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Abelian differential = holomorphic 1-form w, = ¢(z)dz on a
(compact) Riemann surface.
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ADellan dirrerentals
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Abelian differential = holomorphic 1-form w, = ¢(z)dz on a
(compact) Riemann surface.

Adapted local coordinates: ¢ = f w)dw then we = d¢

near a zero with multiplicity m:
( = ((m +1) fp’z gp(w)dw) " then we = ¢"MdC

Adapted coordinates form a translation atlas: coordinate
changes near any regular point have the form

(" = ¢ + const.
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1 ransiation surtaces
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The translation atlas defines

# a flat metric with a finite number of conical singularities;

# a parallel unit vector field (the “upward” direction) on the
complement of the singularities.
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1 ransiation surtaces

- .

The translation atlas defines

# a flat metric with a finite number of conical singularities;

# a parallel unit vector field (the “upward” direction) on the
complement of the singularities.

Conversely, the flat metric and the upward vector field
characterize the translation structure completely.

o -

Dynamics in the moduli space of Abelian differentials — p. 3/-



OCUIICUIC TepicsCliladuuUll
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Consider any planar polygon with even number of sides,
organized in pairs of parallel sides with the same length.

i

ldentifying the two sides in the same pair, by translation,
one obtains a translation surface.
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Consider any planar polygon with even number of sides,
organized in pairs of parallel sides with the same length.

i

ldentifying the two sides in the same pair, by translation,
one obtains a translation surface.

A

Every translation surface can be represented in this way,
Lbut not uniquely. J
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LeOodesIC TIOWS
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The trajectories of the Abelian differential are the geodesics
on the corresponding translation surface.

When are geodesics closed ? When are they dense ? How
do geodesics distribute themselves on the surface ?
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ivieasureda r1olations
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Geodesics in a given direction define a foliation of the
surface which is a special case of a measured foliation:

it is given by the kernel of a real closed 1-form R(e?w).
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ivieasureda r1olations

- .

Geodesics in a given direction define a foliation of the
surface which is a special case of a measured foliation:

it is given by the kernel of a real closed 1-form R(e?w).

Calabi, Katok, Hubbard-Masur, Kontsevich-Zorich: Every
measured foliation with no saddle connections (leaves that
Lconnect singularities) is of this form. J
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IVIOUUIl SpPaltco
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M, = moduli space of Riemann surfaces of genus g > 2

A, = moduli space of Abelian differentials on Riemman
surfaces of genus g > 2

dimg¢ My, =39 — 3 dimc Ay =49 — 3

A, Is an orbifold and a fiber (“cotangent”) bundle over M,.
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Consider any my,...,m, > 1 with >, m; =29 — 2.

Ag(my, ..., m,) = subset of Abelian differentials having «
zeroes, with multiplicities mq, ..., my.

dimc Ag(mi,...,mg) =29+ K —1
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Consider any my,...,m, > 1 with >, m; =29 — 2.

Ag(my, ..., m,) = subset of Abelian differentials having «
zeroes, with multiplicities mq, ..., my.

dimc Ag(mi,...,mg) =29+ K —1

Each stratum carries a canonical volume measure.

Masur, Veech proved that the volume of every stratum is
finite. The volumes of all strata have been computed by
Eskin, Okounkov, Pandharipande.
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Consider any my,...,m, > 1 with >, m; =29 — 2.

Ag(my, ..., m,) = subset of Abelian differentials having «
zeroes, with multiplicities mq, ..., my.

dimc Ag(mi,...,mg) =29+ K —1

Each stratum carries a canonical volume measure.

Masur, Veech proved that the volume of every stratum is
finite. The volumes of all strata have been computed by
Eskin, Okounkov, Pandharipande.

Each stratum may have up to 3 connected components.
LKontsevich, Zorich classified all connected components. J
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Lelicnmutier rniow
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The Teichmuiller flow is the natural action 7* on the fiber
bundle A, by the diagonal subgroup of SL(2,R):

THw), = [eRw,] +i[e "Sw,]

Geometrically:
\/\ Tt @
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The Teichmuiller flow is the natural action 7* on the fiber
bundle A, by the diagonal subgroup of SL(2,R):

THw), = [eRw,] +i[e "Sw,]

Geometrically:

T Tt @
This flow leaves invariant the volume on every stratum and
Lalso preserves the area of the translation surface 5. J
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ocliCial FlHicipic

- .

Properties of the Teichmuller flow reflect upon dynamical
properties of almost all Abelian differentials.

The orbits of the Teichmduller flow “know” the properties of
the translation surfaces contained in them.
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CITYOUICILY

- .

Masur, Veech: The Teichmduller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).
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Masur, Veech: The Teichmduller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).

Consequence: The geodesic flow of almost every Abelian
differential is uniquely ergodic in almost every direction.
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CITYOUICILY

- .

Masur, Veech: The Teichmduller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).

Consequence: The geodesic flow of almost every Abelian
differential is uniquely ergodic in almost every direction.

Kerckhoff, Masur, Smillie: unigue ergodicity holds for every
LAbeIian differential and almost every direction. J
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ASYIHTIPLOLUL LYLICS

- .

Any geodesic segment v may be “closed” to get an element
h(~) of H(S,7Z):

Unique ergodicity implies h(v)/|y| converges uniformly to
some c¢; € Hy(S,R) when the length |y| goes to infinity,

and the asymptotic cycle ¢; does not depend on the initial
point, only the surface and the direction.
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LOITICTT PHICTIONTICTIOLN

- .

The deviation of h(v) from the direction of the asymptotic
cycle ¢; distributes itself along a favorite direction co, with
amplitude |y|*> for some v, < 1:

o -
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LOITICTT PHICTIONTICTIOLN

- .

The deviation of h(v) from the direction of the asymptotic
cycle ¢; distributes itself along a favorite direction co, with
amplitude |y|*> for some v, < 1:

\V4
V2
v

Similarly in higher order: the component of i(+) orthogonal
to Re; @ Reo has a favorite direction ¢z, and amplitude ||
Lfor some 3 < 19, and so on up to order g = genus. J
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ASYIHTIPLOLUC TIay COTljcLuUulc

- .

Conjecture (Zorich, Kontsevich). Thereare 1 > 19 > --- > v, > 0
and subspaces L1 C Ly C --- C Ly of H1(S,R) with dim L; = i for
every ¢, such that

® the deviation of A(y) from L; has amplitude |y|"+! forall ¢ < ¢

® the deviation of i(y) from L, is bounded (g = genus).
Lo = Re1 6 Reo

A
|7|”2,",
£ =
/ / L1 = Req
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viallin reSulit

- .

Theorem (Avila, Viana). The Zorich-Kontsevich conjecture is true.

o -
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FTevious esults

- .

Kontsevich, Zorich translated the conjecture to a statement
on the Teichmuller flow.

The Lyapunov exponents of the Teichmuller flow are

2>1+4+vp2---21+vg21=---=121-vg>---21—-v22>0
> —1+vg2z2--2-14vg2>2-1=---=—-1>2-1—-vyg2>---2>2—-1—-vy >—-2.
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Kontsevich, Zorich translated the conjecture to a statement
on the Teichmuller flow.

The Lyapunov exponents of the Teichmuller flow are

2>1+4+vp2---21+vg21=---=121-vg>---21—-v22>0
> —1+vg2z2--2-14vg2>2-1=---=—-1>2-1—-vyg2>---2>2—-1—-vy >—-2.

Forni proved v, > 0. This implies the case g = 2.
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FTevious esults

- .

Kontsevich, Zorich translated the conjecture to a statement
on the Teichmuller flow.

The Lyapunov exponents of the Teichmuller flow are

2> 14> - >1l4py,;>1l=--=1>1—-v;>--->1—-15>0
> —1+vg2z2--2-14vg2>2-1=---=—-1>2-1—-vyg2>---2>2—-1—-vy >—-2.
Forni proved v, > 0. This implies the case g = 2.

Avila, Viana prove that all inequalities above are strict
(including v, > 0). The Z-K conjecture follows.

o -

Dynamics in the moduli space of Abelian differentials — p. 16/-



LiTical CULYCLICS

- .

A linear cocycle over aflow f : M — M, t € Ris a flow
extension

F'oM xR — M xR Fi(z,0) = (fi(z), A (2)v)

where At : M — GL(d,R).
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LyapulilUv CAPUILICTIWS

- .

Oseledets: Let ;1 be an ergodic invariant probability such
that log HAﬂH are integrable. Then there exist numbers
A > X9 > --- > )\, and for y-almost every = € M there

exists a decomposmon RY=FEl® E2@--- @ EY such that
xXr

Ai(z) = lim —logHAt( )|

[t|—=00

for every non-zerov € E! and 1 <i < k.
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LyapulilUv CAPUILICTIWS
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Oseledets: Let ;1 be an ergodic invariant probability such
that log HAﬂH are integrable. Then there exist numbers
A > X9 > --- > )\, and for y-almost every = € M there

exists a decomposmon RY=FEl!® E2®---® EF such that

Ai(z) = lim —logHAt( )|

[t|—=00

for every non-zerov € E! and 1 <i < k.

The dimension of the subspace E" is called the multiplicity
of the Lyapunov exponent \; of the linear cocycle.
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vidlll sStcpo I uic Proul

- .

(1) A sufficient condition for the Lyapunov exponents of a
general linear cocycle to to have multiplicity 1.
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vidlll sStcpo I uic Proul

- .

(1) A sufficient condition for the Lyapunov exponents of a
general linear cocycle to to have multiplicity 1.

(2) This criterium is met by the Kontsevich-Zorich cocycle
Fi(z,v) = (fi(z), A(z)) on Ay(my,...,m,) x R*

F* where f! is the Teichuller flow and A* describes the
action of this flow on the homology group H;(M) = R%9,
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Dynamics in the moduli space of Abelian differentials — p. 19/-



COonciusion

- .

The Lyapunov exponents of this cocycle (with multiplicity)

are related to those of the Teichmdller flow: they are
l>2vo 2205202 —vg 2> 2 -1 > —1

The criterium implies that all inequalities are strict, and so
the conjecture follows.
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