EXTREMAL LYAPUNOV EXPONENTS

1. Let (M,B,u, f, A) be such that
(i) (M, B, 1) is a probability space, that is, u is a probability mea-
sure defined on a o-algebra B of subsets of the space M
(ii) f: M — M is an invertible B-measurable transformation pre-

serving the probability measure p
(ili) A: M — GL(d,R) is B-measurable and p-integrable:

log | All € L'(4) and log |A™"|| € L'(u).

The associated projective cocycle is the invertible transformation
F . M x P(R?) defined by F(z,[v]) = (f(z),[A(x)v]). Notice that
Fr(z,[v]) = (f"(x), [A™(x)v]) for every n € Z, where

A(frH(w)) - A(f(2)) A(z) ifn>0
At(x) =< id ifn=20
A(f (@) A @) i <0

The extremal Lyapunov exponents of F are
1 1
A, = lim —/log||A”||du and A = lim —/10g||(A”)_1||_1 .
n—oo M n—oo 1

The limits exist since the sequences [ log ||A*"||du are sub-additive.
Observe that ||A™(x)|||[(A™)7!| > 1 and so A, > A_. We are going to
study necessary conditions for the equality to occur.

2. Given o-algebras A;, Ay C B, we say that A; C A;mod0 if for
every A; € A; there exists Ay € Ay such that p(A4;AAy) = 0. We
say that A; = Ay mod0 if 4; C Ay,mod0 and Ay C A;mod0. A o-
algebra is generating if the o-algebra generated by the iterates f™(By),
n € Z equals Bmod 0.

We assume (M, B, 1) to be a Lebesque space, that is, a complete sepa-
rable probability space. Separability means that B admits a countable
subset I' that separates any two points of M and such that the o-
algebra it generates equals B mod 0. Completeness means that every
NagerG* consists of exactly one point, where G* denotes either G or its
complement. Every Lebesgue space is isomorphic mod 0 to the union of
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an interval, endowed with Lebesgue measure, and a finite or countable
set of atoms. See Rokhlin [8, § 2.

Let m be a probability measure on M x P(R?) such that P,m = pu,
where P : M x P(R?) — M is the canonical projection. Let

{m, :z € M}

be the disintegration of m into conditional probability measures along
the fibers, that is, the family of probabilities m, on M x P(R?), such

that x — m, is B-measurable, every m, is supported inside the fiber
{x} x P(RY), and

m(E) = / me(E) dyu(x)

for any measurable set £ C M x P(R%). Such a family exists, because
(M, B, 1) is a Lebesgue space, and it is unique mod 0. See [8, § 3].

Theorem 1 (Ledrappier [6]). Suppose Ay = A_. Let By C B be a
generating o-algebra such that both f and A are By-measurable mod 0.
Then the disintegration x — m, of any F-invariant probability m with
P.m = u 1s By-measurable mod 0.

We are going to deduce some consequences, following Ledrappier [6].
Then we state a generalization, Theorem 7, whose proof is given else-
where [1].

3. Given functions g, : M — X, with values in measurable spaces
Xa, a € I, we denote by span(g, : @ € I) the smallest o-algebra on
M relative to which every g, is measurable. We call {{), M} the trivial
o-algebra.

Theorem 2. Suppose Ay = A_ and
(1) span(Ao f":n>0)Nspan(Ao f":n<0)={0,M} modO0.

Then there exists a probability n on P(R?) such that A(z).n = n for
p-almost every x € M.

For the proof we need the following easy fact:

Lemma 3. Let B = span(Aof™ : n € Z) and By = span(Aof™ : n > 0).
Then

(1) the o-algebra B is separable and complete mod 0
(2) the iterates f™*(By), n € Z generate B
(3) both f and A are By-measurable and, hence, B-measurable

Then (M, B, p) is a Lebesgue space. Moreover, both f and A are
B-measurable. This means that, up to replacing B by B from the
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start, we may suppose that the sub-o-algebra By defined in Lemma 3
is generating.

Thus, applying Theorem 1, we get that x — m, is By-measurable
mod 0, for any F-invariant probability m such that P,m = pu. More-
over, we may apply the same arguments with f and A replaced by
their inverses, and By replaced by B, = span(A o f" : n < 0). Notice
that z — A~ (z) = A(f~'(x))~! is Bj-measurable. We conclude that
x — m, is also Bj-measurable.

Thus, in view of (1), the disintegration is measurable mod 0 with
respect to the trivial o-algebra. In other words, there exists 7 such that
mg = 1 for p-almost every x € M. Finally, note that A(x).m, = my()
for p-almost every x, because m is F-invariant and f is invertible. This
completes the proof of Theorem 2 from Theorem 1.

4. As a further consequence we obtain a theorem of Furstenberg on
products of random matrices. We call (M, B, u, f, A) an independent
product of random matrices if there exists a probability v supported

on some G C GL(d,R) such that M = GZ, B is the product o-algebra
on M, p is the Bernoulli measure v#, f is the shift map of M, and

A(g) = go for every g = (gn)nez in M.

Theorem 4 (Furstenberg [2]). Let (M, B, pu, f, A) be an independent
product of random matrices and suppose A = \_. Then there exists a
probability measure n on P(R?) such that g.n =n for every g € G.

Indeed, span(A o f™ : n > 0) is the o-algebra generated by the
cylinders [0; Gy, ..., G, I > 1, and span(A o f" : n < 0) is the o-
algebra generated by the cylinders [—1;G_y,...,G_1], 1 > 1, and so the
hypothesis (1) is satisfied in this case. So, by Theorem 2, there exists
n on P(RY) such that A(g).n = n for u-almost every g € M. In other
words, ¢,n = n for v-almost every g € G. Then this invariance relation
must hold for every ¢g in G = supp v, as claimed in Theorem 4.

Most projective maps have very few invariant measures: for instance,
if all the eigenvalues of g € GL(d, R) have distinct norms then the only
g-invariant probability measures in P(R?) are the convex combinations
of Dirac masses at the eigenspaces. Thus, the conclusion of Theorem 4
is very strong: the theorem implies that A\, > A_ for most independent
products of random matrices.

5. We call (M, B, u, f,A) a Markov product of random matrices if
there exists G C GL(d,R) such that M = GZ, B is the product o-
algebra on M, u is a Markov measure on M, f is the shift map of M,
and A(g) = go for every g = (gn)nez in M. The condition on p means
that there exists a family of transition probabilities p(g,-), g € G such
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that

([ G+ Gy Goia]) = / P(gos i) dulg)
[k;Gk,...,Gn]

for any k <n and Gy, ...,G,,G,1 C G.
Theorem 5 (Virtser [11], Guivarc’h [3], Royer [9]). Let (M, B, u, f, A)

be a Markov product of random matrices and suppose Ay = A_. Then
there exists a measurable family (ny)gsec of probability measures on
P(R?) such that g.n, = nn for p(g,-)-almost every h € G.

6. Let (M, B, u, f) be as before and Ag : M — SL(2,R) be defined by
([ V(@)-FE -1
Ap(r) = < 1 0 )

where the energy E is a real parameter and the potential V : M — R
is a measurable function satisfying

/max{log 'V (z)|,0} du < 0.

Let AL(F) be the extremal Lyapunov exponents of the corresponding
linear cocycle. In this case A\_ + A, = 0, because d = 2 and det A = 1.
The potential V' : M — R is called deterministic if

(2) ﬂ span(V o f":n>k) =span(V o f":n €7Z) modO.

k=1
Observe that span(V o f*) = f~"(span(V')) decreases when n increases.
Thus, (2) may be read: the past values determine the future values of
V. Typically, quasi-periodic potentials (f is an irrational rotation) are
deterministic, whereas Bernoulli potentials (f is a Bernoulli transfor-
mation) are not.

Theorem 6 (Kotani [5], Simon [10]). If V' is non-deterministic then
A_(E) <0 < A (E) for almost every value of E.

Ledrappier [6, § VI| shows how this result follows from Theorem 1.

7. Let (M, B, 1, f) be as before and P : € — M be a fiber bundle with
fibers &, diffeomorphic to some Riemannian manifold N. A non-linear
cocycle over f is a measurable transformation F' : £ — &£ such that
PoF = foP and every F, : & — &p) is a diffeomorphism. We
always assume that the norms of the derivative DF,(§) and its inverse
are uniformly bounded. Then the functions

(3) (@8 = log|[DE()|l and (x,¢) — log||DF:(¢)|
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are integrable, relative to any probability measure on £. The extremal
Lyapunov exponents of F' at a point (x,£) € £ are

1 .
A (Fya,€) = lim = log | DEZ(E)]|.

.1 =1 —
A(Fyz,€) = lim ~log [ DEF(€) [

The limits exist m-almost everywhere, with respect to any F-invariant
probability m on &£, by sub-additivity (Kingman [4]). Notice that

)\_(F,x,ﬁ) < )\+(F,l’,§),
because [|[DF(E)||||DF™(€)7| > 1. Denote

A = A (Fym) = /)\i(F,x,f) dm(zx,§).

If (F,m) is ergodic then A\ (F, z,£) = Ay for m-almost every (z,&).

We consider probability measures m on & that project down to p
under P. By [8, § 3], such a measure m admits a family {m, : © € M} of
probabilities such that x — m, is B-measurable, every m, is supported
inside the fiber &,, and

m(E) = / e (E) du(x)

for any measurable set £ C £. Moreover, such a family is essentially
unique. We call it the disintegration of m and refer to the m, as its
conditional probabilities along the fibers. The following result extends
Theorem 1:

Theorem 7. Suppose either A (x,&) <0 for m-almost every (z,&) or
A_(z,&) > 0 for m-almost every (x,£). Let By C B be a generating
o-algebra such that both f and x — F, are By-measurable mod 0. Then
T — my 18 By-measurable mod 0.

8. Let us check that Theorem 1 follows from Theorem 7. Take & =
M xP(RY). Given A : M — GL(d, R), consider F, to be the projective
diffeomorphism induced by A(z) on the projective space N = P(R?).
Locally, the points of P(R?) may be represented by unit vectors €. Then
(o)t
F8) = s
[ A (z)€]]

for every x, &, and n. It follows that,
: pTOjAn(x)g(An(ﬁ)é)

PEOS =@
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where proj, v = v—u(u-v)/(u-u) is the projection of v to the orthogonal
complement of u. This implies that

IDEZEN < [[A"@)I/IA™ (@)8 ]l < [|A™ (@) [ A" () 7]
for every x, £, and n. Consequently, A(z,&) < A (x) — A_(x), where

1 1
M) = lim < log [ A"(@)] and A-(x) = lim -~ Jog |lA"(x) )

Oseledets [7] ensures that these two limits exist almost everywhere and

Ay = /)\ﬂ:($) du(z).

Clearly, A\;(x) > A_(z) at p-almost every z. Hence, Ay = A_ implies
Ai(z) = A_(x) for p-almost every z, and so A(z,€&) < 0 for m-almost
every (z,£). Thus, Theorem 1 is indeed a particular case of Theorem 7.
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