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Abstract

This is the first paper in a two-part series devoted to studying

the Hausdorff dimension of invariant sets of non-uniformly hyperbolic,

non-conformal maps. Here we consider a general abstract model, that

we call piecewise smooth maps with holes. We show that the Hausdorff

dimension of the repeller is strictly less than the dimension of the

ambient manifold. Our approach also provides information on escape

rates and dynamical dimension of the repeller.
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1 Introduction

This work was originally motivated by the following problem. Suppose g is a

globally hyperbolic (Anosov) diffeomorphism, in dimension 3 or higher, and

p is some fixed point of g with two expanding eigenvalues. Let g go through

a Hopf bifurcation, so that the saddle point p becomes an attractor. See

Figure 1. The complement Λ of the basin of attraction W s(p) is a repeller

Figure 1: A Hopf bifurcation

for the new diffeomorphism. Does Λ have zero Lebesgue measure (volume)?

Even more, is the Hausdorff dimension of the repeller strictly less than the

dimension of the ambient manifold?

Fractals invariants such as the Hausdorff dimension play an important

role in various areas of Dynamical Systems, and have attracted a great deal

of attention. We refer the reader to [5, 7, 9] for an updated panorama of

the theory. Computing these fractal invariants is usually difficult, because

they depend on the microscopic structure of the set. Not surprisingly, most

methods require the set to be self-similar, meaning that small pieces of it

look very much like the whole. And self-similarity often arises from the dy-
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namical system being uniformly hyperbolic (contracting and/or expanding)

and conformal, possibly, after some dimension reduction.

As it turns it out, neither of these properties holds in the setting that

we mentioned before. On the one hand, the repeller contains an invariant

circle that is produced by the Hopf bifurcation, and so it can never be hy-

perbolic. On the other hand, conformality being a non-generic property, in

most cases these diffeomorphisms are not conformal, nor can they be reduced

to conformal maps. Nevertheless, we are able to give a positive answer to

the questions raised above: the Hausdorff dimension of the repeller is strictly

less than the dimension of the ambient manifold; in particular, Λ has volume

zero. This is proved in [6], as an application of the results we obtain in the

present paper.

Here we deal with a general abstract setting that, in particular, models

the behaviour of those diffeomorphisms along the central (non-hyperbolic)

direction. This abstract model is described by finite-to-one piecewise smooth

maps f on a manifold of any dimension d ≥ 1, sending a domain V onto a

larger one W ⊃ V . The repeller is the set of points in V whose forward orbits

never fall into the “hole” H = W \ V . See Figure 2, where V corresponds to

the shaded area. We prove that if the map is non-uniformly expanding, in a

sense that will be made precise later (implying positive Lyapunov exponents

Lebesgue almost everywhere), then the Hausdorff dimension of the repeller is

strictly less than d. The precise statement will appear in Theorem 1 below.

Ideas involved in the proof seem quite general, and we expect them to

be useful in other situations. To handle the fact that our maps are not
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Figure 2: A piecewise smooth map with holes

uniformly expanding, we construct a new dynamical system, induced from

the original one, which has properties of uniform expansion and bounded

distortion. This induced map is defined on a large subset: the complement

has small Hausdorff dimension. To go around non-conformality, we prove

that volume estimates obtained from the bounded distortion property can

be turned into diameter estimates. This allows us to get the results we

stated, as well as further geometric information about the repeller.

1.1 Non-conformal maps with holes

Here we describe our abstract model, and state the main result of this paper.

Let f : M → M be a map on a d-dimensional Riemannian manifold, d ≥ 1

such that

(A1) There exist domains R1, . . . , Rm in M , whose interiors are two-by-two

disjoint, such that the restriction of f to each Ri is a C1+ε diffeomor-

phism onto some domain Wi that contains R1∪· · ·∪Rm . The difference

Hi = Wi \ (R1 ∪ · · · ∪Rm) has non-empty interior, and the boundaries
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∂R1 , . . . , ∂Rm have limit capacity less than d.

Figure 2 describes an example where Hi = H and Wi = W are the

same for all i. By domain we mean a compact path-connected subset. The

smoothness requirement above means that f | Ri is a C1 diffeomorphism, in

the sense of Whitney, with ε-Hölder continuous Jacobian det Df . The limit

capacity, or box dimension, of a metric space X is defined by

c(X) = lim sup
ε→0

log n(X, ε)

| log ε|
,

where n(X, ε) is the smallest number of ε-balls needed to cover X.

Let f be as in (A1). The repeller of f in R1 ∪ · · ·∪Rm is the set of points

Λ whose forward orbits never fall into the Hi, that is,

Λ = {x : fn(x) ∈ R1 ∪ · · · ∪ Rm for every n ≥ 0}.

See Figure 3.

WW

Figure 3: The repeller of a piecewise smooth map with holes

Given n ≥ 1, we call n-cylinder any set of the form

C(α1, . . . , αn) = Rα1
∩ f−1(Rα2

) ∩ · · · ∩ f−n+1(Rαn
)
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with α1 , α2 , . . . , αn in {1, . . . , m}. That is, an n-cylinder consists of all the

points remaining in R1∪· · ·∪Rm , and sharing a given itinerary with respect

to the family {R1, . . . , Rm}, up to time n. Clearly, n-cylinders form a covering

of the repeller Λ, for each n ≥ 1.

For each n ≥ 1 and α1 , α2 , . . . , αn in {1, . . . , m}, we consider the average

least expansion

φn(α1 , α2 , . . . , αn) =
1

n

n
∑

j=1

inf
x∈Cj

log
∥

∥Df−1
(

f j(x)
)
∥

∥

−1
,

where the infimum is taken over all x in Cj = C(α1 , . . . , αj). Throughout,

Df−i(f j(y)) is to be understood as the inverse of the derivative Df i(f j−i(y)),

for any y and j ≥ i. Note that φn(α1 , α2 , . . . , αn) > c > 0 implies that the

derivative Dfn expands every vector:

‖Df−n(fn(x))‖ ≤
n

∏

j=1

‖Df−1(f j(x))‖ ≤ e−cn for all x in C(α1 , . . . , αn).

We also assume that

(A2) There exist c > 0 and c1 > 0 such that, for every large n, we have

φn(α1 , α2 , . . . , αn) > c except on a subset Qn of n-cylinders whose total

volume decreases exponentially fast with time:
∑

C∈Qn
Leb(C) ≤ e−c1n.

For α ≥ 0, the Hausdorff α-measure of a metric space X is defined by

mα(X) = lim
ε→0

inf

{

∑

U∈U

(diam U)α : U is an open covering of X with

diam U ≤ ε for all U ∈ U

}

.
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It is easy to show that there exists a unique real number HD(X), called

Hausdorff dimension of X, such that mα(X) = ∞ for any α < HD(X) and

mα(X) = 0 for any α > HD(X).

Theorem 1. Let f : M → M and Λ be as above, satisfying (A1) and (A2).

Then HD(Λ) < d.

A few comments are in order, concerning our hypotheses. On the one

hand, as we shall see in Section 2, the condition about the boundaries in

(A1) can be relaxed: it suffices to assume that each restriction f | Ri can

be extended to some larger domain R′
i whose boundary has limit capacity

less than d. The interiors of these larger domains need not be two-by-two

disjoint.

On the other hand, some control of the rate of decay as we assumed in

(A2) is indeed necessary for the conclusion, as we explain at the end of Section

1.2. The example that we give there suggests that a summability condition

might be enough, and this is so in some special situations; see Remark 2.

However, for the general case in dimension d > 1, our arguments in Section 4

currently require exponential decay.

Remark 1. The conditions that Wi contain R1 ∪ · · · ∪ Rm and Hi have

non-empty interior, for every 1 ≤ i ≤ m, are too strong. More generally, we

may suppose that the intersection of Wi with R1 ∪ · · · ∪ Rm coincides with
⋃

j∈J(i) Rj for some subset J(i) of {1, . . . , m}. Moreover, for every i there

exists ℓ ≥ 0 such that f ℓ(Ri) contains some Rk whose Hk = Wk \
⋃

j∈J(k) Rj

has non-empty interior. The repeller is the set of points that do not fall
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into the Hi at any iterate: for any n ≥ 0 there is i ∈ {1, . . . , m} such

that fn(x) ∈ Ri and fn+1(i) ∈
⋃

j∈J(i) Rj . Our arguments extend to this

situation, in a straightforward way, to prove that the Hausdorff dimension of

the repeller is less than d.

The proof of Theorem 1 occupies Sections 2, 3, and 4. In passing, we

obtain other results about rates of escape and dynamical dimension of the

repeller. See Section 3 for definitions and statements. Right now, let us close

this Introduction with an outline of the proof.

1.2 Motivations and Ideas of the Proof

In order to establish an upper estimate α for the Hausdorff dimension of a

subset of a metric space it is enough to exhibit a sequence Un of coverings

with diameter going to zero, and whose Hausdorff α-measures are uniformly

bounded: there exists M > 0 so that

Hα

(

Un

)

=
∑

U∈Un

diam
(

U
)α

≤ M for every n. (1)

For instance, in the case of the mid-third Cantor set such a sequence can

be constructed along the following lines: at each step some interval U in Un

is replaced by two subintervals, so that the α-measure of the new covering

Un+1 is smaller than that of Un, for fixed α < 1 close enough to 1. This

is made possible by the key fact that a sizable portion of U corresponds to

some gap of the Cantor set. More generally, a similar argument proves that

any dynamically defined Cantor set in the real line, in the sense of [7], has
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Hausdorff dimension bounded by some α < 1: a bounded distortion property

ensures the key fact mentioned before, for intervals in all size scales.

For proving Theorem 1 we try to use a similar strategy. One important

point is that we must start by basing our construction on the notion of vol-

ume rather than diameter. Of course, for intervals the two notions coincide,

which is one of the things that makes the one-dimensional situation discussed

above much easier. More precisely, we aim at constructing a sequence Un of

coverings such that diam
(

Un

)

→ 0 and

∑

U∈Un

Leb
(

U
)β

≤ K, for every n, (2)

where K > 0 and β < 1 are constants independent on n. As a matter of fact,

the Un may fail to cover some small subset of the repeller, negligible for our

purposes, as we shall explain in a little while.

The construction of these coverings is by successive refinement: we obtain

Un+1 by replacing each element U of Un by sub-domains Uj , such that

∑

j

Leb
(

Uj

)β
≤ Leb

(

U
)β

. (3)

That this is possible, comes from the fact that U contains some hole of the

repeller, i.e., a pre-image of Hi by an iterate of f , that contains a sizable

part of U (but see also the remarks at the end of this section). Now, to have

this last property at every stage of the construction, we need a property of

bounded distortion for the Jacobian, and that is one of the main difficulties

of our problem: due to the lack of hyperbolicity we can not expect our maps

to have such a property.
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To solve this difficulty, in Section 2 we construct a new map, obtained

from the original f by inducing : roughly speaking, we iterate f a convenient

number of times (varying with the point), so as to make the derivative expand

uniformly. This new map F is piecewise smooth and expanding on each

smoothness domain. Most important for our purposes, the Jacobian does

satisfy a bounded distortion condition. The key for constructing F is the

property of non-uniform expansion (A2). One of the first steps is to show that

the exceptional set where the condition in (A2) fails has Hausdorff dimension

strictly less than d, and so may be neglected for all our purposes.

We use this induced map F to define our coverings Un: in brief terms, each

U in Un is an n-cylinder for F . The fact that diam
(

Un

)

→ 0 is a consequence

of the expansiveness of F , whereas (2) follows from bounded distortion. At

this point we are already able to prove that the repeller has non-zero rate of

escape for F , that is, the volume of the set of points remaining within any

small distance from Λ decreases exponentially fast with time. This is done

in Section 3.

However, (2) is still insufficient for estimating the Hausdorff dimension

of the repeller. The reason is that the latter notion is defined in terms of

diameters of covering sets, rather than volumes. As we explained before, this

difficulty is typical of higher dimensional (non-conformal) situations. To solve

it, we bring in another main idea: we prove in Section 4 that the elements of

the Un may be covered by balls in such a way that the new covering Bn thus
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obtained satisfies

∑

B∈Bn

Leb
(

B
)γ

≤ C
∑

U∈Un

Leb
(

U
)β

≤ CK (4)

for some C > 0 and γ ∈ (β, 1) independent of n. This is done in Proposi-

tion 4.1, which is really rather general. It is at this point that the condition

on the limit capacity of the boundary is used.

Since the volume of a ball is closely related to its diameter, the last

inequality (4) immediately yields a bound like (1) for the coverings Bn , with

exponent γd < d. In this way we prove that the subset of the repeller

contained in the domain of F has Hausdorff dimension strictly less than d.

We already mentioned that the Hausdorff dimension of the complement is

also less than d, so Theorem 1 follows.

Control of the rate of decay as assumed in (A2) is used at a few steps, e.g.,

for inequality (2). Let us point out that some such control is necessary for the

result itself: the following example shows that if one drops the assumption

that Leb(Uj) decays relatively fast, then the Hausdorff dimension of the

repeller may coincide with the dimension of the ambient manifold.

Example 1. Let an = a/(n log2 n) for n ≥ 2, where a is chosen so that
∑∞

n=2 an = 1. Observe that, although an is summable,
∑∞

n=2 aβ
n = ∞ for

every β < 1. Let bn =
∑

j≤n aj for n ≥ 1. Define f : [0, 1] → [0, 1] so

that f maps each interval [bn−1, bn) affinely onto [0, 1). Then Df ≡ 1/an

on [bn−1, bn). Fix any p ≥ 2, let H = (bp−1, bp), and Λ be the set of points

x ∈ [0, 1] whose orbit never enters H . Let q be any large integer, and Λq ⊂ Λ

be the set of points whose orbits remain forever in [0, bq] \ H . It is well
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known, see e.g. [7, page 68], that the Hausdorff dimension dq of Λq is the

unique solution of
q

∑

n=2, n 6=p

adq

n = 1

The fact that aβ
n is not summable for any β < 1 implies that dq → 1 when

q → ∞. So, HD(Λ) = 1.

Remark 2. Suppose f is volume-expanding on R1 ∪ · · · ∪ Rm. Then the

Lebesgue measure of n-cylinders decreases exponentially fast: there exists

c0 > 0 depending only on the map such that Leb(C(α1 , . . . , αn)) ≤ e−c0n.

Suppose there exists β̃ < 1 such that

S =
∞

∑

n=1

∑

C∈Qn

Leb(C)β̃ < ∞. (5)

Then, for every n ≥ 1,

∑

C∈Qn

Leb(C) ≤
∑

C∈Qn

Leb(C)β̃e−c0(1−β̃)n ≤ S e−c0(1−β̃)n.

This means that (5) implies exponential decay as required in (A2), with

arbitrary c1 < c0(1 − β̃).

2 Inducing an Expanding Map

As a matter of fact, we are going to prove the conclusion of Theorem 1, under

conditions more general than (A1) and (A2). Instead of requiring, as we did

in (A1), that the limit capacity of the boundary of each Ri be less than d, we

just assume that there exist domains R′
i ⊃ Ri with that property and such
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that the restriction f | Ri may be extended diffeomorphically to the larger

domain R′
i .

This weakening of our hypothesis is useful for the applications in [6],

where the existence of such extensions can be readily established (the R′
i

may be taken with piecewise smooth boundaries), whereas the boundaries of

the Ri are fractal, and we do not know whether their limit capacity is less

than d (although this seems likely).

The precise condition is

(A′
1) For each 1 ≤ i ≤ m there exists a domain R′

i ⊃ Ri and an extension

fi : R′
i → W ′

i of f |Ri to a C1+ε diffeomorphism from R′
i onto a domain

W ′
i ⊃ Wi that contains R′

1 ∪ · · · ∪ R′
m . Moreover, the limit capacity

c(∂R′
i) is less than d, and H ′

i = W ′
i \ (R′

1 ∪ · · · ∪ R′
m) has non-empty

interior.

Observe that the R′
i need not be disjoint, and the extensions fi need not

coincide on the intersections. This means that (A2) needs some reformula-

tion.

We define the extended n-cylinder of f corresponding to an itinerary α =

(α1, α2, . . . , αn, . . . ) as follows. First, C ′(α) = R′
α for any α in {1, . . . , m}.

For each n ≥ 2, the definitions is by recurrence:

C ′(α1, α2, . . . , αn) = R′
α1

∩ f−1
α1

(C ′(α2, . . . , αn)).

Clearly, the set of extended n-cylinders that intersect Λ forms a covering of

the repeller, for each n ≥ 1. Moreover, we denote

fn
α (x) = fαn

◦ · · · ◦ fα1
(x) and f−n

α (y) = f−1
α1

◦ · · · ◦ f−1
αn

(y).
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The former defines a diffeomorphism from C ′(α1 , . . . , αn) onto W ′
αn

, and the

latter is its inverse. We extend the notion of average least expansion, by

φ′
n(α1, . . . , αn) =

1

n

n
∑

j=1

inf
x∈Cj

log
∥

∥Df−1
αj

(

f j
α(x)

)
∥

∥

−1
(6)

where Cj = C ′(α1, . . . , αj). Finally, given c > 0, we consider the set Q′
n

of extended n-cylinders that intersect Λ and for which φ′
n(α1 , . . . , αn) ≤ c.

Condition (A2) becomes

(A′
2) There exist c > 0 and c1 > 0 such that

∑

C∈Q′

n
Leb(C) ≤ e−c1n for

every n sufficiently large.

It is clear that Theorem 1 is a particular case of the following result,

corresponding to the case when R′
i = Ri for all 1 ≤ i ≤ m .

Theorem 2. Let f : M → M and Λ be as above, satisfying (A′
1) and (A′

2).

Then HD(Λ) < d.

In the sequel we present the proof of Theorem 2. The first step is to

define an induced map F whose domain E contains the set Λ̃ of points of Λ

satisfying the hypothesis (A′
2) for some n sufficiently large. F is piecewise

smooth and expanding, with countably many domains of differentiability.

Actually, there is some overlap between the different domains, and so F is

really a multi-valued map. In Proposition 2.3 we prove that the Hausdorff

dimension of the exceptional set G = Λ \ Λ̃ is strictly less than d.

Throughout, we suppose that the Riemannian metric has been rescaled,

so that the volume and the diameter of every W ′
i are less than 1.
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Remark 3. Corresponding to Remark 1, it is sufficient to assume that every

W ′
i contains the union of all R′

j when j varies in the set J(i) of indices for

which Rj intersects Wi. Moreover, the iterates of every R′
i should eventually

contain an R′
k such that W ′

k \ ∪j∈J(i)R
′
j has non-empty interior.

2.1 Hyperbolic Times

Given a local diffeomorphism f and a positive number ρ, Alves et al [1, 2]

call ρ-hyperbolic time for a point x ∈ M any integer n ≥ 0 such that

1

k

n
∑

j=n−k+1

log
∥

∥Df−1
(

f j(x)
)
∥

∥

−1
≥ ρ, for every 1 ≤ k ≤ n.

The definition implies that Dfk(fn−k(x)) is an expansion:

∥

∥Df−k
(

fn(x)
)
∥

∥ ≤
n

∏

j=n−k+1

∥

∥Df−1
(

f j(x)
)
∥

∥ ≤ e−ρk, (7)

for every 1 ≤ k ≤ n. We are going to use a slight variation of this notion to

construct a piecewise expanding map induced by a map f as in Theorem 2,

with control on the volume distortion.

Definition 1. Given ρ > 0 we say that n ≥ 0 is a ρ-hyperbolic time for an

extended n-cylinder C ′(α1, . . . , αn) if

1

k

n
∑

j=n−k+1

inf
x∈Cj

log
∥

∥Df−1
αj

(

f j
αj

(x)
)
∥

∥

−1
> ρ, for every 1 ≤ k ≤ n,

where Cj = C ′(α1, . . . , αj). Moreover, 0 ≤ h < n is a ρ-hyperbolic time for

C ′(α1, . . . , αn) if it is a ρ-hyperbolic time for C ′(α1, . . . , αh).
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The condition is void when n = 0, and so zero is always a (trivial) hyper-

bolic time.

Lemma 2.1. Given any c > ρ > 0 there exists θ > 0, depending only on c,

ρ, and a uniform bound for ‖Df−1‖, such that if α1 , . . . , αn satisfy

φ′
n(α1, . . . , αn) > c (8)

then there are at least θn ρ-hyperbolic times hj ≤ n for C ′(α1 , . . . , αn).

Proof. The proof is analogous to Lemma 3.1 and Corollary 3.2 of [2], with

aj = infx∈Cj
log

∥

∥Df−1
αi

(

f i
αi

(x)
)
∥

∥

−1
. This sequence is bounded, because the

maps fα are C1 diffeomorphisms on each compact set R′
α .

We are going to use the following direct consequence: given any q ≥ 1, if

(8) holds for n > (q/θ) then C ′(α1 , . . . , αn) has hyperbolic times h ≥ q.

We fix c as in (A′
2) and ρ = c/2. We also fix q ≥ 1 (here the value is

arbitrary, but for applications one may want to choose it to be large), and let

N be the smallest integer larger than q/θ. Let Λ̃ be the set of points x ∈ Λ

satisfying hypothesis (A′
2) for some n ≥ N . By the previous considerations,

every x ∈ Λ̃ is contained in some extended cylinder that has a c/2-hyperbolic

time h ≥ q. This puts us in a position to define the induced map F .

For every h ≥ q, let Ph be the family of extended h-cylinders for which h

is a hyperbolic time, and the smallest one after q: there is no other hyperbolic

time in the interval [q, h). For each C ′(α1 , . . . , αh) in Ph, we define

F | C ′(α1 , . . . , αh) = fh
α , that is, F (x) = fαh

◦ · · · ◦ fα1
(x). (9)
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Thus, F | C ′(α1 , . . . , αh) sends the cylinder diffeomorphically onto the do-

main W ′
αh

. Moreover, according to the next lemma, this map is uniformly

expanding.

Given any domain V in M , we denote by dV (x, y) the distance between

points x, y in V , defined as the shortest length of a curve connecting x to

y inside V . For notational simplicity, in the next lemma we write dj(·, ·) to

mean the distance in f j
α(C ′(α1 , . . . , αh)), for each 0 ≤ j ≤ h.

Lemma 2.2. Given any x1, x2 ∈ C ′(α1 , . . . , αh) and 1 ≤ k ≤ h,

dh−k(f
h−k
α (x1), f

h−k
α (x2)) ≤ e−ck/2dh(f

h
α(x1), f

h
α(x2)).

In particular, dW ′

i
(x1, x2) ≤ e−cq/2dW ′

αh

(

F (x1), F (x2)
)

for all i = 1, . . . , m.

Proof. Since h is a hyperbolic time

h
∑

j=h−k+1

inf
Cj

log ‖Df−1
αj

(f j
α(x))‖−1 ≥ ρk =

ck

2
.

Just as in (7), this leads to

∥

∥D
(

fαh
◦ · · · ◦ fαh−k+1

)−1(
fn

α (x)
)
∥

∥ ≤
h

∏

j=h−k+1

‖Df−1
αj

(f j
α(x))‖ ≤ e−ck/2

for every x ∈ C ′(α1 , . . . , αh). The first claim in the lemma follows: using the

mean value theorem, backward iterates decrease the length of any curve by

a factor e−c/2.

The particular case k = h reads d0(x1, x2) ≤ e−ch/2dh

(

F (x1), F (x2)
)

.

The term on the left is not smaller than dW ′

i
(x1, x2), because the cylinder

is contained in W ′
i , for every i. Moreover, dh(·, ·) is the same as dW ′

αh
(·, ·),
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because fh
α maps the cylinder onto W ′

αh
. So the second part of the lemma

also follows, recalling that h ≥ q.

Having been entirely precise in the formulation of this lemma, from now

on we omit subscripts in the notation of the various distances, whenever the

corresponding domain is clear from the context.

Let P = ∪h≥qPh . We shall represent the elements of P as P ′
j and denote

Fj = F | P ′
j , for j ≥ 1. Let E be the union of all the elements of P. By

construction E contains Λ̃. We shall refer to E as the domain of F . Recall,

however, that the extended cylinders may not be disjoint and so, in general,

F is a multi-valued map.

Proposition 2.3. Let G be the complement of Λ̃ in Λ. Then HD(G) < d.

This shows that the complement of Λ̃ is negligible as far as the proof of

Theorem 2 is concerned. For convenience of presentation, we postpone the

proof of this proposition to Section 4.2.

2.2 Bounded Volume Distortion

Here we prove that the Jacobian of F has a property of bounded distortion,

cf. Proposition 2.5.

We call inverse branch of F any map of the form F (−1) = F−1
j . Recall

that we denote Fj = F | P ′
j , for each P ′

j = C ′(α1 , . . . , αh) in P. It sends

W ′
αh

diffeomorphically onto P ′
j , which is contained in W ′

i for any 1 ≤ i ≤ m.

For n ≥ 2, an inverse branch F (−n) of F n is just a composition of n inverse

branches of F .
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Lemma 2.4. There exists a constant C0 > 0 such that log | detDF (−1)| is a

(C0, ε)-Hölder map, for every inverse branch F (−1) of F .

Proof. By construction, F (−1) = f−h
α for some α and h ≥ q. Let y1 , y2 be

points in the domain W ′
αh

of F (−1), and xi = F (−1)(yi) for i = 1, 2. Thus,

log
∣

∣ detDF (−1)(y1)
∣

∣ − log
∣

∣ det DF (−1)(y2)
∣

∣ =

=
h−1
∑

j=0

log | detDf−1
αh−j

(fh−j
α (x1))| − log | det Df−1

αh−j
(fh−j

α (x2))|.

By our smoothness requirement on fi , in (A′
1), the Jacobian log | det(Df−1

i )|

is ε-Hölder continuous. Let C̃0 be some Hölder constant for it. Moreover, by

Lemma 2.2,

d(fh−j
α (x1), f

h−j
α (x2)) ≤ e−cj/2d(y1, y2),

for every 1 ≤ j ≤ h. So, log
∣

∣ det DF (−1)(y1)
∣

∣ − log
∣

∣ det DF (−1)(y2)
∣

∣ is

bounded by

C̃0

h
∑

j=1

d(fh−j
α (x1), f

h−j
α (x2))

ε ≤ C̃0d(y1, y2)
ε

h
∑

j=1

e−cεj/2 ≤ C0d(y1, y2)
ε,

where C0 = C̃0

∑∞
j=1 e−cεj/2.

Proposition 2.5 (bounded distortion). There exists a constant C1 > 0 such

that

1

C1

≤
| detDF (−n)(y)|

| detDF (−n)(z)|
≤ C1

for every inverse branch F (−n) of F n, any n ≥ 1, and for every pair of points

y, z in the domain of F (−n).
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Proof. By definition, we may write F (−n) = hn ◦ · · · ◦ h1 , where each hi is an

inverse branch of F . Then

log
| det DF (−n)(y)|

| detDF (−n)(z)|
=

n
∑

j=1

(

log
∣

∣ det Dhj(hj−1 ◦ . . . ◦ h1)(y)
∣

∣−

− log
∣

∣ det Dhj(hj−1 ◦ . . . ◦ h1)(z)
∣

∣

)

.

By the previous lemma, each function log | detDhj| is (C0, ε)-Hölder. By

Lemma 2.2, every hi is an e−cq/2-contraction, Then

log
| detDF (−n)(y)|

| detDF (−n)(z)|
≤

n
∑

j=1

C0 d
(

(hj−1 ◦ . . . ◦ h1)(y), (hj−1 ◦ . . . ◦ h1)(z)
)ε

≤
n−1
∑

j=0

C0 e−cqjε/2d(y, z)ε ≤ C0 d(y, z)ε
∞

∑

j=0

e−cqjε/2.

Take C1 = exp
(

C0ρ
ε
0

∑∞
j=0 e−cqjε/2

)

, where ρ0 is some uniform upper bound

for the diameter of the domains W ′
i of inverse branches. It follows that

| detDF (−n)(y)|

| detDF (−n)(z)|
≤ C1 .

The other inequality is obtained reversing the roles of y and z.

Corollary 2.6. Let C2 = C2
1 . Then, given n ≥ 1 and any inverse branch

F (−n) of F n, we have

1

C2

Leb(A)

Leb(B)
≤

Leb
(

F (−n)(A)
)

Leb
(

F (−n)(B)
) ≤ C2

Leb(A)

Leb(B)
.

for any measurable subsets A and B of the domain of F (−n).
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Proof. Fix some point z in the domain of F (−n). Then

Leb
(

F (−n)(A)
)

Leb
(

F (−n)(B)
) =

∫

A
| det DF (−n)(x)| dx

∫

B
| det DF (−n)(y)| dy

=

∫

A

| detDF (−n)(x)|

| detDF (−n)(z)|
dx

/
∫

B

| det DF (−n)(y)|

| detDF (−n)(z)|
dy.

Hence, by the previous proposition,

1

C2
1

Leb(A)

Leb(B)
≤

Leb
(

F (−n)(A)
)

Leb
(

F (−n)(B)
) ≤ C2

1

Leb(A)

Leb(B)
.

This proves the corollary.

3 Dynamical Dimension

Notions of dimension of a set with respect to a dynamical system have been

considered by several authors, see e.g. [3, 8]. In very brief terms, one mim-

ics the definition of Hausdorff dimension, with diameter replaced by volume.

Moreover, one considers only certain covering sets, that are dynamically gen-

erated. Thus, the dynamical dimension is not a purely geometric invariant,

it may depend also on the underlying dynamical system.

Here we use a variation of this notion suitable for multi-valued maps.

Let M be a d-dimensional Riemannian manifold, and P = {P ′
j : j ≥ 1}

be a countable family of sub-domains of M . Suppose, for each P ′
j ∈ P a

continuous map Fj : P ′
j → M is given that sends P ′

j bijectively onto some

domain that contains V ′ = ∪i≥1P
′
i . Given k ≥ 1 , the k-cylinder of F

associated to a sequence (j1 , . . . , jk) ∈ N
k is the image C̃n(j1 , . . . , jk) of the
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inverse branch

F (−k) = F−1
j1

◦ · · · ◦ F−1
jk

.

Given any β > 0 and Λ ⊂ V ′, we define the β-dimensional dynamical measure

of Λ with respect to F to be

mβ(Λ, F ) = lim
δ→0

inf
|U|<δ

∑

U∈U

Leb(U)β , (10)

where Leb is the Riemannian volume in M , and the infimum is taken over

all coverings U of Λ by cylinders with diameter less than δ. If there is no

such covering then mβ(Λ, F ) is infinite, by convention.

In general, it is easy to see that there exists 0 ≤ β̄ ≤ 1 such that

mβ(Λ, F ) = ∞ for β < β̄ and mβ(Λ, F ) = 0 for β > β̄.

We define the dynamical dimension of Λ with respect to F to be

DDF (Λ) = d sup
{

β : mβ(Λ, F ) = ∞
}

= d inf
{

β : mβ(Λ, F ) = 0
}

.

Recall that d is the dimension of the ambient manifold M .

The main result in this section, and a step towards proving Theorem 2,

is the following

Proposition 3.1. Let Λ̃ be the subset of the repeller Λ defined in Section 2.

There is a constant β0 < 1 such that

DDF (Λ̃) ≤ dβ0 < d.
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The assumption about the limit capacity of the boundaries in (A1), (A′
1)

will not be used at all until Section 4. In particular, Proposition 3.1 remains

true without it. However, for the arguments in the next section we need the

coverings of Λ̃ that we are going to construct for proving the proposition to

have limit capacity of the boundaries smaller than d. That is the reason why

we assume, already at this point, that the R′
i have such a property.

Note also that, since fi is a C1 diffeomorphism, both it and its inverse

are Lipschitz continuous. It follows that they preserve geometric invariants

such as the limit capacity and the Hausdorff dimension; see [7, Chapter 4].

In particular, the boundary of W ′
i has the same limit capacity as ∂R′

i .

We split the proof of Proposition 3.1 into several short lemmas. In what

follows P ′
j is a generic element of P. That is P ′

j is an extended h-cylinder

C ′(α1 , . . . , αh), with h being the first hyperbolic time after some fixed q ≥ 1.

Recall that we called N the smallest integer large than (q/θ).

The first lemma states that if the inducing time h is large then P ′
j is in

the exceptional class Q′
h of hypothesis (A′

2).

Lemma 3.2. If h > 2N then φ′
h(α1 , . . . , αh) ≤ c.

Proof. Otherwise there would be at least hθ > 2Nθ hyperbolic times less or

equal than h. Since 2Nθ > 2q there would be at least 2q + 1 ≥ q + 2 such

hyperbolic times. Then, at least one of them would be in [q, h), contradicting

the definition of h.
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Lemma 3.3. There exists constants C3 > 0 and η < 1 such that

Leb(C ′(α1 , . . . , αn)) ≥ C3η
n

for any n ≥ 1 and any extended n-cylinder C ′(α1 , . . . , αn).

Proof. By construction, fn
α maps the cylinder diffeomorphically onto W ′

αn
.

Therefore,

Leb(C ′(α1 , . . . , αn)) ≥
Leb(W ′

αn
)

sup | detDfn
α |

.

Let C3 be a lower bound for the Lebesgue measure of the domains W ′
i . Also,

since f is a diffeomorphism on each compact set R′
i, its Jacobian is bounded

above by some constant 1/η. It follows that the volume of the n-cylinder is

at least C3η
n.

Corollary 3.4. There exist β1 < 1 such that, for any β1 ≤ β < 1,

∞
∑

j=1

Leb(P ′
j)

β < ∞.

Proof. The total number of h-cylinders with h ≤ 2N is finite and, in fact,

less than 2Nm2N . Therefore, the sum over all the P ′
j with h ≤ 2N

∑

h≤2N

Leb
(

P ′
j

)β

is always finite, for any β. So, to prove the statement we only have to show

that the sum over all the P ′
j with h > 2N is also finite. Now, by Lemma 3.3,

∑

h>2N

Leb
(

P ′
j

)β
=

∑

h>2N

Leb
(

P ′
j

)

Leb
(

P ′
j

)β−1
≤

∑

h>2N

Leb
(

P ′
j

)(

C3η
h
)β−1

.
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Then, using Lemma 3.2 and (A′
2),

∑

h>2N

Leb
(

P ′
j

)

β ≤
∑

h>2N

(

C3η
h
)β−1

∑

C∈Q′

h

Leb(C) ≤
∑

h>2N

(

C3η
h
)β−1

e−hc1 .

Assuming that β is close enough to 1, the ration of this geometric series is

smaller than 1, and so the series converges. Indeed, it is enough to suppose

that β ∈ [β1 , 1) for some fixed β1 < 1 close enough to 1 so that ηβ1−1e−c1 is

smaller than 1.

For each j ≥ 1, let F (−1) : W ′
αh

→ P ′
j be the inverse branch associated

to P ′
j , that is, the inverse of Fj . For each j ≥ 1, we consider the following

subsets of P ′
j:

Pj = F (−1)(Wαh
) and Bj = F (−1)(Hαh

).

See Figure 4.

PjP ′
j

Bj

F (−n) Hαh

Wαh W ′
αh

Figure 4: Definition of Pj and Bj

Recall that Hi = Wi \ (R1 ∪ · · · ∪ Rm). So, the definitions imply that

Pj \ Bj = F (−1)(R1 ∪ · · · ∪ Rm). We consider the family of subsets

U1 = {(Pj \ Bj)
◦ = F (−1)

(

(R1 ∪ · · · ∪ Rm)◦
)

: j ≥ 1}, (11)
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where A◦ is the interior of a set A in the ambient manifold. The following

fact is an immediate consequence of Corollary 3.4:

Corollary 3.5. For any β ∈ [β1 , 1),

∑

U1∈U1

Leb
(

U1

)β
=

∞
∑

j=1

Leb
(

(Pj \ Bj)
◦
)β

< ∞.

The next lemma shows that Pj is just the (regular) cylinder associated

to the extended cylinder P ′
j. In particular, the Pj have two-by-two disjoint

interiors.

Lemma 3.6. If P ′
j = C ′(α1 , . . . , αh) then Pj = C(α1 , . . . , αh). In particular,

P ◦
j ∩ P ◦

k = ∅ if j 6= k.

Proof. Recall that F (−1) : W ′
αh

→ R′
1 is defined by F (−1) = f−1

α1
◦ · · · ◦ f−1

αh
.

We have f−1
αh

(Wαh
) = Rαh

⊂ Wαh
, because fαh

is a bijective extension of

f | Rαh
, and the latter sends Rαh

onto Wαh
. Then

f−1
αh−1

◦ f−1
αh

(Wαh
) = f−1

αh−1
(Rαh

) = Rαh−1
∩ f−1(Rαh

) = C(αh−1, αh).

After h analogous steps we find that f−1
α1

◦ · · · ◦ f−1
αh

(Wαh
) = C(α1 , . . . , αh),

just as claimed in the first part of the lemma.

Note that two cylinders either have disjoint interiors or one of them is

contained in the other. So, to prove the second part we only have to check

that given any other Pk = C(β1 , . . . , βl) different from Pj , neither Pj ⊂ Pk

nor Pk ⊂ Pj . Indeed, Pj ⊂ Pk would imply h ≥ l and αi = βi for 1 ≤ i ≤ l.

Then either h = l, in which case Pj = Pk , or else h > l, which contradicting
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the choice of h as the first hyperbolic time. The case Pk ⊂ Pj is entirely

analogous.

Next, we are going to construct a sequence Un of families of subsets such

that
∑

Un∈Un

Leb
(

Un

)β
(12)

is non-increasing, for β < 1 close enough to 1. The first step was (11). The

general one is by recurrence: Un+1 is obtained replacing each Un ∈ Un by the

family of subsets that one obtains by pull-back of U1 to Un under F n. In

detail, this goes as follows.

Suppose a family Un has been constructed, such that every element Un of

Un is contained in an n-cylinder C̃(j1 , . . . , jn) of F , in fact

Un = F (−n)
(

(R1 ∪ · · · ∪ Rm)◦
)

where F (−n) is the inverse branch of F n corresponding to that cylinder. For

each j ≥ 1, let F (−1) be the inverse of Fj and

Un+1,j = F (−n)
(

(Pj \ Bj)
◦
)

= F (−n) ◦ F (−1)
(

(R1 ∪ · · · ∪ Rm)◦
)

.

This is well-defined because Pj ⊂ Rα1
, whereas F (−n) is defined on some

domain W ′
i ⊃ Rα1

. Moreover, Un,j is contained in the (n + 1)-cylinder

C̃(j1 , . . . , jn , j). We take Un+1 to be the family of all sets Un+1,j obtained in

this way, for all Un ∈ Un .

In what follows, F (−n−1) = F (−n) ◦ F (−1). Let us introduce the numerical

sequences
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• xj =
Leb

(

F (−n)
(

(Pj \ Bj)
◦
))

Leb(Un)
=

Leb
(

F (−n−1)
(

(R1 ∪ · · · ∪ Rm)◦
))

Leb(Un)

• yj =
Leb(F (−n)(B◦

j ))

Leb(Un)
=

Leb(F (−n−1)(H◦
αh

))

Leb(Un)

• zj =
Leb(F (−n)(P ◦

j ))

Leb(Un)
=

Leb(F (−n−1)(W ◦
αh

))

Leb(Un)
≥ xj + yj .

Our immediate goal is to prove that
∑∞

j=1 xβ
j ≤ 1 if β is close enough to

1. We are going to do that with the help of the following elementary fact,

that we borrow from [4, Lemma 3.1].

Lemma 3.7. Given a > 0, A > 0, and α < 1 there exists β̄ < 1 such that if

(xj)j and (yj)j are any sequences of positive real numbers such that

1.
∑

j(xj + yj) ≤ 1,

2. xj ≤ ayj for every j,

3.
∑

j(xj + yj)
α ≤ A,

then
∑

j xβ
j ≤ 1 for every β ∈ [β̄, 1).

That our sequences do satisfy the hypotheses of this lemma, is guaranteed

by the next couple of results.

Lemma 3.8. There exists a > 0 such that xj ≤ ayj for every j.

Proof. This is a direct consequence of Corollary 2.6:

xj

yj

=
Leb

(

F (−n−1)
(

(R1 ∪ · · · ∪ Rm)◦
))

Leb(F (−n−1)(H◦
αh

))
≤ C2

Leb(R1 ∪ · · · ∪ Rm)

Leb(H◦
αh

)
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and so it suffices to take a = (C2/C4) Leb(R1 ∪ · · · ∪ Rm) where C4 > 0 is a

lower bound for the Lebesgue measure of H◦
i , with 1 ≤ i ≤ m.

Lemma 3.9. Let β1 < 1 be as in Corollary 3.4. There exists A > 0 such

that
∑

j

zj ≤ 1 and
∑

j

zβ1

j ≤ A.

Proof. The first claim follow directly from Lemma 3.6:

∑

j

zj =
∑

j

Leb
(

F (−n)(P ◦
j )

)

Leb
(

Un

) ≤
Leb

(

F (−n)(∪jP
◦
j )

)

Leb
(

F (−n)
(

(R1 ∪ · · · ∪ Rm)◦
)) ≤ 1

because the Pj have two-by-two disjoint interiors, and each of them is con-

tained in some Ri .

To prove the second part of the lemma, we begin by using Corollary 2.6:

zj =
Leb

(

F (−n)(P ◦
j )

)

Leb
(

F (−n)
(

(R1 ∪ · · · ∪ Rm)◦
)) ≤ C2

Leb
(

Pj

)

Leb
(

(R1 ∪ · · · ∪ Rm)◦
) .

Thus, zj ≤ C5 Leb
(

Pj

)

, where C5 stands for C2/ Leb
(

(R1 ∪ · · · ∪ Rm)◦
)

.

Then, by Corollary 3.4,

∑

j

zβ
j ≤

∑

j

Cβ
5 Leb

(

Pj

)β
≤

∑

j

Cβ
5 Leb

(

P ′
j

)β

for every β ∈ [β1, 1). It suffices to take for A the value of this last sum when

β = β1 (the sum decreases when β increases).

Now it is easy to prove that the sequence in (12) is non-increasing, as we

announced.
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Corollary 3.10. There exists β2 < 1 such that, for every n ≥ 1,

∑

Un+1∈Un+1

Leb
(

Un+1

)β
≤

∑

Un∈Un

Leb
(

Un

)β

Proof. Let a and A be as in Lemmas 3.8 and 3.9, and α = β1 . Take β2 = β̄, as

given by Lemma 3.7. For each Un ∈ Un , let Un+1,j be the elements of Un+1 as-

sociated to it, as constructed above. Recall that xj = Leb(Un+1,j)/ Leb(Un).

So, according to Lemma 3.7,

∑

j

Leb(Un+1,j)
β =

∑

j

xβ
j Leb(Un)β ≤ Leb(Un)β

It follows that

∑

Un+1∈Un+1

Leb
(

Un+1

)β
=

∑

Un∈Un

∑

j

Leb(Un+1,j)
β ≤

∑

Un∈Un

Leb
(

Un

)β
.

as claimed.

Now we are ready to complete the proof of Proposition 3.1.

Proof. Let Un be as before. For each n ≥ 1 and Un = F (−n)
(

(R1∪· · ·∪Rm)◦
)

in Un , let U ′
n be the image of the inverse branch F (−n) (image of the whole

domain of the map). Let U ′
n be the family of all U ′

n obtained in this way,

for each fixed n. Every U ′
n is a covering of Λ̃ by n-cylinders of F . Since the

inverse branches of F are uniformly contracting, by Lemma 2.2, the maximum

diameter of all U ′
n ∈ U ′

n goes to zero when n goes to ∞. Therefore,

mβ(Λ̃, F ) ≤ lim inf
n→∞

∑

U ′

n∈U
′

n

Leb
(

U ′
n

)β
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for every β. We choose β0 = β2 , and claim that for every β ∈ [β0, 1) there

exists Aβ > 0 such that

∑

U ′

n∈U
′

n

Leb
(

U ′
n

)β
≤ Aβ for all n ≥ 1. (13)

(One may take Aβ = Aβ0
for all β, because the left hand side decreases when

the exponent increases.) This implies that mβ(Λ̃, F ) ≤ Aβ < ∞ for β ≥ β0 .

So, DDF (Λ̃) ≤ β0d, as we stated. Thus, we have reduced the proposition to

proving this claim.

On its turn, (13) is a fairly easy consequence of Corollary 3.10 and

bounded distortion. Indeed, Corollary 2.6 gives

Leb
(

U ′
n

)

Leb
(

Un

) =
Leb

(

F (−n)(W ′
i )

)

Leb
(

F (−n)
(

(R1 ∪ · · · ∪ Rm)◦
)) ≤ C2

Leb
(

W ′
i

)

Leb
(

(R1 ∪ · · · ∪ Rm)◦
)

for each Un ∈ Un and the corresponding U ′
n ∈ U ′

n , with W ′
i being the domain

of the inverse branch F (−n). The expression on the right hand side is, clearly,

bounded by some constant C6 . It follows that

∑

U ′

n∈U
′

n

Leb
(

U ′
n

)β
≤ Cβ

6

∑

Un∈Un

Leb
(

Un

)β
.

According to Corollary 3.10, this sequence on the right is non-increasing. In

particular, it is bounded by some constant Aβ > 0 independent of n. This

proves the claim (13). The proof of Proposition 3.1 is complete.

4 Hausdorff Dimension

Our purpose is to prove Theorem 2. We are going to use the coverings Un that

were constructed in Section 3. Roughly speaking, we replace each element
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of Un by an appropriate covering of it with balls. Because the volume of a

ball is given by a power of its diameter, this allows us to transform volume

estimates such as (13) into diameter estimates suitable for computing the

Hausdorff dimension. In this way we prove that the Hausdorff dimension of

Λ̃ is less than d. A similar argument also gives that the same is true for the

exceptional set G, as stated in Proposition 2.3.

4.1 From Volume to Diameter

We begin by describing a general construction of efficient coverings by balls

for sub-domains whose boundary is not too fractal, in the sense that the

limit capacity of the boundary is less than the ambient dimension. Then

every iterate of the domain under a local diffeomorphism may be covered

by balls of appropriate size, such that the total volume of these balls is the

same as the volume of the iterate, up to a factor that depends only on the

dimension.

Proposition 4.1. Let R be a domain in some manifold such that limit ca-

pacity of the boundary ∂R is less than d = dim M . Let g : M → M be a

local diffeomorphism. Then there exists ρ > 0 such that for every n ≥ 1 there

exists a covering B of gn(R) by open balls of radius at least ρn such that

∑

B∈B

Leb
(

B
)

≤ C0 Leb
(

gn(R)
)

,

where C0 depends only on R and the dimension d.

Proof. Let K > 1 be an upper bound for the norm and the determinant of
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both Dg and its inverse Dg−1. We are going to define the covering B in two

steps: first we include a family of balls that cover a ρn neighbourhood of the

boundary; then we add another family, that covers the complement of this

neighbourhood. For the time being, ρ is arbitrary: we make our choice at

the end of the proof.

Covering a neighbourhood of the boundary. Let d1 =limit capacity

of ∂R and d2 be fixed in the open interval (d1 , d). By definition of limit

capacity, there exists C1 > 0 depending only on the domain R, and for every

ε > 0 there exists a covering of ∂R by not more than C1ε
−d2 balls of radius

ε. In particular, we may cover ∂R with not more than C1(K
nρn)−d2 balls

B(xi, K
nρn) of radius Knρn. The images gn

(

B(xi, 2K
nρn)

)

are contained in

the balls B
(

gn(xi), 2K
2nρn

)

of radius 2K2nρn. By definition, these last balls

are in our covering B.

x

y

≤ Knρn

g−n(y)∂R

gn

≤ ρn

gn(x)

∂gn(R)

Figure 5: Covering a neighbourhood of the boundary

Let us observe that the total volume of the B
(

gn(xi), 2K
2nρn

)

is bounded

by

C1(K
nρn)−d2C2(2K

2nρn)d (14)

where C2 depends only on the dimension d. Moreover, we claim that these

balls cover the ρn-neighbourhood Vn of the boundary of gn(R). This can
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be checked as follows. Since g is an open map, ∂(gn(R)) is contained in

gn(∂R). Then, for every y ∈ gn(R) such that the distance from y to

∂gn(R)) is less than ρn, there exists x ∈ ∂R such that gn(x) ∈ ∂gn(R)

and d(y, gn(x)) ≤ ρn. See Figure 5. Then, d(g−n(y), x) ≤ Knρn. Moreover,

x belongs to some B(xi , K
nρn), because these balls cover ∂R. Therefore,

g−n(y) ∈ B(xi, 2K
nρn). Consequently, y belongs to B(gn(xi), 2K

2nρn). This

proves the claim.

Covering the interior. Consider a maximal family B(yj, ρ
n) of balls of

radius ρn two-by-two disjoint and contained in gn(R). We add the balls

B(yj, 2ρ
n) with the same centers and twice the radius to our covering B. At

this point the definition of B is complete. Let us observe that the B(yj, 2ρ
n)

cover the gn(R) \ Vn . Indeed, suppose there was y ∈ gn(R) \ Vn that is

not contained Then, the ball of radius ρn around y would be disjoint from

every B(yj, ρ
n), and so it could be added to the maximal family, which is a

contradiction. This proves that the whole family B does cover the domain

gn(R).

y

ρn

2ρn

2ρn

Figure 6: Covering the interior of cylinders
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Finally, the total volume of these B(yj, 2ρ
n) is bounded by

2d
∑

j

Leb
(

B(yj, ρ
n)

)

≤ 2d Leb
(

gn(R)
)

. (15)

So, adding (14) and (15), the total volume of the elements in the family B is

bounded by

C1C22
d(K2d−d2ρd−d2)n + 2d Leb

(

gn(R)
)

.

To conclude the proof we only have to show that the first term is less than

C3 Leb
(

gn(R)
)

for some constant C3 > 0. We choose

ρ = K−(2d−d2+1)/(d−d2).

Then,

(K2d−d2ρd−d2)n = K−n ≤
Leb

(

gn(R)
)

Leb(R)
for every n ≥ 1.

So, we may take C3 = C1C22
d/ Leb(R), and then C0 = C3 + 2d.

Remark 4. The arguments remain valid if one replaces gn by a composition

gn ◦ · · · ◦ gn of different local diffeomorphisms admitting a uniform bound for

the norm and determinant of Dgi and Dg−1
i .

4.2 Proof of Theorem 2

We begin by proving Proposition 2.3: the exceptional subset G of Λ formed

by those points that are not in Λ̃ has Hausdorff dimension less than d.
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Proof. Recall that, Λ̃ was defined as the set of points of Λ that satisfy the

condition in (A′
2) for some n > N . Therefore, its complement is

G =
⋂

n≥N

⋃

C∈Q′

n

C.

Let C = C ′(α1 , . . . , αn) be in Q′
n. Then C = f−n

α (W ′
αn

). Since every fα is

a diffeomorphism in its domain, and we assumed that the boundaries of the

W ′
i have limit capacity less than d, we may apply Proposition 4.1 (in the

version of remark 4): there exist ρ > 0 and C0, depending only on the map

and the domain W ′
i , such that C admits a covering B(C) by balls of radius

at least ρn such that

∑

B∈B(C)

Leb(B) ≤ C0 Leb(C).

Let Bn be the union of the B(C) over all C ∈ Q′
n. Observe that every Bn

covers G. By (A′
2),

∑

B∈Bn

Leb(B) =
∑

C∈Q′

n

∑

B∈B(C)

Leb(B) ≤ C0

∑

C∈Q′

n

Leb(C) ≤ C0e
−c1n.

There exists a constant Cd that depends only on the dimension d such that

Leb(B) ≥ Cd diam(B)d for every ball. In particular, Leb(B) ≥ Cd2
dρnd for

all B ∈ Bn, because their radii are not smaller than ρn. Then, given any

γ < 1, we have

∑

B∈Bn

Leb(B)γ ≤
∑

B∈Bn

Leb(B) sup
(

Leb(B)γ−1
)

≤ C0e
−c1n Cγ−1

d 2d(γ−1)ρnd(γ−1).
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It follows that

∑

B∈Bn

diam(B)γd ≤ C0C
−1
d 2d(γ−1)e−c1nρnd(γ−1).

Fix γ1 close enough to 1 so that the the ratio e−c1ρd(γ1−1) is less than 1. Then,

for any γ ∈ [γ1, 1),

∑

B∈Bn

diam(B)γd → 0 when n → ∞.

On the other hand, the diameters of these coverings Bn go to zero when

n → ∞. This proves that the Hausdorff (γd)-measure mγd(G) is zero for

every γ ≥ γ1. So, the Hausdorff dimension of G is at most γ1d < d.

Next we show that the Hausdorff dimension of Λ̃ is also less than d. In

fact, our arguments show that DDF (Λ̃) < d implies HD(Λ̃) < d, whenever

the following two additional conditions are satisfied: cylinders have bound-

aries with limit capacity less than d, and the volumes of n-cylinders decrease

exponentially with n.

Proposition 4.2. We have HD(Λ̃) < d.

Proof. For proving Proposition 3.1 we found β2 < 1 and a sequence of cov-

erings Un of Λ̃ by n-cylinders of F , such that

S0 = sup
n≥1

∑

Un∈Un

Leb
(

Un

)β

is finite for every β ∈ [β2 , 1). Recall Corollary 3.10. From this point on, the

proof of the proposition is similar to that of Proposition 2.3.
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Since every cylinder Un is a pre-image of a W ′
i under some inverse branch,

and the boundaries of the W ′
i have limit capacity less than d, we may apply

Proposition 4.1 to find ρ > 0 and C0, depending only on the map and W ′
i ,

such that Un admits a covering B(Un) by balls of radius at least ρn such that

∑

B∈B(Un)

Leb(B) ≤ C0 Leb(Un).

Then, given any γ < 1,

∑

B∈B(Un)

Leb(B)γ ≤
∑

B∈B(Un)

Leb(B) sup
(

Leb(B)γ−1
)

≤ C0 Leb(Un) Cγ−1
d 2d(γ−1)ρnd(γ−1).

Here we use, once more, the fact that Leb(B) ≥ Cd diam(B)d. Let Bn be the

union of the B(Un) over all Un ∈ Un. Of course, Bn covers Λ̃. Observe also

that the volume of n-cylinders of F decreases exponentially fast: there exists

c2 > 0 such that Leb(Un) ≤ e−c2n for every Un . That is because the map

F is uniformly expanding, hence volume-expanding. Therefore, the previous

inequality gives that

∑

B∈Bn

Leb(B)γ ≤ C0

∑

Un∈Un

Leb(Un) Cγ−1
d 2d(γ−1)ρnd(γ−1)

≤ C0 Cγ−1
d 2d(γ−1)

∑

Un∈Un

Leb(Un)βe−c2n(1−β)ρnd(γ−1)

for any β < 1. Fixing β = β2, we get

∑

B∈Bn

diam(B)γd ≤ C−γ
d

∑

B∈Bn

Leb(B)γ ≤ C0 C−1
d 2d(γ−1)S0

(

e−c2(1−β2)ρd(γ−1)
)n

.
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Choose γ2 < 1 close enough to 1 so that e−c2(1−β2)ρd(γ2−1) < 1. Then,

∑

B∈Bn

diam(B)γd → 0 as n → ∞,

and so mγd(Λ̃) = 0, for every γ2 ≤ γ < 1. This implies HD(Λ̃) ≤ γ2d < d.

Since the Hausdorff dimension of a finite, or even countable, union of sub-

sets is the supremum of their Hausdorff dimensions, see e.g. [7, Chapter 4],

these two propositions yield

HD(Λ) = HD
(

G ∪ Λ̃
)

= sup{HD(G), HD(Λ̃)} < d.

The proof of Theorem 2 is complete.
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