EXTREMAL LYAPUNOV EXPONENTS

- **1.** Let $(M, \mathcal{B}, \mu, f, A)$ be such that
 - (i) (M, \mathcal{B}, μ) is a probability space, that is, μ is a probability measure defined on a σ -algebra \mathcal{B} of subsets of the space M
 - (ii) $f: M \to M$ is an invertible \mathcal{B} -measurable transformation preserving the probability measure μ
 - (iii) $A: M \to \operatorname{GL}(d, \mathbb{R})$ is \mathcal{B} -measurable and μ -integrable:

 $\log ||A|| \in L^1(\mu)$ and $\log ||A^{-1}|| \in L^1(\mu)$.

The associated projective cocycle is the invertible transformation $F: M \times \mathbb{P}(\mathbb{R}^d)$ defined by F(x, [v]) = (f(x), [A(x)v]). Notice that $F^n(x, [v]) = (f^n(x), [A^n(x)v])$ for every $n \in \mathbb{Z}$, where

$$A^{n}(x) = \begin{cases} A(f^{n-1}(x)) \cdots A(f(x)) A(x) & \text{if } n > 0\\ \text{id} & \text{if } n = 0\\ A(f^{n}(x))^{-1} \cdots A(f^{-1}(x))^{-1} & \text{if } n < 0 \end{cases}$$

The extremal Lyapunov exponents of F are

$$\lambda_{+} = \lim_{n \to \infty} \frac{1}{n} \int \log \|A^{n}\| d\mu$$
 and $\lambda_{-} = \lim_{n \to \infty} \frac{1}{n} \int \log \|(A^{n})^{-1}\|^{-1} d\mu.$

The limits exist since the sequences $\int \log ||A^{\pm n}|| d\mu$ are sub-additive. Observe that $||A^n(x)|| ||(A^n)^{-1}|| \ge 1$ and so $\lambda_+ \ge \lambda_-$. We are going to study necessary conditions for the equality to occur.

2. Given σ -algebras $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{B}$, we say that $\mathcal{A}_1 \subset \mathcal{A}_2 \mod 0$ if for every $A_1 \in \mathcal{A}_1$ there exists $A_2 \in \mathcal{A}_2$ such that $\mu(A_1 \Delta A_2) = 0$. We say that $\mathcal{A}_1 = \mathcal{A}_2 \mod 0$ if $\mathcal{A}_1 \subset \mathcal{A}_2 \mod 0$ and $\mathcal{A}_2 \subset \mathcal{A}_1 \mod 0$. A σ algebra is *generating* if the σ -algebra generated by the iterates $f^n(\mathcal{B}_0)$, $n \in \mathbb{Z}$ equals $\mathcal{B} \mod 0$.

We assume (M, \mathcal{B}, μ) to be a *Lebesgue space*, that is, a complete separable probability space. Separability means that \mathcal{B} admits a countable subset Γ that separates any two points of M and such that the σ algebra it generates equals $\mathcal{B} \mod 0$. Completeness means that every $\bigcap_{G \in \Gamma} G^*$ consists of exactly one point, where G^* denotes either G or its complement. Every Lebesgue space is isomorphic mod 0 to the union of

Date: January 31, 2007.

an interval, endowed with Lebesgue measure, and a finite or countable set of atoms. See Rokhlin $[8, \S 2]$.

Let *m* be a probability measure on $M \times \mathbb{P}(\mathbb{R}^d)$ such that $P_*m = \mu$, where $P: M \times \mathbb{P}(\mathbb{R}^d) \to M$ is the canonical projection. Let

$$\{m_x: x \in M\}$$

be the disintegration of m into conditional probability measures along the fibers, that is, the family of probabilities m_x on $M \times \mathbb{P}(\mathbb{R}^d)$, such that $x \mapsto m_x$ is \mathcal{B} -measurable, every m_x is supported inside the fiber $\{x\} \times \mathbb{P}(\mathbb{R}^d)$, and

$$m(E) = \int m_x(E) \, d\mu(x)$$

for any measurable set $E \subset M \times \mathbb{P}(\mathbb{R}^d)$. Such a family exists, because (M, \mathcal{B}, μ) is a Lebesgue space, and it is unique mod 0. See [8, § 3].

Theorem 1 (Ledrappier [6]). Suppose $\lambda_+ = \lambda_-$. Let $\mathcal{B}_0 \subset \mathcal{B}$ be a generating σ -algebra such that both f and A are \mathcal{B}_0 -measurable mod 0. Then the disintegration $x \mapsto m_x$ of any F-invariant probability m with $P_*m = \mu$ is \mathcal{B}_0 -measurable mod 0.

We are going to deduce some consequences, following Ledrappier [6]. Then we state a generalization, Theorem 7, whose proof is given elsewhere [1].

3. Given functions $g_{\alpha} : M \to X_{\alpha}$ with values in measurable spaces $X_{\alpha}, \alpha \in I$, we denote by $\operatorname{span}(g_{\alpha} : \alpha \in I)$ the smallest σ -algebra on M relative to which every g_{α} is measurable. We call $\{\emptyset, M\}$ the *trivial* σ -algebra.

Theorem 2. Suppose $\lambda_+ = \lambda_-$ and

(1) $\operatorname{span}(A \circ f^n : n \ge 0) \cap \operatorname{span}(A \circ f^n : n < 0) = \{\emptyset, M\} \mod 0.$

Then there exists a probability η on $\mathbb{P}(\mathbb{R}^d)$ such that $A(x)_*\eta = \eta$ for μ -almost every $x \in M$.

For the proof we need the following easy fact:

Lemma 3. Let $\hat{\mathcal{B}} = \operatorname{span}(A \circ f^n : n \in \mathbb{Z})$ and $\mathcal{B}_0 = \operatorname{span}(A \circ f^n : n \ge 0)$. Then

- (1) the σ -algebra $\hat{\mathcal{B}}$ is separable and complete mod 0
- (2) the iterates $f^n(\mathcal{B}_0), n \in \mathbb{Z}$ generate $\hat{\mathcal{B}}$
- (3) both f and A are \mathcal{B}_0 -measurable and, hence, $\hat{\mathcal{B}}$ -measurable

Then $(M, \hat{\mathcal{B}}, \mu)$ is a Lebesgue space. Moreover, both f and A are $\hat{\mathcal{B}}$ -measurable. This means that, up to replacing \mathcal{B} by $\hat{\mathcal{B}}$ from the

start, we may suppose that the sub- σ -algebra \mathcal{B}_0 defined in Lemma 3 is generating.

Thus, applying Theorem 1, we get that $x \mapsto m_x$ is \mathcal{B}_0 -measurable mod 0, for any *F*-invariant probability *m* such that $P_*m = \mu$. Moreover, we may apply the same arguments with *f* and *A* replaced by their inverses, and \mathcal{B}_0 replaced by $\mathcal{B}'_0 = \operatorname{span}(A \circ f^n : n < 0)$. Notice that $x \mapsto A^{-1}(x) = A(f^{-1}(x))^{-1}$ is \mathcal{B}'_0 -measurable. We conclude that $x \mapsto m_x$ is also \mathcal{B}'_0 -measurable.

Thus, in view of (1), the disintegration is measurable mod 0 with respect to the trivial σ -algebra. In other words, there exists η such that $m_x = \eta$ for μ -almost every $x \in M$. Finally, note that $A(x)_*m_x = m_{f(x)}$ for μ -almost every x, because m is F-invariant and f is invertible. This completes the proof of Theorem 2 from Theorem 1.

4. As a further consequence we obtain a theorem of Furstenberg on products of random matrices. We call $(M, \mathcal{B}, \mu, f, A)$ an *independent* product of random matrices if there exists a probability ν supported on some $G \subset \operatorname{GL}(d, \mathbb{R})$ such that $M = G^{\mathbb{Z}}, \mathcal{B}$ is the product σ -algebra on M, μ is the Bernoulli measure $\nu^{\mathbb{Z}}$, f is the shift map of M, and $A(g) = g_0$ for every $g = (g_n)_{n \in \mathbb{Z}}$ in M.

Theorem 4 (Furstenberg [2]). Let $(M, \mathcal{B}, \mu, f, A)$ be an independent product of random matrices and suppose $\lambda_+ = \lambda_-$. Then there exists a probability measure η on $\mathbb{P}(\mathbb{R}^d)$ such that $g_*\eta = \eta$ for every $g \in G$.

Indeed, span $(A \circ f^n : n \geq 0)$ is the σ -algebra generated by the cylinders $[0; G_0, \ldots, G_l], l \geq 1$, and span $(A \circ f^n : n < 0)$ is the σ -algebra generated by the cylinders $[-l; G_{-l}, \ldots, G_{-1}], l \geq 1$, and so the hypothesis (1) is satisfied in this case. So, by Theorem 2, there exists η on $\mathbb{P}(\mathbb{R}^d)$ such that $A(\underline{g})_*\eta = \eta$ for μ -almost every $\underline{g} \in M$. In other words, $g_*\eta = \eta$ for ν -almost every $g \in G$. Then this invariance relation must hold for every g in $G = \operatorname{supp} \nu$, as claimed in Theorem 4.

Most projective maps have very few invariant measures: for instance, if all the eigenvalues of $g \in \operatorname{GL}(d, \mathbb{R})$ have distinct norms then the only *g*-invariant probability measures in $\mathbb{P}(\mathbb{R}^d)$ are the convex combinations of Dirac masses at the eigenspaces. Thus, the conclusion of Theorem 4 is very strong: the theorem implies that $\lambda_+ > \lambda_-$ for most independent products of random matrices.

5. We call $(M, \mathcal{B}, \mu, f, A)$ a Markov product of random matrices if there exists $G \subset \operatorname{GL}(d, \mathbb{R})$ such that $M = G^{\mathbb{Z}}$, \mathcal{B} is the product σ algebra on M, μ is a Markov measure on M, f is the shift map of M, and $A(\underline{g}) = g_0$ for every $\underline{g} = (g_n)_{n \in \mathbb{Z}}$ in M. The condition on μ means that there exists a family of transition probabilities $p(q, \cdot), q \in G$ such that

$$\mu([k; G_k, \dots, G_n, G_{n+1}]) = \int_{[k; G_k, \dots, G_n]} p(g_n, G_{n+1}) \, d\mu(\underline{g})$$

for any $k \leq n$ and $G_k, \ldots, G_n, G_{n+1} \subset G$.

Theorem 5 (Virtser [11], Guivarc'h [3], Royer [9]). Let $(M, \mathcal{B}, \mu, f, A)$ be a Markov product of random matrices and suppose $\lambda_+ = \lambda_-$. Then there exists a measurable family $(\eta_g)_{g\in G}$ of probability measures on $\mathbb{P}(\mathbb{R}^d)$ such that $g_*\eta_g = \eta_h$ for $p(g, \cdot)$ -almost every $h \in G$.

6. Let (M, \mathcal{B}, μ, f) be as before and $A_E : M \to SL(2, \mathbb{R})$ be defined by

$$A_E(x) = \left(\begin{array}{cc} V(x) - E & -1\\ 1 & 0 \end{array}\right)$$

where the energy E is a real parameter and the potential $V: M \to \mathbb{R}$ is a measurable function satisfying

$$\int \max\{\log |V(x)|, 0\} \, d\mu < \infty.$$

Let $\lambda_{\pm}(E)$ be the extremal Lyapunov exponents of the corresponding linear cocycle. In this case $\lambda_{-} + \lambda_{+} = 0$, because d = 2 and det $A \equiv 1$. The notantial $V \in M_{-} \oplus \mathbb{R}$ is called *deterministic* if

The potential $V: M \to \mathbb{R}$ is called *deterministic* if

(2)
$$\bigcap_{k=1}^{\infty} \operatorname{span}(V \circ f^n : n \ge k) = \operatorname{span}(V \circ f^n : n \in \mathbb{Z}) \mod 0.$$

Observe that $\operatorname{span}(V \circ f^n) = f^{-n}(\operatorname{span}(V))$ decreases when *n* increases. Thus, (2) may be read: the past values determine the future values of V. Typically, quasi-periodic potentials (f is an irrational rotation) are deterministic, whereas Bernoulli potentials (f is a Bernoulli transformation) are not.

Theorem 6 (Kotani [5], Simon [10]). If V is non-deterministic then $\lambda_{-}(E) < 0 < \lambda_{+}(E)$ for almost every value of E.

Ledrappier $[6, \S VI]$ shows how this result follows from Theorem 1.

7. Let (M, \mathcal{B}, μ, f) be as before and $P : \mathcal{E} \to M$ be a fiber bundle with fibers \mathcal{E}_x diffeomorphic to some Riemannian manifold N. A non-linear cocycle over f is a measurable transformation $F : \mathcal{E} \to \mathcal{E}$ such that $P \circ F = f \circ P$ and every $F_x : \mathcal{E}_x \to \mathcal{E}_{f(x)}$ is a diffeomorphism. We always assume that the norms of the derivative $DF_x(\xi)$ and its inverse are uniformly bounded. Then the functions

(3)
$$(x,\xi) \mapsto \log \|DF_x(\xi)\|$$
 and $(x,\xi) \mapsto \log \|DF_x(\xi)^{-1}\|$

4

are integrable, relative to any probability measure on \mathcal{E} . The *extremal* Lyapunov exponents of F at a point $(x, \xi) \in \mathcal{E}$ are

$$\lambda_{+}(F, x, \xi) = \lim_{n \to \infty} \frac{1}{n} \log \|DF_{x}^{n}(\xi)\|.$$
$$\lambda_{-}(F, x, \xi) = \lim_{n \to \infty} \frac{1}{n} \log \|DF_{x}^{n}(\xi)^{-1}\|^{-1}$$

The limits exist *m*-almost everywhere, with respect to any *F*-invariant probability m on \mathcal{E} , by sub-additivity (Kingman [4]). Notice that

$$\lambda_{-}(F, x, \xi) \le \lambda_{+}(F, x, \xi),$$

because $||DF_x^n(\xi)|| ||DF_x^n(\xi)^{-1}|| \ge 1$. Denote

$$\lambda_{\pm} = \lambda_{\pm}(F, m) = \int \lambda_{\pm}(F, x, \xi) \, dm(x, \xi).$$

If (F, m) is ergodic then $\lambda_{\pm}(F, x, \xi) = \lambda_{\pm}$ for *m*-almost every (x, ξ) .

We consider probability measures m on \mathcal{E} that project down to μ under P. By [8, § 3], such a measure m admits a family $\{m_x : x \in M\}$ of probabilities such that $x \mapsto m_x$ is \mathcal{B} -measurable, every m_x is supported inside the fiber \mathcal{E}_x , and

$$m(E) = \int m_x(E) \, d\mu(x)$$

for any measurable set $E \subset \mathcal{E}$. Moreover, such a family is essentially unique. We call it the *disintegration* of m and refer to the m_x as its *conditional probabilities* along the fibers. The following result extends Theorem 1:

Theorem 7. Suppose either $\lambda_+(x,\xi) \leq 0$ for m-almost every (x,ξ) or $\lambda_-(x,\xi) \geq 0$ for m-almost every (x,ξ) . Let $\mathcal{B}_0 \subset \mathcal{B}$ be a generating σ -algebra such that both f and $x \mapsto F_x$ are \mathcal{B}_0 -measurable mod 0. Then $x \mapsto m_x$ is \mathcal{B}_0 -measurable mod 0.

8. Let us check that Theorem 1 follows from Theorem 7. Take $\mathcal{E} = M \times \mathbb{P}(\mathbb{R}^d)$. Given $A : M \to \operatorname{GL}(d, \mathbb{R})$, consider F_x to be the projective diffeomorphism induced by A(x) on the projective space $N = \mathbb{P}(\mathbb{R}^d)$. Locally, the points of $\mathbb{P}(\mathbb{R}^d)$ may be represented by unit vectors ξ . Then

$$F_x^n(\xi) = \frac{A^n(x)\xi}{\|A^n(x)\xi\|}$$

for every x, ξ , and n. It follows that,

$$DF_x^n(\xi)\dot{\xi} = \frac{\operatorname{proj}_{A^n(x)\xi}(A^n(x)\xi)}{\|A^n(x)\xi\|},$$

where $\operatorname{proj}_u v = v - u(u \cdot v)/(u \cdot u)$ is the projection of v to the orthogonal complement of u. This implies that

 $||DF_x^n(\xi)|| \le ||A^n(x)|| / ||A^n(x)\xi|| \le ||A^n(x)|| ||A^n(x)^{-1}||$

for every x, ξ , and n. Consequently, $\lambda(x,\xi) \leq \lambda_+(x) - \lambda_-(x)$, where

$$\lambda_{+}(x) = \lim_{n \to \infty} \frac{1}{n} \log \|A^{n}(x)\| \text{ and } \lambda_{-}(x) = \lim_{n \to \infty} \frac{1}{n} \log \|A^{n}(x)^{-1}\|^{-1}.$$

Oseledets [7] ensures that these two limits exist almost everywhere and

$$\lambda_{\pm} = \int \lambda_{\pm}(x) \, d\mu(x)$$

Clearly, $\lambda_+(x) \ge \lambda_-(x)$ at μ -almost every x. Hence, $\lambda_+ = \lambda_-$ implies $\lambda_+(x) = \lambda_-(x)$ for μ -almost every x, and so $\lambda(x,\xi) \le 0$ for m-almost every (x,ξ) . Thus, Theorem 1 is indeed a particular case of Theorem 7.

References

- A. Avila and M. Viana. Extremal Lyapunov exponents of non-linear cocycles. In preparation.
- [2] H. Furstenberg. Non-commuting random products. Trans. Amer. Math. Soc., 108:377–428, 1963.
- [3] Y. Guivarc'h. Marches aléatories à pas markovien. Comptes Rendus Acad. Sci. Paris, 289:211–213, 1979.
- [4] J. Kingman. The ergodic theorem of subadditive stochastic processes. J. Royal Statist. Soc., 30:499–510, 1968.
- [5] S. Kotani. Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In *Stochastic analysis*, pages 225–248. North Holland, 1984.
- [6] F. Ledrappier. Positivity of the exponent for stationary sequences of matrices. In Lyapunov exponents (Bremen, 1984), volume 1186 of Lect. Notes Math., pages 56-73. Springer, 1986.
- [7] V. I. Oseledets. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. *Trans. Moscow Math. Soc.*, 19:197–231, 1968.
- [8] V. A. Rokhlin. On the fundamental ideas of measure theory. A. M. S. Transl., 10:1–52, 1962. Transl. from Mat. Sbornik 25 (1949), 107–150.
- [9] G. Royer. Croissance exponentielle de produits markoviens de matrices. Ann. Inst. H. Poincaré, 16:49–62, 1980.
- [10] B. Simon. Kotani theory for one-dimensional stochastic Jacobi matrices. Comm. Math. Phys., 89:227–234, 1983.
- [11] A. Virtser. On products of random matrices and operators. *Th. Prob. Appl.*, 34:367–377, 1979.