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Some (non-flat) surfaces

Sphere (g = 0) Torus (g = 1)

Bitorus (g = 2)
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One flat "sphere": the cube

Flat surface: the sum of the internal angles of any triangle
on the surface is equal to 180 degrees.

Any triangle ?...
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What about the edges ?

Every edge can be "flattened" without deforming the
surface:

The geodesics ("shortest paths") correspond to straight line
segments after flattening.

The sum of the internal angles of a triangle is 180 degrees.
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What about the vertices ?

Define ang(V ) = sum of the angles of the faces of the
surface adjacent to a given vertex V . In the case of the
cube ang(V ) = 3π/2.

V

Whenever ang(V ) 6= 2π, the vertex can not be “flattened"
without deforming or tearing the surface.
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Triangles on a vertex

top side

front

α
β

γ
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Sum of the internal angles

top side

front

α
β

γ

The sum of the internal angles of this hexagon is

α + β + γ + ang(V ) + π = 4π,

so the sum of the angles of the triangle on the cube is
α + β + γ = 3π − ang(V ) = 3π/2. General rule ?
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Theorem of Gauss-Bonnet

On a smooth surface the integral of the Gaussian curvature
is equal to 2πX ,
where X = 2 − 2g is the Euler characteristic of the surface.
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Theorem of Gauss-Bonnet

On a smooth surface the integral of the Gaussian curvature
is equal to 2πX ,
where X = 2 − 2g is the Euler characteristic of the surface.

Version for flat surfaces:

The sum
∑N

i=1

(

2π − ang(Vi)
)

is equal to 2πX , where
V1, . . . , VN are the vertices of the surface.

Flat surface: the sum of the internal angles of any triangle
is equal to 180 degrees,
except at a finite number of points, the vertices, where is
concentrated all the curvature of the surface.
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Geodesic walks

We consider "straight lines" (geodesics) in a given direction,
from different points on the surface.

Geometry of Flat Surfaces – p.11/43



Geodesic walks

We consider "straight lines" (geodesics) in a given direction,
from different points on the surface.
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Geodesic walks

We want to understand the behavior of these geodesics,
the way they "wrap" around the surface:

When are the geodesics closed curves ?

When are they dense on the surface ?

What is their quantitative behavior ?
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Motivation

The geodesic flow on flat surfaces is related to:

Interval exchange transformations

Dinamics of measured foliations

Lyapunov exponents of linear cocycles

Teichmüller spaces and flows

Moduli spaces of Riemann surfaces

Quadratic differentials

Continued fraction expansions

Billiards on polygonal tables ⇒
Renormalization operators

...
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Geodesic walks

At first sight, the behavior does not depend much on the
initial points: geodesics starting in the same direction
remain parallel.
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Geodesic walks

At first sight, the behavior does not depend much on the
initial points: geodesics starting in the same direction
remain parallel.

But the presence of the vertices may render the situation
much more complicated.
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The flat torus

One single vertex V , with ang(V ) = 2π.

The flat torus does not embed in R
3.
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Geodesic walks on the torus

H

V

Geodesics in a given direction remain parallel.
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Geodesic walks on the torus

h1(ℓ)= 4

h2(ℓ)= 2

Their behavior may be described using the vector

(v1, v2) = lim
ℓ→∞

1

ℓ
(h1(ℓ), h2(ℓ)),

where h1(ℓ), h2(ℓ) = “number of turns" of a geodesic
segment of length ℓ makes around the torus, in the
horizontal and the vertical direction.
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Geodesic walks on the torus

h1(ℓ)

h2(ℓ)

Theorem.

1. If v1/v2 is rational then every geodesic is closed.

2. If v1/v2 is irrational then every geodesic is dense and even
uniformly distributed (the flow is uniquely ergodic).
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A more general construction

Let us consider any planar polygon bounded by an even
number of pairs of (non-adjacent) line segments which are
parallel and have the same length.

Identifying the segments in each pair we get a flat surface.
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An example

Let us consider the regular octagon:

V
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An example

Let us consider the regular octagon:

V V

V

V

Geometry of Flat Surfaces – p.25/43



An example

Let us consider the regular octagon:
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An example

Let us consider the regular octagon:

VV

V V

VV

V V

The surface has a unique vertex V , with ang(V ) = 6π.
How can the angle be bigger than 2π ?
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An example

Let us consider the regular octagon:

VV

V V

VV

V V

The surface has a unique vertex V , with ang(V ) = 6π.
How can the angle be bigger than 2π ?
So, by Gauss-Bonnet, it has genus g = 2: flat bitorus.
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Translation surfaces

The flat surfaces obtained from planar polygons have some
additional structure: a globally defined "compass".

OE

N

S
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N

N

N

?
N

N
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Translation surfaces

The flat surfaces obtained from planar polygons have some
additional structure: a globally defined "compass".

S

S

OE

N

S

S

S

S

S

?

That is not the case of the cube:
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Translation flows

1

2

2
3

Just as we did for the torus, let us consider geodesics with
a given direction starting from points on the surface.
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Translation flows
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h1 = 3
h2 = 5
h3 = 4
h4 = 2

To each geodesic segment of length ℓ we can associate an
integer vector H(ℓ) = (h1(ℓ), . . . , hd(ℓ))

where hi(ℓ) = “number of turns" in the direction of the i’th
side of the polygon.
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Asymptotic cycles

S. Schwartzmann (1957):
the asymptotic cycle of a pair (surface, direction) is the limit

c1 = lim
ℓ→∞

1

ℓ
H(ℓ)

This vector c1 ∈ R
d describes the “average number of turns"

of geodesics around the various sides of the polygon, per
unit of length.

Theorem (Kerckhoff, Masur, Smillie 1986). For any translation surface
and almost any direction, the geodesic flow is uniquely ergodic. In
particular, the asymptotic cycle exists and every geodesic is dense.
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Deviations from the limit

Numerical experiments by Anton Zorich suggest that the
differences

H(ℓ) − ℓc1

are distributed along some direction c2 ∈ R
d

c2

ℓν2

and their order of magnitude is ℓν2 for some ν2 < 1.
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Deviations from the limit

Refining these experiments, he observed that second order
deviations

“H(ℓ) − ℓc1 − ℓν2c2”
are also distributed along some direction c3 ∈ R

d and their
order of magnitude is ℓν3 for some ν3 < ν2.
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Deviations from the limit

Refining these experiments, he observed that second order
deviations

“H(ℓ) − ℓc1 − ℓν2c2”
are also distributed along some direction c3 ∈ R

d and their
order of magnitude is ℓν3 for some ν3 < ν2.

The same type of behavior is observed for higher order
deviations:

Conjecture (Zorich-Kontsevich ∼1995). There exist c1, c2, . . . , cg in R
d

and numbers 1 > ν2 > · · · > νg > 0 such that

“ H(ℓ) = c1ℓ + c2ℓ
ν2 + c3ℓ

ν3 + · · · + cgℓ
νg + R(ℓ) ”

where R(ℓ) is a bounded function.
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Zorich – Kontsevich conjecture

Kontsevich, Zorich gave a dynamical interpretation of the
vectors ci and the numbers νi (Lyapunov exponents). The
main point was to prove

Conjecture (Zorich, Kontsevich).

1 > ν2 > · · · > νg > 0
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Zorich – Kontsevich conjecture

Kontsevich, Zorich gave a dynamical interpretation of the
vectors ci and the numbers νi (Lyapunov exponents). The
main point was to prove

Conjecture (Zorich, Kontsevich).

1 > ν2 > · · · > νg > 0

Theorem (Veech 1984). ν2 < 1.

Theorem (Forni 2002). νg > 0.
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Zorich – Kontsevich conjecture

Kontsevich, Zorich gave a dynamical interpretation of the
vectors ci and the numbers νi (Lyapunov exponents). The
main point was to prove

Conjecture (Zorich, Kontsevich).

1 > ν2 > · · · > νg > 0

Theorem (Veech 1984). ν2 < 1.

Theorem (Forni 2002). νg > 0.

Theorem (Avila, Viana 2004). The ZK conjecture is true.
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The End

That’s not all, folks!
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· · ·

Let 2d be the number of sides of the polygon. Apparently,

for d = 2 we have ν2 = 0

for d = 3 we have ν2 = 0

for d = 4 we have ν2 = 1/3

for d = 5 we have ν2 = 1/2
(all rational...)
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Let 2d be the number of sides of the polygon. Apparently,

for d = 2 we have ν2 = 0

for d = 3 we have ν2 = 0

for d = 4 we have ν2 = 1/3

for d = 5 we have ν2 = 1/2
(all rational...)

for d = 6 we have ν2 = 0, 6156 . . . or 0, 7173 . . .
(probably irrational...)
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· · ·

Let 2d be the number of sides of the polygon. Apparently,

for d = 2 we have ν2 = 0

for d = 3 we have ν2 = 0

for d = 4 we have ν2 = 1/3

for d = 5 we have ν2 = 1/2
(all rational...)

for d = 6 we have ν2 = 0, 6156 . . . or 0, 7173 . . .
(probably irrational...)

Conjecture (Kontsevich-Zorich). The sum ν1 + ν2 + · · · + νg is a
rational number for all g ≥ 3.
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Billiards

Billiards model the motion of point particles inside bounded
regions in the plane, with constant speed and elastic
reflections on the boundary:

Let us focus on polygonal table billiards, that are more
directly related to geodesics flows on flat surfaces.
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Flat spheres

Gluing two identical triangles along their boundaries we
obtain a flat sphere with 3 vertices:
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Triangular tables

Billiard in a triangular table ⇔

⇔ geodesic flow on a flat sphere with three vertices.
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Triangular tables

Billiard in a triangular table ⇔

⇔ geodesic flow on a flat sphere with three vertices.
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An open problem

Billiard in a triangular table ⇔

⇔ geodesic flow on a flat sphere with three vertices.

Does every flat sphere with three vertices have some
closed geodesic ?
Does every billiard on a triangular table have some closed
trajectory ?
When the angles are ≤ 90 degrees, the answer is Yes.
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Smooth spheres

For smooth spheres with positive curvature there always
exist at least 3 closed geodesics:

⇐
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