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1 Introduction

Let ¢: M — M be a general smooth transformation on a riemannian manifold.
A main object of study in Dynamics is the asymptotic behaviour of the orbits
" (z) = po---0p(2), z € M, as time n goes to infinity. Typical forms of behaviour
— occurring for “many” z € M — are, of course, of particular relevance and this
leads us to the notion of attractor. By an attractor we mean a (compact) ¢-
invariant set A C M which is dynamically indivisible and whose basin — the set
of points z € M for which ¢"(z) - A as n — 400 — is a large set. Dynamical
indivisibility can be expressed by the existence of a dense orbit in A (if A supports
a “natural” @-invariant measure, one may also require that ¢ be ergodic with
respect to such measure). As for the basin, it must have positive Lebesgue volume
or, even, nonempty interior; in all the cases we will consider here the basin actually
contains a full neighbourhood of the attractor.

In addition, we want to focus on forms of asymptotic behaviour which are
typical also from the point of view of the dynamical system: we call an attractor
persistent if it occurs for a large set of maps near ¢. “Large” is to be understood
in this context in a measure-theoretical sense: positive Lebesgue measure set of
parameter values in every generic family of transformations containing ¢. On the
other hand, stronger forms of persistence — e.g. with “large set” meaning a full
neighbourhood of ¢ — hold in some important situations to be described below.

In the simplest case, A reduces to a single periodic orbit of ¢. While the
presence of a large or, even more so, an infinite number of these periodic attrac-
tors — possibly with high periods and strongly intertwined basins — may render
the behaviour of individual orbits rather unpredictable, rich asymptotic dynamics
comes more often associated with the presence of nonperiodic attractors (having,
in many cases, an intrincate geometric structure). Indeed, there is a large amount
of numerical evidence for the occurrence of such nontrivial attractors in a wide
range of situations in Dynamics, from mathematical models of complex natural
phenomena to even the simplest abstract nonlinear systems. A striking feature of
many of these systems is the phenomenon of exponential sensitivity with respect
to initial conditions: typical (pairs of) orbits of nearby points move away from
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each other exponentially fast as they approach the attractor. Note the profound
consequences: measurement imprecisions and round-off errors tend to be amplified
under iteration and so, in practice, the long-term behaviour of trajectories in the
basin of the attractor is unpredictable (or “chaotic”).

A conceptual framework for the understanding of such chaotic dynamics is
currently under active development. Two main general problems in this context
are, to describe the (dynamical, geometric, ergodic) structure of chaotic attractors
and, to identify the mechanisms responsible for their formation and persistence. A
fairly complete solution to these problems is known in the special case of uniformly
hyperbolic (or Axiom A) attractors, see e.g. [Sh2], [Bo], and this is a basic ingre-
dient here. On the other hand, uniform hyperbolicity per se is seldom observed in
dynamical systems arising from actual phenomena in the experimental sciences,
where sensitivity with respect to initial conditions is quite more often related to
nonuniformly hyperbolic behaviour. This last notion can be defined as follows. We
say that ¢ has Lyapounov exponents A1,...,\ at z € M if the tangent space may
be split T,M = E; @ --- @ Ej in such a way that

ngrfoo % log ||D¢™(2)v|| = A; for every v € E;\{0} and 1 < j <.

By Oseledec’s theorem such a splitting exists at almost every point, relative to any
finite p-invariant measure. Then we call the system nonuniformly hyperbolic [Pe],
if A\j # 0 for all j and for almost all points (with respect to the relevant measure
under consideration); see [Pe]. Note that occurrence of some positive Lyapounov
exponent corresponds precisely to (infinitesimal) exponential sensitivity around
the trajectory of z. Also, in the situations to be considered here, existence of
positive Lyapounov exponents is the key ingredient for nonuniform hyperbolicity,
the fact that all the remaining exponents are strictly negative then following from
elementary considerations.

The dynamics of nonuniformly hyperbolic attractors is, in general, rather un-
stable under perturbations of the system and this means that more subtle mecha-
nisms of dynamical persistence occur in this general context than in the Axiom A
case (where persistence comes along with structural stability and is, ultimately, an
instance of transversality theory). The comprehension of such mechanisms is then
directly related to the general study of bifurcations of dynamical systems. This is,
in fact, the departing point of the program towards a theory of sensitive dynamics
recently proposed by Palis and underlying Section 2 below. The basic strategy is
to focus on a convenient set of well-defined bifurcation processes — this set should
be dense among all (non-Axiom A) systems exhibiting interesting dynamical be-
haviour — and to determine which are the persistent forms of dynamics in generic
parametrized families unfolding such bifurcations (once more, persistence is meant
in the sense of positive Lebesgue measure of parameter values). See e.g. [PT] for
precise formulations and an extended discussion.

A central role is played here by the processes of homoclinic bifurcation —
that is, creation and/or destruction of transverse intersections between the stable
and the unstable manifolds of a same hyperbolic saddle, see Figure 1 — which, by
themselves, encompass all presently known forms of interesting behaviour in this



setting of discrete dynamical systems. Study of homoclinic bifurcations and of their
interplay with other main processes of dynamical modification provides a most
promising scenario for the understanding of complicated asymptotic behaviour,
specially in low-dimensions, and in Section 2 we discuss some of the results already
substantiating this scenario.

+p
Figure 1: A homoclinic tangency

On the other hand, several of these results actually extend to manifolds of
arbitrary dimension and this is an area of considerable ongoing progress. A very
interesting topic is the construction and analysis of the properties of multidimen-
stonal nonuniformly hyperbolic attractors. By multidimensionality we mean exis-
tence of several directions of stretching, i.e. several positive Lyapounov exponents
(this also implies that the attractor has topological dimension larger than 1). A
discussion of recent developments and open problems on this topic occupies most
of Section 3.

The author is grateful to the hospitality of the CIMAT-Guanajuato, the
UCLA and Princeton University during the preparation of this work.

2 Bifurcations and attractors

Jakobson’s theorem [Ja] provided the first rigorous situations of persistence of
chaotic dynamics in a strictly nonuniformly hyperbolic setting: for a positive mea-
sure set of values of a € (1,2) the quadratic real map q,(z) = 1 — ax? admits an
inwariant probability measure p, which is absolutely continuous with respect to the
Lebesgue measure. Moreover, u, is ergodic and has positive Lyapounov erponent:

lim 1 log |Dg}| = /log|an| dpe >0, e — almost everywhere.
n—+oo n

On the other hand, Benedicks-Carleson [BC] proved that complicated behaviour

is also abundant in another important nonlinear model, the Hénon family of dif-

feomorphisms of the plane H, ;(z,y) = (1 —az?®+by, z): for a positive measure set

of parameter values H,p ezhibits a compact invariant set Aqp C R> (the closure

of the unstable manifold of a fized saddle-point) satisfying

(i) The basin W*(Aqp) = {2 € ]R2:Hg‘,b(z) — Agp as n — 400} contains a
neighbourhood of A, ;



(ii) There exists £ € Aq,p Whose orbit {H',(£):n > 0} is dense in Agp.
Moreover, this dense orbit may be taken exhibiting a positive Lyapounov exponent:

(iii) HDHZ,,(Q)uH > co™ for some ¢ > 0, ¢ > 1 and u € R? and all n > 0;

(iv) HDH];b(é)vH — 0 as |n| = oo for some v € IR?, v # 0 (and so A, is not
uniformly hyperbolic).

A stronger formulation of the sensitivity property (iii) is contained in the construc-
tion by [BY] of an SBR-measure (i, supported on the “strange” attractor Ag p:
H,; has a positive Lyapounov exponent u,p-almost everywhere (and at every
point in a positive Lebesgue volume subset of the basin). An alternative construc-
tion of these SBR-measures also giving new information on the geometry of the
attractor is being provided in [JN].

Let us outline the mechanism yielding positive Lyapounov exponents in these
two situations. A common feature to these and other important models is the
combination of fairly hyperbolic behaviour, in most of the dynamical space, with
the presence of critical regions where hyperbolicity breaks down. In the case of ¢,
the critical region is just the vicinity of the critical point x = 0, where the map
is strongly contracting. For Hénon maps, criticality corresponds to the “folding”
occurring near z = 0, which obstructs the existence of invariant cone fields. Then
the proofs of the previous results require a delicate control on the recurrence
of the critical region, in order to prevent nonhyperbolic effects from accumulating
too strongly. In the 1-dimensional case, for instance, one must impose a convenient
lower bound on |¢%(0)| for each n > 0. This translates into a sequence of conditions
on the parameter, which are part of the definition of the positive measure set in
the statement. The argument is rather more complex in the Hénon case but it still
follows the same basic strategy of control of the recurrence through exclusion of
parameter values. The dynamical persistence displayed by the maps one gets after
these exclusions is all the more remarkable in view of their instability: while an
arbitrarily small perturbation of the parameter may destroy the chaotic attractor
(e.g. creating periodic attractors, see [Ur]), it is a likely event (positive probability)
that the attractor will actually remain after the perturbation.

Departing from these models, we now discuss a number of results and open
problems leading to a quantitative and qualitative description of the occurrence
of attractors in the general setting of homoclinic bifurcations. Let us begin by
defining this setting in a more precise way than we did before. We consider generic
smooth families of diffeomorphisms ¢,: M — M, p € IR, such that ¢, exhibits
some nontransverse intersection between the stable and the unstable manifolds of a
hyperbolic saddle-point p, recall Figure 1. In this section we take M to be a surface.
Genericity means that this homoclinic tangency is nondegenerate — quadratic —
and unfolds generically with the parameter: the two invariant manifolds move
with respect to each other with nonzero relative speed, near the tangency. We
also suppose |det Dpg(p)| # 1 and in what follows we consider |det Dyg(p)| < 1
(in the opposite case just replace ¢, by go;l). Then, see e.g. [TY], return-maps
to a neighbourhood of the tangency contain small perturbations of the family of



singular maps (z,y) — (1 — az?,0). Combining this fact with an extension of the
methods in [BC] one can prove that Hénon-like attractors — i.e. satisfying (i)-(iv)
above — occur in a persistent way whenever a homoclinic tangency is unfolded:

Theorem 1 [MV] There exists a positive Lebesque measure set of values of u,
accumulating at p = 0, for which ¢, has Hénon-like attractors close to (in a
const |pu|-neighbourhood of) the orbit of tangency.

This should also be compared with the well-known theorem of Newhouse on
abundance of periodic attractors:

Theorem 2 [Ne] There exist intervals I C IR accumulating at p = 0 and residual
(Baire second category) subsets B C I such that for every p € B the diffeomor-
phism @, has infinitely many periodic attractors close to the orbit of tangency.

These two contrasting forms of asymptotic behaviour are, actually, strongly
interspersed: the values of u one gets in both the proofs of these results are accu-
mulated by other parameters corresponding to new homoclinic tangencies, [Ur].

Problem 1: (Palis) Can any diffeomorphism exhibiting a Hénon-like attractor,
resp. infinitely many periodic attractors, be approximated by another one having
a homoclinic tangency ?

Problem 2: Can Newhouse’s phenomenon occur for a set S of parameter values
with positive Lebesgue measure ?

The answer to Problem 2 is usually conjectured to be negative but it is as
yet unknown. Note that the sets B constructed in the proof of Theorem 2 have
zero measure, [TY]. An interesting related question is formulated replacing above
“positive Lebesgue measure” by “positive Lebesgue density at 4 = 07, that is

lim m(S N[—e,g])

>0, m = Lebesgue measure.
e—0 2e

Ongoing progress seems to indicate that the answer to this last question is negative,
even if one replaces S by the set of parameter values corresponding to existence
of some periodic attractor near the tangency. A similar problem can be posed for
nonuniformly hyperbolic attractors as in Theorem 1:

Problem 3: Can Hénon-like attractors occur for a set of parameter values having
positive density at u =0 ?

While this last problem remains open in the context of homoclinic tangencies,
it admits a complete, positive answer in a closely related setting of bifurcations:
the unfolding of critical saddle-node cycles. By a saddle-node k-cycle, k > 1, of a
diffeomorphism ¢ we mean a finite set of periodic points p1, p2, ..., pr such that

e p; is a saddle-node (eigenvalues 1 and A, with |A| < 1) and p; is a hyperbolic
saddle for each 2 < i < k;

e W*(p;_1) and W?(p;) have points of transverse intersection, for all 2 < i < k,
and W*(py,) intersects the interior of W#(py).



Following [NPT], we call the saddle-node cycle critical if W*(py,) has a nontrans-
verse intersection with some leaf F' of the strong stable foliation of W?*(p, ). Figure
2 describes such a cycle in the case k = 1 (in this case we actually require W¥(p,)
to be contained in the interior of W?#(py)).

Figure 2: A critical saddle-node cycle

Now we consider the unfolding of such cycles by generic families of diffeomor-
phims ¢,: M — M, p € IR. More precisely, we suppose that ¢y has some critical
saddle-node cycle satisfying a few mild assumptions: the saddle-node is nonde-
generate and unfolds generically with the parameter p and the criticality — i.e.
the nontransverse intersection between W (p;,) and F — is quadratic. A theorem
of [NPT] asserts that such families always go through homoclinic tangencies, at
parameter values arbitrarily close to zero. A converse is also true (Mora): critical
saddle-node cycles are formed whenever a homoclinic tangency is unfolded. On
the other hand, the present setting is special in that Hénon-like attractors always
occur for a positive fraction of the parameter values near the one corresponding to
the cycle. This is the only bifurcation mechanism known to exhibit such a strong
accumulation by chaotic attractors.

Theorem 3 [DRV1] Let (p,)u be a generic family of diffeomorphisms unfolding
a critical saddle-node cycle as above. Then the set of parameter values for which
u exhibits Hénon-like attractors has positive Lebesgue density at p = 0.

The proof of Theorem 3 is based on a combination of Theorem 1 with a
careful analysis of the distribution of homoclinic tangencies in parameter space, cf.
previous remarks. This construction yields Hénon-like attractors which are related
to orbits of homoclinic tangency and so have a semi-local nature. While this is
unavoidable in the generality of the statement above, attractors of a much more
global type can be found in some relevant cases, by using a more direct approach.
We mention the case of 1-cycles, recall Figure 2. If ¢y has a critical 1-cycle then
it is not difficult to find a compact domain R containing W*(p;) and such that
wo(R) C interior(R). Then, for a sizable portion of the parameter values near zero
the asymptotic behaviour of all the points in the domain R (which depends only
on the bifurcating diffeomorphism ¢g) is driven by a unique, global, nonuniformly
hyperbolic attractor:



Theorem 4 [DRV2] For an open class of families (¢,), unfolding a critical
saddle-node 1-cycle, there is a set of values of  with positive Lebesgue density at
p =0 for which Ay =(,50 ¥j,(R) is a Hénon-like attractor.

3 Multidimensional expansion

The unfolding of homoclinic tangencies or saddle-node cycles in higher dimensions
leads, more often, to the formation of periodic points with positive unstable index
(some expanding eigenvalue) and/or of “strange saddles”, see [Ro]. In order to
have attractors one makes an assumption of (local) sectional dissipativeness: the
product of any two of the eigenvalues associated to the saddle p exhibiting the
tangency, resp. to the saddle-node p; involved in the cycle, has norm less than 1. On
the other hand, under this assumption Theorems 1-4 do generalize to manifolds of
arbitrary dimension, see [PV], [V1]. In particular, persistent Hénon-like attractors
may occur in any ambient manifold.

Now, the attractors one finds in such a sectionally dissipative setting are spe-
cial in that they exhibit at most one direction of stretching (one single positive
Lyapounov exponent). This is also related to the fact that the Hénon-like attractors
in the previous paragraph always have topological dimension 1. Our goal in this
section is to present a construction of persistent nonuniformly hyperbolic attrac-
tors with multidimensional character: typical orbits in their basin exhibit several
stretching directions. In more precise terms, at Lebesgue almost every point z in
the basin there is a splitting 7, M = E* @& E~ such that

lim inf % log | D" (z)vT || > 0 > limsup % log || D¢™(z)v™|| for v= € EF\{0}

and dim E* > 1. Previously known examples restricted to rather structured situa-
tions, such as Axiom A diffeomorphisms or the persistently transitive examples in
[Sh1] or [Ma]. In these last examples, obstruction to uniform hyperbolicity comes
from the presence of saddles with different stable indices but the dynamics is
actually fairly uniform (in particular, they admit everywhere-defined continuous
invariant cone fields).

These examples of multidimensional attractors we now describe are the first
ones in the presence of critical behaviour (in the sense of Section 2). In fact,
the basic idea here is to couple nonuniform models such as Hénon maps, with
convenient uniformly hyperbolic systems. On the other hand, the attractors we
obtain in this way are considerably more robust than the low-dimensional Hénon-
like ones: they persist in a whole open set of diffeomorphisms. Let us sketch this
construction in a simple situation, details being provided in [V2]. We start by
considering diffeomorphisms of the form

¢:T3 xR — T3 xR?,  ¢(0,3,y) = (9(0), £(0,z,y))

where g is a solenoid map on the solid torus T3 = S' x B?, see e.g. [Sh2], and
f(©,2,9) = (a(®©) — 22 + by, —bx). Here b is a small positive number, a is some
nondegenerate function (e.g. a Morse function) with 1 < a(0) < 2 and we take



the solenoid to be sufficiently expanding along the S'-direction. Then, for an ap-
propriate choice of these objects, ¢ is contained in an open set of diffeomorphisms
exhibiting a multidimensional nonuniformly hyperbolic attractor:

Theorem 5 [V2] There is a compact domain K C R? such that for every dif-
feomorphism 1: T3 x R? — T3 x R? sufficiently close to ¢ (in the C*-sense)
(T3 x K) C interior(T3 x K) and 1 has two stretching directions at Lebesgue
almost every point of T3 x K.

A crucial fact distinguishing these examples from the quadratic models in
Section 2 is that their critical regions are too large for the same kind of recurrence
control as we described there to be possible in the present situation. In order to
motivate this remark we observe that in the (singular) limit b = 0 the critical set
of ¢ coincides with {det Dy = 0}, a codimension-1 submanifold, and, therefore,
is bound to have robust intersections with (some of) its iterates. In other words,
close returns of the critical region back to itself cannot be avoided by any sort
of parameter exclusions, which means that we are forced to deal with the accu-
mulation of contracting/nonhyperbolic effects associated to such returns. This is
done through a statistical type of argument which we can (very roughly) sketch
as follows. Given z € T3 x IR?, the nonhyperbolic effect introduced at each time
v > 1 for which ¢”(z) is close to the critical region is estimated in terms of an
appropriate integrable function A, (z). The definition of A, (z) in the actual situ-
ation of Theorem 5 — with b > 0 — is fairly complicated and we just mention that
in the (much simpler) limit case b = 0 one may take A,(z) = —log|z,|, where z,
is the z-coordinate of ¢”(z). Then we derive two crucial stochastic properties of
these A,:

1. the expected (i.e. average) value of A, is small for each v > 1;

2. the probability distributions of A, and A, are (fairly) independent from
each other if |y — v| is large enough.

This allows us to use probabilistic arguments (of large deviations type) to con-
clude that, for most trajectories, the overall nonhyperbolic effect corresponding to
iterates near the critical region is smaller than (i.e. dominated by) the hyperbolic
contribution coming from the iterates taking place away from that region.

The proof of 2 above is based on the fast decay of correlations exhibited by
uniformly hyperbolic systems such as solenoids and, in fact, this seems to be the
key property of the map g for what concerns our construction (in its present form
the proof makes use of a few other properties of solenoid maps, in an apparently
less important way). This suggests that a similar type of argument should apply if
the solenoid is replaced in the construction above by more general (not necessarily
uniformly hyperbolic) maps having such fastly mixing character. As a first step in
this direction we pose

Problem 4: Prove that ¢(z,y) = (g9(z),a(z) — y?) has two positive Lyapounov
exponents for a large set of choices of a(z), where g is some convenient — possibly
multimodal — smooth transformation of the real line exhibiting chaotic behaviour
in the sense of Jakobson’s theorem.



Finally, in the view of the discussion in the Introduction, one should try and
relate the present topic with the general study of bifurcations of higher-dimensional
smooth systems, in the spirit of Section 2. Again, a first step may be

Problem 5: Describe generic bifurcation mechanisms leading to the formation of
multidimensional nonuniformly hyperbolic attractors.
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