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Translation Surfaces

Compact Riemann surface endowed with a non-vanishing
holomorphic

�

-form (Abelian differential) � � � ��� �� � .

singularities = zeros of
such that

Compact orientable surface endowed with a flat metric
with finitely many conical singularities and a unit parallel
vector field .
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Construction of Translation Surfaces

Consider a planar polygon whose sides can be grouped in
pairs of (non-adjacent) segments that are parallel and have
the same length.

WE

N

S

Identifying the two sides in the same pair, by translation,
one obtains a translation surface.

� � � � � � Euclidean

� � ��
�

� �

singularities � vertices
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Geodesic Flows on Translation Surfaces

1

2

2
3

We want to understand the behavior of geodesics with a
given direction. In particular,

When are the geodesics closed ?

When are they dense in the surface ?
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Measured Foliations

A foliation on a surface is measured if it is defined by some�

-form � with isolated zeros: the leaves are tangent to the
kernel of � at every non-singular point.

Example: parallel foliations on translation surfaces.

� � � � singularities � vertices
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Measured Foliations

Maier 43: Given a measured foliation, the ambient splits into

periodic components: all leaves are closed;

minimal components: all leaves are dense;

separated by saddle-connections or homoclinic loops.

Calabi 69, Katok 73: Every measured foliation without
saddle-connections is the vertical foliation with respect to
some flat translation metric.

Necessary and sufficient: no closed paths homologous to
zero formed by positively oriented saddle-connections.
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Interval Exchange Transformations

Associated to the vertical foliation on a translation surface
there is an interval exchange transformation: the return
map to some section transverse to the foliation.

PSfrag replacements
�

�

�

�

�

�

�

�

Conversely, every interval exchange transformation may be
suspended to the vertical flow on some translation surface
(not unique).
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Geodesic Flows on the Flat Torus

H

V

Let �� � � � � � ��
�

define the direction of the geodesics.

If � �

� �� is rational then every geodesic is closed.

If � �

� �� is irrational then the flow is uniquely ergodic.
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Geodesic Flows on the Flat Torus
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��� �� �

Let �� � � � � � ��
�

define the direction of the geodesics.

If � �

� �� is rational then every geodesic is closed.

If � �

� �� is irrational then the flow is uniquely ergodic.

Given a geodesic segment of length

�

, “close” it to get	 � � � � � 	
�

� � �
�

	
�

� � � � 
 �� ��
�


 �

. Then

	 � � � � � �
�

is bounded.
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Geodesic Flows in Higher Genus
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Given any geodesic segment of length

�

, close it to get an
element
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Asymptotic Cycles

Schwartzmann 57:
The asymptotic cycle of a pair (surface, direction) is the limit

�� � � � ���� �
�

�
	 � � � 
 �� � 


�
� �

�

Kerckhoff, Masur, Smillie 86: For every translation surface
and for almost every direction, the geodesic flow is uniquely
ergodic. In particular, the asymptotic cycle is well defined,
and every geodesic is dense.
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Deviations from the Limit Direction

Zorich discovered that the deviation of the vector
	 � � �

from
the direction of � � distributes itself along a favorite direction

�� , with amplitude

�� �

for some �� � �

:
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Deviations from the Limit Direction

The same phenomenon is observed in higher orders: the
component of

	 � � �

orthogonal to

� � � � � �� has a favorite
direction ��� 
 ��

, and amplitude

�� �

for some �� � �� ,
and so on.

PSfrag replacements

��� � �	� �

��
 � � � � � �	� 


�
�

�
�

Geodesic flows on flat surfaces – p.13/27



Conjecture and Main Result

Conjecture (Zorich, Kontsevich). There are numbers� � �� � �� � � � � � ��� � �

and subspaces

� � � � � � � � � � �
�

with � � 
 � � and

� � � ��� � �

for every

�

, such that

the deviation of

	 � � �

from

� � has amplitude
��� 	 �

for all

� � �

the deviation of

	 � � �

from

�
� is bounded.

(where � = genus of the flat surface).

Theorem (Avila, Viana 04). The Z-K conjecture is true.

There was fundamental previous work by Forni 02. Our
argument contains another proof of Forni’s result .

Work of Kontsevich and Zorich translated the claim of the
conjecture into a statement in Dynamics:
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The Rauzy Algorithm
PSfrag replacements
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To analyze the behavior of longer and longer geodesics, we
consider return maps to shorter and shorter cross-sections.

One way to do this is the Rauzy renormalization algorithm
in the space of interval exchange transformations. We
describe the algorithm through an example.
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Each interval exchange transformation is replaced by the
corresponding return map to a certain subinterval.
Above is a “bottom” case: of the two rightmost intervals, the
bottom one is longest.
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The Rauzy AlgorithmPSfrag replacements
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� � � � � � � � �� �� � � �� � � � � � � � � � �

The Rauzy transformation is defined by

��� ��� �
� ��� 	 ��� 


�
� 
 �

.
It admits an invariant measure � absolutely continuous with
respect to Lebesgue measure in the

�

-space.
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The Rauzy Cocycle

Now we analyze the effect of this algorithm on the return
map (suspension of the interval exchange transformation):

PSfrag replacements

� � � �

Consider a geodesic segment that leaves from the

�

’th
interval and returns to the cross-section. “Close” it by
joining the endpoints to some chosen point.
This defines some �� 
 �� � 


�

 �

.
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The Rauzy Cocycle

Now we analyze the effect of this algorithm on the return
map (suspension of the interval exchange transformation):
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� � � � � 
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This corresponds to a linear cocycle

� � � �
�

� � � � ��� 

�

� 

� � 
 �

over the Rauzy map

� � � �
� � � � � 


�
� 
 �

.
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The Zorich Cocycles

The invariant measure � of

�

is infinite... Zorich introduced
an accelerated algorithm

� � � �
� � � � � � � �
� �

and

� � � �
�

� � � � � � � � �
�

� � � �

where � � � � � �
� �

is smallest such that the Rauzy iteration
changes from “top” to “bottom” or vice-versa.

The transformation admits an absolutely continuous
invariant ergodic probability over every Rauzy class
= smallest invariant subset of the set of permutations

the cocycle acts symplectically on .

This brings us to the setting of the Oseledets theorem:

Geodesic flows on flat surfaces – p.20/27



The Zorich Cocycles

The invariant measure � of

�

is infinite... Zorich introduced
an accelerated algorithm

� � � �
� � � � � � � �
� �

and

� � � �
�

� � � � � � � � �
�

� � � �

where � � � � � �
� �

is smallest such that the Rauzy iteration
changes from “top” to “bottom” or vice-versa.

The transformation

�

admits an absolutely continuous
invariant ergodic probability � over every Rauzy class
= smallest invariant subset of the set of permutations �

the cocycle

�

acts symplectically on � 
 �� � 

�

� � � �� �

.

This brings us to the setting of the Oseledets theorem:

Geodesic flows on flat surfaces – p.20/27



Conjecture and Main Result

Conjecture (Zorich, Kontsevich). The Lyapunov exponents of every
Zorich cocycle are non-zero and distinct:

� � �� � �� � � � � � ��� � � � � ��� � � � � � � �� � � �� � � �

(then the asymptotic flag corresponds to the Oseledets decomposition).

Theorem (Veech 84). .

Theorem (Forni 02). .

Theorem (Avila, Viana 04). All exponents are non-zero and distinct.
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Main Steps of the Proof

1. A general criterium for multiplicity

�

of the Lyapunov
exponents of linear cocycles.

2. Checking that this criterium applies to every Zorich
cocycle.

Multiplicity of a Lyapunov exponent = dimension of the
corresponding invariant subbundle in the Oseledets
decomposition.
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Linear Cocycles

Let

� � 	 be a measurable transformation and

� � 	 � � ��
�

� �

be a measurable function.

They define a linear cocycle

�

, through

� � � �� 	 � ��
�

� � � � � � � � � � �
�

�
� � �
� �

�
�

Assume:

1. The map

�

has a finite or countable Markov partition.

2.

�

is constant on each element of the partition.

3. A bounded distortion condition (inverse branches of
iterates of

�

and their Jacobians are equicontinuous).
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The Criterium

We call the cocycle simple if the map

�

has

1. (pinching) Some periodic point � 
 , with period � � �

,
such that all the eigenvalues of

�� � � � have distinct
norms.

2. (twisting) Some homoclinic point � 
�� �� � �

� 
 �
	��
 � � � and

� � � � � 
 � 	�� 
 � � �

such that

� � � � � � � � � ��

for any invariant subspaces�

and

�

of

�� � � � with

� � � � � � � � � � � .

twisting � the algebraic minors of the matrix of

� � � � �

in an
eigenbasis of

�� � � � are all different from zero.
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The Criterium

Theorem 1. If the cocycle is simple then all its Lyapunov exponents
have multiplicity

�

.

Previous results were obtained by
Guivarc’h, Raugi and Gol’dsheid, Margulis, for products of
independent random matrices, and
Bonatti, Viana, for cocycles over subshifts of finite type.
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Checking the Criterium

Theorem 2. Every Zorich cocycle is simple.

The proof is by induction on the number of intervals. We
consider combinatorial operations of reduction/extension:

This has a topological and geometric counterpart for the
corresponding surfaces:
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Checking the Criterium

Given � with

�

symbols, there exists � 


with

� � �
symbols

such that � is an extension of � 


. Then, either � � � � � � � � 
 �

or � � � � � � � � 
 � � �

.

1. If � � � � � � � � 
 �

then the corresponding Zorich actions are
(symplectically) conjugate.

2. If then may be seen as a
symplectic reduction of

symplectic orthogonal of inside
and the Zorich action on is conjugate to the
natural action on the symplectic reduction.

In this way one can prove twisting for from twisting for .

Pinching also requires a careful combinatorial analysis.
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