EXTREMAL LYAPUNOV EXPONENTS

1. Let $(M, \mathcal{B}, \mu, f, A)$ be such that
(i) (M, \mathcal{B}, μ) is a probability space, that is, μ is a probability measure defined on a σ-algebra \mathcal{B} of subsets of the space M
(ii) $f: M \rightarrow M$ is an invertible \mathcal{B}-measurable transformation preserving the probability measure μ
(iii) $A: M \rightarrow \mathrm{GL}(d, \mathbb{R})$ is \mathcal{B}-measurable and μ-integrable:

$$
\log \|A\| \in L^{1}(\mu) \quad \text { and } \quad \log \left\|A^{-1}\right\| \in L^{1}(\mu)
$$

The associated projective cocycle is the invertible transformation $F: M \times \mathbb{P}\left(\mathbb{R}^{d}\right)$ defined by $F(x,[v])=(f(x),[A(x) v])$. Notice that $F^{n}(x,[v])=\left(f^{n}(x),\left[A^{n}(x) v\right]\right)$ for every $n \in \mathbb{Z}$, where

$$
A^{n}(x)= \begin{cases}A\left(f^{n-1}(x)\right) \cdots A(f(x)) A(x) & \text { if } n>0 \\ \text { id } & \text { if } n=0 \\ A\left(f^{n}(x)\right)^{-1} \cdots A\left(f^{-1}(x)\right)^{-1} & \text { if } n<0\end{cases}
$$

The extremal Lyapunov exponents of F are

$$
\lambda_{+}=\lim _{n \rightarrow \infty} \frac{1}{n} \int \log \left\|A^{n}\right\| d \mu \quad \text { and } \quad \lambda_{-}=\lim _{n \rightarrow \infty} \frac{1}{n} \int \log \left\|\left(A^{n}\right)^{-1}\right\|^{-1} d \mu
$$

The limits exist since the sequences $\int \log \left\|A^{ \pm n}\right\| d \mu$ are sub-additive. Observe that $\left\|A^{n}(x)\right\|\left\|\left(A^{n}\right)^{-1}\right\| \geq 1$ and so $\lambda_{+} \geq \lambda_{-}$. We are going to study necessary conditions for the equality to occur.
2. Given σ-algebras $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{B}$, we say that $\mathcal{A}_{1} \subset \mathcal{A}_{2} \bmod 0$ if for every $A_{1} \in \mathcal{A}_{1}$ there exists $A_{2} \in \mathcal{A}_{2}$ such that $\mu\left(A_{1} \Delta A_{2}\right)=0$. We say that $\mathcal{A}_{1}=\mathcal{A}_{2} \bmod 0$ if $\mathcal{A}_{1} \subset \mathcal{A}_{2} \bmod 0$ and $\mathcal{A}_{2} \subset \mathcal{A}_{1} \bmod 0$. A σ algebra is generating if the σ-algebra generated by the iterates $f^{n}\left(\mathcal{B}_{0}\right)$, $n \in \mathbb{Z}$ equals $\mathcal{B} \bmod 0$.

We assume (M, \mathcal{B}, μ) to be a Lebesgue space, that is, a complete separable probability space. Separability means that \mathcal{B} admits a countable subset Γ that separates any two points of M and such that the σ algebra it generates equals \mathcal{B} mod 0 . Completeness means that every $\cap_{G \in \Gamma} G^{*}$ consists of exactly one point, where G^{*} denotes either G or its complement. Every Lebesgue space is isomorphic mod 0 to the union of

Date: January 31, 2007.
an interval, endowed with Lebesgue measure, and a finite or countable set of atoms. See Rokhlin [8, § 2].

Let m be a probability measure on $M \times \mathbb{P}\left(\mathbb{R}^{d}\right)$ such that $P_{*} m=\mu$, where $P: M \times \mathbb{P}\left(\mathbb{R}^{d}\right) \rightarrow M$ is the canonical projection. Let

$$
\left\{m_{x}: x \in M\right\}
$$

be the disintegration of m into conditional probability measures along the fibers, that is, the family of probabilities m_{x} on $M \times \mathbb{P}\left(\mathbb{R}^{d}\right)$, such that $x \mapsto m_{x}$ is \mathcal{B}-measurable, every m_{x} is supported inside the fiber $\{x\} \times \mathbb{P}\left(\mathbb{R}^{d}\right)$, and

$$
m(E)=\int m_{x}(E) d \mu(x)
$$

for any measurable set $E \subset M \times \mathbb{P}\left(\mathbb{R}^{d}\right)$. Such a family exists, because (M, \mathcal{B}, μ) is a Lebesgue space, and it is unique $\bmod 0$. See $[8, \S 3]$.
Theorem 1 (Ledrappier [6]). Suppose $\lambda_{+}=\lambda_{-}$. Let $\mathcal{B}_{0} \subset \mathcal{B}$ be a generating σ-algebra such that both f and A are \mathcal{B}_{0}-measurable mod 0 . Then the disintegration $x \mapsto m_{x}$ of any F-invariant probability m with $P_{*} m=\mu$ is \mathcal{B}_{0}-measurable $\bmod 0$.

We are going to deduce some consequences, following Ledrappier [6]. Then we state a generalization, Theorem 7, whose proof is given elsewhere [1].
3. Given functions $g_{\alpha}: M \rightarrow X_{\alpha}$ with values in measurable spaces $X_{\alpha}, \alpha \in I$, we denote by $\operatorname{span}\left(g_{\alpha}: \alpha \in I\right)$ the smallest σ-algebra on M relative to which every g_{α} is measurable. We call $\{\emptyset, M\}$ the trivial σ-algebra.

Theorem 2. Suppose $\lambda_{+}=\lambda_{-}$and
(1) $\operatorname{span}\left(A \circ f^{n}: n \geq 0\right) \cap \operatorname{span}\left(A \circ f^{n}: n<0\right)=\{\emptyset, M\} \quad \bmod 0$.

Then there exists a probability η on $\mathbb{P}\left(\mathbb{R}^{d}\right)$ such that $A(x)_{*} \eta=\eta$ for μ-almost every $x \in M$.

For the proof we need the following easy fact:
Lemma 3. Let $\hat{\mathcal{B}}=\operatorname{span}\left(A \circ f^{n}: n \in \mathbb{Z}\right)$ and $\mathcal{B}_{0}=\operatorname{span}\left(A \circ f^{n}: n \geq 0\right)$. Then
(1) the σ-algebra $\hat{\mathcal{B}}$ is separable and complete $\bmod 0$
(2) the iterates $f^{n}\left(\mathcal{B}_{0}\right), n \in \mathbb{Z}$ generate $\hat{\mathcal{B}}$
(3) both f and A are \mathcal{B}_{0}-measurable and, hence, $\hat{\mathcal{B}}$-measurable

Then $(M, \hat{\mathcal{B}}, \mu)$ is a Lebesgue space. Moreover, both f and A are $\hat{\mathcal{B}}$-measurable. This means that, up to replacing \mathcal{B} by $\hat{\mathcal{B}}$ from the
start, we may suppose that the sub- σ-algebra \mathcal{B}_{0} defined in Lemma 3 is generating.

Thus, applying Theorem 1, we get that $x \mapsto m_{x}$ is \mathcal{B}_{0}-measurable $\bmod 0$, for any F-invariant probability m such that $P_{*} m=\mu$. Moreover, we may apply the same arguments with f and A replaced by their inverses, and \mathcal{B}_{0} replaced by $\mathcal{B}_{0}^{\prime}=\operatorname{span}\left(A \circ f^{n}: n<0\right)$. Notice that $x \mapsto A^{-1}(x)=A\left(f^{-1}(x)\right)^{-1}$ is \mathcal{B}_{0}^{\prime}-measurable. We conclude that $x \mapsto m_{x}$ is also \mathcal{B}_{0}^{\prime}-measurable.

Thus, in view of (1), the disintegration is measurable $\bmod 0$ with respect to the trivial σ-algebra. In other words, there exists η such that $m_{x}=\eta$ for μ-almost every $x \in M$. Finally, note that $A(x)_{*} m_{x}=m_{f(x)}$ for μ-almost every x, because m is F-invariant and f is invertible. This completes the proof of Theorem 2 from Theorem 1.
4. As a further consequence we obtain a theorem of Furstenberg on products of random matrices. We call $(M, \mathcal{B}, \mu, f, A)$ an independent product of random matrices if there exists a probability ν supported on some $G \subset \operatorname{GL}(d, \mathbb{R})$ such that $M=G^{\mathbb{Z}}, \mathcal{B}$ is the product σ-algebra on M, μ is the Bernoulli measure $\nu^{\mathbb{Z}}, f$ is the shift map of M, and $A(\underline{g})=g_{0}$ for every $\underline{g}=\left(g_{n}\right)_{n \in \mathbb{Z}}$ in M.

Theorem 4 (Furstenberg [2]). Let $(M, \mathcal{B}, \mu, f, A)$ be an independent product of random matrices and suppose $\lambda_{+}=\lambda_{-}$. Then there exists a probability measure η on $\mathbb{P}\left(\mathbb{R}^{d}\right)$ such that $g_{*} \eta=\eta$ for every $g \in G$.

Indeed, $\operatorname{span}\left(A \circ f^{n}: n \geq 0\right)$ is the σ-algebra generated by the cylinders $\left[0 ; G_{0}, \ldots, G_{l}\right], l \geq 1$, and $\operatorname{span}\left(A \circ f^{n}: n<0\right)$ is the σ algebra generated by the cylinders $\left[-l ; G_{-l}, \ldots, G_{-1}\right], l \geq 1$, and so the hypothesis (1) is satisfied in this case. So, by Theorem 2, there exists η on $\mathbb{P}\left(\mathbb{R}^{d}\right)$ such that $A(\underline{g})_{*} \eta=\eta$ for μ-almost every $g \in M$. In other words, $g_{*} \eta=\eta$ for ν-almost every $g \in G$. Then this invariance relation must hold for every g in $G=\operatorname{supp} \nu$, as claimed in Theorem 4.

Most projective maps have very few invariant measures: for instance, if all the eigenvalues of $g \in \mathrm{GL}(d, \mathbb{R})$ have distinct norms then the only g-invariant probability measures in $\mathbb{P}\left(\mathbb{R}^{d}\right)$ are the convex combinations of Dirac masses at the eigenspaces. Thus, the conclusion of Theorem 4 is very strong: the theorem implies that $\lambda_{+}>\lambda_{-}$for most independent products of random matrices.
5. We call $(M, \mathcal{B}, \mu, f, A)$ a Markov product of random matrices if there exists $G \subset G L(d, \mathbb{R})$ such that $M=G^{\mathbb{Z}}, \mathcal{B}$ is the product σ algebra on M, μ is a Markov measure on M, f is the shift map of M, and $A(\underline{g})=g_{0}$ for every $\underline{g}=\left(g_{n}\right)_{n \in \mathbb{Z}}$ in M. The condition on μ means that there exists a family of transition probabilities $p(g, \cdot), g \in G$ such
that

$$
\mu\left(\left[k ; G_{k}, \ldots, G_{n}, G_{n+1}\right]\right)=\int_{\left[k ; G_{k}, \ldots, G_{n}\right]} p\left(g_{n}, G_{n+1}\right) d \mu(\underline{g})
$$

for any $k \leq n$ and $G_{k}, \ldots, G_{n}, G_{n+1} \subset G$.
Theorem 5 (Virtser [11], Guivarc'h [3], Royer [9]). Let ($M, \mathcal{B}, \mu, f, A$) be a Markov product of random matrices and suppose $\lambda_{+}=\lambda_{-}$. Then there exists a measurable family $\left(\eta_{g}\right)_{g \in G}$ of probability measures on $\mathbb{P}\left(\mathbb{R}^{d}\right)$ such that $g_{*} \eta_{g}=\eta_{h}$ for $p(g, \cdot)$-almost every $h \in G$.
6. Let (M, \mathcal{B}, μ, f) be as before and $A_{E}: M \rightarrow \mathrm{SL}(2, \mathbb{R})$ be defined by

$$
A_{E}(x)=\left(\begin{array}{cc}
V(x)-E & -1 \\
1 & 0
\end{array}\right)
$$

where the energy E is a real parameter and the potential $V: M \rightarrow \mathbb{R}$ is a measurable function satisfying

$$
\int \max \{\log |V(x)|, 0\} d \mu<\infty
$$

Let $\lambda_{ \pm}(E)$ be the extremal Lyapunov exponents of the corresponding linear cocycle. In this case $\lambda_{-}+\lambda_{+}=0$, because $d=2$ and $\operatorname{det} A \equiv 1$.

The potential $V: M \rightarrow \mathbb{R}$ is called deterministic if

$$
\begin{equation*}
\bigcap_{k=1}^{\infty} \operatorname{span}\left(V \circ f^{n}: n \geq k\right)=\operatorname{span}\left(V \circ f^{n}: n \in \mathbb{Z}\right) \quad \bmod 0 \tag{2}
\end{equation*}
$$

Observe that $\operatorname{span}\left(V \circ f^{n}\right)=f^{-n}(\operatorname{span}(V))$ decreases when n increases. Thus, (2) may be read: the past values determine the future values of V. Typically, quasi-periodic potentials (f is an irrational rotation) are deterministic, whereas Bernoulli potentials (f is a Bernoulli transformation) are not.

Theorem 6 (Kotani [5], Simon [10]). If V is non-deterministic then $\lambda_{-}(E)<0<\lambda_{+}(E)$ for almost every value of E.

Ledrappier $[6, \S \mathrm{VI}]$ shows how this result follows from Theorem 1.
7. Let (M, \mathcal{B}, μ, f) be as before and $P: \mathcal{E} \rightarrow M$ be a fiber bundle with fibers \mathcal{E}_{x} diffeomorphic to some Riemannian manifold N. A non-linear cocycle over f is a measurable transformation $F: \mathcal{E} \rightarrow \mathcal{E}$ such that $P \circ F=f \circ P$ and every $F_{x}: \mathcal{E}_{x} \rightarrow \mathcal{E}_{f(x)}$ is a diffeomorphism. We always assume that the norms of the derivative $D F_{x}(\xi)$ and its inverse are uniformly bounded. Then the functions

$$
\begin{equation*}
(x, \xi) \mapsto \log \left\|D F_{x}(\xi)\right\| \quad \text { and } \quad(x, \xi) \mapsto \log \left\|D F_{x}(\xi)^{-1}\right\| \tag{3}
\end{equation*}
$$

are integrable, relative to any probability measure on \mathcal{E}. The extremal Lyapunov exponents of F at a point $(x, \xi) \in \mathcal{E}$ are

$$
\begin{aligned}
& \lambda_{+}(F, x, \xi)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|D F_{x}^{n}(\xi)\right\| . \\
& \lambda_{-}(F, x, \xi)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|D F_{x}^{n}(\xi)^{-1}\right\|^{-1} .
\end{aligned}
$$

The limits exist m-almost everywhere, with respect to any F-invariant probability m on \mathcal{E}, by sub-additivity (Kingman [4]). Notice that

$$
\lambda_{-}(F, x, \xi) \leq \lambda_{+}(F, x, \xi)
$$

because $\left\|D F_{x}^{n}(\xi)\right\|\left\|D F_{x}^{n}(\xi)^{-1}\right\| \geq 1$. Denote

$$
\lambda_{ \pm}=\lambda_{ \pm}(F, m)=\int \lambda_{ \pm}(F, x, \xi) d m(x, \xi)
$$

If (F, m) is ergodic then $\lambda_{ \pm}(F, x, \xi)=\lambda_{ \pm}$for m-almost every (x, ξ).
We consider probability measures m on \mathcal{E} that project down to μ under P. By $[8, \S 3]$, such a measure m admits a family $\left\{m_{x}: x \in M\right\}$ of probabilities such that $x \mapsto m_{x}$ is \mathcal{B}-measurable, every m_{x} is supported inside the fiber \mathcal{E}_{x}, and

$$
m(E)=\int m_{x}(E) d \mu(x)
$$

for any measurable set $E \subset \mathcal{E}$. Moreover, such a family is essentially unique. We call it the disintegration of m and refer to the m_{x} as its conditional probabilities along the fibers. The following result extends Theorem 1:

Theorem 7. Suppose either $\lambda_{+}(x, \xi) \leq 0$ for m-almost every (x, ξ) or $\lambda_{-}(x, \xi) \geq 0$ for m-almost every (x, ξ). Let $\mathcal{B}_{0} \subset \mathcal{B}$ be a generating σ-algebra such that both f and $x \mapsto F_{x}$ are \mathcal{B}_{0}-measurable $\bmod 0$. Then $x \mapsto m_{x}$ is \mathcal{B}_{0}-measurable $\bmod 0$.
8. Let us check that Theorem 1 follows from Theorem 7. Take $\mathcal{E}=$ $M \times \mathbb{P}\left(\mathbb{R}^{d}\right)$. Given $A: M \rightarrow \mathrm{GL}(d, \mathbb{R})$, consider F_{x} to be the projective diffeomorphism induced by $A(x)$ on the projective space $N=\mathbb{P}\left(\mathbb{R}^{d}\right)$. Locally, the points of $\mathbb{P}\left(\mathbb{R}^{d}\right)$ may be represented by unit vectors ξ. Then

$$
F_{x}^{n}(\xi)=\frac{A^{n}(x) \xi}{\left\|A^{n}(x) \xi\right\|}
$$

for every x, ξ, and n. It follows that,

$$
D F_{x}^{n}(\xi) \dot{\xi}=\frac{\operatorname{proj}_{A^{n}(x) \xi}\left(A^{n}(x) \dot{\xi}\right)}{\left\|A^{n}(x) \xi\right\|}
$$

where $\operatorname{proj}_{u} v=v-u(u \cdot v) /(u \cdot u)$ is the projection of v to the orthogonal complement of u. This implies that

$$
\left\|D F_{x}^{n}(\xi)\right\| \leq\left\|A^{n}(x)\right\| /\left\|A^{n}(x) \xi\right\| \leq\left\|A^{n}(x)\right\|\left\|A^{n}(x)^{-1}\right\|
$$

for every x, ξ, and n. Consequently, $\lambda(x, \xi) \leq \lambda_{+}(x)-\lambda_{-}(x)$, where

$$
\lambda_{+}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{n}(x)\right\| \quad \text { and } \quad \lambda_{-}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{n}(x)^{-1}\right\|^{-1} .
$$

Oseledets [7] ensures that these two limits exist almost everywhere and

$$
\lambda_{ \pm}=\int \lambda_{ \pm}(x) d \mu(x)
$$

Clearly, $\lambda_{+}(x) \geq \lambda_{-}(x)$ at μ-almost every x. Hence, $\lambda_{+}=\lambda_{-}$implies $\lambda_{+}(x)=\lambda_{-}(x)$ for μ-almost every x, and so $\lambda(x, \xi) \leq 0$ for m-almost every (x, ξ). Thus, Theorem 1 is indeed a particular case of Theorem 7 .

References

[1] A. Avila and M. Viana. Extremal Lyapunov exponents of non-linear cocycles. In preparation.
[2] H. Furstenberg. Non-commuting random products. Trans. Amer. Math. Soc., 108:377-428, 1963.
[3] Y. Guivarc'h. Marches aléatories à pas markovien. Comptes Rendus Acad. Sci. Paris, 289:211-213, 1979.
[4] J. Kingman. The ergodic theorem of subadditive stochastic processes. J. Royal Statist. Soc., 30:499-510, 1968.
[5] S. Kotani. Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In Stochastic analysis, pages 225-248. North Holland, 1984.
[6] F. Ledrappier. Positivity of the exponent for stationary sequences of matrices. In Lyapunov exponents (Bremen, 1984), volume 1186 of Lect. Notes Math., pages 56-73. Springer, 1986.
[7] V. I. Oseledets. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19:197-231, 1968.
[8] V. A. Rokhlin. On the fundamental ideas of measure theory. A. M. S. Transl., 10:1-52, 1962. Transl. from Mat. Sbornik 25 (1949), 107-150.
[9] G. Royer. Croissance exponentielle de produits markoviens de matrices. Ann. Inst. H. Poincaré, 16:49-62, 1980.
[10] B. Simon. Kotani theory for one-dimensional stochastic Jacobi matrices. Comm. Math. Phys., 89:227-234, 1983.
[11] A. Virtser. On products of random matrices and operators. Th. Prob. Appl., 34:367-377, 1979.

