, an application we had in mind when introducing this
class of systems was the study of flows unfolding saddle-focus homoclinic connec-
tions. A large amount of, mostly numerical, analysis of this bifurcation mecha-
nism suggests that it often leads to the formation of a “strange” attractor with
rather complex spiral geometry, see e.g. [ACT] and [CKR]|. The possible exis-
tence of such attractors seems to have been first mentioned by Ya. Sinai. A
further extension of the methods in the present paper allows us to give rigorous
support to those numerical observations and prove that such attractors do exist.
In fact we obtain a stronger statement: spiral attractors are measure-theoretically
persistent in certain smooth families of flows unfolding saddle-focus homoclinic
connections. The proof of this fact is quite long and will appear in [PRV].

Acknowledgements and personal note: This work was started during a
visit to the ICTP/Trieste and, for the most part, carried out at IMPA/Rio de
Janeiro. Sometimes R. Mané would be around, trying to find out what we were
doing, and once he warned us: “Be careful, you might end up writing a paper
together !”. We all miss you, Ricardo.



2 Statement of results

In this section we define the class of systems we are interested in. We consider
certain symmetric vector fields X, exhibiting a double homoclinic connection
associated to a saddle-focus singularity, and we derive expressions for first-return
maps of the corresponding flows. Then, to each generic one-parameter family of
vector fields X, through X, we associate a certain one-parameter family of maps
fu, which may be thought of as partial models for the dynamical behavior of X,.
These f, turn out to be naturally defined on the circle and constitute the main
object of study in the present paper.

In what follows Xj is a vector field in R3, symmetric with respect to w — —w
and having a singularity at the origin with eigenvalues 6, A £iw, such that 8 > 0,
A<0,w#0and a =—-X/0 < 1. We assume that X, is smoothly linearizable
in some neighborhood of 0. Let (z,y, 2) denote linearizing coordinates. Up to
rescaling, we may suppose that Q@ = {|z| < 2,|y| < 2,|z| < 2} is contained in
the domain of linearization, that the local unstable manifold W}, of the origin
is contained in {r = y = 0}, and that the local stable manifold W} of the
origin is contained in {z = 0}. We also assume that X has (two) homoclinic
connections associated to zero, i.e., that its unstable separatrices W, respectively,
W™ contain points (go,0,0), respectively (—go,0,0), in W2, We rescale the
coordinates once more so that ¢o = 1. See Figure 3.

Figure 3: The first-return map

Then we fix small positive constants d; and €; and define cross-sections

22{1—51S$§1+61, y:()a |Z|S€1}a 27:_2’
(0,0,1) € SF C {z=1}, and (0,0,1) € X, C {z = ~1}.

We fix d; and ¢; small enough so that we have well-defined Poincaré maps

YN {z>0} = and 7 : X N{z<0} =3,



given by, see e.g. [Sh],

i (z +1,0,2) = (2%x cos(Blog1/z), 2%z sin(Blog1/2),1),
m (2 +1,0,2) = (|2]*z cos(Blog 1/]2]), |2z|*z sin(flog 1/]z]), —1),

where o = —\ /0 and 8 = w/6f. By symmetry, ¥~ N{z > 0} is mapped into X\ by
the map w — —m; (—w), and ¥~ N{z < 0} is mapped into X, by w — —7{ (—w).
Due to the existence of homoclinic connections we also have Poincaré maps

S s Sandmy, Y, = 5,

where 75 (0,0,+1) = (£1,0,0), and £ D ¥ and £~ D X~ are also cross-sections

to the flow. Note that 75 and 7, are diffeommorphisms and 7, (w) = —75 (—w).

Their exact expression is not important for what follows and so, for the sake of
simplicity, we suppose

™5 (2,9,1) = (14 bz,0, ay)
where b and @ are nonzero constants. This means that we have a Poincaré map
F:>XUY™ = XUX™, given by

Flx+1,2) =my omf(z+1,0,2)
= (1 + bz%z cos(Blog(1/z)),az*zsin(B log(1/z)))
for (x +1,0,2) € XN {z > 0},
Flzx+1,2) =m om (x+1,0,2)
= (=1 + bl2[*z cos(Blog(1/]2]))), alz[*z sin(Blog(1/]2])))
for (x+1,0,2) € ¥N{z < 0}, and
F(w) = —F(—w) forw € ™.

We are particularly interested in the case when b is small. Then, for all
w € X U X, the first coordinate of F(w) is close to +1. Therefore, in a first
approximation, the dynamics of F' may be described by the one-dimensional map
h:{+1,-1} x [—e1,&] = {+1, -1} x [—1,1] given by

(1,2) = (1,az*sin(Blog(1/z))) for z > 0,
(1,2) = (—1,alz[*sin(Blog(1/|z]))) for z < 0, and (1)
( = —h(1,—2) for all z € [—€1,€].

S S S
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Moreover, since our purpose is to study expanding behavior, h may be replaced
by the interval map f : [—€, 1] = [—1, 1] given by

2o | az%sin(Blog(1/z))) if 2>0
fz) = { —alz|esin(Blog(1/]2]))) if = < 0. (2)



Indeed, the symmetry of h, given by the third expression in (1), implies
h™(1,2) = £(1, f*(2)) for all n > 1

and so the two maps f and h have the same Lyapunov exponents. Maps f as
above have infinitely many critical points, of the form

z, = T exp(—kn/f) and z_j = —x, for each large k > 0 (3)

where £ > 0 is independent of k. Let ky > 1 be the smallest integer such that
is defined for all |k| < ky — 1, and zy, is a local minimum.

So far we have made use of the local features of X, in a neighborhood of
the singularity, to derive the expression, near the origin, of the one-dimensional
maps f we are interested in. Now we extend this expression to the whole circle
S' = [-1,1]/(-=1 ~ 1) in the following way. Let f be an orientation-preserving
expanding map of S* such that f(0) = 0 and f’ > ¢, for some constant og >> 1.

Define
2

m Tkqs

so that zy, is the middle point of the interval (e~"/?e, €), cf. the first paragraph
of Section 3. Fix two points zx, < § < § < €, with |[f'(§)] >> 1. Then take
f to be any smooth map on S* coinciding with f on [—7, 7], coinciding with f
on S'\ [-7, 7], and monotone on each +[¢,§]. We point out that the extended
maps. f obtained in this way are naturally associated to the first-return map
F,: SUS = SUS for convenient cross-sections & D 5, S o , as will be
explalned in [PRV].

€ =

Figure 4: Graph of the circle map f

Finally, let f, be any one-parameter family of circle maps unfolding the dy-
namics of f = f; in the sense that

_J f(z)+p for ze(0,¢
fu(z) = { f(Z) —u for 2 € [—6, 0) (4)



The reason why we take f, depending on p in this way is that we want to model
the unfolding of the homoclinic connections of the initial vector field X, by a
generic one-parameter family of vector fields X,. Dependence on the parameter
for large |z| is irrelevant for all our purposes.

Theorem A There exists a positive Lebesgue measure set S and a constant o > 1
such that for every p € S

1. ‘(f,?),(Z,:f(u))‘ > o™ for alln > 1 and all ky < |k| < oo

2. liminf, , o n~"log|(f}}) (2)| > 0 for Lebesgue almost every point z € S*;
3. there exists z € S* whose orbit {f!(z) : n > 0} is dense in S".

The proof of this theorem occupies the remaining sections of the paper. It
involves a few constants chosen as follows. We fix v € (o, 1) and o € (1,,/0),
recall that o > 1 is a strict lower bound for the derivative of f. We also use
small positive constants 7, p, and 7: these are subject to certain conditions which
we state along the way. Finally, ¢ > 0 is supposed small with respect to all these
constants.

Before proceeding, let us observe that the theorem is valid in more generality,
in particular, it holds for any family of maps (g,), close enough to (f,),. This
statement requires some explanation, since our maps are not smooth. In proving
Theorem A we use the fact that fo(z) = £|z|*¢(log |z|) with a € (0,1) and £ a
smooth real map (we also take some advantage of £ being periodic, but this is
not really necessary). Let us say that a map go is C" close to fy, r > 0, if it can
be written go(z) = £|z|"n(log |z|) with v close to & and n a C™ map C" close to
&. For instance, if go = fo + 1, where 9(0) = 0 and the C"*! norm of v is small,
then g is C" close to fy. Also, if gy derives from a vector field Y, having a double
homoclinic connection, in the same way as we derived f, from Xj, then gy is C”
close to fy if Yy is C" close to Xj. Therefore, this topology is rather natural in
the present context. Then we say that a parametrized family (g,), is C" close
to (fu)u if it is of the form g,(z) = go(x) + ¢ (z, ) where ¥(x, ) is a C" map
on {z # 0}, uniformly C” close to (z,u) — p on {z > 0} and to (z,u) — —u
on {z < 0}. Up to straightforward adaptations, all our arguments in Sections
2-9 extend to such a (g,),, if it is sufficiently C? close to (f,),. One may ask
whether the theorem is also valid for other classes of families, e.g.,

gu(x) = ‘Pu(i|x|7(“)77u(10g lz|)), with ¢ ~id, [O,pul =1

that come up naturally in the context of homoclinic bifurcations of flows. Such
an extension does seem possible, albeit technically involved, but we have not
attempted to check all the details.



3 Preliminary lemmas

This section is devoted to proving some simple properties of the map f introduced
above. We begin by fixing a few notations. For each k > k; we define
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so that z is the middle point of the interval (yxi1,vx). In particular yz, = e.
We call z, the closest critical point to any y € (yg+1,yx)- Finally, we introduce
similar notations for k < —kq.

Lemma 3.1 Given ai, s, 51, B2 with 5 # ’3—;, there exists & > 0 such that, for
every x, at least one of the following assertions hold:

1. |agsinz + By cosz| > §
2. |lagsinz + Bocosz| > 6

Proof: Define ¢;(x) = «;sinz + B;cosz. These are linearly independent so-
lutions of ¢"” = —¢, hence cannot have common zeroes. Let Vi,V be disjoint
neighborhoods of the zeroes of ¢1, ¢ and take 6 = min{¢o;/V, po/Vi}. O

We use C' > 0 to denote any large constant depending on the map f, but not
on € > 0.

Lemma 3.2 For every x € (y11,y) and | > ko, respectively, = € (y;,y,1) and
[ < —kgy, we have

1. C7May|* o — o < |f(2) — f(@)| < Clay|* 7?2 — o |?
2. C7Hay|* Pz — o] < | f'(x)] < Clay]* |z — x4

Proof: It suffices to prove the second item because then the first will follow by
integration. Moreover, we may suppose [ > 0, since the case [ < 0 is entirely
analogous. If | > kg and = € (y;11,¥;) then

f'(2) = alz|* Masin(Blog |z| ') — B cos(Blog |z| )]

f"(z) = alz|*7*[Asin(Blog|z|™") + B cos(Blog|z| )]

for some A and B depending only on e and . The conclusion follows applying the
previous lemma to the factors inside brackets and noting that |f'(z)| < C|z|*~!
and |f"(r)] < C|z|*2. For | = ky, precisely the same arguments apply when
T € (Ykos1,Y).- On the other hand, on [g,yk,) both |z — zx,| and |f'(z)| are
bounded away from zero and from infinity, and so the statement holds just by
taking the constant C sufficiently large. O



Lemma 3.3 Let s,t € [y,41,y] with | > ko, respectively, s,t € [y, y; 1] with

| < —kgy. Then
! o _
CELUPEL
f't) |t —
where Ky > 0 is independent of 1, s,t, €.

Proof: Once again, we only need to treat the case [ > (0. We begin by supposing
[ > ko. Recall from the proof of the previous lemma that

(@) =[] ¢1(log|z]) and [f"(z)] = |z[*$a(log |])

for every x € [—9, 9] D [yi+1, yi], where ¢; and ¢, are smooth periodic functions.
Using Lemma 3.1 we find 6 > 0 such that for any y either ¢;(y) > 9 or ¢o(y) > 6.
Recall that z; is the unique point in [y;, y;—1] such that ¢;(log|z;|) = 0. Then we
can find €y > 0 small and 0 < 0, < d; < § so that, given any ¢ € [y, y; 1],

It — x| < eola| = pr1(loglt]) <61 and |t — x| > €lz| = d1(log [t]) > .
By the mean value theorem, there is u € (s,t) C [y, y_1]
f'(s) = f' @) = | ()| [s — t| = [u]*"*do(log |u]) |s — ¢ (5)

Now we consider two cases, according to the position of £.
If |t — ;| < €|x;| then we use the mean value theorem to get

(O] = 1" W)t = 2| = [v]**¢a(log]v]) [t — ], (6)

for some v € (t,2;) C [y, 4;-1]. Our choices imply ¢;(log|v]) < é; < 4, and so
#2(log |v]) > 6. Using also the fact that ¢, is bounded, we get

[f'(s) = F'(O)] _ Clul*?|s —t] _ Cel D) |5 -t
@ T ol lt— | T Y 6=z’

which proves the lemma in this case.
If, on the contrary, |t — z;| > €y|z;|, then we use

[F'@®)] = [t1° ¢ (log t]) > &; [¢]*~.

Noting that |t — ;] < e(™/P)|t| for some large C > 0 (all these points are in
[ylayl—l])a

I8 = FW . Clu*2[s—t] _ Ce® ) |5y
FOL O A [ w] S & Ji—a]




This proves the lemma also in the second case.

Finally, we consider | = k3. On the one hand, we may fix C; > 0 such that
If'(t)] > Ci|t — xk,|. Indeed, for ¢ in a neighbourhood of zy, this follows from
the same estimates as in (6), noting that |f”| is bounded away from zero close
to ., and for ¢ far from zy, it is trivial since |f’| is bounded away from zero.
On the other hand, letting Cy be an upper bound for |f”| on [yk,+1, Yk,), We have
|f'(s) — f'(t)| < Cy|s — t|. Hence, the statement of the lemma holds, as long as
K, > Cy/C;. O

4 Initial expansion

As already discussed in the Introduction, a main step in the proof of Theorem A
is to ensure that every critical value z(u) = fu(z) in the e-neighborhood of 0
exhibits expansion right from early iterates. In rough terms, the way we do this
is by imposing, as a condition on the parameter u, that all such iterates move
away from the origin and, while doing this, avoid the regions where |f]| is less
than 1.

In fact, given a point = € [—¢, €] and a parameter value p € [¢, €], we denote
by jo(z, 1) the minimum value of j > 1 for which |fJ(x)| > e. Recall that the
critical points of f are denoted xj, with |k| > k. Then, we introduce a set G of
parameters u for which all the critical values zj(u) satisfy

1. the sequence | f](zx())| is an increasing function of j < jo(z (1), 1);

2. the iterates f](zx(u)) with j < jo(zx(p), ) are all contained in the region
where f, has derivative larger than 1.

Then we show that for every dy > 0, there exists g > 0 such that if € < €y then
the relative measure of G in [—e, €] is larger than 1 — &.

Let us state this in a somewhat more precise form. We fix some oo < v < 1
and define ¢(z) = |z|7. Let

B, = Bu(0) = {v€l—¢,d : |1u() | <6(@) or |0 — apl<tlml} (D)

where 7 is a small positive constant: in particular, (1 + 7)zx, < 7, so that
{|z — x| < 7|xk|} is contained in the region where f coincides with f, for every
|k| > ko. Define also

G, = Gole) = {wel—c,d : Fi(2)&B, for 0<j<jo(x, n)}. ®)

It is easy to see that if x € G, then jo(z, ) is finite. Indeed, by definition,
|fu(z)| > |z[” > 0 and

Fi(@)] > [ ful@)]"™ for all j < jo(e, )

10



and so |fi(z)| must, eventually, be larger than e. In what follows we restrict
to |u| > € and then even have that jy(z, ) admits a uniform upper bound
independent of ¢, i, and € G,. To prove this observe that for |z|>(€?/2a)'/®
we have

[fu(@)] 2 |z]" = (¢*/2a)7/

and for |z| < (¢2/2a)'/®
[fu(@)| = |u+ f(@)] > |l = €/2 > €/2 > (¢ /2a)7/
(recall that v > « and take € small enough). It follows that
€> [fi@)] > (¢/2a)0/1 (9)

for all j < jo(zx, ), and this implies our claim.
Finally, we define

G=G(e)={p:|p| €[ ¢ and 2z (1) € G, for all ky < k < oo} (10)

For any parameter u€G all the critical values leave the interval (—¢, €) in a finite,
uniformly bounded number of iterates. In addition, as will be seen later, one
has strong expansion during this initial part of the orbit. Let 7 be the constant
introduced in (7).

Theorem 4.1 We have

lim —m(G) = 1 — o(#),

e—0 2¢
where o(7) — 0 when 7 — 0.

The proof of this result has three main steps. First, in Lemma 4.2, we show
that B, (e) is a small subset of the interval [—¢,¢]. Then it will follow, Lemma
4.3, that G, (€) is a large set. The final step is to pass this information to the
parameter space. We use C' > 0 to denote any large constant depending only on
f, and not on e.

Lemma 4.2 There ezists a function b(e) such that
b(e)

m(B,) < b(e) for all0 < u<e and ?—>O as € — 0.

Proof: It is clear that B, is the union of the sets By and Cy , defined by

By = [z — Tz, ke + 7|xk|]

11



and by
Crp = {z€[2p, Tp1] ¢ [fulz)| < o(2)}.
Then
> m(By) < Y Flak| <C7 ) exp(—kn/B) < Cte. (11)
k| >ko k| >ko k| >ko

Now we estimate the measure of Cy ,. Observe that if v € Cy , then f,(z) belongs
to the interval [—¢(xx_1), ¢(xk_1)] whose length is bounded from above by C'|zy|”.
On the other hand, from Lemma 3.2 it follows immediately that there exist open
sets Dy and D, covering [—e, €] \ {0}, such that

1 1
£ (@) > 5\3}\0‘_1 for z€D, and |f,(x)] > 6\x|a_2 for z€D,.

Therefore,

v
T e,

m(Cr,u N D1) < C|$k‘a—1 <

Analogously, using the lower bound on ;[ ,

2l
m(Ck,u N DQ) S C | |x‘k| 5 S C|xk‘1+(7—a)/2'
Tp|®™
From these estimates we get
M(Ch,p) SOy [ O (12)
and the lemma follows from (11) and (12). O

Lemma 4.3 There exists a function g(€) such that

m(Gp) > g(e) for all p < e and lim@ =1-o(7),

e—0 €

where o(7) — 0 when 7 — 0

Proof: Let II denote any finite sequence Il = (po, p1,...,ps—1, k), where s > 0,
and p;, k are integers with |p;| > ko and |k| > ko. We define B, (II) to be the set
of points x € [—¢, €] such that

fﬁ(x) € (Tp;, Tp;—1) \ (Bp; U By, ) for 0 < j < s, and f;(z) € By,
and C,,(IT) to be the set of points x € [—e¢, €] such that

Fi(@) € (@, 2p;-1) \ (Bp; UBy,_,) for 0 < j <s, and f5(z) € Cp\ (Bi U By-1)

12



(throughout, replace (7,,, %y, 1) by (%p,41,%p;) whenever p; < 0). Recall that
By = [z — T|xk|, 2k + 7|2k |]. We claim that if y € (zp,2,1) \ (B, U Bp_1) then

FAC A (13)

Indeed, for y € Dy we have |f}(y)| > &ly|* " > |z,[7" (use @ < v and [y is
close to |z,| < ¢, and take € small) and for y € Dy we may argue

A~

1 _o . T _ _
|fpla(y)| > E‘Q‘Q 2m1n{|y—xp|, Y —zpal} > 6|xp‘a 2|xp‘ > |zp|” '

(supposing € small with respect to 7). Now, using the claim, the remark that
B, (II) and C,(II) are intervals, and (11), (12), we get

27\"$k|

m(B, (1)) < —= (14)
g j:(l) ‘37;0]' 71
1+(v—a)/2 94
m(Cum) < oA T o 2 (15)
30 |p; |7 0 T |7

(use v > « and |zy| < ¢, then suppose € small with respect to 7). Since the sets
B, (IT) and C,(II) cover [—e, €] \ G, it follows that

m-ed\G) < 2% X ¥ ¥ ol [y [

|k}‘2k0 §>0P05---»Ps—1

< 27 Y0 |l (Z( > pr\”)s)-

|k|>ko 520 |p[>ko

Now,

Dz < Clag, |77 < O

Ip| >ko
and so

m([—€, e\G,) <27 > |zx| D (Ce' ) <CF Y < Cre
|k|>ko 5>0 |k|>ko

This completes the proof of the lemma. O

Now we start the third, and final, step in the proof of Theorem 4.1. The key
ingredient is to show that the critical values z; (1) vary faster than the endpoints of
connected components of G, when the parameter ; varies. Combining this with
the fact that the measure of G, is large, see the previous lemma, one concludes
that each z () is outside G, only for a small set of values of p. In fact, we need to
ensure that all the infinitely many critical values are in G, for most values of p.

13



In order to get that we take advantage of the fact that critical points accumulate
at the origin.

We use dots to denote derivatives with respect to the parameter y. First, we
observe that |£,(;)| = 1. Next, we prove that if y, is an endpoint of some C,,(II),
respectively some B, (II), then |y,| < 1/2. Indeed, by construction, for such a
Y, there exists j<s such that z, = f/(y,) is, either an endpoint of some By, or
an endpoint of some Cj, that does not belong in any Bj. In the second case,

fulzy) = £é(x,) and so
1+ £ (2,) 0 = 26 (),

which implies
4 :
T, = .
o f() £ ¢ ()]
Since z, ¢ (B; U Bj_1), the bound in (13) applies and hence |f}, ()| > |z,["~".
As ¢'(z,) = vlz,|"t, we find |£,|<C|z,['™7. Observe that this last estimate
holds also in the first case, actually, &, = 0. Now, as fi(y,) = x,, we get

T, = il+f;(f,{_l(yu))au(fﬁ_l(yu))
= *1+ fu(fi7 ) £ (F) (F72 () £ o £ (F) (Y)Y

yielding
: +i, J 1
PR SR AN
Using (13) once more, we obtain, for 1 <i < j,

i—1

‘(f,i),(yu” > H ‘fl’;(yu)P*l > =)

h=0

(because each f!(y,) belongs to some (z,2,-1) With |z,_1| < ¢€). Therefore,

C 1—y i
% + Y€ <0 < 12,
€ .

Yul <

for any y,, which is an endpoint of B, (IT) or C,(IT). Combining with |(x)| =1
and (14), (15), we have (see Figure 5)

m({p: z(p) € By(I) U CL(IN)})

IN

C m(B,(IT) U C,(I1)) (16)
7l

Hj;(l) |xpj =1

IN

o

for every I.
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z, (W)

G° G° H

Figure 5: Dependence of G, and z,(x) on the parameter

This shows that, for each [, the set of parameters excluded from G because
z1(p) does not belong to G, is small. Now we must deal with the fact that there
are infinitely many critical values. To do that, we enlarge each B, (II) to the
interval B, (IT) such that B,(II) is the middle third of B,(IT). We define C,,(IT)
analogously. Given an interval I, we define

where Z was introduced in (3). We also write

"= Bk’g(u?en)

and then we define B to be the union of the sets
{1 : z(p) € B,(T0) for some Iy < |I] < lo(B,(IT)) or | = +00} and

{1 : 21(p) € C,(IT) for some I; < |I| < Io(C,(IT)) or | = o0}

over all possible II. Observe, first of all, that x4 ¢ G implies u € B. Indeed, given
pu ¢ G let | and II be such that z,(u) € B,(II), respectively z(u) € C,(II). If
li <|l] <lporl==+oo then u € B, by definition. If |I| > Iy(B,(II)) then

[21(p) = 2200(p)] < a(@e™17P)* < (B, (ID)).

This implies that ze (1) € B,(IT), and so € B. Analogously for |I| > Io(C,(II)).
Finally, if |I| < Iy then |2/(0)| > 2¢ so that |z(u)| > 2¢ — |u| > € and so zl( ) ¢
B, (IT) U C,,(II), as claimed. On the other hand, recalling (16),

A

m(B) < Zzzo ) = 1) - Cm(B,(11))

15



+ 2 20(Cy(TD)) - Cm(Cu(T))

s ‘bg (m(Bg(H» |f(:f:)|> ‘ m(B.(D)

I 20z
-%2;(7P0g(ﬁﬁ%%égn>‘nﬂCh(H». (17)

Fix § > 0 small enough so that (1+ (y—«a)/2)(1—§) > 1. Using z|logz| < z'°
and (15) we can bound the second sum by

L+(r=a)/2 \ 1 7°
T ()
II

L
(because |z;| < € <1 and 7y < 1). Moreover, using (14) we can bound the first
sum in (17) by

o3 BN o (MG o gy (Tl )

< C+i-a)/2)(1-0)

j=0 |‘ij

2am0‘ 2az%€ 30 [T,
Flogl )
< Ce ( 0 > < Cer'™?
€
Replacing these estimates in (17) we conclude that
m(G) >1— m(B) >1—Ce (+(y=@)/2)(1=8)~1 _ 21-6 >1—C7ld
2¢ — 2€
if € is small with respect to 7 (recall the choice of §). This concludes the proof of
Theorem 4.1. O

Corollary 4.4 Given |k| > ko and p € G(e), we have |(f1) (ze(1))| > €= for
every 1 < j < jo(zk(u), p).

Proof: This follows directly from (13). O

From now on we shall be considering only parameter values in each of the
connected components of G. Our arguments require that we restrict to connected
components which are not too small, in the following sense. Given any connected
component L of G, let

Jo(L; k) = min{jo(zx(ss), ) - p € L}.

Observe that |fi2F) (24 (1))| > |xg,| for all p € L. In particular, jo(zx(u), 1) <
Jo(L,k) + 1 for every pin L. A connected component L of G is called large if

m({f25R (zp () :p € L}) > € forall ko < |k] < oo

16



Our next step is to prove that the union of all the large connected components of
G has Lebesgue measure close to 1 if 7 is small. We need the following auxiliary
lemma.

Lemma 4.5 Let ¢; = (1 — ) Y5,
(1) If v € G, and s < jo(z, ) then
s—1 )
() (@) < [ala+ B)P IT 2" < [a(a+ B))°[a]
=0
(ii) There exists ca > 0 such that if p € G and |k| > ¢y log ‘;—| then

[Z1oo(1t), zx(p)] C G ( where £ is the sign of k).

Proof: Given z € G, and | < jo(z, i1), we have |f}(z)| > ¢(z) > lz|"" and so

£(f@)] < ale["D(a + )

Part (i) follows immediately. Now we prove (ii), by contradiction. Supposing it
is not true, let 0 < j < jo(u, zx) be the first integer for which f7([2z100 (1), 2k (12)])
intersects B,. Observe that the endpoints of this interval are not in B, by the
definition of G, and so we must have

Fillzzoo(n), 26 (W) D B or - fil([zzo0(m), 26(1)]) D Ciy (18)

for some [. Let us consider the first case. Note that |z4.| = || and

(1) = 24(0)| < O] < Cerel? < cgomenatuss < ]

as long as ¢, is large enough. It follows that [z400 (1), 2k (1)) C {y : |y| > |n|/2}.
Using our choice of j, we conclude that f7([2zxo0(k), zx(14)]) is also contained in
{y : ly| > p/2}. In particular, recall the definition of B;, we must have

i (sme(00) = Fir()) | 2 m(B) > 27l > 4 (19)

(if |u| < € is small with respect to 7). On the other hand, by part (i) together
with the fact that [z100(1), 2e(1)] C {y : ly| > 1/2},

[fi (oo (1)) = fi (2 ()| < [a(a + B)|u| = Ce* e/, (20)

Since z400(p) € Gy,

1" = zso0(W)” < | fi(2200(1))] < .

17



Therefore, 4/ > (loge/log |u|), which implies

[a(a+ B)) < (log |M\) et
— \ loge
Replacing in (20), we find
: : loglul\ T L e
) = )] < () T Ll e < )

if co > 0 is taken sufficiently large. This contradicts (19) and so we have discarded
the first case in (18). Now we consider the second possibility. Note that we may
suppose that Cj, is disjoint from all the B; for otherwise we fall in the previous
case. Let y stand for any of the extreme points of Cj ,; by the previous arguments
ly| > C~Hpu|. Then m(f,(Cy,)) > C'y” (because of the disjointness assumption)
and |f}|C,| < Cly["~*. Therefore,

m(Cp,) > C Hy[" 77 > O e

From this point on the argument proceeds in precisely the same way as in the
first case. 0

Now we prove that the measure of the union G = G(e) of all the large con-
nected components of G' admits the same kind of lower estimate as we obtained
for G in Theorem 4.1.

Theorem 4.6 We have

lim —m(G) = 1 — of?)

e—=0 2¢

with o(7) — 0 as 7 — 0.

Proof: Fix |k| > ko and, given any component L of G, associate to (L, k) the
sequence (s, po, ..., ps_1, =) defined as follows:

1. s= jo(L, k‘)
2. fﬁ(zk(ﬂ)) € (fﬂpj,zvpj_l) foreach 0 < j < s

3. =+ is the sign of f; (2 (1))

18



Clearly, the map (L, k) — (s, po,...ps_1, L) is injective. Note also that

s—1
0u(fa(zr())] = C7H] |y " forally € L. (22)
0
Indeed, by (13),
Jj—1 _
() (@) = ] ™" > 907 (23)
i=0

for all 1 < j < s and then a standard calculation, see e.g. Lemma 5.4 below,
gives that |0,(f;(2k(1)))| is comparable to |(f1)'(x)|. Now, if L is not a large
component then we must have

m({fi(z(n) : p € L}) < 3e (24)

for some k with |k| < cylog(1/€) or |k| = oo. To see this, it suffices to note that
if m({fi(z(p)) : p € L}) < € for some [ with cplog(1/e) < [I| < oo then (24)
holds for k£ = +o00, since

iz (1) = fil(2eo ()] < 1% <,
by (19). Then, using (22) we get

e

m(L) <
)= OIS o

s—1
< Ce H |$m|1_7-

1=0

Summing over all possible sequences I = (s, py, ...ps_1, =), and all the values of
k as in (24), we conclude that

s—1
m(G\ G) < 2¢cylog(1/€) Y Ce [ |p|' -
i i=0
Thus, reasoning as in Lemma 4.3,
m(G\ G) < Celoge™ S ') < Ce M loge (25)
s>1 p>ko
and the theorem follows. O

5 The inductive step: the partition algorithm

From now on we consider only parameter values p € G. For every such woall
the critical values z; € [—¢,¢€| exhibit expanding behaviour up to the iterate
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when they leave [—e¢,€]. Afterwards, the orbit of z; remains (for a period of
time which can be made arbitrarily large by diminishing ¢ and p) in the region
S*\ [—¢, €], where the map is expanding. At a later iterate n, the orbit of z, may
approach some critical point z; and then loose expansion. We adapt the “binding
period” argument of [BC, Section 2] to our class of maps, to prove that this
loss is completely compensated for in iterates subsequent to n, during which the
orbits of f™(z) and z; remain close to each other. In fact, this already involves
an assumption on the parameters: those for which f7(z;) is too close to z; are
excluded.

In doing these parameter exclusions we try to think of each critical value z; as
being independent from the others. More precisely, we take G as the parameter
space for every z, and at each time n we try to exclude a subset of G depending
only on the behaviour of the trajectory of z; up to time n. There are two types
of exclusions, corresponding to two conditions that we state in (31) and (30).
We shall denote Ej ,, and E},, the corresponding subsets of excluded parameters.
Then the total excluded set is

E:UU E,'m E,’C’n (26)
k n
and we show that
<3N (m(E,) + m(EY,)) < m(G). (27)
k n

Consequently, a positive Lebesgue measure set S = G \ E of parameters remains
after all the exclusions, and we prove that conclusions 1., 2., 3. of Theorem A
hold for every pin S.

However, there is one instance where the behaviour of z; can not be considered
separately from the other critical points, and that is when an iterate f (z;) comes
close to a different critical point z;, for some parameter p. Indeed, for the binding
period argument mentioned above, we need to have information on the orbit of
2 = fu(x;) up to time n — 1, for that same parameter value y. If ;1 happened to
be excluded for z; at some previous time, that is, if

peE,,UE,  forsomem <n,

then such information is not available at stage n, and the binding period argument
can not be carried out. In this situation, we are forced to exclude u also for z
at time n. We shall denote E,Z’n the set of parameters excluded in this fashion.
This means that the total excluded set is, in fact, given by

E=UU B,V E;, U Ey,).
P
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It is important to point out that this last relation is totally coherent with (26).
Indeed, by construction, each set E}’, must be contained in U;Up<n (B}, UE],,),

and so
UU (Bl U L) = UU (B O B 0 ).
In particular, the bounds in (27) remain valid. In other words, this third type
of exclusions need not be taken in consideration explicitly when estimating the
measure of the total excluded set.

There is another point worth emphasizing here, related to the existence of
infinitely many critical points: although distances close to each critical point x;
are naturally scaled (exponentially) according to the value of [, the bound period
argument forces us to use a same scale for all the x;. Observe also that one can
not use the fact that the critical points accumulate on zero to try to reduce this
situation to the case of a finite number of critical points: due to the behaviour of
our maps near the origin, all the x; must be taken into account.

The whole argument is done by induction, and in the present section we
describe the inductive step. Beforehand, we construct a convenient partition
{R(l,s,j)} of the phase space into subintervals, with a bounded distortion prop-
erty: trajectories with the same itinerary with respect to this partition have
derivatives which are comparable, up to a multiplicative constant. This is done
as follows. Let | > kg and take y; € (z;,2;-1) as defined in Section 3: z; is the
middle point of (y;11,¥;). Partition (x;,y;) into subintervals

R(l,s) = (x4 e~ P (g, — z)), 2, + e~ PGV (g, — 1)), s> 1.

Then denote R(l,—s) the subinterval of (y;.1, ;) symmetrical to R(l,s) with
respect to ;. Now, subdivide R(l,+s) into (I + s)? intervals R(l,+s,7), 1 < j <
(I + s)® with equal length. Moreover, perform entirely symmetric constructions
for | < —ko. Let R(%ko,1,1) be the intervals having +e in their boundaries.
Clearly, we may suppose that R(%kq,1,1) are contained in the region SN\ [-7, 7]
where f coincides with f, and so |f'| > oo > 1. Finally, for completeness, set
R(0,0,0) = R(0,0) = S'\ [—¢, €.

Then this induces a sequence of partitions Py, n > 0, in the parameter space
of each critical value zj: the orbits of every z;(1) have a same itinerary up to time
n, for all ¢ in a same atom w of Py ,,. Most important, the derivative with respect
to the parameter of f}(2x(u)), pt € w € Py, has a uniformly bounded distortion
property. The precise definition of these Py, is given by the algorithm presented
in Steps 1-29 below, which also defines a number of other important objects, such
as Ej, = set of parameters excluded for zj at time n, Si, = set of parameters
remaining nonexcluded for z; after n iterates, and p(n,w, k) = binding time for
2, after time n for parameters p in an interval w € G. We fix 1 < 0 < /0o and
we also introduce small constants p > 0 and 7 > 0: just how small they are is
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determined by conditions stated after equations (38), (39), (49), (50), (53), and

(54).
1.

10.

For each k with |k| > ko let Eyg =0, Sgo = G, and Py be the family of
connected components of G. Moreover, for each L € Py g, set p(0, L, k) = 0.

For each n > 1 perform Steps 3-29 below.

For each k with |k| > ko perform Steps 4-29 below.

Set En =0, Skn = Skn_1, Pen = 0. Moreover, define ¥y, : G — S* by
Wi o o> [y (z(p))-

The values of Eypn, Skn, and Py, will be modified in the course of the
algorithm.

For each interval w € Py 1 let L be the connected component of G con-
taining w, then perform Steps 6-29 below.

Question: Is n smaller that jo(L, k) ?

If YES go to Step 7. If NO go to Step 8.

Define p(n,w, k) = 0 and replace Py, by Pi, U {w}.
In other words, w is also an atom of the new partition.

Go back to Step 5, for another w € Py 1.

Question: Is there any 0 < m < n such that n < m + p(m,w, k) ?

Le., does n belong in a binding period initiated at some previous iterate ?
If YES go to Step 9. If NO go to Step 10.

Define p(n,w, k) = 0 and replace Py, by Pr, U {w}. Go back to Step 5,
for another w € Py 1.

Question: Does ¥y, ,(w) fully contain some partition interval {R(l,s,j)} ?
If YES go to Step 19. If NO go to Step 11.

The YES case means that the image of w under ¥y, is too big for the
bounded distortion property to be valid also up to time n, thus w must be
further decomposed into subintervals. Lemma 5.3(b) implies that this first
case must eventually happen.

Decomposition of w is not necessary in the NO case. ¥y ,(w) intersects at
most two intervals R(l,s,j). Lemma 5.2 implies that the parameter condi-
tion (31) is automatically satisfied by w.
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11.

12.

13.
14.

15.

16.

17.

Question: Does Uy ,(w) intersect R(0,0,0) ?
If YES go to Step 12. If NO go to Step 13.
In the YES case Uy, ,,(w) is contained in R(0,0,0) U R(£ko, 1,1).

Define p(n,w, k) = 0 and replace Py, by Pr, U {w}. Go back to Step 5,
for another w € Py 1.

Fix (I, s, j) such that ¥y ,(w) intersects R(l, s, j), with s maximum.

Question: Is
1 — e-@/8)

1+ e (7/B)
If YES go to Step 15. If NO go to Step 16.

The YES case means that the nth iterate of zx(p) is far away from the
critical point x;: in view of the definitions of y; and R(l,s), the inequality
(28) implies

e~ (m/P)s >7 7 (28)

1 — e~ (@/8) .
) |$l| Z T|£El|.

| fi (2 () — o] > e P (g — 2p) > e_wmsm

In this case there is no expansion loss at time n, and so no binding is
required.

Define p(n,w, k) = 0 and replace Py, by Prn U {w}. Go back to Step 5,
for another w € Py 1.

Question: Does there exist uy € w satisfying

@) [(f) (fuo(w1))] > o™ for all1 < h <n —1 and
(ii) for every jo(x;, o) < h < n — 1, either

[ o (Fuo (@) > € 0r [ fy (fug (1)) = Tmny| > €77,

where T, is the critical point nearest to f" (fu, (1)) ?

If YES go to Step 18. If NO go to Step 17.

The NO case means that all the parameters in w were already excluded for
x; at some previous time. As we already commented at the beginning of this
section, binding may not be possible, and we are forced to exclude the whole
interval w for z at time n.

Replace Ej ,, by Ej ,Uw and Sk, by Sk, \w. Go back to Step 5, for another
w € Pk’nfl.
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18.

19.

20.

21.

22.

23.

Define the binding period p(n,w, k) of z; at time n to be the largest integer
p > 0 such that

()| <€ and  [ft(z(p) = fuy (@)| < [fh (1) = Tmnvyle™™
or (29)
Fl(@)| > ¢ and [ f5 () - fly(w)| < e
forall 1 < h <pand p € w. Replace Py, by PrnU{w}. Go back to Step
5, for another w € Py 1.

Define -
B(n,w, k) = ;p(j,w,k)
and consider the following condition o]n the parameter u:
B(n,w, k) < g (30)

Question: Does (30) hold ?
If YES go to Step 21. If NO go to Step 20.

The NO case may be thought of as meaning that the first n iterates of zx(p)
are too often close to critical points. In this case w is excluded for z, at
time n.

Replace Ej , by Ej,Uw and Sk, by Sk, \w. Go back to Step 5, for another
w € ,Pk,nfl.

Decompose w into subintervals w’ such that each ¥y, (w') contains some
R(l,s,j) with (I,s,7) # (0,0,0), and is contained in the union of at most
three such partition intervals.

For each interval w' C w as before, define p(m,w’, k) = p(m,w, k) for every
m < n, fix (I,s,j) as above with s maximum, and perform Steps 23-29
below.

Consider the following condition on the parameter u:
either e (/AUHD) > e or (1)5,5) = (fko, 1,1). (31)
Question: Does (31) hold ?

If YES go to Step 25. If NO go to Step 24.

In the YES case we perform Steps 25-29, which are analogs of Steps 1418
with W' in the place of w.

The NO case means that the nth iterate of zx (1) is very close to the critical
point x;, for p € w. Then w is excluded for z, at time n.
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24.

25.

26.

27.

28.

29.

Replace Ey,, by Ey, Uw' and Sk, by S, \ w'. Go back to Step 22, for
another w' C w.

Question: Does (28) hold ?

If YES go to Step 26. If NO go to Step 27.

Define p(n,w’, k) = 0 and replace Py, by Pin, U {w'}. Go back to Step 22,
for another w’ C w.

Question: Does there exist p9 € w' satisfying conditions (i) and (ii) as in
Step 16 7
If YES go to Step 29. If NO go to Step 28.

Replace Ej,, by Ep, Uw' and Sk, by Sk, \ w'. Go back to Step 22, for
another w' C w.

Define the binding period p(n,w’, k) of z; at time n to be the largest integer
p > 0 such that (29) holds for all 1 < h < p and p € w'. Replace Py, by
Prn U {w'}. Go back to Step 22, for another w' C w.

The next lemmas contain crucial estimates for our inductive argument. We
shall prove them, by induction on n, in the forthcoming sections. As we shall see,
the proofs are closely intertwined: at each step in the proof of one of the lemmas
we assume that all of them hold for all previous times.

Lemma 5.1 For all p € w € Py, we have |(f1}) (zx ()| > o™.

Lemma 5.2 In the context of Step 10, let (1, s, ) be such that ¥y, ,(w) intersects
R(l,s,j). Then, either

6_(7r/ﬂ)(‘l|+|5‘) Z e ™ or (la Saj) € {(_k(]a 1: 1)7 (Oa 07 0)7 (k07 1; 1)}

Lemma 5.3 Suppose p = p(n,w, k) > 0. Then, for some large constant Ay > 0
to be fized in (32) below,

(a) p< 22n < n.

logo

(0) [(F271) (f (2 ()] = Ago@+D/2 > 1.

Lemma 5.4 There exists an absolute constant Ay such that, for every p € w,

< A

i ‘ijk,n(,u)
A, S ‘(fm'(zk(u))
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Lemma 5.5 There exists an absolute constant Ay such that, for all pi, ps € w,

LU Gy L Ml

Ao = () Gaalp2)) I\P/m( 2)| ~

Recall that (f})" is the derivative of the map f} with respect to the phase-

space variable, whereas \ilk,n denotes the derivative of Uy ,, with respect to p.

As we announced before, there are three instances were parameters are ex-
cluded. We denote by Ej , the set of parameters excluded in Step 24, by Ey, the
set of parameters excluded in Step 20, and by E}, the set of parameters excluded
in Steps 17 and 28. Recall also that for the reasons explained before, this third
type of exclusions may be disregarded when estimating the measure of the total
excluded set.

Lemma 5.6 There are absolute constants By > 0 and by > 0, independent of n
and k, such that
m(E},, N L) < Bie™""m(L)

for any connected component L of G.

Lemma 5.7 There are absolute constants By > 0 and by > 0, independent of n
and k, such that
m(E{, N L) < Bye™"m(L)

for any connected component L of G.

In Sections 6, 7, and 8 we prove Lemmas 5.1 through 5.7. We fix £, and write
U, = ¥y ,,. We also write p(n) = p(n,w, k), since it is never ambiguous to which
partition interval w we are referring.

As already mentioned, the proof is by induction: in getting each lemma we
assume that all of them have already been established at all previous iterates,
and for each critical value z;. The inductive step relies on the control of the
distances of orbits to the set of critical points provided by assumptions (30) and
(31). One consequence is that these methods, to be exposed in the next sections,
are robust under modifications of the initial point leaving distances to the critical
set essentially unchanged. Let us explain this feature in more precise terms,
since it will be useful in the last section of the paper. Take n > 1, z; a critical
point, and w any point such that, for each 1 < j < n, the distance from f](w)
to fJ(z) is much smaller than the distance from fJ](z) to the critical set (for
instance, the former is smaller than the square of the latter). Then the whole
construction described in the algorithm above can be carried out for w, up to time
n. Condition (31) for z; implies (31) for w, with the right hand side multiplied by
an inocuous factor 1/2. Defining the binding periods of w to coincide with those
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of z, the estimates in Lemma 5.3 remain true for w. Moreover, (30) for w is then
an immediate consequence of (30) for z;,. This ensures that all the conclusions of
the previous lemmas remain valid for such a point w, up to time n.

6 Returns and binding times

In this section we prove Lemmas 5.2 and 5.3. Let us start by introducing some
notation, and also a useful estimate given in Lemma 6.1. By the definition of
R(l,s, j) in the previous section,

e—(m/B)(It+]3))
a e
S+ s

where |R| denotes the length of the interval R,

[R(L,5,)| = and dist(R(l, s, §), ;) > age (/ANH+Is)

em/B) _ 1)2 en/B) 1

a) = xig(ﬂ/ﬂ) T and ag = xie(”/ﬂ) ek

The next lemma asserts that orbits leaving [—¢, €] remain expanding during a
number of iterates mo which can be made arbitrarily large by reducing € and p.
Recall that |f'| > 09 > 1 and that f, is C'-close to f outside [—7, §] if u is small.

Lemma 6.1 There exist ¢ > 0 and my > c log(1/e€) such that

F (an(w) ¢ [=9,9] and  [FL(F2 (2x(1)))] > 00,
for all1 < i< mgy and all p € [—¢, €.

Proof: Observe that |f(z)] = |f(z)] < Ce® for all z € [—7,§]. Increasing
the constant C if necessary, we also have |f(z)| = |f(2)] < Ce < Ce* for all
z € [—€,€] \ [<7, ], recall that we took f(0) = 0. Then [f(z)] < Ce® also
for points in [—7, %] \ [-7, 3], because our map is monotone on the connected
components of this last set. Recalling the definition of jy, near the beginning of
Section 4, we conclude that

§ < | (z(p)] < Ce.

Moreover, by construction, there exists dy > 0 such that f,(£[g, do]) N[—7, 7] = 0.
This §y depends only on f and so we may suppose € << dy. Then we take my > 0
to be maximum value of i for which |7+ (z;(u))| < . Let K be a strict upper
bound for the derivative outside [—7,y]. In view of the previous estimates, we
get

_ 1og(8,/0)

K)™t0er > 60 = m
(K) =0 0= log K

1
—1>clog-
€
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for some ¢ > 0 (since € is much smaller than ¢p). The remaining claims in the
lemma are now automatic. O

The main step in the proof of Lemma 5.2 is to find a convenient lower bound
for the length of ¥, (w). It will follow that ¥,(w) can not intersect intervals
R(l, s, j) close to a critical point, that is, with || 4 |s| large, without intersecting
several such intervals, which would contradict the hypothesis.

Suppose first that w is not a connected component of G. Then, it must have
been created through interval decomposition as in Step 21 at some iterate n; prior
to n. Equivalently,

n; = min{m : w € Py}
By construction, ¥, (w) contains some R(l;, s;, j;) with e~ "/l +lsil) > g=pmi op
else (l;, s, 7:) = (£ko, 1,1). Then
e~ @/ B)(Ik|+[s:l)

(W, ()] > [R(; 85, 55)| > aa e arg(e

—(W//J’)(IliHISH))

where g(t) = (n/B)3(t/log®(1/t)) is an increasing function of t. Now we claim
that
[Ta(w)| 2 (1+267/) |y, ().

In order to prove this we note that, by construction, n does not belong to any
binding period. Therefore, the time interval [n;,n) may be written as a union of
(complete) binding periods [, + p(l)], n; <1 < n, together with iterates outside
[—¢€, €]. If p(n;) > 0 then Lemma 5.3, together with the fact that f, is expanding
in S\ [—¢, €], yields

™) (F (o (1)) | > Ao ™72 > A
Now, using Lemma 5.4

[Ta(@)| _ [Wa@)l/lw] _ [ 1 () ()
W, (@) W (@)l/ |l 9, ()] — AT (26(v))]

for some p, v in w. Combining with Lemma 5.5 we find

W) o 1 () (e(m))]
W, (w)| — AT Az |(f7)' (2 (1)

1 n—n;\!{ £n;
2 o Y U )

We fix
Ag = (1+2e"P) A2 4, (32)

and the claim follows. If p(n;) = 0 but ¥,,,(w) C (=9, y) then (steps 14-15 of the
algorithm in Section 5)

™) ()| = e F >> Ao
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and the argument proceeds as before. In the remaining case, p(n;) = 0 and ¥,,, (w)
is not contained in (—7, §), necessarily, n > n; + mg and so, by Lemma 6.1,

™) (F (e ()| = 05" >> Ag

as long as € is small enough. Hence, the claim holds also in this case.

Now the conclusion of lemma is easily deduced: let (I, s,5) # (f+ko,1,1) be
such that ¥, (w) intersects R(l, s, 7). The hypothesis implies that ¥,,(w) is con-
tained in the union of R(l,s,j) with some adjacent interval of the partition.
Hence,

1
ar(1+ 2e(@/8))
> (e A Dy,

1 1
g(em@IURED) = —[R(,5,5)| > [Wn(w)] 2 —[Wn, (w))|
ay a

Recall that ¢ is monotone. If (I;,s;) = (£ko, 1) then it must be (I,s) = (Fko, 1).
On the other hand, if (I;, s;) # (£ko, 1) then e~ (7/ALi+lsi) > e=pri and it follows
that e~ (/A U+[s) > g=pni > g=pn

We are left to consider the case when w does coincide with a connected com-
ponent L of G. In this case we set n; = jo(w, k). Then, by the definition of G,
|W,,.(w)| > €. In view of the structure of our algorithm, n > n; 4+ mgy. Then, using
Lemma 6.1 as before,

[(Fa7) (F (ze(w))| = 057 >> Ao

and so |¥,(w)| >> e. This implies that (I,s,j) = (£ko,1,1) in this case. The
proof of Lemma 5.2 is complete. O

Now we start the proof of Lemma 5.3. In Steps 18 and 29, we defined the
binding time p(n) for partition intervals w containing some po € w for which
zi1(o) is o-expanding and satisfies (31) up to time n. As before, we take (1, s, j),
with s maximum, such that ¥, (w) intersects R(l, s, 7). First we fix y = po and
claim that there exists A; > 1 such that

1

L | e
As 7 (fa) (fu(@))
for every 1 < j < min{p,n} and every & € [fu(xl),fﬁ“(zk(u)]. To prove this

claim we let n = f,(2;) and consider 0 < 7 < j. There are two cases to treat,
corresponding to the two possibilities in (29). If [ f}(n)| < € then, by Lemma 3.3,

FULE) ~ S'ULEm)| _ , 1BE S _ .
P ‘§C|f,a(n>—mm<z~-1>\§0 |

‘ < Aj (33)
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If [fi(n)] > € then [fi (&) — fi(n)| < €'F7e™™ << € and so the interval bounded
by fi(¢) and fi(n) is contained in the region S*\ [~7,7], where f = f. Thus

"(£u(8)) — f'(fi(n))
)

< C|fiE) — film)| S CMtTe ™ < Ce
All in all,

s

1=0

% % J
PO THO) o o<
fr(fi(m) ;
and (33) follows immediately.
To prove part (a) of the lemma, we use condition (31)

. As p > 0, we have
| (zk (1)) — o] < 7lzg| < e In particular, (I, s,7) # (£ko,1,1) and so

M zi(p)) — x| > a2€*(77//3)(|l|+\5|) > aqe . 34
"

Using second-order Taylor approximation we get
1 1 oy o
¥ ) — )| 2 17 @) (ase)? > L (35)
recall that | f"(x;)| > C7'z;|*"2 > C~'¢>2. Then, for each j < min{p, n}, there
is some & between f,(;) and f;*!(z;(u)) such that

L () = S @) =1 O (i) = fulz)]

(36)
> Ot 2e () () > 2e o,

as a consequence of (33). We use the induction information |(f2)'(fu(21))] > o,
cf. Lemma 5.1, and we suppose € > 0 small enough so that €=2 > 2C A3. Hence

2 "0? < | I (i () — fiT (a)| < 2

(37)
and then e=%"¢g7 < 1 for all 1 < j < min{p,n}. In particular

—2pn + logo min{p,n} <0,

2
implying min{p,n} < ] P n,
ogo
thus proving (a).

Next we prove (b). First, for some &,

[ @) = f )l = 1R 1 - [fulae) — i ()]

< CIURY U G ()L ) G () — .
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Using the claim once again,

) (U G () P = R (G ())) 1P - L (e (1)) 2
> CTHURY ule)) - 1R Lt ()] - CH L @) - [ (2 () — 2
> CTHUR) (fule))] - [ o - LR () = FrP (2 ()]
> C=loPe 2| fi(my) — [P+ (2 ()]

We must distinguish two cases. If |f#*!(z;)| > € then, by the definition of p in
(29), we must have |27 (z)) — frt#F1 (2 (p))| > €777 ® ). Therefore,

|(f£+1)'(f,?(2k(ﬂ))|2 > O 1gPtlea—147,—7(p+1) > AggQ(”“)/?’, (38)

as long as we fix 7 < min{1 — o, logo/3}, and suppose € small enough. On the
other hand, if | f2*!(z;)| < € then, by (29),

2 @) = £ ()] > L0 (@) = G0,

Since p < m, we may also invoke (31). Note that this gives two possibilities:
either | f24!(2))| — Zm@)| > C e or [f2(21)| — Zmg)| > Cre™#P. In either case,

|2 (@) — [P (z(p)| > C lee PHTEHD
and so
(Y (fi(zr(p) [P > C loP e e (Dt > AR P t1/3 (39)

as long as we take €, p, and 7 small enough. This proves the lemma for u = pqg.
Finally, consider an arbitrary y € w. In (a) we have nothing to prove: by
definition the binding period p(n) is constant on w. To prove (b), we begin by

claiming that _ '
(£ (&) = f'(f1,(&2)
f'(f(&2))

is uniformly bounded, where & = f(2(1)) and & = f} (2x(t0)). To prove this
claim, we estimate each of the terms in the sum. Given any 0 < 7 < p, there are
two possibilities. If | f; (z;)| > € then (29) implies

F'(fi(6) = (£ (&)
f'(fio(&2))

>

=0

(40)

‘ < C|fi(&) — £, (&) S CetTe™™ < Ce™™.

31



If | i, (21)| < € then Lemma 3.3 together with (29) give

f'(f,i(fll)) - J'( 20(52))‘ <C |f;(§1) — fi,(&)] <c 2e7™ < Ce
f'(fLs(&2)) | fio(§2) — Tz I—e™

Finally, if 7 = 0 then Lemma 3.3, together with the assumption that & and &

are in the union of, at most, three intervals R(l, s, j), yields

(&) — f'(&) & — &
@ | = —a ¢

This proves that the sum in (40) is bounded by >, Ce™" thus proving our
claim. As a consequence,

<

Ql =

R (i) | _ o
(fh ) (finy (2 (o)) | —

for some C > 0, which completes the proof of Lemma 5.3. O

Let us remark the following useful fact about the binding period that also
follows from the arguments in the proof of the previous lemma:

2T

<
p= Blogo

(e + ) (41)
This can be deduced as follows. On the one hand, from (34) and (35),

1 L a2 o s
4 ) = )| 2 5 20 () = mf? = g et /D,

On the other hand, as in (36) and (37)

2> [F ) — 70| 2> 00 ) — fu)|

Combining the two bounds and supposing e small, we get e 2("/B)H+s]) < 53
for all j < p. The particular case j = p is precisely (41).

7 Distortion bounds

This section is devoted to the proof of the distortion bounds in Lemmas 5.4 and

5.5. Obtaining these properties is the main reason for introducing the partitions
P, we defined in Section 5.
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Beginning the proof of Lemma 5.4, we recall that 0, f, = £1 and so

W, (1) . " Dufu(fi (2 (1))
‘(fm'(zk‘(u))‘ Hi) 2 (/1) (2 (1))
n 1

L X @)

(42)

<

n
< 1+20*i < 0.
i=1

This gives the upper bound in the statement of Lemma 5.4. The lower bound is
somewhat more delicate: we must show that z; spends a long time in a region
where the derivative is very large (larger than 4, say). Let jo = jo(2k, pt)- Then,
since u € G,

() ()| = €077 > 47

for every 7 < jo, recall Section 4. Depending on k, the value of j, may not be
large enough for our purposes. On the other hand, we have seen in Lemma 6.1
that after time jy the trajectory of z; remains for a long period my in the region
S'\ [—7, 7], where the derivative is large. We take f such that oy > 4, and €
small enough so that Y- ;o ym, 0 * < 1/4. Then (42) gives

‘L(,u)‘ > 11— jzoei(l—'y) _ %61'0(1—7)00—1' — Z ot
() (ze(p)| i=1 i=1

1>jo+mo
, 1
> 1-Y 47— > o7'>=
i>1 i>jot+mo 2
This ends the proof of Lemma 5.4 (and we may take A; = 2, say). O

Next we prove Lemma 5.5. The previous result asserts that, for the parameter
values under consideration, the derivatives with respect to the parameter and the
phase space variable are comparable. Therefore, we only have to prove the first
statement in the lemma, the second one following as an immediate consequence
(for some, possibly larger, Ay > 0).

In order to bound

n—1
() G ()| = TT 1 (Zn(p))
h=0
away from zero and infinity, it suffices to find a uniform bound for

N (n (1)) = f1(Vh(p2))]
o 43)
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We start by estimating the contribution of the initial iterates h < jg, where
Jo = Jo(zk(u),p), # € w, is as defined at the beginning of Section 4. Using
Lemma 3.3,

P (W) = ' (Wh(p2))] 0 Wy (1) — Up(o)]
i;) (W (p2))] : Z [Wh(12) —$m(h)|

|~Tm(h)| .
S C ~ S C]O S Ca
;;) FlTmn)|

recall the remarks preceding (9). From now on, we consider h > j, and let
Ap(w) = infye, [Yh(p) — 2], and R(l,s,j) be the partition element associated
to the iterate h. We claim that if p(h) > 0 then the sum over [k, h + p(h)] is
bounded by C|¥(w)|/Ap(w). Using Lemma 3.3 we find

P O() — P @) W) — Tali)| [ 04(w)]
FO) S W) —m] = M)

Next, we consider 1 <7 < p(h) and proceed as follows. Applying the mean value
theorem to Wy (u) — Wy ;(1) we obtain, for some £ € w,

[Ohi(pn) — Unpipz)| < O(f) (Fe (2 () [Wnlpr) — T (p2)]
CI(fe) (¢ (DI (w)
Cl(fe) (e @D (@) [ f (21(6)) — 2l (w)].

According to the definition of p(h), we have two possibilities. The first case in
(29) gives, for some 7 € [fe(x1), fE (21(€))],

Lol = emaple™ > S (2(6) = fela)]
= \( DI ((6)) = felw)
> CTH(EY M @)l 2 (2(€)) — 2
> C’ll(fé Y @D @)L (2(6)) =z,

where o is chosen as in Steps 16, 27 and the last equality uses (33). Then,
combining Lemma 3.3 with the inequalities we have just obtained,

' (Whyi(pn)) = [ (Phyi(pa))] C (Whai(p1) — Whyi(pz)]
L' (Whyi(p2))] - Whii(t2) = Tmg-1)]
—7i [ Wh(w )||fﬁ0(l"l) - xm(i—1)|
C
= ) - all k) = o ]
il ¥n(w) 1 i Yh(w)]
M@ e S Y AW

ININ TN

IN
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In the second case of (29) we have €' 77e™™ > [fFT(2(€)) — fi(x:)| and so the
same kind of calculations give

[ (Onp)) = f/(On(pa))|

L[ (Wh(p2))) < ClWhii(pn) = Wppipz)|
i |Yn(w)[e™T i ()]
< Ce |f§h(zk(£)) i < C An@)

This proves that the total contribution of [k, h + p(h)] to (43) is bounded by

(
@) W)
ZC a0 <Cm0)

as we claimed. Analogously, if p(h) = 0 then either
f' (W) = f'(Wnp2))| _ A 1n() = Ynlpe)| _ ~¥n(w)]
PG S Wamom S Au@)
for iterates in [—e, €], or
[/ (Wh(p)) = ' (Wh(p2))| [ Wh(w)
[f"(Wh(p2))] Ap(w)

for iterates outside [—¢,¢]. As a consequence, the overall contribution of the
iterates jo < h < n —1in (43) is bounded by

T
oy el (44)

heS

< OlWp(p) — Ualpe)| < C

where the sum is over the set S of iterates not belonging to any binding period.
The final step is to bound the sum in (44). Let [ and 5 be fixed and denote
S(1,8) = {ho > hy > ... > h; > ...} the set of iterates h > j, whose triple (I, s, 7)
has [ =/ and s = 5. Lemmas 5.3b), and 5.4 imply

Tho(w)] > C Lo T 0, ().
Moreover, by construction, Ay, (w) > C~R(I,5)| and

|1R(L,5)|
(453

[Who(w)] =

It follows that
ohimho) 3| (w)]

3 (Waw)| _ Z'q]’”(w)'SCZ

nests Dn(@) >0 Ani(w) = IR(I,5)|
O-—i/3 C
C - <
- QZO(1+§)3 ~(l+5)3
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We conclude that

[Wh(w) 1
<CY <,
,; Ap(w) lzs: (I+5)3
which completes the proof of Lemma 5.5. O

8 Parameter exclusions

Now we prove the estimates in Lemmas 5.6 and 5.7 concerning the measure of
the set of excluded parameters.

The strategy in the proof of Lemma 5.6 is to show that the intervals w' C w
in Step 21 corresponding to partition intervals R(l, s, j) with large |I| 4+ |s| must
be small. In proving this we use the previous bounded distortion lemmas.

Let L be a connected component of G. We treat first the case when L belongs
in Py -1, that is, at stage n it did not yet suffer decomposition (Step 21). Let
Jo = jo(L, k). Then, by definition of large component, m(¥,,(L)) > e. Moreover,
recall Lemma 6.1, there are at least my > ¢ log(1/¢) iterates (beginning at time jp)
during which the critical orbit remains in a region where | f;,z‘ > 0gy. In particular,
n > jo +mg > ¢ log(1/¢€) and so, using bounded distortion,

m(E,'c,n N L) m(¥, (E,'c,n NL))  Cmin{e ", ¢}
m(L) - m(¥, (L)) - Cleog®
We have used the fact that the measure of the set excluded by (31) is bounded
by C'min{e="",e}. If pn <log(1/e), it follows

m(Ellc,n N L) < Co_aclog(l/e) < CO’JCPn-
m(L)
Otherwise,
! —pn
m(Ek,n n L) < e’ < Ce—cp(logao)n.
m(L) el—clogoo

So, the lemma is proved in this case.

From now on, suppose that L has already been decomposed, and let w be any
of the intervals in Py ,—1 contained in L. Define n;, = min{m : w € Py} <n-—1,
the iterate when w was created. Then W, (w) contains some interval R(l;, s;, ji)-
Our distortion bounds imply

Oy L)
o)l = g o > & o, o)
> L) )
> Ly e S
BCR  SC (ERFY E
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We treat first the case when w is such that p; = p(n;) = 0. By Lemma 5.3b),

n—mn; n; 1 T L;|(2—a n—n;)/3 1 s L;|(2—a
(Fmy (£ (o ()| = 56( B)li|(2-0) (n—n)/3 > 56< /Bl 2-) (45)
and so
(B, Nw) (B, Nw) _ Cmin{er, (1] + si)?
mw) m(U, () = em/BulE-a)e—w/Al+sD

< Cmin{e™, e} (|li| + |s])2e"/Alil2=a=1)

In the last inequality we use the fact that p; = 0 implies that s; is (uniformly)
bounded. By (31), |l;| + |s;| is either equal to kg +1 < C'log(1/€) or smaller than
pn; < pn. If pn <log(1/e), we find

m(E,’m Nw)

< log(1/€))® < Ce'/? < e=P/2,
e < Ce(Clog(l/e))> < Ce’* <e

Otherwise,
m(E,’m Nw)

< Ce™"(Cpn)? < Ce™P/2,
m(w)

Now we suppose that w is so that p; > 0, and write
(™) (FiCar(uo)) | > SR (fi (2 (0)))] -

[P (P (2 (o)) -

(46)

The second factor is bounded from below by C~1g3( P > -1, For the first
one we derive two different lower bounds. On the one hand, the estimates in (38),

(39) give
1 1
‘( pH—l)l( ni+1(2k(ﬂo)))| Z ao_pi/?)e—(l—a—’r)/Q Z 66_(1_Q_T)/2' (47)

Ko Mo

On the other hand, we also have

(R (g (2 (o)) | =

> &1 (fuo)" (@) | e @/AIHSD | (fRey! (it (2 (o))
. . (48)
_ sl P G () — 1R ()
Z é‘(fu)”(xh)‘ € (x/B)(ILil Hlsil) . |(;20)u(mliﬁelioz(w/ﬁ’gl((\)li|+\sli|)
> Le(n/B)(lil+lsi) gl o= (p+TIp:,
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In the second inequality we used the mean value theorem, in the same way as in
the proof of Lemma 5.3(a). For the third inequality recall the estimates leading
to (38) and (39). Now we distinguish two subcases. Suppose first that n is small
enough so that pn < 2log(1/¢), that is, € < e ”*/2. Then we use (47) to get

mEn N0) - min{e™”, e} (L] +|si])*
m(w) = 7 e (1=a=7)/2 g—(x/B)([li]+]s:]) ©

Since p; > 0, we must have pn; > log(1/¢) and e~ ("/ALltlsil) > g=pmi > g=rn by
(31). Thus,

m(E,’m Nw)

< C€(l—a—7/2)(pn.)3 < 6(1—04—7)/4 < 6(l—oz)n/IO (49)
m(w) v ’

as long as 7 and € are small enough. Otherwise, if pn > 2log(1/¢€), then we use
(48), which yields
El —pn . 1\3
m( ke 1 w) < Ce (s + [s])

Using Lemma 5.3a) and (31),

e(P+T)pi(|li‘ + |5i|)3 < Ce2p(p+7)/logo)n; (Pni)3 < Cepn/6’ (50)

as long as p and 7 are small enough. Replacing above and taking 7 sufficiently
small, we get

m(E,’m Nw)

< CeP(1=1/6=(1+7)/2) « C1o=pn/6
m(w) T -

We have covered all the possibilities for w C L, and obtained exponential
estimates for m(Ej,, Nw) in every case. Summing these estimates over all the
w C L, we get

m(Ey,, N L) < Ce™""m(L),

where b; = min{(1 — «)/10, p/6}. This concludes the proof of the lemma. O

For proving Lemma 5.7, we fix constants 0 < v; < 7, < 1, with
11 > max{(3 + «)/4,1 — a}.

Given any connected component L of G and any w € Pin—1 contained in L,
takeL:cDo DWi D ... D Wp1 =W, Wlth(:)j € Pk,j for 0 S] < n-—1. Let
no = jo(L, k) and n; > --- > n; > ng be the values of 1 < j < n — 1 for which
@Wj # @j_1. Then let w, = &,, for 0 < r < i. Note that w; = w and wy = L,
in particular, m(¥,,(wy)) > €. Moreover, by construction, each ¥,, (w,) contains
some interval R(l,, s, j,). Then, we claim that
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(1) for all 1 < r <4 with (I, s, Jr) # (E£ko, 1,1),

1@l Y o) /B - )

(2) moreover, |wi|/|wo| < Ce(7/BIhl+ls1]) ga—t,
Starting the proof of claim (1), we note that

—(m/B)(|tr [+]s+])
|wr | <C Uy, (wr)] < €
|wr 1| |\Ilnr(wr 1)| |\Pnr(wr—1)|

because of bounded distortion. Observe that in the last inequality we use the
assumption (I, s,,J») # (£ko,1,1). Now we split the argument into three sub-
cases, cf. the proof of the previous lemma. If p,_; = p(n,_1(w)) = 0 then s,_; is
uniformly bounded and the claim follows from

U, (W) > %e(ﬂ'/ﬂ)“r—l|(27Ot)e_(71'//3)(|lr—1‘+|5771D(|lT71‘ + |sp_1|) 73

> Lelm/B)br—1l+lsr—1)@=a=)(|] _ | + |s,_1]) 73

Q

> e=(/Bm (e[ +]s, 1))

where we also use (2—a —1) > 0> —v and |l,_1| + [s,—1| > ko >> 1. Next we
assume p, 1 > 0. Corresponding to (47) and (48), we have

1
|\pm (wr_1)| > 56_(1_a_7)/26_(7r/ﬂ)(‘lr—1‘+|57‘—1D(‘lr_1| + \Sr—1|)_3 (51)

and also .
Wy, (wWr-1)| > 56”76*(””)”’”(Ilr71| + [sr]) 2. (52)

We distinguish the two remaining subcases according to the relation between
log(1/€) and |l,—1| + |sp—1|. If (7/B)(|ly=1]| + |sr—1|) < 2log(1/€) then we use (51)
to obtain

el < O /B Hrl) el1=a=)/2 oo/l D 1,y | |5, ])?
< Ce /BNt +lsr) o/ )1 +lsraE+atn) /A (1| 4[5, 1|)3 (53)
< o @/B)Itr|+[31) (/81 (=] +l57-1)]

as long as we take 7 small, recall that 1 > v, > (3 + «)/4. In the last inequality
we also use |l,—1|+|s,—1| > ko >> 1. Finally, if (7/8)(|l;—1|+|s,—1]) > 21og(1/e€)
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then we use (52), which leads to

de‘ < Clls| + 8| T o) (1) o+

r—1
< O] + |5y )P~ 0Bl i) /B s 1 D(1-7)2420p+7) 05)
< o @Bkl tor) /By (b1 +lsn 1) (54)

In the second inequality we use p,_1 < 2(w/B)(|lr—1| + |8r—1])/logo, which is
given by (41). In the last one we suppose that p and 7 are small enough. The
proof of claim (1) is complete.

Next, the definition of large component means that |¥, (wo)| > €. Since
U, (wg) C [-Ce* Ce?], it must contain at least a fraction C 'e!™* of some
fundamental domain of the fixed point of f at the origin. Therefore, by bounded
distortion, |¥,, (wp)| > C e and

w1 | < C\‘I’m(wl)\ < Ce @Bl +]s1]) g1
wol = [Wn, (wo)|

This proves claim (2).
Then, set B, = Y7+ =" p(n), so that B(n,w,k) = By + - -+ + B;. We claim

(3) B, < C(|l;] + |s,|) for every r;
(4) B, = 0 whenever r =0 or (I, jr, S;) = (£ko, 1,1).

In order to prove (3), let ty = n, and n, < t; < ... < t; < n,4; be the values of
t for which p(t) > 0. We may suppose ¢ > 1: otherwise, B, = p(n,) and (3) is
given by (41). Given 0 < j < g we have, by Lemma 5.3(b),

tz'—io
Wy, (wr)| 2 075 [ Wy (wr)|-
We denote by A;, o; the values of [, s corresponding to t;, in particular Ay = I,
09 = s,. Then, the previous equation gives

tj —tg

g(e=TBNIHI9iD) > 5257 g (e=@/B)(Aol+ool)y (55)

where g(t) = (7/8)%/1log®(1/t). Let a; = e~ ("/BX+loiD) and T = ¢; — ¢5. Then,

clearly,
N log1/a; °
“T/6 N _ (N ~T/6 j
9lo"ay) = glay)o (10g1/aj+T/6loga> '
If € > 0 is small then o; must be large, in particular 3/(log1/c;) < 1. As a
consequence,

() = i) =
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It follows that
90" %) > g(ay)o ™* > g(a),

where the last inequality results from (55). Using the monotonicity of g, we
obtain 0~ /5a; > ay, that is,

= (/BN 1+1051) > 1/6(t—to) o=(/B) (Mol oo (56)

Combining this with the binding period estimates we get,

p(t) < (Il +loj]) < C(Aol + loo]) = C(t; = to)
C(ll| + lse]) = e (p(to) + -+ p(t; 1)),

for positive constants C > 1 > ¢ > 0. It follows that

ep(t;) < p(ty) < C(lle| + Is:]) — e(p(to) + ... + p(t;))
and then
ZP ) < O] + [s])-

As this holds for 1 < j < ¢, the proof of claim (3) is complete.

We also need to check that By = 0. Reasoning by contradiction, suppose that
there exists ng < t; < m; such that p(¢;) > 0, and take ¢; minimum with this
property. Now,

—(7/B)(|l1|+]|s
e WAWRRD s < o,

\ <C————-—X<
[ty (wo)| < (Ll +s1)® = <

On the other hand, the same argument as in the proof of claim (2), gives

T, (w0)] > éel—a S>> €
which is the contradiction we were looking for. Moreover, a similar reasoning
applies when (I, s,,j,) = (£ko,1,1), with €'=* replaced by (log(1/¢))™3. In-
deed, in this case ¥, (w,) covers a subinterval of [—e¢, €| with length greater than
C~'e(log(1/€)) 2 and thus contains a fraction larger than C~'(log(1/¢))? of some
fundamental domain. The proof of claim (4) is also complete.
Now we introduce

I = Z 40B(nw k) = |wo |Z 49 B(n,w,k) |W1|.” jwil

|wo| |w; 1]

where 6 > 0 is to be fixed appropriately small, and the sum runs over all the ele-
ments w € Py, contained in the large component L. If (., s,, j,) # (£ko, 1,1)
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then we use claims (1) or (2) to bound |w,|/|w, 1|. On the other hand, given
any r; < 1o such that (I, s,,j,) # (£ko,1,1) for all r; < r < ry then (take ro
maximum)

|w7“1| . |w7“2—1‘ ‘wT2|
|w7‘1—1| |w7“2—2| |w7“2—1|

IN

1..-1- e—(r/ﬁ)(llmlﬂw\)(10g(1/e))3
< e~ T/ B)(lry |+ [sr5]) o/ B)y1 (Iry —1[FH|sry 1)

The first inequality follows from the same kind of estimates as in the proof of claim
(4). In the second one we use e(™/Anllr-tltlsr-1) > C=1e=m > (log(1/e€))3.
Replacing these estimates we find

i | .
! T AT (s D et T] o /B ] o/Bmlbl+ s

|U)O| w 7':1,* 7‘:1,*
< Ceaflzef(vr/mmznﬂsinezlceZizl,*(ur\+|sr|)e—<w/ﬁ)<1—mzizl,*(urmsrn

< Z (4CO—(n/B)(1—m)) 3t _ U ERERD)

Y

where the star * indicates that all the sums and products are over the values of
r for which (I, s,,5,) # (£ko,1,1). In the last step we used e ("/B)kl+ls:)) < ¢
together with aw — 1 4+, > 0. Then, taking 6 sufficiently small,

I
|wol

< O e @A) ool laely

%

< O e NI e Py Y (] + [si]) = M),
M r=1,%
Now, the number of solutions of ¥°i_; , & = M with large (positive) & is well
known to be less than €™ with v, > 0 small. In particular, vy < (7/8)(1—"2)/3
if € > 0 is small enough. Since each sequence (I, s,,j,), 1 < r < i, corresponds
to at most one element of Py, 1, the number of intervals w € Py, 1 associated
to a same solution &, = |I,| + |s,| is bounded by

A4 T 4]+ |se)? < e
r=1,x

if € is small (implying |l/,| + |s;| > ko large). Observe that we consider these
solutions indexed by those r = 1,...,i with (I, s,, j,) # (£ko, 1,1); the factor 4
bounds all the possible choices corresponding to the remaining values of r. Note
also that i < n/my < n/clog(1/e) < n/(2log4), for small enough €. Altogether,

I

| | < CZ —(w/B)(1— 72)4—2706971 < CZE—WOM on < Ceﬂn
Wo
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This implies

Ce™wo| > T > e > w| = em(E}, N wo).
{wCwo:B(n,w,k)>n/2}

from where the lemma follows immediately (recall that wy = L). O

9 Proof of Theorem A

We begin this section with the proof of Lemma 5.1: the critical orbits exhibit
exponential growth of the derivative for all the parameters satisfying (30) and
(31). To do this we write

(57 )| =
“TMIPEE) T FEE@) T 7).
1=0 {i:p(2)=0} {#:p(2)>0}

The first factor is larger than ¢ (=MJo_ by Corollary 4.4, and the second one is
larger than off “?W=0 by construction. Moreover, Lemma 5.3 implies that the
third factor is larger than 1. Thus,

iy )

() ()] 2 g™ HEPEOED > g Bl > g

completing the proof. O

Similar arguments show that [(f})'(x)| grows exponentially fast as n — +oo,
for Lebesgue almost every point z. Let us explain why, without going into tech-
nical details. Suppose first that x does not belong in the pre-orbit of any of the
x;. Then we can define binding periods for = in the same way as we did for
critical points, and the second part of Lemma 5.3 remains valid. Then choos-
ing a subsequence (ny); of iterates such that no ny belongs to a binding period,
we get [(f7%)'(z)| > o™/3 for all k. This is a consequence of Lemma 5.3(b),
and the fact that f, is expanding away from critical points. In particular,
limsup(1/n)log |(f})'(z)| > log /3 for every such point z.

Note that the length of the binding period corresponding to an iterate n can
be bounded in terms of the distance from f7(z) to the nearest critical point, in
the same way as before (41). However, now we are imposing no lower bound on
this distance, and so binding periods can be arbitrarily long (the sequence 7y can
be very sparse).

Yet, refining these arguments and restricting to a full Lebesgue measure sub-
set of points z, one may replace limsup by liminf above. The main step is to
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prove, using the distortion bounds we obtained in the previous sections, that
for Lebesgue almost every = there is some £ > 0 such that y = flff(ac) has
min{|f}(z) — xx| : [k| > ko} > e for all j > 0. Then the same arguments
as we used for critical orbits show that |(f7)'(y)| > ¢™/® for all n > 0. Therefore,
lim sup(1/n) log [(f)'(z)| = limsup(1/n) log |(f)'(y)| is bounded from below by
logo/3, as we claimed.

Next, we show that f, is transitive, for every p € S, where S = Ny S, is the
set of parameters surviving all the exclusions. Let P ¢ [—¢, €] be some fixed point
of f and P, denote its continuation as a fixed point of f,. It is easy to see that
the unstable manifold W*(P,) coincides with the whole S': it suffices to note
that this holds for W*(P) and that f, is close to f, which differs from f only on
the small interval [—e, ¢]. For the same reasons, the fact that the negative orbit
of P under f is dense in S* implies that f;"(P,) intersects R(+ko,1,1) for some
n > 0. Now let J C S* be an arbitrary open interval. We construct sequences

e J=JyDJiD---J, D--- of intervals,
e <y <<y, <---of iterates,

e and (ll,Sl,jl), RS (lnasmjn)a T

such that fi(J;) contains R(l;, s, j;) and |l;| + [s;] is strictly decreasing. This is
done, by induction, as follows. For each 7 > 1, we take 1v; to be the first iterate
such that f7i(J;_1) contains some R(l;, s;, j;). Note that v; must exist: other-
wise, f |.J;i—1 would be monotone for every v > 1 and so, due to the expanding
behavior of f,, the length of f7(.J;_1) would be unbounded, which is a contradic-
tion. In fact, this expanding behavior implies that f;f(Ji_l) is much larger than
fri-1(Jiz1): Lemma 5.6 together with (45) and (47) yield

Vi 1 —\l-a-7 Vi—
)| 2 GO e ().
We fix (I;, s;) as above, with |l;|+|s;| minimum, and we set J; = f~"(R(l;, s;, Ji))-
Suppose that (I;, s;) # (£ko, 1). Then

e~ (@/B)([Lil+sil) 1 e—/B)(lim1|+]si-1])

C—— > |f" Ji_ >> | frit Ji > = )
G+ = el >> 1 Ul 2 G

if € > 0 is small. Using the monotonicity of ¢ — t/(log®(1/t)) once again we
get that |l;| + [s;| < |li—1| + |si—1]. This completes the inductive step. Now,
observe that the previous argument breaks down when (I;,s;) = (%ko,1), be-
cause in this case the upper bound for |f}(J;_1)| is not necessarily valid. There-
fore, the conclusion is that we must, eventually, reach some v > 1 for which
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fY(J) D f7(Ji) D R(%ko,1,1). It follows that f;*"(.J) must contain P, and then
U; ftm4(J) D W*(P,) = S*. This proves that f, is transitive.

Finally, we show that S = NSk, does indeed have positive Lebesgue mea-
sure. By construction, Sk ni1 = Sk \ Bk and By, = Ep ,UE] UE" . For the
reasons given in Section 5, one does not need to take E}; in consideration when
estimating the measure of the total excluded set:

ﬂ Slc,n—l—l = m Slc,n \ U (El,c,n U Ellcl,n)
k k k

and so
I\t = (2005 ) U (UL U LI N 1)
k k k
for every large component L of G. Therefore,

m (L \ Q Sk,n—i—l) <m (L \ Q Sk,n> +m (U(E,’w UEL,)N L) . (57)

k

Now, Lemmas 5.6 and 5.7 imply
m (B, UE;,)NL) < Be ™ m(L), (58)

for absolute constants B > 0, b > 0, and every |k| > k.

Now we must bypass the fact that we are dealing with infinitely many critical
points. With that in mind, we note that the nth iterate of z;(u) is very close to
the nth iterate of zioo(p) = £p if |k| > ki(e,n) = (38/ma)nlog(1/e):

(2 (1) = Fr (o)) < (Cp™)™ 2 (1) = 2oo ()]
< (CeXaeyn e (@/Bak < ¢n

Taking e small, €* is much smaller than e™#", and so it is also much smaller
than the distance from f}(2100(#)) to the nearest critical point. Therefore, cf.
comments at the end of Section 5, the conclusions of Lemmas 5.1-5.7 are valid for
all the values of [ with k; < |I| < 00 if 21 satisfy (30) and (31). This means that
if p € Sy, for every [ with |I| < k; as well as for [ = 00, then the conclusions of
Lemmas 5.1-5.7 are valid for all the critical values z;, ky < |I| < co. Hence, we
need only add over k with |k| < k; or |k| = oo, which gives

1
m <U(E,'m UE;,)N L) < > Be *"m(L) < Cne™*"log -~ m(L).
K|k ¢

k €,n), |k|=o00

Now observe that we only have to deal with n > mgy > clog(1/¢). For such an n,

1
m (U(E,’m UE,)N L) < Cne " log p; m(L) < e "m(L).
k
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Replacing in (57), we get

m (L \ (]] Sk,n+1> <m (L \ Q Sk,n> + e "m (L)

for each n > my, and so, taking e small,

m(L\ S) <> e "m(L) < Ce*m(L) < m(L).

This completes the proof of the theorem.
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