
FLAVORS OF PARTIAL HYPERBOLICITY

F. ABDENUR AND M. VIANA

Abstract. The notion of partial hyperbolicity has been used in the literature
in various forms, not all equivalent. We discuss some of these variations,
to advocate that the “right” definition should be existence of a pointwise
dominated decomposition into at least two invariant subbundles, one of which
is hyperbolic (either expanding or contracting). To support this point of view,
we include proofs of Hölder continuity and absolute continuity of the hyperbolic
laminations, under the pointwise domination assumption.

1. Introduction

1. There has long been a consensus on the proper definition of uniform hyper-
bolicity: the tangent space admits a Df -invariant splitting into two subbundles,
restricted to one of which the derivative is eventually exponentially contracting
while restricted to the other it is eventually exponentially expanding. Introduced
by Smale [?] some forty years ago, this notion lead to a surprisingly precise theory
of a class of dynamical systems whose behavior is often very complex. It was also
at the very heart of Anosov’s celebrated proof that the geodesic flow on manifolds
with negative curvature is ergodic [?].

A few years later, Brin, Pesin [?] proposed to weaken the hyperbolicity assump-
tion to what they called partial hyperbolicity: roughly speaking, one allows for a
Df -invariant subbundle which is neither expanding nor contracting, in addition to
the hyperbolic ones. In particular, they proved that such systems admit invariant
foliations tangent to their hyperbolic subbundles which are absolutely continuous,
meaning that their holonomy maps (projections between cross-sections along the
leaves of the foliation) preserve the class of zero Lebesgue measure sets. The corre-
sponding statement for hyperbolic systems had been the crucial technical ingredient
in Anosov’s argument. Shortly afterwards, Hirsch, Pugh, Shub carried out a thor-
ough investigation of the related notion of normal hyperbolicity, which culminated
in their book [?].

2. Much more recently, in the last decade or so, a series of key developments put
the notion of partial hyperbolicity back at the forefront of Dynamics. Initially,
there were three main projects, which have been gradually merging to one another.

One was the retaking by Pugh, Shub (see [?]) of Brin, Pesin’s original program:
to prove (stable) ergodicity for typical volume preserving systems under weak hy-
perbolicity assumptions. This benefitted from important contributions from sev-
eral other mathematicians, especially Wilkinson, Burns, Dolgopyat, Pesin, Nitica,
Torok, Tahzibi, F. Rodriguez-Hertz, J. Rodriguez-Hertz, and Ures. Detailed sur-
veys can be found in [?, ?, ?], as well as [?, Chapter 8].
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Another one (see [?, Chapters 7 and 9]), was the search for a characterization of
robust (stable) transitivity for diffeomorphisms and flows, and their attractors and
repellers. Shub and Mañé had shown that robustly transitive diffeomorphisms need
not be hyperbolic, and other examples were exhibited more recently by Bonatti,
Dı́az, Viana. A fundamental recent development was due to Bonatti, Diaz, Morales,
Pacifico, Pujals, Ures [?, ?, ?], who proved that some form of partial hyperbolicity,
or just the existence of a dominated invariant splitting, is necessary for robust
transitivity. Here one deals mostly with dissipative systems, but works of Arbieto,
Matheus [?] and Horita, Tahzibi [?] treat the conservative case as well, enhancing
the connection with the issues in the previous paragraph, and the next one.

Yet another active program (see [?, Chapter 11]), was the development of an
ergodic theory of partially hyperbolic dissipative systems: proofs of existence and
finiteness of physical (Sinai-Ruelle-Bowen) measures for some classes of such sys-
tems were provided by Alves, Bonatti, Viana [?, ?] and some their results have
been much sharpened by Tsujii [?] in the case of 2-dimensional maps. Some recent
progress suggests there is some significant connection with the study of cocycles
over hyperbolic systems (see [?, Chapter 12]).

3. It must be noted, however, that these results often use somewhat different
definitions of partial hyperbolicity. Let f : M → M be a diffeomorphism and
Λ ⊂ M be a compact f -invariant set. Brin and Pesin’s [?] original definition was
in terms of the push-forward operator

f∗ : X (Λ) → X (Λ), f∗X(y) = Df(f−1(y))X(f−1(y))

in the space of continuous vector fields on Λ: they called Λ partially hyperbolic if
the spectrum of the linear operator f∗ splits into three subsets contained in disjoint
open annuli and at least two of which are non-empty. Then there exists an f∗-
invariant spectral decomposition Eu ⊕Ec ⊕Es of X (Λ), and, hence, a Df -invariant
splitting

TΛM = Eu ⊕ Ec ⊕ Es, E∗
x = {Xx : X ∈ E∗}

of the tangent bundle over the invariant set Λ, where at least two of the subbundles
have positive dimension.

4. Then Hirsch, Pugh, Shub [?] proposed no less than four different definitions of
partial hyperbolicity. In all of them one asks for the existence of a Df -invariant
splitting TΛM = F ⊕ E where F dominates E, meaning that Df | F is more
expanding/less contracting than Df | E, and one of the two subbundles is uniformly
hyperbolic: If E is uniformly contracting, we say that the splitting E ⊕ F is of
strong stable type and write Ecu for F and Es for E. If F is uniformly expanding
we call the splitting of strong unstable type and write Eu for F and Ecs for E. The
variations between different definitions reside in the precise formulation of the idea
of domination, or normal hyperbolicity: absolute versus relative (or pointwise) and
eventual versus immediate.

Absolute partial hyperbolicity means that, given any two points in the set, the
behavior of the derivative along the subbundle E is uniformly stronger than the
behavior along the subbundle F : A compact invariant set Λ is called (eventually)
absolutely partially hyperbolic if there exists a Df -invariant splitting F ⊕E of TΛM ,
a Riemmann metric on M , and constants C > 0 and λ ∈ (0, 1) such that
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(ad) the splitting F ⊕ E is absolutely dominated : for every ξ and η in Λ

‖Df−n | Fξ‖ ‖Dfn | Eη‖ ≤ Cλn,

(s∨u) either Df | E is uniformly contracting or Df | F is uniformly expanding:
either ‖Dfn | Eξ‖ ≤ C λn for every ξ ∈ Λ and n ∈ N or ‖Df−n | Ffn(ξ)‖ ≤
C λn for every ξ ∈ Λ and n ∈ N.

Relative partial hyperbolicity, which Michael Herman liked to call Brazilian par-
tial hyperbolicity, only requires pointwise domination: a compact invariant set Λ is
called (eventually) pointwise partially hyperbolic if there exists a Df -invariant split-
ting F ⊕ E of TΛM , a Riemann metric on M , and constants C > 0 and λ ∈ (0, 1)
such that:

(pd) the splitting F ⊕ E is pointwise dominated : for every ξ ∈ Λ and n ∈ N we
have

‖Dfn | Eξ‖ ‖Df−n | Ffn(ξ)‖ ≤ C λn

(s∨u) either Df | E is uniformly contracting or Df | F is uniformly expanding,
in the same sense as before.

Notice that, in either case, changing the Riemann metric only amounts to choos-
ing a different constant C, the definition is otherwise unaffected. Then we also have
stronger versions of these definitions, called immediate absolute partial hyperbolicity
and immediate relative partial hyperbolicity, where one requires the constant C to
be equal to 1, for some choice of the metric.

5. Actually, Hirsch, Pugh, Shub show, in [?, Proposition 2.2], that immediate and
eventual absolute partial hyperbolicity are equivalent conditions, and that they
are also equivalent to the spectral definition of Brin, Pesin [?]. Surprisingly, the
equivalent question for pointwise partial hyperbolicity is much more subtle. Some
special cases can be done easily (see [?, page 5]), but the general problem was solved
only very recently: Gourmelon [?] shows that any eventually partially hyperbolic
set is immediately partially hyperbolic for some choice of the metric. Accordingly,
in what follows we drop the distinction immediate/eventual altogether.

On the other hand, it is easy to see that absolute partial hyperbolicity is strictly
stronger than its pointwise counterpart. One simple construction goes as follows.
Start with a hyperbolic set (a horseshoe) of a surface diffeomorphism and consider
two of its periodic points. Deform the diffeomorphism near one of the points so
as to make its expanding eigenvalue become 1, while keeping the other eigenvalue
bounded from 1. Then perform a dual deformation near the other periodic point, so
as to make its contracting eigenvalue equal to 1, while keeping the other eigenvalue
bounded from 1. This can be done in such a way that the new diffeomorphism
still has an invariant set, topologically conjugate to the original horseshoe, admit-
ting a Df -invariant splitting of its tangent bundle and this splitting is pointwise
dominated. However, the presence of eigenvalues equal to 1 along both subbundles
prevents the splitting from being absolutely dominated.

Clearly, this kind of example is not robust. That is in the nature of things in low
dimensions: according to a theorem of Pujals, Sambarino [?], pointwise dominated
decompositions of generic surface diffeomorphisms are actually uniformly hyper-
bolic and, thus, absolutely partially hyperbolic. On the other hand, using ideas
from [?] for instance, one can easily construct robust examples of transitive diffeo-
morphisms on M = T 3, say, with pointwise partially hyperbolic splitting Eu ⊕Ecs
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with dimEu = 1 and dimEcs = 2 and such that

‖Df(p) | Eu
p ‖ < 2 and ‖Df(q) | Ecs

q ‖ > 3

for some fixed points p and q. See Figure 1. Then the splitting is not absolutely
partially hyperbolic.

s

u

s

u

p q

Figure 1. Pointwise dominated but not absolutely dominated splitting

6. Both the absolute and the relative/pointwise flavors of the definition have been
used in the literature, and the distinction is not always clearly made. Not surpris-
ingly, works where partial hyperbolicity is part of the conclusions tend to adopt
the relative point of view. In most cases, this is actually necessary: For instance,
the assertions in [?, ?, ?] that robust transitivity implies partial hyperbolicity or,
at least, existence of a dominated splitting of the tangent bundle, would not hold
in the absolute setting. Another such example is the work of Bochi, Viana [?, ?]
showing that, generically, the Lyapunov exponents of conservative maps and SL(d)-
cocycles vanish, or else there exists an invariant dominated splitting. Once more,
the statement must be in terms of pointwise domination.

In contrast, works where partial hyperbolicity and domination are part of the
hypotheses tend to use the stronger absolute definition. This is usually much less
justified 1. Indeed, it should be possible to establish all main results under the,
more general, pointwise domination condition. In view of the global picture of the
field we have been presenting, it is highly desirable to do so. This point of view is
adopted, for instance, in the recent work of Burns, Wilkinson [?] where the authors
prove Pugh-Shub’s ergodicity conjecture, under a center-bunching hypothesis.

As some evidence in favor of this point of view we are advocating, in this paper
we give a proof of the absolute continuity theorem in [?, ?] for relatively partially
hyperbolic systems. While the statement will not surprise the experts, being well-
known in the absolute case, a proof does not seem to be available in the literature,
and that may be a reason why authors sometimes shy away from setting their re-
sults in greater generality. Let us mention that the statement we give here has
already been used in the previously mentioned work of Burns, Wilkinson [?]. Un-
der the same pointwise assumption, we also prove two other general features of
strong invariant (strong-stable and strong-unstable) foliations, namely that they
have Hölder continuous tangent bundles and holonomy maps.

7. Before getting into the statements, let us mention there is yet another variation
in the definitions used in the literature. This concerns the number (either two or

1Occasionally, one reads: “Partial hyperbolicity as defined here is an absolute concept. Most
of what we prove, however, remains valid when the system is relatively partially hyperbolic”. . .
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three) of required invariant subbundles. We say that a compact invariant set Λ
is partially hyperbolic with three subbundles if there exists a Df -invariant splitting
Eu ⊕ Ec ⊕ Es of TΛM , a Riemmann metric on M , and constants C > 0 and
λ ∈ (0, 1) such that:

(d) Eu ⊕Ec ⊕Es is dominated : both (Eu ⊕Ec)⊕Es and Eu ⊕ (Ec ⊕Es) are
(absolutely or pointwise) dominated.

(s∧u) Df | Es is uniformly contracting and Df | Eu is uniformly expanding.

Thus, Λ is simultaneously of strong-stable type and strong-unstable type:
As we mentioned before, the original definition in Brin, Pesin [?] asked for three

invariant subbundles, at least two of which have positive dimension. That also
turned out to be the right choice for the characterization, given by Dı́az, Pujals,
Ures [?], of robustly transitive diffeomorphisms in 3-manifolds. Indeed, robust
transitivity may coexist with periodic points exhibiting complex eigenvalues, and
the presence of such periodic points is an obstruction to the existence of three
invariant subbundles ([?] also shows that this is the sole obstruction in dimension
3).

On the other hand, the approach to proving ergodicity via accessibility, proposed
by Pugh, Shub [?], naturally calls for the existence of both a strong-stable subbun-
dle and a strong-unstable subbundle. In view of the remarkable effectiveness of this
approach, it would be interesting to devise a counterpart for partially hyperbolic
systems with only two invariant subbundles. A natural candidate to replace acces-
sibility is minimality of the strong invariant foliation, that was first addressed from
this perspective in [?] and has been investigated in [?, ?].

8. Henceforward, partial hyperbolicity will always be meant in the relative (point-
wise) sense. We say that a subbundle E is Hölder continuous if, in the neighbor-
hood of any point, there are Hölder continuous linearly independent vector fields
spanning E.

Proposition A. Let Λ be a partially hyperbolic set for a C2 diffeomorphism f .
Then the corresponding invariant subbundles E and F are Hölder continuous. If
Λ is partially hyperbolic with three subbundles Eu, Es, Ec then they are all Hölder
continuous.

Corresponding statements in the absolute case can be found in [?, Corollary 2.1]
and [?, Theorem 6.4]. The next result concerns the transverse regularity of strong-
stable and strong-unstable foliations:

Proposition B. Let Λ be a partially hyperbolic set of strong-unstable (respectively,
strong-stable) type for a C1 diffeomorphism f . Then the local holonomy maps of the
strong-unstable (respectively, strong-stable) foliation of Λ are Hölder continuous. If
Λ is partially hyperbolic with three subbundles then both holonomies, strong-stable
and strong-unstable, are Hölder continuous.

A similar statement appeared in [?, Theorem A’]. We include a proof, since it
is short and prepares the way for the next result. An example of Wilkinson [?]
shows that the integral foliation of a Hölder continuous subbundle needs not be
transversely Hölder continuous (i.e., the holonomy might not be Hölder). Therefore,
Proposition B is not a consequence of Proposition A, even in the C2 case.

Finally, we state the absolute continuity theorem. This fundamental property
was first established by Anosov, Sinai [?, ?] for uniformly hyperbolic systems, as a
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main step in the proof that the geodesic flow on manifolds with negative curvature
is ergodic. Pugh-Shub [?] and Brin-Pesin [?, Theorem 3.1] extended it to absolutely
partially hyperbolic systems. We check that it holds under our weaker (pointwise)
partial hyperbolicity condition.

Theorem C. Suppose f is a C2 partially hyperbolic diffeomorphism of strong-stable
type. Then for any local holonomy map π : Σ1 → Σ2 of the strong-stable foliation
of f there exists K > 0 such that

1

K
mΣ1

(B) ≤ mΣ2
(π(B)) ≤ KmΣ1

(B) for any measurable set B ⊂ Σ1,

where mΣi
is the Riemannian volume induced on the cross-section Σi, i = 1, 2.

The assumption means that Λ = M is a partially hyperbolic set for f , of strong-
stable type. The same arguments hold when Λ is a partially hyperbolic attractor,
of strong-stable type. Taking the inverse map, one gets dual results for the strong-
unstable foliation of partially hyperbolic diffeomorphisms and repellers of strong-
unstable type.

2. Hölder Continuity

We begin by proving Propositions A and B. For both of them, we may suppose
that Λ is of strong-unstable type: the strong-stable case follows, replacing f by its
inverse, and the situation with three subbundles is easily reduced to the one with
two subbundles, by writing

Eu ⊕ Ec ⊕ Es = Ecu ⊕ Es = Eu ⊕ Ecs

with Ecu = Eu ⊕ Ec and Ecs = Ec ⊕ Es. Note, in addition, that the statements
do not change when one replaces f by some iterate fN , with N large. Up to doing
this right from the start, we may suppose that the conditions in the definition of
partial hyperbolicity hold with C = 1: there is λ < 1 such that

(1) ‖Df−1 | Eu
x‖ ≤ λ and ‖Df−1 | Eu

f(x)‖ ‖Df | Ecs
x ‖ ≤ λ for all x ∈ Λ.

2.1. Invariant Subbundles. Here we prove Proposition A. Let λ < 1 be as in (1)
and ε > 0 be small enough so that λ2+2ε < λ−ε. Extend Eu and Ecs continuously
to a neighborhood of Λ, then let Fu and F cs be C1-approximations such that for
every x ∈ Λ the derivative Df(x) : F cs

x ⊕ Fu
x → F cs

f(x) ⊕ Fu
f(x) is given by a matrix

(

Ax Bx

Cx Dx

)

where Ax and Dx are invertible matrices such that ‖D−1
x ‖ and ‖D−1

f(x)‖ ‖Ax‖ are

bounded by λ+ ε, while ‖Bx‖ and ‖Cx‖ are bounded by ε. Let E be the C1 bundle∗

over Λ whose fiber at x ∈ Λ is the space L(Fu
x , F cs

x ) of linear maps L : Fu
x → F cs

x ,
endowed with the usual operator norm. Set E(1) = {(x, L) ∈ E : ‖L‖ ≤ 1}.
Consider now the linear graph transform Γ : E(1) → E given by

Γ(x, L) = (f(x), Γx(L)), Γx(L) = (Bx + Ax L) ◦ (L Cx + Dx)−1

A direct calculation (see [?, pp 62–64]) shows that Γ maps E(1) into E(1), and every∗

Γx contracts the fiber of E by a uniform factor

κ =
λ2 + 2ε

λ − ε
< 1.
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Thus, Γ admits a continuous invariant section σ : Λ → E(1). This invariant section
yields precisely the unstable direction: Eu

x = graph(σ(x)) for all x ∈ Λ. We shall
show that σ is Hölder continuous (Lemma 1 below).

Via the exponential chart we identify TΛM locally with R
d×(Ru⊕R

cs), where R
d

corresponds to a neighborhood in M and R
u⊕R

cs corresponds to the decomposition
of TxM as the direct sum Fu ⊕ F cs. We endow R

d × (Ru ⊕ R
cs) with the product

metric. Having made this identification, we endow the bundle E with the metric

dE
(

(x, L), (y, K)
)

= max{d(x, y), ‖L − K‖}.

Note that Γ is of class C1, because Fu and F cs are C1 and the map f is C2. In
particular, Γ is α-Hölder for every α ∈ (0, 1). Set µ = Lip(f−1|Λ) and fix α > 0
small enough so that

κ µα < 1.

Then let C > 0 be such that dE (Γ(x, L), Γ(y, K)) ≤ C dE((x, L), (y, K))α for any
(x, L) and (y, K) in E , that is, Γ is (C, α)-Hölder.

Lemma 1. We have dE(σ(x), σ(y)) ≤
C µα

1 − κµα
d(x, y)α for all x, y ∈ Λ.

Proof. (The estimates are lifted straight out of [?, p. 46]). We are going to show

(2) dE(σ(x), σ(y)) ≤ κn dE
(

σ(f−nx), σ(f−ny)
)

+ C
n

∑

j=1

µαj κj−1d(x, y)α.

for every n ≥ 1 and any x, y ∈ Λ. The case n = 1 is given by

(3)

dE(σ(x), σ(y)) = dE
(

Γf−1x(σ(f−1x)), Γf−1y(σ(f−1y))
)

≤ dE
(

Γf−1x(σ(f−1x)), Γf−1x(σ(f−1y))
)

+ dE
(

Γf−1x(σ(f−1y)), Γf−1y(σ(f−1y))
)

≤ κ dE
(

σ(f−1x), σ(f−1y)
)

+ C d(f−1x, f−1y)α

≤ κ dE
(

σ(f−1x), σ(f−1y)
)

+ C µα d(x, y)α.

Now we use induction to show that the claim holds for all n: combining (2) with
(3) (with x and y replaced by f−n(x) and f−n(y))

dE(σ(x), σ(y)) ≤ κn dE
(

σ(f−nx), σ(f−ny)
)

+ C

n
∑

j=1

µαj κj−1 d(x, y)α

≤ κn
[

κdE
(

σ(f−(n+1)x), σ(f−(n+1)y)
)

+ C µα(n+1) d(x, y)α
]

+ C
n

∑

j=1

µαj κj−1 d(x, y)α

≤ κn+1dE
(

σ(f−(n+1)x), σ(f−(n+1)y)
)

+ C

n+1
∑

j=1

µαj κj−1 d(x, y)α,

which means that (2) holds for n + 1. This completes the proof of our claim. Now,
since

∑∞

j=0 (µα κ)j = 1/(1 − κ µα) and κ < 1, taking the limit in (2) we obtain that

dE(σ(x), σ(y)) ≤
C µα

1 − κ µα
d(x, y)α,

as stated. �
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This proves that Eu is Hölder continuous. The proof of Hölder continuity for
Ecs is analogous, iterating backwards instead of forwards.

2.2. Holonomy Maps. Now we prove Proposition B. Let λ be as in (1) and ε > 0
be such that e4ε < λ−1. Then take δ > 0 and a > 0 small enough so that

(4) ‖Df−1 | Eu
x‖ ≤ eε‖Df−1 | Eu

y ‖ and ‖Df | V ‖ ≤ eε‖Df | Ecs
y ‖,

for all x, y ∈ Λ with d(x, y) ≤ 2δ and any subspace V of TxM contained in the
center-stable cone

Ca(Ecs, x) = {vu + vcs ∈ Eu
x ⊕ Ecs

x : ‖vu‖ ≤ a‖vcs‖}

of width a. Extend Eu and Ecs continuously to a neighborhood U of Λ, small
enough so that the extended center-stable cone field remains invariant. Reducing
U and δ if necessary, we may suppose that U contains the 2δ-neighborhood of Λ
and conditions (1) and (4) remain true for every x, y ∈ U with d(x, y) ≤ 2δ.

We want to prove that any local holonomy map π between cross-sections Σ1

and Σ2 satisfies a Hölder condition. We use du(· , ·) to represent distance measured
along leaves of Fu. Notice du(· , ·) ≥ d(· , ·). It is no restriction to suppose that
Σ1 and Σ2 are nearby, and their tangents are close to Ecs at each point, in the
following sense:

(a) du(x, π(x)) ≤ δ for every x ∈ Σ1 and

(b) TxΣi ⊂ Ca(Ecs, x) for every x ∈ Σi , i = 1, 2.

Indeed, properties (a) and (b) can always be enforced by considering backward
iterates f−n(Σ1) and f−n(Σ2), with n large, in the place of Σ1 and Σ2 . Since the
foliation Fu is invariant under f , the holonomy ρn from f−n(Σ1) to f−n(Σ2) is
given by ρn = f−n ◦ π ◦ fn. Hence, π is Hölder continuous if and only if ρn is, so
that replacing the initial cross-sections does not affect the validity of the conclusion.

Set δ1 = δ/L, where L > 1 is a Lipschitz constant for f and its inverse. Let
dΣ(· , ·) represent distance measured along some cross-section to the foliation (it
will always be clear from the context which one is meant). Notice dΣ(· , ·) ≥ d(· , ·).

In what follows we denote x2 = π(x1) and y2 = π(y1).
By similar considerations to those made above, we may, taking the cone width

a > 0 sufficiently small and up to replacing Σ1 and Σ2 by sufficiently large pre-
iterates by f , assume that the following “triangle inequality” holds for all n ∈ N:

dΣ2
(f−nx2, f

−ny2) ≤ du(f−nx1, f
−nx2) + dΣ1

(f−nx1, f
−ny1) + du(f−ny1, f

−ny2).

Since Fu is a continuous foliation, we may fix δ2 > 0 small enough so that

(5) dΣ(x1, y1) < δ2 ⇒ dΣ(π(x1), π(y1)) < δ1,

for any x1, y1 ∈ Λ ∩ Σ1 and any cross-sections Σ1 and Σ2 satisfying (a)–(b).

Lemma 2. There exists C > 0, depending on δ and δ2 and, given any cross-sections
Σ1 and Σ2 satisfying (a)–(b) and any points x1, y1 ∈ Λ ∩ Σ1 with dΣ(x1, y1) ≤ δ1,
there exists n ≤ 4 logλ dΣ(x2, y2) such that

(i) dΣ(f−j(x2), f
−j(y2)) ≤ δ for all 0 ≤ j ≤ n, and

(ii) dΣ(f−n(x2), f
−n(y2)) ≤ CdΣ(f−n(x1), f

−n(y1)).
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Proof. Let us treat first the case when dΣ(f−j(x2), f
−j(y2)) is less than δ1 for all

0 ≤ j ≤ 4 logλ dΣ(x2, y2). Fix any n between 2 logλ dΣ(x2, y2) and 4 logλ dΣ(x2, y2).
Then we may use (4) and (b), for the backward iterates of the cross-sections, to
conclude that

du(f−n(x1), f
−n(x2)) ≤

n−1
∏

j=0

(

‖Df−1 | Eu
f−j(x2)

‖eε
)

du(x1, x2)

dΣ(f−n(x2), f
−n(y2)) ≥

n
∏

j=1

(

‖Df | Ecs
f−j(x2)

‖eε
)−1

dΣ(x2, y2).

Together with (a) and the domination property in (1), this yields

du(f−n(x1), f
−n(x2))

dΣ(f−n(x2), f−n(y2))
≤ (λe2ε)n du(x1, x2)

dΣ(x2, y2)
≤ λn/2 δ

dΣ(x2, y2)
≤ δ.

and, analogously,

du(f−n(y1), f
−n(y2)) ≤ δdΣ(f−n(x2), f

−n(y2)).

Then, by the aforementioned “triangle inequality”,

dΣ(f−n(x1), f
−n(y1)) ≥ (1 − 2δ)dΣ(f−n(x2), f

−n(y2)),

and this implies claim (ii), as long as we take δ ≤ 1/4 and C ≥ 2. Claim (i) is
obvious from the construction. Now suppose that, on the contrary, there exists
n ≤ 4 logλ dΣ(x2, y2) such that dΣ(f−n(x2), f

−n(y2)) is larger than δ1. Take such
an n minimum. Then,

dΣ(f−n(x2), f
−n(y2)) ≤ LdΣ(f−n+1(x2), f

−n+1(y2)) ≤ Lδ1 = δ.

Thus, claim (i) is satisfied. Moreover, by (5),

dΣ(f−n(x1), f
−n(y1)) ≥ δ2.

Together with the previous inequality, this implies claim (ii), as long as we take
C ≥ δ/δ2. The proof of the lemma is complete. �

fn

Σ1 Σ2x1

y1

x2

y2

f−j(x1)

f−j(y1)

f−j(x2)

f−j(y2)

Figure 2. Proving holonomies are Hölder

The following corollary contains Proposition B:

Corollary 3. There are constants K > 0 and γ ∈ (0, 1], depending on δ and δ2,
such that

dΣ(x2, y2) ≤ KdΣ(x1, y1)
γ

for any x1 and y1 in Λ ∩ Σ1 and any cross-sections Σ1 and Σ2 satisfying (a)–(b).
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Proof. Clearly, we may restrict ourselves to the case when dΣ(x1, y1) ≤ δ1. In view
of part (i) of Lemma 2, we are in a position to apply (4) and get

dΣ(x2, y2) ≤

n
∏

j=1

(

‖Df | Ecs
f−j(x2)

‖eε
)

dΣ(f−n(x2), f
−n(y2)).

We also need a lower bound for dΣ(x1, y1) which is obtained in a similar fashion.
We divide the argument into two cases:

Case 1 : We have dΣ(f j(x1), f
j(y1)) < δ for all j ∈ [−n, 0].

Conditions (1) and (a) imply

(6) du(f−j(y1), f
−j(y2)) ≤ λjdu(y1, y2) ≤ λjδ ≤ δ

for every j ≥ 0, and analogously for du(f−j(x1), f
−j(x2)). Then, using (4) and the

mean value theorem for f−1,

dΣ(x1, y1) ≥
n−1
∏

j=0

(

‖Df−1 | Ecs
f−j(x2)

‖eε
)−1

dΣ(f−n(x1), f
−n(y1)).

(Note that here we use the hypothesis dΣ1
(x1, y1) ≤ L−1 δ in order to guarantee

that d(x2, z) ≤ 2 δ for every z in the geodesic from x1 to y1 in Σ1.)
Let

K1 = e2ε sup{‖Df | Ecs
η ‖ ‖Df−1 | Ecs

f(η)‖ : η ∈ Λ}.

The previous inequalities, combined with (ii), give

dΣ(x2, y2)

dΣ(x1, y1)
≤

dΣ(f−n(x2), f
−n(y2))

dΣ(f−n(x1), f−n(y1))
Kn

1 ≤ C Kn
1 .

Since n ≤ 4 logλ dΣ(x2, y2), this implies

dΣ(x2, y2)

dΣ(x1, y1)
≤ C dΣ(x2, y2)

θ,

where θ = 4 logK1/ logλ < 0. The claim then follows with γ′ = 1/(1 − θ) < 1 and

K ′ = Cγ′

.

Case 2 : there is some j ∈ [−n, 0] such that dΣ(f j(x1), f
j(y1)) ≥ δ.

In this case we have

dΣ1
(x1, y1) ≥

δ

Ln

since L > 1 is a Lipschitz constant for f .
We also have that dΣ(x2, y2) ≤ δ and hence

dΣ(x2, y2)

dΣ(x1, y1)
≤

Ln δ

δ
= Ln

Since n ≤ 4 logλ dΣ(x2, y2), this implies as in Case 1 above that there is γ′′ < 1
such that

dΣ(x2, y2) ≤ dΣ(x1, y1)
γ′′

Setting γ = max{γ′, γ′′} and K = max{K ′, 1} finishes the proof.
�

The proof of Proposition B is complete.
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Remark 4. The Hölder constants provided by the proof depend only on the distance
between the cross-sections Σ1 and Σ2 , and the angle they make with Ecs (through
the iterate n ≥ 1 required to obtain properties (a) and (b) in the proof).

Remark 5. If Ecs has dimension 1 or, more generally, if Df is conformal in the
direction Ecs

‖Df−1 | Ecs
f(ξ)‖ = ‖Df | Ecs

ξ ‖−1

then K1 = e2ε and so θ = 8ε/ logλ. So, in this case the Hölder constant γ may
be taken arbitrarily close to 1. Compare Palis, Viana [?], where a similar conclu-
sion is obtained for hyperbolic sets of C1 diffeomorphisms. This has a number of
interesting consequences: for instance, the attractor Λ has well-defined transverse
Hausdorff dimension. See Palis, Takens [?].

3. Absolute Continuity

Here we prove that invariant strong-stable (or strong-unstable) foliations of par-
tially hyperbolic C2 diffeomorphisms are absolutely continuous.

Let f : M → M be the diffeomorphism and TM = Ecu ⊕ Es be the Df -
invariant splitting (remark: for convenience here we deal with the Ecu ⊕ Es case;
the Eu ⊕ Ecs follows from considering f−1, as usual) Let Fs be the strong-stable
foliation, tangent to Es at every point. We are going to prove

Theorem 6. For any holonomy map π : Σ1 → Σ2 of Fs there exists a constant
K > 0 such that

1

K
<

mΣ1
(D)

mΣ2
(π(D))

< K

for any disk D ⊂ Σ1 .

Theorem C is a direct consequence. Indeed, although the conclusion of Theo-
rem 6 seems weaker, because it refers to disks instead of general measurable sets,
it is quite easy to deduce the full statement. Given any measurable set B let D be
any family of disks covering B. By Theorem 6,

mΣ2
(π(B)) ≤

∑

D∈D

mΣ2
(π(D)) ≤ K

∑

D∈D

mΣ1
(D).

Since D may be taken such that
∑

D∈D
mΣ1

(D) is arbitrarily close to mΣ1
(B), it

follows that mΣ2
(π(B)) ≤ KmΣ1

(B). Similarly, using the inverse holonomy map
π−1 : Σ2 → Σ1 , we obtain the left-hand inequality. This shows that Theorem C
does follow from Theorem 6.

3.1. Outline of the proof. Before starting the proof of Theorem 6, let us explain
what are the main steps. Instead of trying to compare the volumes of D and
π(D) directly, one looks at iterates fn(D) ⊂ fn(Σ1) and fn(π(D)) ⊂ fn(Σ2) for
some large n ≥ 1. The point is that fn(Σ1) and fn(Σ2) are very close to each
other, because Σ1 and Σ2 are transverse to the strong-stable foliation Fs, and the
leaves of Fs are exponentially contracted by fn. This makes it possible to compare
the volumes of appropriate subsets of fn(Σ1) and fn(Σ2) using the holonomy map
πn = π(fn(Σ1), f

n(Σ2)). More precisely, we consider balls B(n, x) ⊂ fn(Σ1) around
each fn(x) ∈ fn(Σ1), with radius r(n, x) chosen in a judicious way. One important
condition is that r(n, x) should be much larger than the distance between fn(x) and
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fn(Σ1)

fn(Σ2)

B(n, x)

πn(B(n, x))

Figure 3. Volumes of large balls are almost preserved by the
holonomy of nearby cross-sections

πn(fn(x)): this ensures that the volume of B(n, x) is approximately equal to the
volume of πn(B(n, x)):

mfn(Σ1)

(

B(n, x)
)

mfn(Σ2)

(

πn(B(n, x))
)

is uniformly close to 1. See Figure 3.
One then considers preimages of the domain B(n, x) under fn. The volume of

f−n(B(n, x)) is given by the volume of B(n, x) divided by the Jacobian JΣ1
fn(ξ)

of fn along Σ1 , at some point ξ in f−n(B(n, x)). Another main condition is
that r(n, x) should be small enough so that the Jacobians at different points of
f−n(B(n, x)) are comparable, up to some factor close to 1. Then, one may take
ξ = x. Similarly, the volume of

f−n(πn(B(n, x))) = π(f−n(B(n, x)))

equals the volume of πn(B(n, x)) divided by the Jacobian JΣ2
fn(η) at some point

η, and one may take η = π(x). Now, JΣ1
fn(ξ) and JΣ2

fn(η) are comparable up
to some factor bounded from zero and infinity. The main reason for this is that
ξ = x and η = π(x) are in the same strong-stable leaf, and so their forward iterates
remain forever close. One also needs a Hölder-type estimate for the tangent spaces
to iterates of Σ1 and Σ2; it is in order to have this Hölder estimate that we require
f to be C2. It follows that the volumes of f−n(B(n, x)) and π(f−n(B(n, x))) are
comparable:

mΣ1

(

f−n(B(n, x))
)

mΣ2

(

π(f−n(B(n, x)))
) ≈

mfn(Σ1)

(

B(n, x)
)

mfn(Σ2)

(

π(B(n, x))
)

JΣ2
fn(η)

JΣ1
fn(ξ)

is uniformly bounded from zero and infinity.
Finally, to prove that the same is true for the volumes of D and π(D), it suffices

to find an efficient covering of D by sets of the form f−n(B(n, x)): there is a uniform
upper bound for the number of elements of the covering that contain a given point.
That bound is provided by Besicovich’s covering lemma.

3.2. Preliminaries. Now, let us get into the details of the proof. According to
the definition of partial hyperbolicity, there exist m ≥ 1 and θ < 1 such that

(a) ‖Dfm | Es
x‖ < θ2 and

(b) ‖Dfm | Es
x‖ < θ2 ‖Df−m | Ecu

fm(x)‖
−1
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for every x ∈ Λ. Up to replacing f by fm, we may suppose that m = 1, and we do
so in all that follows. Let us define

ã(x) ≡ ‖Df | Es
x‖ and b̃(x) ≡ ‖Df−1 | Ecu

f(x)‖
−1.

Clearly, ã and b̃ are continuous functions, and ã(x) < θ2 and ã(x) < θ2 b̃(x) for
every x ∈ Λ, by conditions (a) and (b).

Let δ > 0 be some fixed small constant, and set

a(x) ≡ sup{ã(y) : d(x, y) < δ} and b(x) ≡ sup{b̃(y) : d(x, y) < δ}.

Assuming δ is sufficiently small, we have a(x) < θ2 and a(x) < θ2b(x), for every
x ∈ Λ. Now, define

µ(n, x) ≡

n−1
∏

i=0

a(f i(x)) and σ(n, x) ≡

n−1
∏

i=0

b(f i(x)).

Thus, µ(x, n) is an upper bound for the contraction along the direction of Fs,
over any orbit that stays within δ from the orbit of x during the first n iterates.
Similarly, σ(x, n) is a lower bound for the least expansion along Ecu over all such
orbits. The previous estimates imply that

(7) µ(n, x) < θ2n and µ(n, x) < θ2n σ(n, x)

for every x and n ≥ 1.
Let c(·) be a continuous function such that θ−1a(y) ≤ c(y) ≤ θb(y) and c(y) ≤ θ

for every y ∈ Λ. For instance, c(y) = θ−1a(y). Then define

(8) r(n, x) ≡

n−1
∏

i=0

c(f i(x)).

The following properties are direct consequences of the definition:

(R1) r(n, x) ≤ θn, (R2) µ(n, x) ≤ θnr(n, x), (R3) r(n, x) ≤ θnσ(n, x).

For each x ∈ Σ1 and n ≥ 1, we denote by B(n, x) the ball of radius r(n, x) around
fn(x) inside fn(Σ1). Conditions (R1) and (R3) are saying that these radii are
uniformly small if n is large. Yet, according to (R2), for large n they are much
larger than the distance between fn(x) and πn(fn(x)).

3.3. Step 1. The first main step in the proof of Theorem 6 is to show that the
volume of the ball B(n, x) of radius r(n, x) around fn(x) inside fn(Σ1) is approx-
imately equal to the volume of its image πn(B(n, x)) under the holonomy map πn

from fn(Σ1) to fn(Σ2).

Proposition 7. There exists a sequence (εn)n converging to zero such that
∣

∣

∣

∣

mfn(Σ1) (B(n, x))

mfn(Σ2) (πn(B(n, x)))
− 1

∣

∣

∣

∣

≤ εn

for every n ≥ 1 and x ∈ Σ1 .

For the proof of Proposition 7 we need a few auxiliary results. Let x ∈ Σ1 and
n ≥ 1 be fixed throughout. At a few places we assume that δ is small, and n is
sufficiently large (all the conditions are independent of the point x). The constants
K1 , . . . , Kj , . . . that appear in the sequel depend only on Σ1 , Σ2 , and the map f .
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Let 1 ≤ k ≤ d, where d is the dimension of the manifold M . For each x ∈ M
and k-dimensional subspaces V 1 and V 2 of TxM , we define

(9) angle(V 1, V 2) = max
u1∈V 1

min
u2∈V 2

∠(u1, u2)

We are going to use the following elementary fact:

(10) ∠(u1, u2) ≤
‖u1 − u2‖

‖u2‖

for every nonzero vectors u1 and u2 in any Hilbert space.
Our first lemma, which is a consequence of the domination property (b), says

that the tangent spaces of fn(Σ1) and fn(Σ2) approach the center-unstable bundle
Ecu exponentially fast as n increases.

Lemma 8. There exists K1 > 0 such that

angle
(

Tfn(ξ)f
n(Σj), E

cu(fn(ξ))
)

≤ K1θ
2n

for any n ≥ 1, ξ ∈ Σj , and j = 1, 2.

Proof. We consider j = 1; the other case is entirely analogous. Every nonzero
vector ṽ ∈ Tfn(ξ)f

n(Σ1) may be written as Dfn(ξ)v for some v ∈ TξΣ1 . Let us
write v = v1 + v2 where v1 ∈ Es

ξ and v2 ∈ Ecu
ξ . Using (10) and the fact that Σ1 is

transverse to the direction of Es, there exists a constant K1 > 0 that depends only
on Σ1 such that ‖v1‖ ≤ K1‖v2‖. From

‖Dfn(ξ)v1‖ ≤ ‖Dfn | Es
ξ‖‖v1‖ and ‖v2‖ ≤ ‖Df−n | Ecu

fn(ξ)‖ ‖Dfn(ξ)v2‖

and the domination condition (b), we conclude that

(11)
‖Dfn(ξ)v1‖

‖Dfn(ξ)v2‖
≤ θ2n ‖v1‖

‖v2‖
≤ K1θ

2n.

Then, by (10), angle(Dfn(ξ)v, Dfn(ξ)v2) ≤ K1θ
2n. Since Dfn(ξ)v2 is in Ecu

fn(ξ) ,

the definition (9) gives

angle(Tfn(ξ)f
n(Σ1), E

cu(fn(ξ))) ≤ K1θ
2n,

as we claimed. �

Next, we use (R1) and (R3) to conclude that any point whose nth iterate is in
B(n, x) remains close to the orbit of x during the first n iterates. We denote by
dN the distance induced on a submanifold N ⊂ M by the Riemannian metric of
M . That is, dN (p, q) is the shortest (infimum) length of a piecewise smooth curve
connecting p and q inside N . On the other hand, d(p, q) is the distance between
the points p and q in the ambient M .

Lemma 9. There exists K2 > 0 such that d(f j(x), f j(ξ)) ≤ K2θ
n for any 0 ≤ j ≤

n and any ξ ∈ Σ1 such that fn(ξ) ∈ B(n, x).

Proof. Take K2 = 3. The case j = n is clear: by the definition of B(n, x),

d(fn(x), fn(ξ)) ≤ dfn(Σ1)(f
n(x), fn(ξ)) < r(n, x) ≤ θn.

Now, given 0 ≤ j < n, suppose the statement is known for all j < i ≤ n. More
precisely, there exists some piecewise smooth curve γn connecting fn(x) to fn(ξ)
inside fn(Σ1), whose length is less than r(n, x) and such that the length of γi =
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f i−n(γn) is less than 3 θn for every j < i ≤ n. We are going to prove that this
remains true for i = j. Let γ̇i denote the velocity vector of each γi . We decompose

γ̇i = γ̇s
i + γ̇cu

i ∈ Es ⊕ Ecu.

Just as in (11), we have ‖γ̇s
i ‖/‖γ̇

cu
i ‖ ≤ K1θ

2j for every j ≤ i ≤ n. Assuming j is
large enough, then θ2j is smaller than 1/2. Then the cases i = j and i = n give

(12) ‖γ̇j‖ ≤
3

2
‖γ̇cu

j ‖ and ‖γ̇n‖ ≥
1

2
‖γ̇cu

n ‖ .

Now, the induction assumption implies that the length of γj is less than

‖Df−1‖ length(γj+1) ≤ ‖Df−1‖K2θ
n.

Assuming n is large enough, this is smaller than δ. So, γi is contained in the
δ-neighborhood of f i(x) for all i ≤ j ≤ n. Thus, by the definition of σ(· , ·),

‖γ̇cu
j ‖ = ‖Df j−n · γ̇cu

n ‖ ≤
‖γ̇cu

n ‖

σ(n − j, f j(x))
.

Together with (12), this gives ‖γ̇j‖ ≤ 3 ‖γ̇n‖ σ(n − j, f j(x))−1. Then,

length(γj) ≤
3 length(γn)

σ(n − j, f j(x))
≤

3 r(n, x)

σ(n − j, f j(x))
.

By (R1) and (R3), r(n, x) = r(j, x) r(n − j, f j(x)) ≤ θnσ(n − j, f j(x)). So, the
previous inequality gives length(γj) ≤ 3θn = K2θ

n. �

For notational simplicity, given ξ and η in the same strong-stable leaf, we repre-
sent by ds(ξ, η) the distance between the two points inside that leaf.

Lemma 10. There exists K3 > 0 such that ds(y, πn(y)) ≤ K3µ(n, x) for every
y ∈ B(n, x).

Proof. Recall that µ(k, z) is an upper bound for the derivative of fk along the stable
direction, for orbits that remain within δ from the orbit of z. Given y ∈ B(n, x),
let ξ = f−n(y). Since Σ1 and Σ2 are compact, there exists a uniform upper bound
C3 for the distance between ξ and π(ξ) inside the leaf of Fs that contains the two
points. As f contracts strong-stable leaves, by property (a), it follows that

ds(f
j(ξ), f j(π(ξ))) ≤ C3 sup ‖Df j | Es‖ ≤ C3θ

2j

for all j ≥ 1. In particular, fixing p ≥ 1 so that C3θ
2p < δ/2, we have

d(f j(ξ), f j(π(ξ))) ≤ ds(f
j(ξ), f j(π(ξ))) < δ/2

for all j ≥ p. Lemma 9 gives d(f j(ξ), f j(x)) ≤ K2θ
n for all 0 ≤ j ≤ n. Assume n is

large enough so that K2θ
n < δ/2. Then the last two inequalities imply that f j(ξ)

and f j(π(ξ)) remain within δ from f j(x) for, at least, n − p iterates. Therefore,

ds(y, πn(y)) = ds

(

fn(ξ), fn(π(ξ))
)

≤ µ(n − p, fp(x)) ds

(

fp(ξ), fp(π(ξ))
)

.

Observe that µ(n−p, fp(x)) = µ(n, x)/µ(p, x). Moreover, µ(p, x) admits a uniform
lower bound c3 > 0, because f is a diffeomorphism and p has been fixed. It follows
that ds(y, πn(y)) ≤ K3µ(n, x), where K3 = δ/c3 . �
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3.4. Local coordinates. Now we are going to show that B(n, x) and πn(B(n, x))
may be written as graphs, of C1-nearby maps, over the center-unstable direction
at fn(x). This will allow us to compare the measures induced by the Riemannian
structure of M on B(n, x) and on πn(B(n, x)), and, thus prove Proposition 7. For
the precise statement, it is convenient to introduce local coordinates near fn(x).

Let expz : TzM → M be the exponential map of M at any z. In the tangent
space TzM we consider the inner product defined by the Riemannian metric of
M . Let Bcu(z, ρ) and Bs(z, ρ) be the balls of radius ρ around the origin inside
Ecu

z and Es
z , respectively, and let BTM (z, ρ) = Bcu(z, ρ) × Bcu(z, ρ). Assuming

ρ is small enough, the exponential map is a diffeomorphism from BTM (z, ρ) onto
its image expz(B

TM (z, ρ)) in M . Assuming δ has been fixed sufficiently small,
the inverse map φz = exp−1

z is well-defined in the δ-neighborhood B(z, δ) of every
z ∈ M , with image contained in BTM (z, ρ). In what follows we often identify points
y ∈ B(z, δ) with the corresponding images under these local charts φz . Note that if
n is sufficiently large then r(n, x) ≤ θn is smaller than δ, and so B(n, x) is contained
in B(fn(x), δ).

Lemma 11. There exist disks D1 and D2 in Ecu
fn(x), and C1 maps g1 : D1 → Es

fn(x)

and g2 : D2 → Es
fn(x), such that B(n, x) = graph(g1) and πn(B(n, x)) = graph(g2).

Proof. For n large enough, B(n, x) is contained in B(fn(x), δ), so via the exponen-
tial chart we can think of it as a subset of Tfn(x)M ; the same applies to πn(B(n, x)),
because by Lemma 10 its points are close to their preimages under πn. Now, by
Lemma 8, for n large enough the set fn(Σ1) is nearly tangent to the center-unstable
direction Ecu; there is, on the other hand, a uniform lower bound for the angle be-
tween the stable direction Es and the center-unstable direction Ecu. Now, since
B(n, x) is a small ball in fn(Σ1), each point z ∈ B(n, x) corresponds uniquely to
some pair (zcu, zs) ∈ Ecu

fn(x) × Es
fn(x), where the coordinate zs ranges over some

disk D1 containing 0 in Ecu
fn(x). By the differentiability of local stable manifolds it

follows that the map g1 : zcu 7→ zs so defined is C1. The existence of D2 and of g2

follow from identical arguments. �

Lemma 12. There exist α ∈ (0, 1] and K4 > 0 such that ‖Dg1(z)‖ ≤ K4θ
αn and

‖Dg2(w)‖ ≤ K4θ
αn for every z ∈ D1 and w ∈ D2.

Proof. First, we observe that given y ∈ B(n, x) then Ecu(y) may be written as the

graph of a linear map ξy : Ecu(fn(x)) → Es(fn(x)) with ‖ξy‖ ≤ C̃θαn for some

uniform constants C̃ > 0 and α ∈ (0, 1]. This is a simple consequence of Lemma 8,
together with Proposition A. Indeed, according to the proposition, the subbundle
Ecu is Hölder continuous. So, there exist constants C > 0 and α ∈ (0, 1], depending
only on f , such that, for every y in the δ-neighborhood of fn(x), the subspace
Ecu(y) may be written as the graph of a linear map ξy : Ecu(fn(x)) → Es(fn(x))
with ‖ξy‖ ≤ Cd(fn(x), y)α. By definition, dfn(Σ1)(f

n(x), y) ≤ r(n, x) ≤ θn. So,

d(fn(x), y) ≤ 2dfn(Σ1)(f
n(x), y) ≤ 2θn.

(Here the factor 2 accounts for the fact that the local chart φ may be slightly

expanding.) Setting C̃ ≡ C2α we conclude that ξy is exponentially close to zero:

‖ξy‖ ≤ C̃θnα.
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On the other hand, by Lemma 8,

angle(TyB(n, x), Ecu(y)) ≤ K1θ
2n

As long as n is sufficiently large, this implies that TyB(n, x) is also a graph over
Ecu(fn(x)):

TyB(n, x) = graph(hy), hy : Ecu
fn(y) → Es

fn(y).

Clearly there is some constant L > 0 such that

‖hy − ξy‖ ≤ L angle(TyB(n, x), Ecu(y))

for every y. Then we have that ‖hy − ξy‖ ≤ L angle(TyB(n, x), Ecu(y)) ≤ LK1θ
2n.

It follows that ‖hy‖ ≤ ‖ξy‖+ ‖hy − ξy‖ ≤ C̃θnα + LK1θ
2n. Setting K4 ≥ C̃ + LK1

we are done. �

Lemma 13. There exist α′ ∈ (0, 1) and K5 > 0 such that D1 and D2 contain the

ball of radius r(n, x)(1−K5θ
α′n) and are contained in the ball of radius r(n, x)(1+

K5θ
α′n) around the origin.

Proof. We deal with the disk D1 here; the case of D2 is identical. Note that
D1 is the projection P (B(n, x)) onto Ecu(fn(x)) of the disk B(n, x) ⊂ fn(Σ1)
along the stable direction Es. By Lemma 12, angle(TzB(n, x), Ecu

fn(x)) converges

exponentially to 0 with rate θα uniformly over all z ∈ B(n, x). It is easy to see that
given α′ < α then the projection P (B(n, x)) = D1 coincides with the ball of radius

r(n, x) around the origin in Ecu
fn(x) modulo a factor of order eθα′n

, as desired. �

Now we can prove Proposition 7:

Proof. Now, we start the study of the metrics mfn(Σ1) and mfn(Σ2). If we set
γ1(u) = (u, g1(u)) and γ2(u) = (u, g2(u)) then these metrics are determined by the

first fundamental form gℓ
ij = ∂γℓ

∂ui

∂γℓ

∂uj
, where ℓ = 1, 2 and i, j = 1, ..., n− k. That is,

(13) gℓ
ij = δij +

∂gℓ

∂ui

∂gℓ

∂uj
,

where ℓ = 1, 2.

Consider now the ball A(n, x) in fn(Σ1) of radius r(n, x)(1−K5θ
α′n) and center

fn(x) and the ball C(n, x) in fn(Σ1) of radius r(n, x)(1+K5θ
α′n) and center fn(x).

By Lemma 13 it follows that D1 and D2 contain (the projection onto Ecu(fn(x))
of) A(n, x) and are contained in (the projection onto Ecu(fn(x)) of) C(n, x). Since,
by Lemma 12, ‖Dg1‖ and ‖Dg2‖ are uniformly bounded, it follows that there exists
a sequence δ(n), converging to zero, such that for every x ∈ Σ1 we have

(14) ‖
mfn(Σ1)A(n, x)

mfn(Σ1)C(n, x)
− 1‖ < δ(n)

and

(15) ‖
mfn(Σ2)πn(A(n, x))

mfn(Σ2)πn(C(n, x))
− 1‖ < δ(n).

We denote by P the projection along the k-plane Es(fn(x)); that is, P (u, gℓ(u)) = u
for ℓ = 1, 2. By Lemmas 10 and 13 it follows that for large enough n we have

(16) P (A(n, x)) ⊂ P (πn(B(n, x))) ⊂ P (C(n, x))
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We have, by the definition of mfn(Σ1) and mfn(Σ2), that given a disk D then

(17) mfn(Σℓ)(D) =

∫∫

P (D)

√

det(gℓ
ij)du1du2 . . . dun−k,

where ℓ = 1, 2 and D ⊂ fn(Σ1) or D ⊂ fn(Σ2). Then by Lemma 12 and (13), (16),
and (17) it follows that given ε > 0 then for large enough n we have

mfn(Σ1)(A(n, x)) =

∫∫

P (A(n,x))

√

det(g1
ij)du1du2 . . . dun−k

≤

∫∫

P (πn(B(n,x)))

√

det(g2
ij)du1 . . . dun−k + ε m(P (πn(B(n, x)))

= (1 + ε)m(P (πn(B(n, x))),

where m is an Euclidean measure in Tfn(x)B(n, x). Now, by (14) we have that for
large n the volume mfn(Σ1)(A(n, x)) is a good approximation of mfn(Σ1)(B(n, x)),
while clearly for large n the volume m(P (πn(B(n, x))) is a good approximation of
mfn(Σ2)(πn(B(n, x))).

Analogously, we can obtain an upper estimate for mfn(Σ2)πn(B(n, x)) using
mfn(Σ1)(C(n, x)). Combining the two resulting inequalities we obtain Proposi-
tion 7, as desired. �

3.5. Step 2. The next main step in the proof of Theorem 6 is

Proposition 14. There exists K6 such that

1

K6
≤

mΣ1
(f−n(B(n, x)))

mΣ2
π(f−n(B(n, x)))

≤ K6

This will follow from Proposition 7 and the following distortion lemma for the
Jacobian of f along Σ1 and Σ2:

Lemma 15. There exists K7 > 0 such that

‖ log detDf−n(z1) | Tz1
B(n, x) − log detDf−n(z2) | Tz2

B(n, x)‖ ≤ K7

for all z1 , z2 in B(n, x). The same holds with πn(B(n, x)) instead of B(n, x), for
some constant K8.

Proof. It is easy to see, using the fact that f is a C2 map, that there exist constants
R1 and R2 such that, if z1, z2 ∈ M, d(z1, z2) ≤ 1, and A1, A2 are subspaces of R

n

with dimension n − k, then

(18) ‖ log detDf−1(z1)|A1−log detDf−1(z2)|A2‖ ≤ R1d(z1, z2)+R2ang(A1, A2).

We have by Proposition A that the map w2 : x 7→ Ecu(x) is (C, α)-Hölder
continuous, and hence ρ : x 7→ log detDf−n(x) | Ecu is Hölder continuous with
constants (Q, α). Now, given z1, z2 ∈ B(n, x), by 18, Lemma 8 (applied to z1 and
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z2 and to their first n preiterates), and condition (R3) it follows that

‖ log
detDf−n(z1) | Tz1

B(n, x)

detDf−n(z2) | Tz2
B(n, x)

‖ ≤ ‖ log
detDf−n(z1) | Tz1

B(n, x)

detDf−n(z1) | Ecu(z1)
‖

+ ‖ log
det Df−n(z2) | Tz2

B(n, x)

detDf−n(z2) | Ecu(z2)
‖

+ ‖ log
det Df−n(z1) | Ecu(z1)

det Df−n(z2) | Ecu(z2)
‖

≤ R2

n−1
∑

i=0

angle(Tf−i(z1)f
−i(B(n, x)), Ecu(f−i(z1))

+ R2

n−1
∑

i=0

angle(Tf−i(z2)f
−i(B(n, x)), Ecu(f−i(z2)))

+ Q

n−1
∑

i=0

d(f−i(z1), f
−i(z2))

α

≤ 2R2 K1

n−1
∑

i=0

θn−i

+ Q

n−1
∑

i=0

θα(n−i)d(z1, z2)
α

< K7

for sufficiently large K7. In a similar way, we prove that

‖ log
detDf−n(z1) | Tz1

πn(B(n, x))

detDf−n(z2) | Tz2
πn(B(n, x))

‖ ≤ K8

for any z1 and z2 in πn(B(n, x)). �

Now we can prove Proposition 14:

Proof. Observe that

(19) mΣ1
f−n(B(n, x)) =

∫

B(n,x)

∥

∥detDf−n(z) | TzB(n, x)
∥

∥ dmfn(Σ1)(z)

and similarly for mΣ2
π(f−n(B(n, x))).

Now, since we know mfn(Σ1)B(n, x) and mfn(Σ2)πn(B(n, x)) are comparable, we
just need to compare the expressions inside the integrals.

Setting K9 = max{K8, K7}, we know that if we replace the integrand in (19) by
its value at a certain point z1 then the the resulting number is near mΣ1

f−n(B(n, x))
modulo a factor smaller than eK9 . We can estimate the value of mΣ2

π(f−n(B(n, x)))
similarly.

Now we need only estimate the expression

‖ log detDf−n(z1) | Tz1
B(n, x) − log det Df−n(πn(z1)) | Tπn(z1)πn(B(n, x))‖.
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Following the same arguments as before, we have

‖ log detDf−n(z1) | Tz1
B(n, x) − log detDf−n(πn(z1)) | Tπn(z1)πn(B(n, x))‖

≤ ‖ log detDf−n(z1) | Tz1
B(n, x) − log detDf−n(z1) | Ecu(z1)‖

+ ‖ log det Df−n(πn(z1)) | Tπn(z1)πn(B(n, x)) − log detDf−n(πn(z1)) | Ecu(πn(z1))‖

+ ‖ log det Df−n(z1) | Ecu(z1) − log detDf−n(πn(z1)) | Ecu(πn(z1))‖

and this is smaller than

Q

n−1
∑

i=0

d(f−i(z1), f
−i(πn(z1)))

α
+ R2

n−1
∑

i=0

angle(Tf−i(z1)f
−i(B(n, x)), Ecu(f−i(z1))

+ R2

n−1
∑

i=0

angle(Tf−i(πn(z1))f
−i(πn(B(n, x))), Ecu(f−i(πn(z1))))

≤ Q

n−1
∑

i=0

θα(n−i)d(z1, πn(z1))
α

+ 2R2 K1

n−1
∑

i=0

θn−i < K10

if K10 is large enough. The proposition follows. �

At last, we are in a position to complete the proof of the theorem:

Proof of Theorem 6. Consider ε > 0 such that the set Dε = {y ∈ D|dΣ1
(y, Dc) > ε}

satisfies

‖
mΣ1

(Dε)

mΣ1
(D)

− 1‖ <
1

2
and ‖

mΣ2
(π(Dε))

mΣ2
(π(D))

− 1‖ <
1

2

Consider in fn(Σ1) the set Bn = {B(n, x)|x ∈ Dε}. Note that if n is sufficiently
large, then B(n, x) ⊂ fn(D) for all B(n, x) ∈ Bn, since by (R3) the radius r(n, x) of
B(n, x) shrinks faster than d(∂fn(D), ∂fn(Dε)), which is bounded below by (some
constant times) σ(n, x). Now, using Besicovich’s covering theorem (see [?], for
instance) we can cover Dε with a countable family of balls Gn ⊂ Bn, such that each
ball in Gn intersects, at most, ℓ other balls in Gn, where ℓ ∈ N depends only the
dimension of Σ1. Then

1

2ℓ
mΣ1

D ≤
1

ℓ
mΣ1

Dε ≤
∑

B∈Gn

mΣ1
f−n(B) ≤ ℓmΣ1

D

Analogously,

1

2ℓ
mΣ2

π(D) ≤
1

ℓ
mΣ2

π(Dε) ≤
∑

B∈Gn

mΣ2
π(f−n(B)) ≤ ℓmΣ2

π(D).

Then, applying Proposition 14 to the balls B, we have the theorem.
�
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