PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 103, Number 4, August 1988
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ABSTRACT. We prove that the halra of the exponentinl-like maps f{z) = Ae*
are smooth curves. This answers affirmatively a question of Devaney and
Krych. The proof is constructive in the sense that a dynamically defined O
parametrisation is presented.

0. Introduction. The study of the dynamical behaviour of the complex expo-
nential map was begun by Fatou in 1928, following the work of Julia and Fatou
himself concerning the dynamics of the rational maps on the sphere,

Recently Devaney and Krych {DK] were able to give a symbolic description of
that behaviour, by introducing the idea of “itinerary of a complex number under
the action of exp” (see §1 or [DK] for the definition). This led them to define “hair
of exp associated to a given itinerary” as, roughly, the set of complex numbers
sharing that itinerary and having fastly growing iterates. The hairs turn out to be
quite simple sets (in particular they are curves) and have very simple dynarnical
properties,

In fact these properties may be used to define “hair of an entire transcendental
function” and it turns out that hairs really exist for s very large class of such fune-
tions {(see [D'T]}). This, naturally, makes them an important tool for understanding
the dynamics of these functions and increases the interest in their study.

In this note we complement the description of the hairs of exp given in [DK],
proving that they are C*-differentiable curves. To do this we construet in §2 a
parametrization 4 of a hair as the uniform limit of a sequence (An,0)n and, in §3,

we prove 3 to be C% by showing that all the sequences of derivatives (15‘,&’?(3;),I are
also uniformly eonvergent.

As far as we know it is still an open question whether the hairs are or are not
analytic. We do not even know if 4 is an analytical parametrization.

1 would like to thank A. Douady for suggesting me this problem and for helpfu)
conversations on the subject. ‘

1. Definitions and results. Let A € C — {0} and take A = pe'®, with p > 0
and —x <8 < 7.

Let f(z) = Ae®, z € C and g(2) = pe?, 2 € R. Take, for s € Z, B(s) =
{z:(25=1)xr <Imz+8 < (25 + 1)x}. Since [lB(s) is a diffeomorphism, denote
fa_l = (f[B{s))_l- '
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DEFINITION. The f-itinerary of z € C is the integer sequence 8(2) = (on)n
defined by .

Asn—Vr<Imf(2) +8 < 2s, + ), n>0.

REMARK 1. If 8(z) = (3n)n then S(f(2)) = (8541)n. This means that §: ¢ —
ZM conjugates [ to the shift map o{(3n)n) = (n+1)n-

REMARK 2. If (s,.)y is the f-itinerary of some 2 € C then there is Z# € R such
that (+) (2]sal + ) + {8] < g™(), for all n > 0. This is proved in the same way
as Proposition 1.2 in [DK], with £ = }z| + 2. It follows from our results that (¥}
is also & sufficient condition for an integer sequence to be a J-itinerary (see also
[DK]).

DEFINITION. Let 8 = (s,), and 2 € R satisfy condition (*). '

(1) The tail of hair of [ associated to g is defined by T=T(8)={z:8(z)=s
and, for all n > 0, Re f*(2) > g"(£)}. Let 8% = (5,44), represent the kth shift of
8. By Remark 1 f%(T} C T(s*), so the following makes sense.

(2) The hasr of f associated to g is defined by

C=0C(s) = | Culs),

k>0

where Cy(s) is the connected component of f~*(T(s*)) containing T.
Here we prove

THEOREM A. There is ¢ homeomorphism 8 = B(s) : [, +oo[— T which is
O -differentiable on |z, +0o| and such that 0 < 18z} €1, for all z > %.
Moreover, for all itinerary 8, we have the relation fop(s)=p(s)og.

From this easily follows:
THEOREM B.- C iz a differentiable curve.

PROOF. Just note that, by taking appropriate backward images, /=% o B(s*) is
& O parametrization of Cx(s), whose restriction to [g*(z), +oo is B o g=*.

2. Construction of 3.
DEFINITION For 0 < p < n Brn p 1s the (smooth) curve defined for z > £, by

ﬂn,n(-’c) =g"(x) + (2ws,, — 2)i; 511.11(3] = f;;l (ﬁn,p+l (=), 0<sp<n.

The following lemma is easily proved by induction on p, starting with p = n
and counting down. Incidentally, it justifies the above claim that the Bnp are.
well-defined smooth curves.

LEMMA 2.1. Forall0<p<nandz >4
{i) Reﬁn.p(z) 2 g*(z), _
(if) Im B, p(2) — (278, ~ 8)] < x/2.

LEMMA 2.2. Let 21,22 € C be such that [Tmz, —Imzgl < 7. Then |f(z) —
Haa)] 2 alzy — 23, witha = min{Re f(z,}, Re f(z2)}. :
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PROOF. Let ¢; be the straight-line segment from f{z1) to f(22) and ¢ be the
smooth curve from z; to 23 such that f(co) = c1. It is easy to check that

N 1 1
£(21) = Fza)| = fn I} ()] dt = fo lex(8)] - [ch(8)] dt

1
> afo b ()| dt = ales — 2. O
PROPOSITION 2.3. Forall0<p<nendzx>%
|Bn.p(2) — Bn-1,p(2)| < g"(8)/167*(2) -~ g"(2)].
PROOF. Note that
g (&) 2 [(g"(z) + (2180 ~ 0)3) — g™ (@) = 1" P (Bn.p(2)) = I P (Bn-1.0(2)))-

The Proposition now follows by using (n — p) times the preceding lemmas.

It follows that, for all p > 0, the sequence (B p)n is uniformly convergent on
(£, +oo[. We define

DEFINITION. B = limy, f0.

Trivially 8 is continuous and, from Lemma 2.1, #([%,+0o[) C T. On the other
hand, if we take for z € T,

n{z) = sup{z > % : for all n >0 Re f*(z)} > ¢"(z)}

then

(A)neo B =id,

(B) 8 ¢y =id, and this clearly implies that & is a homeomorphism.

We just give a sketeh of the proof of (A) and (B). The details are easy to complete
and are left to the reader.

(A) For z > # there is ¢ > 0 such that, for all p = {,

¢°(z) <Re fPB(z) < ¢"(2) +a.
Then, easily, £ = nf(z).
(B) For z € T there is a > 0 such that, for all p > 0
9°n(z) < Re f?(z) £ ¢*n(2) +a.
It follows, using (a) that the sequence (fP(z}— fPBn(z)), is bounded. Using Lemma
2.3, we get 2 = fn(z). '

3. Smoothness of 8. It is easy to check that, if u is a smooth curve in C,
then for £ > 1 we have

(exp ou)(¥) = (exp ou) Zu(h} R LD
(k)

where the last factor represents a (particular) sum of products u(¥) ... u(kr) of
derivatives of u, which is homogeneous in the sense that &y +--- + &k, = k&, for all
such products.

We begin by proving & technical lemma that will be needed later. This proof is
interesting in itself because the same kind of argument will be used to prove the
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main results in this section;
LEMMA 3.1. Forall k> 1, there 48 My > 0 such that, for alp>0andz > %
(0 ® (2) < My, - p*~1gP ()",
PROOF. First step: It is easy to check that (¢®) < [¢"PP.
Inductive step: Let vy, = 2;-’:[1, ¢’ 50 that (gP)' = p® exp(y,). Then we have

p—1 g—1
()™ =3 ()" < 3 Mes* T gP* < My - pHgppt
F=

=0

(0741 = p*(exporg,) Y ) -l
7y

S 3 My o™ [gP)P% - - My pe g7
(k)

< (Z M, '---Mk,) p5- [P
(%)

Now, from f*~Po 8, ; = g" + (2rs,, — #)¢ we easily get the following expression
for the derivative of 4,

Brp = (Y (@ Wb "B,
Brp=(g®) - exp (ij(gf + (2ms; — )i — ﬁ,..,-)) .

i=p
Let
n-1
(1A) Gnp =D (& +(2rs; — 8)i - Br.5)
J=p
80 that
(1B} ﬂ:t,p ={g") - exp(an z).
Then
n—1
(24) ol3 =2 (™ — 5
j=p
and
Ny
(2B) gV =% ( ( ,)(f)‘*"*"(expoan.p)Za,‘,‘,;’ i |
i=0 (1)

The following is an easy consequence of Lemma 2.1 and Proposition 2.3.
LEMMA 3.2. Forall0<p<nandz> i

(1) Re an,p(z) < 0 (90 lexplon (2))] < 1), .

(2) | explan,p(8)) - exp(on—1,(2))| < omp(z) — an_1p(z)| <n- g"(2)/g"(z).
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LEMMA 3.3. For allk > 1, there are polynomials .@k,ﬁ such that, for z > 1,
(1) Iﬂ“‘} (@)| < Pl @), F0<p<n,
(ii) le& (@) € Fa(n)lg"~ ()], f0<p<n.

PROOF. Firat atep: |65, ;| = |(g°) explom p)] < [g°1F < [g"~1]™
Inductive step:

n-—1 n-1
leff3] < 2 (@)™ + 16,00 < D (Mug* T HeP* + Fem)le™ ™)
j=p j=p

< 1'i=(1|v1'1¢1rt'°‘l + P (g™ T,

Ec;l)l < E ( )Mk a+1p’° I[gp]p[k —I+1) Zﬁ i llnh . ,ﬁkr(ﬂ)[gn—llm,
()]

) N |
< (E (})Miciarntt S ) -.%,(z)) P e

) (0

We are now in position to prove the main result in this section, which im-

plies the convergence of all the sequences (ﬂ,(.i_’,),),., and so, in particular, the C®-
differentiability of 4.

PROPOSITION 3.4. For all k > 1 there are polynomials G, ék such that, for
0<p<nandz > Z,

() 185 (2) = BB, (@) < Qe(n)lg™~ 1 (z)]™* g™ (2)/9"(2),
(i) |oth(2) ~ o) (2)] < Qeln)[g" )™ g™ (2)/ 0" (2).
PROOF. First step:
18,5 — Bn-1.pl £ (87| explcn,p) — explan-1,p)| < [g" " n(g"™(2)/g"].

Inductive step:
ol — a2, pl < Z 185 = B, 51 < m - Qulm)lg™ [ g™()/0

The calculations for |,8( H” ﬂ(k +l)| are long and tedious but present no difficulty
at all. They are not detmled here. I:'I

The convergence of (ﬁ,(. #)n now follows from the lemma below which can be
proved by elementary means (e.g. the root test for convergence).

LEMMA 3.5. Let Q be a polynomial. Then the series

Y Q)™ (=) () /g™ (x)

is uniformly convergent on (o, +00[, for alla > Z.

Finally from formula (1B) above we get 8, o = exp(om,0) so, by Lemma 3.2(1),
|6’} = lim|8;, o| £ 1. On the other hand, from Lemma 3.2(2) it easily follows that
(otn.0)n converges and this clearly implies 8’ # 0. This ends the proof of Theorem
A
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