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1 Introduction

A main task in Dynamical Systems is the development of a mathematical theory
of chaotic dynamics, encompassing in a conceptual structure the manifestations
of erratic and, to a large extent, unpredictable asymptotic behaviour exhib-
ited by many natural phenomena. After Ruelle-Takens [RT], such “chaotic”
behaviour should be interpreted in terms of the presence of a “strange attrac-
tor”, a notion which can be sketched as follows. By an attractor one means a
(compact) region in phase space which is invariant under time evolution and
to which converge the future trajectories of a large — positive volume or, even,
open — set of initial states (the basin of attraction). One also requires some
condition of dynamical indivisibility, e.g. existence of dense trajectories in the
attractor. Lorenz [Lo] highlighted the crucial role of sensitive dependence on the
initial state as a source of unpredictability of the dynamics and this is a main
ingredient here: we call the attractor strange (or chaotic) if most trajectories
corresponding to nearby initial states in the basin move away from each other
as they approach the attractor.

An important model Ruelle-Takens had in mind were Smale’s Axiom A (or
uniformly hyperbolic) attractors [Sm], a class of systems whose dynamics is
now well understood. While exhibiting very rich behaviour — in particular,
they contain infinitely many periodic trajectories — they are rather robust (or
persistent) and even structurally stable: the qualitative features of both the
atractor and its dynamics remain unchanged under any small perturbation of
the system. On the other hand, uniformly hyperbolic attractors occur less
frequently in applications arising from the experimental sciences than it was
thought at some stage. Instead, a large number of numerical studies have been
identifying objects of a nonhyperbolic nature, such as the Lorenz-like attractors
[Lo] or the Hénon-like attractors [He], as more appropriate models for the chaotic
behaviour displayed by many such systems.

The discovery of these and a few other surprising phenomena (including e.g.
Feigenbaum-Coullet-Tresser’s cascades of period doubling bifurcations) strongly
influenced the current trends of mathematical research in Dynamical Systems.
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Indeed, largely in response to these discoveries, a number of results has been ob-
tained in recent years which already provide some deep understanding of chaotic
behaviour and the properties of (non-Axiom A) strange attractors. Much in con-
trast with the unstability of their dynamics — it may be modified by arbitrarily
small perturbations of the system — these attractors are, themselves, quite per-
sistent. Indeed, any flow near one with a Lorenz-like attractor also has such
an attractor, close to the initial one [GW]. The situation is more subtle in the
case of attractors of Hénon type: slightly perturbing the system may cause the
chaotic attractor to be, for instance, replaced by periodic attractors, see [Ur].
Yet, as shown by Benedicks-Carleson [BC], Hénon attractors do have a remark-
able, probabilistic, form of persistence: they are preserved by many (positive
probability) small perturbations of the initial system. Another important re-
sult with a similar flavour had been obtained before by Jakobson [Ja], for real
quadratic transformations.

In the present work we address the problem of describing the dynamical
mechanisms underlying the formation of strange attractors and/or their per-
sistence under perturbations of the dynamical system. The unstable character
of most interesting chaotic attractors also means that this problem is closely
related to the study of the processes of global or semi-global bifurcation — i.e.
modification of the dynamics — and this is the approach we adopt here. It is also
motivated by a program recently proposed by Palis, aiming at a description of
complicated dynamics in the general setting of smooth dynamical systems. The
basic strategy is to depart from some convenient set B formed by systems with
well defined types of bifurcations. One wants B to approximate every (non-
Axiom A) situation of interesting dynamics, while being sufficiently small so as
to be analysable. Then, a global understanding of the space of all dynamical
systems may be attained by analysing the forms of dynamics occurring in a
persistent way in generic parametrized families passing through the elements of
B. Note that, in view of the previous discussion, persistence is to be under-
stood mostly in a measure-theoretical sense: positive Lebesgue measure set of
parameter values. See [PT2] for an extended discussion.

In Sections 2 and 3 we focus on discrete time dynamical systems and discuss
two main mechanisms of bifurcation, resp. homoclinic tangencies and critical
saddle-node cycles, which are bound to be important ingredients in the construc-
tion of a set B as above. These bifurcations are accompanied by a wide range
of complex dynamical phenomena, including persistent strange attractors, and
indeed they provide some unifying setting for the analysis of such phenomena.

Then, in Section 4 we turn into discussing chaotic dynamics in the context
of smooth flows. While versions of the preceding results can be derived for this
context, just by reducing to Poincaré return maps, we concentrate on some new,
interesting phenomena associated to global and semi-global bifurcations involv-
ing equilibria of the flow. This includes the study of global strange attractors
arising in the unfolding of homoclinic connections.

We close this Introduction by observing that, in all the instances of chaotic



behaviour we have considered so far, sensitive dependence on the initial state
has an essentially one-dimensional character: the chaotic attractor always has
topological dimension 1 and this also means that it exhibits only one direction
of expansion around each trajectory (in more precise terms, there is one single
positive Lyapounov exponent). The study of multidimensional strange attrac-
tors, having several expanding directions, is mostly open and we refer the reader
to [V2] for some recent results on this topic.

The author is most grateful to the hospitality and support of the FIM/ETH-
Zurich, the University of Michigan and the IHES-Paris during the preparation
of this paper.

2 Homoclinic Bifurcations

Here we consider parametrized families p,: M — M, p € IR, of diffeomor-
phisms on a surface M. We also comment on the general case dim M > 2
near the end of the section. By homoclinic bifurcation we mean the formation
of homoclinic trajectories — i.e. trajectories that accumulate on a same saddle
point under both positive and negative iteration — as the parameter p varies. A
main way this process may take place is through the appearance of homoclinic
tangencies. Let us explain this in more detail. We suppose that for some g € R
the stable and the unstable manifolds of a saddle p = p; of ¢; have a point g
(and therefore a whole trajectory) of nontransverse intersection, see Figure 1.
Usually, one takes such a homoclinic tangency to be quadratic — the two invari-
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Figure 1: A homoclinic tangency

ant manifolds have different curvatures at ¢ — and to be generically unfolded by
(¢u)u- This last condition means the following: for p close to i one considers
the continuation p,, of p —i.e. the unique saddle of ¢, near p and having the
same period — and one requires the stable and the unstable manifolds of p, to



move with respect to each other near ¢, with nonzero relative speed, as p varies.
Then, for p > i say, the two invariant manifolds have transverse intersections
close to gq.

A particularly simple model is the Hénon family of diffeomorphisms of the
2-dimensional plane:

hp,,u:]Rz — ]R2, hu,l/(xay) = (1 - /J/$2 + Vy7m)' (1)

In fact, it is not difficult to check that for each fixed v = ¥ # 0 there are
(infinitely many) values g = [ such that hj ; exhibits quadratic homoclinic
tangencies which, moreover, are generically unfolded by (h,,7),. Note also that
|det Dhy, .| = |v|.

In the sequel we focus on homoclinic tangencies associated to area-dissipa-
tive saddles, i.e. |det Dcpi-l (p)| < 1, where [ is the period of p. Of course, the
case |det D<pf7 (p)| > 1 can be reduced to the previous one just by reversing time
(then one should replace attractor by repeller in what follows). See also [Du]
for interesting recent results in the area-conservative context.

Homoclinic bifurcations are a very common feature occurring in many rele-
vant applications and also a main mechanism for the development of complicated
behaviour in a dynamical system. Indeed, the transition of experimental models
into complex forms of dynamics — e.g. under variation of physical parameters
- very frequently involves the formation of transverse homoclinic trajectories.
Moreover, this last process is always accompanied by many other profound dy-
namical modifications, including

creation of horseshoes: [Sm] For every p > [ close to fi, ¢, has invariant
hyperbolic sets containing infinitely many periodic saddle points.

cascades of period doubling bifurcations: [YA] For parameters (ug)g
arbitrarily close to i, ¢, has periodic attractors of period const 2*.

creation of saddle-node cycles: For values of u arbitrarily close to ji, ¢,
has critical saddle-node cycles, see next section;

coexistence of infinitely many periodic attractors: [Ne], [R1] There
exist intervals I arbitrarily close to fi and generic (Baire second category)
G C I such that every ¢,, u € G, has infinitely many periodic attractors.

Moreover, extending the methods of Benedicks-Carleson [BC], it was proven in
[MV] that the presence of strange attractors is always a persistent phenomenon
in this setting of homoclinic bifurcations.

Theorem 1 [MV] For any generic family (p,), of surface diffeomorphisms
going through a homoclinic tangency, there exists S C IR such that ¢, has
Hénon-like strange attractors for every p € S and SN[i — ¢, i + €] has positive
Lebesgue measure for all € > 0.



By a Hénon-like strange attractor of a transformation ¢: M — M we mean
a compact set A C M such that ¢(A) = A and

1. A coincides with the closure of the unstable manifold of some saddle of ¢;

2. the basin W¥(A) = {z € M:lim, 4 dist (¢™(2),A) = 0} contains a full
neighbourhood of A;

3. there is some Z € A whose trajectory {¢™(Z):n > 1} is dense in A and

4. such dense trajectory may be taken exhibiting exponential expansion:
[|[Dp™(2)|| > co™ for every n > 1 and some ¢ > 0, ¢ > 1;

5. there are critical points z € A, admiting nonzero tangent vectors v such
that || De™(2)v|| = 0 as both n — +00o (hence, A is not a hyperbolic set).

A stronger form of the crucial sensitivity property 4 (positive Lyapounov
exponent) is given in [BY], where physical (or Sinai-Ruelle-Bowen) invariant
measures are constructed for strange attractors as above: with respect to such
a measure, almost every z € A satisfies the inequality in 4, for some ¢ > 0
depending on z. As a consequence, the trajectories of a large (at least positive
volume) subset of points z € W#(A) also exhibit such an exponential expansion.

Now we give a short account of homoclinic bifurcations in high-dimensional
manifolds. As before, we consider generic families ¢,: M — M, p € IR, such
that some @5 has a homoclinic tangency, but now we let m = dim M > 2. In
this general setting the dynamics of ¢, close to the tangency, 1 ~ i, frequently
involves periodic saddles or sources and also “strange saddles,” [Rm]. In order to
have attractors one takes the saddle p to be sectionally dissipative: the product
of any pair of eigenvalues of D¢l (p) has norm less than 1 (in particular there
is at most one expanding eigenvalue). Then, under this assumption Theorem 1
generalizes to arbitrary dimension (even to arbitrary Hilbert manifolds).

Theorem 2 [V1] Let (¢,), be a family of diffeomorphisms on a manifold
M, dim M > 2, unfolding a homoclinic tangency associated to a sectionally
dissipative saddle p of pz. Then, there exists S C R such that ¢, has Hénon-
like strange attractors for every pu € S and SN[i—e, i+¢] has positive Lebesgue
measure for all € > 0.

Newhouse’s theorem on coexistence of infinitely many periodic attractors
also extends to the general sectionally dissipative setting [PV]. A reformulation
in the absence of sectional dissipativeness is proven in [Rm]. See [YA], resp.
[MR], for extensions of the above result on cascades of period doubling to the
sectionally dissipative case, resp. the general higher-dimensional context.

We close this section with a brief discussion of the following converse ques-
tion, which plays an important role in Palis’ scenario mentioned in the Intro-
duction: Can any diffeomorphism exhibiting some of the dynamical phenomena



above be approximated by diffeomorphisms with homoclinic bifurcations ? A
positive answer will mean that homoclinic bifurcations may, in some sense, be
viewed as a main unifying mechanism of complicated dynamical behaviour. Al-
though this problem is mostly open, there is presently a certain amount of
favourable evidence. On the one hand, all the situations one can actually ex-
hibit of coexistence of infinitely many periodic attractors, resp. occurrence of
Hénon-like strange attractors, are indeed approximated by homoclinic tangen-
cies, see [TY], [Ur]. Also, some positive results are being provided for the case
of cascades of period doubling bifurcations, in a work in preparation by E. Cat-
sigeras. Finally, there is a close, and fairly well understood, interplay between
homoclinic tangencies and yet another, a priori quite distinct, bifurcation pro-
cess: creation of critical saddle-node cycles. This is one of the topics in the
forthcoming section.

3 Saddle-Node Cycles

A natural question raised by Theorems 1 and 2 concerns the relative frequency
of strange attractors near yu = fi. More precisely, one would like to know if and
when Hénon-like attractors are a prevalent phenomenon, meaning that

m(S N [ — e, i+ <))
2e ’
has a positive limit as ¢ — 0. Examples of such a situation have not yet
been found (it also follows from [PT1] that the limit above is zero in a large
class of cases) but the general answer remains unknown. A relevant variation
consists in considering the unfolding of homoclinic tangencies by families with
a larger number of parameters, I > 1 say, and then asking whether Hénon-like
attractors can be a prevalent phenomenon in such families (with respect to the
I[-dimensional Lebesgue measure). An interesting situation for the study of this
question is provided by homoclinic tangencies occurring in the Hénon family at
parameter values (fi,7) close to (2,0).

On the other hand, the limit above is always positive in a closely related
context of bifurcations: the creation of critical saddle-node cycles. A diffeomor-
phism ¢: M — M, m = dim M > 2, has a saddle-node k-cycle if it has fixed
(or periodic) points p1, .. .,pr such that

m = Lebesgue measure,

e p; is a saddle-node — Dp(p;) has eigenvalues Ay = 1,Aq,..., A, with
|\l < 1forall 2<i<m—and ps,...,p; are hyperbolic saddles;

o WH(p;) intersects W#(p; 1) transversally for all 1 < i < k and W¥(py) also
intersects W (py); if k = 1 we just require W¥(p;) C interior (W?(p;)).

Note that we define W*(p;) = {z € M:¢"(2) — p; asn — +oo} and
Wu(p;) = {z € M:¢"(z) = p; asn - —oo} for every 1 < i < k. The strong-
stable manifold W*%(p,) consists of the points z € M for which ¢™(2) converges



exponentially fast to p; as n — +oco0. By [NPT], W*(p;) admits a unique
p-invariant foliation by codimension-1 submanifolds which are exponentially
contracted under positive iteration and such that W#*(p;) is one of the leaves.
We call the cycle critical if W*(py) has a nontransverse intersection with some
leaf of this strong-stable foliation of p;. See Figure 2 for an example, where the
cycle contains a unique periodic point, the saddle-node p = p;.

Wp)
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Figure 2: A critical saddle-node 1-cycle

Now, we consider generic families of diffeomorphisms ¢,: M — M, p € R,
unfolding such a cycle: for some i € IR, ¢ has a critical saddle-node cycle,
satisfying mild conditions of nondegeneracy. The relation between the present
situation and the setting of homoclinic bifurcations is twofold: the generic un-
folding of a critical saddle-node cycle always involves the occurrence of (section-
ally dissipative) homoclinic tangencies, [NPT], and the converse is also true, as
observed by L. Mora. In particular, the same dynamical phenomena are present
in both bifurcations, which also means that these two processes are essentially
equivalent for what concerns defining a bifurcation set B as in the Introduction.

On the other hand, families of diffeomorphisms going through a saddle-
node cycle allow for a more global description of the dynamics related to the
bifurcation than has been attained so far in the previous context of homoclinic
tangencies. In particular, one is able to prove in this way that strange attractors
always occur for a definite positive fraction of the parameter values near any
critical saddle-node cycle.

Theorem 3 [DRV] Let (p,), be a generic family of diffeomorphisms on a
manifold M, dim M > 2, unfolding a critical saddle-node cycle of pp. Then

liming "N B —e pte])

e—0 2e > 0.

where S is the set of values of u for which ¢, has Hénon-like strange attractors.

Now we want to focus on the special case of 1—cycles, recall Figure 2. An
important feature of such cycles is the existence of a trapping region: it is not



difficult to find a compact domain V' C M containing the closure of W*(p,) and
such that ¢z(V) C interior (V). For instance, one may take V' homeomorphic
to the solid m—torus S* x B™~! if M is orientable; see e.g. [DRV]. Then, for
parameter values u close to p all the asymptotic dynamics is concentrated in
the maximal invariant set

Ay =) en(v),

n>0
and the previous theorem implies that, quite often, A, contains Hénon-like
attractors. However, a much stronger statement can be obtained in the present
context: frequent occurrence of a unique, global strange attractor inside V.

Theorem 4 [DRV] For an open set of families (¢,), unfolding a critical
saddle-node 1-cycle there is a set G C IR of values of p satisfying

e—0 2¢e >0

and such that A, is a Hénon-like strange attractor for every u € G.

Recall that, according to our definition, this includes the existence of dense
trajectoriesin A,, u € G. A simple, and yet important, remark is that the basin
of A, contains the domain V', which depends only on the initial system ¢y.

4 Bifurcations of vector fields

As already mentioned, the previous results may be rephrased in the setting of
bifurcations of vector fields away from singular (i.e. equilibrium) points, just by
considering appropriate Poincaré return maps. On the other hand, some new
important phenomena of chaotic dynamics come associated with the presence
of equilibria, and here we discuss a few recent developments in this direction,
focussing on the topic of chaotic attractors.

For simplicity, we deal with vector fields X in 3-dimensional euclidean space
M = 1IR3, even if the results to be discussed below have a broader scope. As
a general assumption, we take X to have a hyperbolic saddle equilibrium, at
the origin say. Up to reversing time if necessary, we may suppose that the
eigenvalues A1, A2, A3 of DX(0) satisfy \y > 0 > Reda > Rels. We are
particularly interested in studying homoclinic connections and the development
of chaotic behaviour as they are unfolded by parametrized families of vector
fields. By homoclinic connection we mean a regular trajectory {X?(z):t € R}
of the flow (X?); of X, such that X*(2) — 0 as both ¢t — 00, see Figure 3. The
dynamics of (perturbations of) X close to the homoclinic connection may then
be described by the first-return map 7 associated to some transversal section
3 as in the figure. We point out that 7 is not a smooth map, in general, due
to the presence of the singular point at the origin. Its behaviour depends in an
important way on the sign of A\; + Rels, as we explain below.
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Figure 3: A homoclinic connection

For the time being we take A and A3 to be real (and distinct). The so-
called geometric Lorenz attractors, [GW], [ABS], may be related to the present
situation in the following way. One departs from a vector field X having a
homoclinic connection and such that A; + A2 > 0. Actually, in the present sit-
uation one takes X symmetric with respect to the z-axis, i.e. invariant under
(z,9,2) = (—z, —v, 2z), and so there are even two homoclinic trajectories. Then,
by unfolding these connections — it is convenient to do it in such a way that the
symmetry and the equilibrium point at the origin be preserved — one can find
large perturbations Y of X for which the two unstable separatrices of 0 accu-
mulate on a compact invariant set A containing the singular point together with
regular trajectories (some of which are dense in A). Moreover, the trajectories
of all the points in a neighbourhood of A are attracted to it, while exhibiting
sensitive dependence on the initial state: for (Lebesgue) typical nearby points
21, 22 in this neighbourhood dist (Y?(21),Y?(22)) grows exponentially fast with
time ¢ > 0 (up to attaining the order of magnitude of diam (A)). Quite im-
portant is the robustness of these features under perturbations: the previous
statements remain valid for any smooth vector field close enough to Y.

Let us note that these properties of Lorenz-like attractors strongly rely on
the expansion condition A\; + Ay > 0. The contracting version of geometric
Lorenz flows was recently studied by [Rv]: he considers A; + A2 < 0 and, as
before, takes a convenient large perturbation Y of a (symmetric) vector field X
having homoclinic connections associated to the origin, for which the accumula-
tion set of W*(0) is a strange attractor. Although the geometry of contracting
and expanding Lorenz-like attractors is fairly similar, these two kinds of attrac-
tors have substantially distinct dynamical properties, in particular contracting
Lorenz-like attractors are only measure-theoretically persistent: they occur for a
positive measure set of parameter values in families of vector fields (Y},), passing
through Y. In fact, [Rv] also proves that Axiom A flows having only periodic
attractors are generic (open and dense set of parameters) in such families.

A crucial point in both the constructions in the two previous paragraphs is
to take the perturbed vector field Y in such a way that (any vector field close



to) it admits an invariant foliation by curves which are uniformly contracted
under the flow. This permits to simplify the analysis of the flow considerably,
by reducing it to a 1-dimensional setting. We note that existence of such a
foliation for the original equations of Lorenz

r = —ox+oy
y = rr—y-—2xz (2)
zZ = =bz+ay

is not yet known and it remains a (slightly) embarassing open question whether
strange attractors with the above properties really occur in (2), despite a few
conclusive results for similar equations, [R2], [Ry].

On the other hand, the modeling of (2) by these geometric Lorenz flows
is restricted to a narrow parameter range near Lorenz’ original values r = 28,
o =10, b = 8/3. Indeed, detailed numerical observations by [Sp], see also [HP],
suggest that for only slightly larger values of r such an invariant foliation must
cease to exist. In an ongoing joint work with S. Luzzatto we are developing an
extension of the geometric model, reflecting the behaviour of Lorenz’ equations
in this broader range. Using methods inspired by [BC] we are proving that the
strange attractor survives the breakdown of the invariant foliation, even if in
this process it acquires subtler properties, namely a milder form of persistence
under perturbations: positive measure set of parameter values.

wHo)
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Figure 4: Symmetric saddle-focus connections

Another interesting, possibly even richer, situation corresponds to the equi-
librium being a saddle-focus, i.e. A2, A3 being complex conjugate numbers.
Figure 4 describes homoclinic connections associated to a saddle-focus. We
take the vector field X to be symmetric with respect to the origin, i.e. invariant
under (z,y,2) — (—z,—y,—2) (but see comments below). Also, we consider
the, relatively more interesting, expanding case A; + Rels > 0, asymptotic
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behaviour near the homoclinic trajectory being mostly of periodic type in the
contracting case. An example of saddle-focus homoclinic connections was con-
sidered by [ACT], who found numerical evidence for the existence of a spiraling
strange attractor. The spiral structure stems from the behaviour of the flow
near the singular point and a rough picture of the attractor may be obtained
as follows. Consider a transversal section ¥ to both homoclinic trajectories and
the first-return map 7 associated to it. Up to mild assumptions on the global
behaviour of the flow (satisfied by an open set of vector fields X) one may take
¥ satisfying m(X¥) C interior (¥). Moreover, a simple analysis of the behaviour
of trajectories near the origin shows that the image m(X) looks like in Figure
5: the return map is discontinuous along the line ¥ N W#*(0) and the images of
the two connected components of £\W#(0) spiral around the intersections of X
with each of the two homoclinic connections.

NN
O/ 7

\n(z) p

Figure 5: A spiraling strange attractor

Then we set I' = Np>om™(E) and A = closure ({X*(z):2 € T',t € R}). In
general, this “attractor” A contains several different forms of dynamics such as,
periodic attractors, invariant hyperbolic sets of saddle type containing countably
many periodic trajectories, [Si], and strange attractors obtained by suspension
along the flow of Hénon-like attractors of 7, [Pu]. On the other hand, in a joint
work with Pacifico and Rovella we are proving that a persistent global spiral
attractor does occur in this setting. More precisely, we consider symmetric
vector fields X with saddle-focus connections as above and parametrized families
of vector fields (X,), with Xo = X. For each p close to zero we consider
maximal invariant sets I',, A,, defined in the same way as before, in terms of
the flow (X},); and the return map 7, to ¥ associated to X,. Then we are
proving that A, is a strange attractor for a positive Lebesgue measure set of
values of the parameter near g = 0. Our approach combines an extension of the
techniques of [BC] — extension is required in order to deal with the presence of
infinitely many folding regions — together with a careful analysis of early iterates
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of such regions. We remark that this approach applies also in the absence of
symmetry — Sil’nikov bifurcation — except that in this case the attractor occurs
only for large values of p.
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