Geometry of Flat Surfaces

Marcelo Viana
IMPA - Rio de Janeiro

Xi'an Jiaotong University 2005

Some (non-flat) surfaces

Sphere $(g=0)$

Bitorus ($g=2$)

One flat "sphere": the cube

Flat surface: the sum of the internal angles of any triangle on the surface is equal to 180 degrees.

Any triangle ?...

What about the edges?

Every edge can be "flattened" without deforming the surface:

The geodesics ("shortest paths") correspond to straight line segments after flattening.
The sum of the internal angles of a triangle is 180 degrees.

What about the vertices?

Define $\operatorname{ang}(V)=$ sum of the angles of the faces of the surface adjacent to a given vertex V. In the case of the cube ang $(V)=3 \pi / 2$.

Whenever $\operatorname{ang}(V) \neq 2 \pi$, the vertex can not be "flattened" without deforming or tearing the surface.

Triangles on a vertex

Triangles on a vertex

Triangles on a vertex

Sum of the internal angles

The sum of the internal angles of this hexagon is

$$
\alpha+\beta+\gamma+\operatorname{ang}(V)+\pi=4 \pi,
$$

so the sum of the angles of the triangle on the cube is $\alpha+\beta+\gamma=3 \pi-\operatorname{ang}(V)=3 \pi / 2$. General rule?

Theorem of Gauss-Bonnet

On a smooth surface the integral of the Gaussian curvature is equal to $2 \pi \mathcal{X}$,
where $\mathcal{X}=2-2 g$ is the Euler characteristic of the surface.

Theorem of Gauss-Bonnet

On a smooth surface the integral of the Gaussian curvature is equal to $2 \pi \mathcal{X}$,
where $\mathcal{X}=2-2 g$ is the Euler characteristic of the surface.

Version for flat surfaces:
The sum $\sum_{i=1}^{N}\left(2 \pi-\operatorname{ang}\left(V_{i}\right)\right)$ is equal to $2 \pi \mathcal{X}$, where V_{1}, \ldots, V_{N} are the vertices of the surface.

Flat surface: the sum of the internal angles of any triangle is equal to 180 degrees, except at a finite number of points, the vertices, where is concentrated all the curvature of the surface.

Geodesic walks

We consider "straight lines" (geodesics) in a given direction, from different points on the surface.

Geodesic walks

We consider "straight lines" (geodesics) in a given direction, from different points on the surface.

Geodesic walks

We want to understand the behavior of these geodesics, the way they "wrap" around the surface:

- When are the geodesics closed curves?
- When are they dense on the surface ?
- What is their quantitative behavior ?

Motivation

The geodesic flow on flat surfaces is related to:

- Interval exchange transformations
- Dinamics of measured foliations
- Lyapunov exponents of linear cocycles
- Teichmüller spaces and flows
- Moduli spaces of Riemann surfaces
- Quadratic differentials
- Continued fraction expansions
- Billiards on polygonal tables
- Renormalization operators
- ...

Geodesic walks

At first sight, the behavior does not depend much on the initial points: geodesics starting in the same direction remain parallel.

Geodesic walks

At first sight, the behavior does not depend much on the initial points: geodesics starting in the same direction remain parallel.
But the presence of the vertices may render the situation much more complicated.

The flat torus

One single vertex V, with $\operatorname{ang}(V)=2 \pi$.
The flat torus does not embed in \mathbb{R}^{3}.

Geodesic walks on the torus

Geodesics in a given direction remain parallel.

Geodesic walks on the torus

Their behavior may be described using the vector

$$
\left(v_{1}, v_{2}\right)=\lim _{\ell \rightarrow \infty} \frac{1}{\ell}\left(h_{1}(\ell), h_{2}(\ell)\right),
$$

where $h_{1}(\ell), h_{2}(\ell)=$ "number of turns" of a geodesic segment of length ℓ makes around the torus, in the horizontal and the vertical direction.

Geodesic walks on the torus

Theorem.

1. If v_{1} / v_{2} is rational then every geodesic is closed.
2. If v_{1} / v_{2} is irrational then every geodesic is dense and even uniformly distributed (the flow is uniquely ergodic).

A more general construction

Let us consider any planar polygon bounded by an even number of pairs of (non-adjacent) line segments which are parallel and have the same length.

Identifying the segments in each pair we get a flat surface.

An example

Let us consider the regular octagon:

An example

Let us consider the regular octagon:

An example

Let us consider the regular octagon:

An example

Let us consider the regular octagon:

An example

Let us consider the regular octagon:

An example

Let us consider the regular octagon:

The surface has a unique vertex V, with $\operatorname{ang}(V)=6 \pi$. How can the angle be bigger than 2π ?

An example

Let us consider the regular octagon:

The surface has a unique vertex V, with $\operatorname{ang}(V)=6 \pi$. How can the angle be bigger than 2π ?
So, by Gauss-Bonnet, it has genus $g=2$: flat bitorus.

Translation surfaces

The flat surfaces obtained from planar polygons have some additional structure: a globally defined "compass".

Translation surfaces

The flat surfaces obtained from planar polygons have some additional structure: a globally defined "compass".

That is not the case of the cube:

Translation flows

Just as we did for the torus, let us consider geodesics with a given direction starting from points on the surface.

Translation flows

To each geodesic segment of length ℓ we can associate an integer vector $H(\ell)=\left(h_{1}(\ell), \ldots, h_{d}(\ell)\right)$
where $h_{i}(\ell)=$ "number of turns" in the direction of the i 'th side of the polygon.

Asymptotic cycles

S. Schwartzmann (1957):
the asymptotic cycle of a pair (surface, direction) is the limit

$$
c_{1}=\lim _{\ell \rightarrow \infty} \frac{1}{\ell} H(\ell)
$$

This vector $c_{1} \in \mathbb{R}^{d}$ describes the "average number of turns" of geodesics around the various sides of the polygon, per unit of length.

Theorem (Kerckhoff, Masur, Smillie 1986). For any translation surface and almost any direction, the geodesic flow is uniquely ergodic. In particular, the asymptotic cycle exists and every geodesic is dense.

Deviations from the limit

Numerical experiments by Anton Zorich suggest that the differences

$$
H(\ell)-\ell c_{1}
$$

are distributed along some direction $c_{2} \in \mathbb{R}^{d}$

and their order of magnitude is $\ell^{\nu_{2}}$ for some $\nu_{2}<1$.

Deviations from the limit

Refining these experiments, he observed that second order deviations

$$
" H(\ell)-\ell c_{1}-\ell^{\nu_{2}} c_{2} "
$$

are also distributed along some direction $c_{3} \in \mathbb{R}^{d}$ and their order of magnitude is $\ell^{\nu_{3}}$ for some $\nu_{3}<\nu_{2}$.

Deviations from the limit

Refining these experiments, he observed that second order deviations

$$
" H(\ell)-\ell c_{1}-\ell^{\nu_{2}} c_{2} "
$$

are also distributed along some direction $c_{3} \in \mathbb{R}^{d}$ and their order of magnitude is $\ell^{\nu_{3}}$ for some $\nu_{3}<\nu_{2}$.

The same type of behavior is observed for higher order deviations:

Conjecture (Zorich-Kontsevich ~ 1995). There exist $c_{1}, c_{2}, \ldots, c_{g}$ in \mathbb{R}^{d} and numbers $1>\nu_{2}>\cdots>\nu_{g}>0$ such that

$$
" H(\ell)=c_{1} \ell+c_{2} \ell^{\nu_{2}}+c_{3} \ell^{\nu_{3}}+\cdots+c_{g} \ell^{\nu_{g}}+R(\ell) "
$$

where $R(\ell)$ is a bounded function.

Zorich - Kontsevich conjecture

Kontsevich, Zorich gave a dynamical interpretation of the vectors c_{i} and the numbers ν_{i} (Lyapunov exponents). The main point was to prove

Conjecture (Zorich, Kontsevich).

$$
1>\nu_{2}>\cdots>\nu_{g}>0
$$

Zorich - Kontsevich conjecture

Kontsevich, Zorich gave a dynamical interpretation of the vectors c_{i} and the numbers ν_{i} (Lyapunov exponents). The main point was to prove

Conjecture (Zorich, Kontsevich).

$$
1>\nu_{2}>\cdots>\nu_{g}>0
$$

Theorem (Veech 1984). $\nu_{2}<1$.

Theorem (Forni 2002). $\nu_{g}>0$.

Zorich - Kontsevich conjecture

Kontsevich, Zorich gave a dynamical interpretation of the vectors c_{i} and the numbers ν_{i} (Lyapunov exponents). The main point was to prove

Conjecture (Zorich, Kontsevich).

$$
1>\nu_{2}>\cdots>\nu_{g}>0
$$

Theorem (Veech 1984). $\nu_{2}<1$.

Theorem (Forni 2002). $\nu_{g}>0$.

Theorem (Avila, Viana 2004). The ZK conjecture is true.

The End

That's not all, folks!

Let $2 d$ be the number of sides of the polygon. Apparently,

- for $d=2$ we have $\nu_{2}=0$
- for $d=3$ we have $\nu_{2}=0$
- for $d=4$ we have $\nu_{2}=1 / 3$
- for $d=5$ we have $\nu_{2}=1 / 2$ (all rational...)

Let $2 d$ be the number of sides of the polygon. Apparently,

- for $d=2$ we have $\nu_{2}=0$
- for $d=3$ we have $\nu_{2}=0$
- for $d=4$ we have $\nu_{2}=1 / 3$
- for $d=5$ we have $\nu_{2}=1 / 2$ (all rational...)
- for $d=6$ we have $\nu_{2}=0,6156 \ldots$ or $0,7173 \ldots$ (probably irrational...)

Let $2 d$ be the number of sides of the polygon. Apparently,

- for $d=2$ we have $\nu_{2}=0$
- for $d=3$ we have $\nu_{2}=0$
- for $d=4$ we have $\nu_{2}=1 / 3$
- for $d=5$ we have $\nu_{2}=1 / 2$ (all rational...)
- for $d=6$ we have $\nu_{2}=0,6156 \ldots$ or $0,7173 \ldots$ (probably irrational...)

Conjecture (Kontsevich-Zorich). The sum $\nu_{1}+\nu_{2}+\cdots+\nu_{g}$ is a rational number for all $g \geq 3$.

Billiards

Billiards model the motion of point particles inside bounded regions in the plane, with constant speed and elastic reflections on the boundary:

Let us focus on polygonal table billiards, that are more directly related to geodesics flows on flat surfaces.

Flat spheres

Gluing two identical triangles along their boundaries we obtain a flat sphere with 3 vertices:

Triangular tables

Billiard in a triangular table \Leftrightarrow
\Leftrightarrow geodesic flow on a flat sphere with three vertices.

Triangular tables

Billiard in a triangular table \Leftrightarrow
\Leftrightarrow geodesic flow on a flat sphere with three vertices.

An open problem

Billiard in a triangular table \Leftrightarrow \Leftrightarrow geodesic flow on a flat sphere with three vertices.

Does every flat sphere with three vertices have some closed geodesic?
Does every billiard on a triangular table have some closed trajectory ?
When the angles are ≤ 90 degrees, the answer is Yes.

Smooth spheres

For smooth spheres with positive curvature there always exist at least 3 closed geodesics:

