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Abelian differentials

Abelian differential = holomorphic 1-form ωz = ϕ(z)dz on a
(compact) Riemann surface.

Dynamics in the moduli space of Abelian differentials – p. 2/20



Abelian differentials

Abelian differential = holomorphic 1-form ωz = ϕ(z)dz on a
(compact) Riemann surface.

Adapted local coordinates: ζ =
∫ z

p
ϕ(w)dw then ωζ = dζ

near a zero with multiplicity m:

ζ =
(

(m + 1)
∫ z

p
ϕ(w)dw

)
1

m+1

then ωζ = ζmdζ
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Abelian differentials

Abelian differential = holomorphic 1-form ωz = ϕ(z)dz on a
(compact) Riemann surface.

Adapted local coordinates: ζ =
∫ z

p
ϕ(w)dw then ωζ = dζ

near a zero with multiplicity m:

ζ =
(

(m + 1)
∫ z

p
ϕ(w)dw

)
1

m+1

then ωζ = ζmdζ

Adapted coordinates form a translation atlas: coordinate
changes near any regular point have the form

ζ ′ = ζ + const.
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Translation surfaces

The translation atlas defines

a flat metric with a finite number of conical singularities;

a parallel unit vector field (the “upward” direction) on the
complement of the singularities.
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Translation surfaces

The translation atlas defines

a flat metric with a finite number of conical singularities;

a parallel unit vector field (the “upward” direction) on the
complement of the singularities.

Conversely, the flat metric and the upward vector field
characterize the translation structure completely.
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Geometric representation

Consider any planar polygon with even number of sides,
organized in pairs of parallel sides with the same length.

WE

N

S

Identifying the two sides in the same pair, by translation,
one obtains a translation surface.
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Geometric representation

Consider any planar polygon with even number of sides,
organized in pairs of parallel sides with the same length.

WE

N

S

Identifying the two sides in the same pair, by translation,
one obtains a translation surface.

Every translation surface can be represented in this way,
but not uniquely.
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Geodesic flows

The trajectories of the Abelian differential are the geodesics
on the corresponding translation surface.

z

When are geodesics closed ? When are they dense ? How
do geodesics distribute themselves on the surface ?
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Measured foliations

Geodesics in a given direction define a foliation of the
surface which is a special case of a measured foliation:
it is given by the kernel of a real closed 1-form ℜ(eiθω).

θ
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Measured foliations

Geodesics in a given direction define a foliation of the
surface which is a special case of a measured foliation:
it is given by the kernel of a real closed 1-form ℜ(eiθω).

θ

Calabi, Katok, Hubbard-Masur, Kontsevich-Zorich: Every
measured foliation with no saddle connections (leaves that
connect singularities) is of this form.
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Moduli spaces

Mg = moduli space of Riemann surfaces of genus g ≥ 2

Ag = moduli space of Abelian differentials on Riemman
surfaces of genus g ≥ 2

dimC Mg = 3g − 3 dimC Ag = 4g − 3

Ag is an orbifold and a fiber (“cotangent”) bundle over Mg.
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Strata of Ag

Consider any m1, . . . ,mκ ≥ 1 with
∑κ

i=1
mi = 2g − 2.

Ag(m1, . . . ,mκ) = subset of Abelian differentials having κ
zeroes, with multiplicities m1, . . . ,mκ.

dimC Ag(m1, . . . ,mκ) = 2g + κ − 1
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Strata of Ag

Consider any m1, . . . ,mκ ≥ 1 with
∑κ

i=1
mi = 2g − 2.

Ag(m1, . . . ,mκ) = subset of Abelian differentials having κ
zeroes, with multiplicities m1, . . . ,mκ.

dimC Ag(m1, . . . ,mκ) = 2g + κ − 1

Each stratum carries a canonical volume measure.

Masur, Veech proved that the volume of every stratum is
finite. The volumes of all strata have been computed by
Eskin, Okounkov, Pandharipande.
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Strata of Ag

Consider any m1, . . . ,mκ ≥ 1 with
∑κ

i=1
mi = 2g − 2.

Ag(m1, . . . ,mκ) = subset of Abelian differentials having κ
zeroes, with multiplicities m1, . . . ,mκ.

dimC Ag(m1, . . . ,mκ) = 2g + κ − 1

Each stratum carries a canonical volume measure.

Masur, Veech proved that the volume of every stratum is
finite. The volumes of all strata have been computed by
Eskin, Okounkov, Pandharipande.

Each stratum may have up to 3 connected components.
Kontsevich, Zorich classified all connected components.
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Teichmüller flow

The Teichmüller flow is the natural action T t on the fiber
bundle Ag by the diagonal subgroup of SL(2, R):

T t(ω)z =
[

etℜωz

]

+ i
[

e−tℑωz

]

Geometrically:

T t
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Teichmüller flow

The Teichmüller flow is the natural action T t on the fiber
bundle Ag by the diagonal subgroup of SL(2, R):

T t(ω)z =
[

etℜωz

]

+ i
[

e−tℑωz

]

Geometrically:

T t

This flow leaves invariant the volume on every stratum and
also preserves the area of the translation surface S.
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General Principle

Properties of the Teichmüller flow reflect upon dynamical
properties of almost all Abelian differentials.

The orbits of the Teichmüller flow “know” the properties of
the translation surfaces contained in them.
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Ergodicity

Masur, Veech: The Teichmüller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).
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Ergodicity

Masur, Veech: The Teichmüller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).

Consequence: The geodesic flow of almost every Abelian
differential is uniquely ergodic in almost every direction.

z
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Ergodicity

Masur, Veech: The Teichmüller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).

Consequence: The geodesic flow of almost every Abelian
differential is uniquely ergodic in almost every direction.

z

Kerckhoff, Masur, Smillie: unique ergodicity holds for every
Abelian differential and almost every direction.
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Asymptotic cycles

Any geodesic segment γ may be “closed” to get an element
h(γ) of H1(S, Z):

Unique ergodicity implies h(γ)/|γ| converges uniformly to
some c1 ∈ H1(S, R) when the length |γ| goes to infinity,

and the asymptotic cycle c1 does not depend on the initial
point, only the surface and the direction.
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Zorich phenomenon

The deviation of h(γ) from the direction of the asymptotic
cycle c1 distributes itself along a favorite direction c2, with
amplitude |γ|ν2 for some ν2 < 1:

c2

|γ|ν2
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Zorich phenomenon

The deviation of h(γ) from the direction of the asymptotic
cycle c1 distributes itself along a favorite direction c2, with
amplitude |γ|ν2 for some ν2 < 1:

c2

|γ|ν2

Similarly in higher order: the component of h(γ) orthogonal
to Rc1 ⊕ Rc2 has a favorite direction c3, and amplitude |γ|ν3

for some ν3 < ν2, and so on up to order g = genus.
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Asymptotic flag conjecture

Conjecture (Zorich, Kontsevich). There are 1 > ν2 > · · · > νg > 0
and subspaces L1 ⊂ L2 ⊂ · · · ⊂ Lg of H1(S, R) with dim Li = i for
every i, such that

the deviation of h(γ) from Li has amplitude |γ|νi+1 for all i < g

the deviation of h(γ) from Lg is bounded (g = genus).

L1 = Rc1

L2 = Rc1 ⊕ Rc2

|γ|ν2

|γ|ν3
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Main result

Theorem (Avila, Viana). The Zorich-Kontsevich conjecture is true.

Dynamics in the moduli space of Abelian differentials – p. 15/20



Previous results

Kontsevich, Zorich translated the conjecture to a statement
on the Teichmüller flow.

The Lyapunov exponents of the Teichmüller flow are

2 > 1 + ν2 ≥ · · · ≥ 1 + νg ≥ 1 = · · · = 1 ≥ 1 − νg ≥ · · · ≥ 1 − ν2 ≥ 0

≥ −1 + νg ≥ · · · ≥ −1 + νg ≥ −1 = · · · = −1 ≥ −1 − νg ≥ · · · ≥ −1 − ν2 > −2.
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Kontsevich, Zorich translated the conjecture to a statement
on the Teichmüller flow.

The Lyapunov exponents of the Teichmüller flow are

2 > 1 + ν2 ≥ · · · ≥ 1 + νg ≥ 1 = · · · = 1 ≥ 1 − νg ≥ · · · ≥ 1 − ν2 ≥ 0

≥ −1 + νg ≥ · · · ≥ −1 + νg ≥ −1 = · · · = −1 ≥ −1 − νg ≥ · · · ≥ −1 − ν2 > −2.

Forni proved νg > 0. This implies the case g = 2.
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Previous results

Kontsevich, Zorich translated the conjecture to a statement
on the Teichmüller flow.

The Lyapunov exponents of the Teichmüller flow are

2 > 1 + ν2 ≥ · · · ≥ 1 + νg ≥ 1 = · · · = 1 ≥ 1 − νg ≥ · · · ≥ 1 − ν2 ≥ 0

≥ −1 + νg ≥ · · · ≥ −1 + νg ≥ −1 = · · · = −1 ≥ −1 − νg ≥ · · · ≥ −1 − ν2 > −2.

Forni proved νg > 0. This implies the case g = 2.

Avila, Viana prove that all inequalities above are strict
(including νg > 0). The Z-K conjecture follows.
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Linear Cocycles

A linear cocycle over a flow f t : M → M , t ∈ R is a flow
extension

F t : M × R
d → M × R

d, F t(x, v) =
(

f t(x), At(x)v
)

where At : M → GL(d, R).
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Lyapunov exponents

Oseledets: Let µ be an ergodic invariant probability such
that log ‖A±1‖ are integrable. Then there exist numbers
λ1 > λ2 > · · · > λk, and for µ-almost every x ∈ M there
exists a decomposition R

d = E1
x ⊕ E2

x ⊕ · · · ⊕ Ek
x such that

λi(x) = lim
|t|→∞

1

t
log ‖At(x)v‖

for every non-zero v ∈ Ei
x and 1 ≤ i ≤ k.
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Lyapunov exponents

Oseledets: Let µ be an ergodic invariant probability such
that log ‖A±1‖ are integrable. Then there exist numbers
λ1 > λ2 > · · · > λk, and for µ-almost every x ∈ M there
exists a decomposition R

d = E1
x ⊕ E2

x ⊕ · · · ⊕ Ek
x such that

λi(x) = lim
|t|→∞

1

t
log ‖At(x)v‖

for every non-zero v ∈ Ei
x and 1 ≤ i ≤ k.

The dimension of the subspace Ei is called the multiplicity
of the Lyapunov exponent λi of the linear cocycle.
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Main steps in the proof

(1) A sufficient condition for the Lyapunov exponents of a
general linear cocycle to to have multiplicity 1.
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Main steps in the proof

(1) A sufficient condition for the Lyapunov exponents of a
general linear cocycle to to have multiplicity 1.

(2) This criterium is met by the Kontsevich-Zorich cocycle

F t(x, v) = (f t(x), At(x)) on Ag(m1, . . . ,mκ) × R
2g

F t where f t is the Teichüller flow and At describes the
action of this flow on the homology group H1(M) = R

2g.
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Conclusion

The Lyapunov exponents of this cocycle (with multiplicity)
are related to those of the Teichmüller flow: they are

1 ≥ ν2 ≥ · · · ≥ νg ≥ 0 ≥ −νg ≥ · · · ≥ −ν2 ≥ −1.

The criterium implies that all inequalities are strict, and so
the conjecture follows.
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