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ADellan dirrerentails

- .

Abelian differential = holomorphic 1-form w, = ¢(z)dz on a
(compact) Riemann surface.

Adapted local coordinates: ¢ = f w)dw then we = d¢

near a zero with multiplicity m:
(=(m+1) (fpz gp(w)dw) ™ then we = (MdC

Adapted coordinates form a translation atlas: coordinate
changes near any regular point have the form

(" = ¢ + const.
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I ransiaton surfaces

- .

The translation atlas defines

# a flat metric with a finite number of conical singularities;

# a parallel unit vector field (the “upward” direction)
defined on the complement of the singularities.

Conversely, the flat metric and the upward vector field
characterize the translation structure completely.
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OCUIllICUIC TeplicsCliladuUll
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Consider any planar polygon with even number of sides,
organized in pairs of parallel sides with the same length.

F

ldentifying the two sides in the same pair, by translation,
one obtains a translation surface.

A

Every translation surface can be represented in this way,
Lbut not uniquely. J
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LeO0desIC TIOWS
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The trajectories of the Abelian differential are the geodesics
on the corresponding translation surface.

When are geodesics closed ? When are they dense ? How
do geodesics distribute themselves on the surface ?
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vieasurea rolations
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Geodesics In a given direction define a foliation of the
surface which is a special case of a measured foliation:

it is given by the kernel of a real closed 1-form R(e?w).

Calabi, Katok, Hubbard-Masur, Kontsevich-Zorich: Every
measured foliation with no saddle connections (leaves that
Lconnect singularities) is of this form. J
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IVIOUUIl Sspaltco
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M, = moduli space of Riemann surfaces of genus g > 2

A, = moduli space of Abelian differentials on Riemman
surfaces of genus g > 2

dimg¢ My =39 — 3 dimc Ay =49 — 3

A, Is a fiber bundle (“cotangent bundle”) over M,,.
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Consider any my,...,my > 1 with >_7_, m; = 2g — 2.

Aqy(mi, ..., ms) = subset of Abelian differentials having o
zeroes, with multiplicities m, ..., me.

dimc Ay(m1,...,mys) =29 +0—1
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Consider any my,...,my > 1 with >_7_, m; = 2g — 2.

Aqy(mi, ..., ms) = subset of Abelian differentials having o
zeroes, with multiplicities m, ..., me.

dimc Ay(m1,...,mys) =29 +0—1

Each stratum carries a canonical volume measure.

Masur, Veech proved that the volume of every stratum is
finite. The volumes of all strata have been computed by
Eskin, Okounkov, Pandharipande.
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Consider any my,...,my > 1 with >_7_, m; = 2g — 2.

Aqy(mi, ..., ms) = subset of Abelian differentials having o
zeroes, with multiplicities m, ..., me.

dimc Ay(m1,...,mys) =29 +0—1

Each stratum carries a canonical volume measure.

Masur, Veech proved that the volume of every stratum is
finite. The volumes of all strata have been computed by
Eskin, Okounkov, Pandharipande.

Each stratum may have up to 3 connected components.
LKontsevich-Zorich classified all connected components. J
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lelicnmulier rniow
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The Teichmuller flow is the natural action 7 on the fiber
bundle A, by the diagonal subgroup of SL(2,R):

THw), = [e"Rw,]| +ile"Sw,]

Geometrically:
\/\‘ Tl @
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The Teichmuller flow is the natural action 7 on the fiber
bundle A, by the diagonal subgroup of SL(2,R):

THw): = [eRw,]| +ile”"Sw,]

Geometrically:

\/\‘ Tt @
This flow leaves invariant the volume on every stratum and
Lalso preserves the area of the translation surface S. J

Dynamics in the moduli space of Abelian differentials — p. 9/2



ocCliCial FlHiicipic

Properties of the Teichmdller flow reflect upon dynamical
properties of almost all Abelian differentials.
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CITYOUICILy
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Masur, Veech: The Teichmiller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).
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Masur, Veech: The Teichmiller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).

Consequence: The geodesic flow of almost every Abelian
differential is uniquely ergodic in almost every direction.
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CITYOUICILy

- .

Masur, Veech: The Teichmiller flow is ergodic on every
connected component of every stratum (restricted to each
hypersurface of constant area).

Consequence: The geodesic flow of almost every Abelian
differential is uniquely ergodic in almost every direction.

The result was much improved by Kerchoff, Masur, Smillie:
Lunique ergodicity holds for every Abelian differential and J
almost every direction.
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ASYITIPLOLUL LYLICOS

- .

Any geodesic segment v may be “closed” to get an element
h(~v) of H{(S,Z):

Unique ergodicity implies h(v)/|vy| converges uniformly to
some c¢; € H(S,R) when the length || goes to infinity,

and the asymptotic cycle ¢; does not depend on the initial
point, only the surface and the direction.

-

Dynamics in the moduli space of Abelian differentials — p. 12/2



LOUTICTHT PHCTIONICTIULN

- .

The deviation of h(v) from the direction of the asymptotic
cycle ¢; distributes itself along a favorite direction ¢y, with
amplitude |y|*> for some vy < 1:
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LOUTICTHT PHCTIONICTIULN
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The deviation of h(v) from the direction of the asymptotic
cycle ¢; distributes itself along a favorite direction ¢y, with
amplitude |y|*> for some vy < 1:

"

|y

Similarly in higher order: the component of i(~) orthogonal
to Re; @ Reo has a favorite direction c¢3, and amplitude ||
Lfor some v3 < 1o, and So on up to order g = genus. J
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ASYIHTIPLOLUC TiIay COlljcLuulc

- .

Conjecture (Zorich, Kontsevich). Thereare 1 > 19 > --- > v, > 0
and subspaces L1 C Ly C -+ C L, of H1(S,R) with dim L; = ¢ for
every 7, such that

® the deviation of A(7y) from L; has amplitude |y|"*! forall s < g

® the deviation of () from L, is bounded (g = genus).
Lo = Rep @ Reo

A
Ivl”%",
£ —
/ / L1 = Req
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ASYIHTIPLOLUC TiIay COlljcLuulc

- .

Theorem (Avila, Viana). The Zorich-Kontsevich conjecture is true.
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Theorem (Avila, Viana). The Zorich-Kontsevich conjecture is true.

M. Kontsevich, A. Zorich translated the conjecture to a
statement on the Teichmuller flow.

The Lyapunov exponents of the Teichmuller flow are

2>1+4p> - >l4p,>l=-=1>1—p;>-->1—15 >0
> 1dpyg > > —ldpy>—1l==—1>-1—-p; > >—-1—1p> 2.
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G. Forni proved v, > 0. This implies the case g = 2.
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Theorem (Avila, Viana). The Zorich-Kontsevich conjecture is true.

M. Kontsevich, A. Zorich translated the conjecture to a
statement on the Teichmuller flow.

The Lyapunov exponents of the Teichmuller flow are

2>1+4p> - >l4p,>l=-=1>1—p;>-->1—15 >0
> 1dpyg > > —ldpy>—1l==—1>-1—-p; > >—-1—1p> 2.

G. Forni proved v, > 0. This implies the case g = 2.

Avila, Viana prove that all inequalities above are strict
L(including v, > 0). The Z-K conjecture follows. J
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Lirical LULYLITCS
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A linear cocycle over a flow f*: M — M, t ¢ Ris a flow
extension

F' oM xRY— M xR Fi(z,0) = (fi(z), A (x)v)
where A : M — GL(d,R).

Similarly, a linear cocycle overamap f: M — M IS an
extension

F:MxR'— MxRY  F(z,v) = (f(z), A(z)v)

where A : M — GL(d,R). Note F'(z,v) = (fi(x), Al(x)v)
LWith Al(z) = A(f'7H (@) - A(f(2)) - A=) o
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LYyapulilUv CTAPUILICTIWS
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Oseledets: Let i be an ergodic invariant probability such
that log || A*!|| are integrable. Then there exist numbers
A1 > Ao > - > )\, and for y-almost every = € M there
exists a decomposition R = Bl ¢ E2 @ --- @ E* such that
1 ¢
Ni(z) = lim - log||A(z)v]

|00

for every non-zerov ¢ E and 1 < i < k.

The dimension of the subspace E is called the multiplicity
of the Lyapunov exponent \; of the linear cocycle.

o -
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vidlll stcpo Il uic Proul
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(1) A sufficient condition for the Lyapunov spectrum of a
linear cocycle to be simple, that is, all exponents to
have multiplicity 1.
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(1) A sufficient condition for the Lyapunov spectrum of a
linear cocycle to be simple, that is, all exponents to
have multiplicity 1.

(2) This criterium is met by the Kontsevich-Zorich cocycle
Fl(z,v) = (f'(z), A'(z)) on  Ag(mi,...,ms) x R

F* where f! is the Teichuller flow and A describes the
action of this flow on the homology group H;(M) = R%9,
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(1) A sufficient condition for the Lyapunov spectrum of a
linear cocycle to be simple, that is, all exponents to
have multiplicity 1.

(2) This criterium is met by the Kontsevich-Zorich cocycle
Fl(z,v) = (f'(z), A'(z)) on  Ag(mi,...,ms) x R

F* where f! is the Teichuller flow and A describes the
action of this flow on the homology group H;(M) = R%9,

The Lyapunov exponents of this cocycle (with multiplicity)
Larelzwz--.zugzoz—yg>...>—y22—1. B
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1. The map f has a Markov partition, finite or countable.
2. AIs constant on each element of the Markov partition.

3. A bounded distortion condition (inverse branches of
iterates of f and their Jacobians are equicontinuous).
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Dynamics in the moduli space of Abelian differentials — p. 19/2



1 TIC SIHTIPHCILY ClHIteT Ul

- .

1. The map f has a Markov partition, finite or countable.
2. AIs constant on each element of the Markov partition.

3. A bounded distortion condition (inverse branches of
iterates of f and their Jacobians are equicontinuous).

We call the cocycle simple satisfies both

#® (pinching): There is some periodic point p of f over
which the eigenvalues of the cocycle all have different
norms.

# (twisting): There is some homoclinic orbit to p over
which the cocycle puts all eigenspaces in general
L position relative to each other. J
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Theorem 1. If a cocycle is simple than its Lyapunov spectrum is simple.

Theorem 2. The Kontsevich-Zorich cocycle is simple.

o -
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