
EXTREMAL LYAPUNOV EXPONENTS

1. Let (M,B, µ, f, A) be such that

(i) (M,B, µ) is a probability space, that is, µ is a probability mea-
sure defined on a σ-algebra B of subsets of the space M

(ii) f : M → M is an invertible B-measurable transformation pre-
serving the probability measure µ

(iii) A : M → GL(d,R) is B-measurable and µ-integrable:

log ‖A‖ ∈ L1(µ) and log ‖A−1‖ ∈ L1(µ).

The associated projective cocycle is the invertible transformation
F : M × P(Rd) defined by F (x, [v]) = (f(x), [A(x)v]). Notice that
F n(x, [v]) = (fn(x), [An(x)v]) for every n ∈ Z, where

An(x) =





A(fn−1(x)) · · ·A(f(x)) A(x) if n > 0
id if n = 0
A(fn(x))−1 · · ·A(f−1(x))−1 if n < 0

The extremal Lyapunov exponents of F are

λ+ = lim
n→∞

1

n

∫
log ‖An‖ dµ and λ− = lim

n→∞
1

n

∫
log ‖(An)−1‖−1 dµ.

The limits exist since the sequences
∫

log ‖A±n‖ dµ are sub-additive.
Observe that ‖An(x)‖‖(An)−1‖ ≥ 1 and so λ+ ≥ λ−. We are going to
study necessary conditions for the equality to occur.

2. Given σ-algebras A1,A2 ⊂ B, we say that A1 ⊂ A2 mod 0 if for
every A1 ∈ A1 there exists A2 ∈ A2 such that µ(A1∆A2) = 0. We
say that A1 = A2 mod 0 if A1 ⊂ A2 mod 0 and A2 ⊂ A1 mod 0. A σ-
algebra is generating if the σ-algebra generated by the iterates fn(B0),
n ∈ Z equals Bmod 0.

We assume (M,B, µ) to be a Lebesgue space, that is, a complete sepa-
rable probability space. Separability means that B admits a countable
subset Γ that separates any two points of M and such that the σ-
algebra it generates equals B mod 0. Completeness means that every
∩G∈ΓG∗ consists of exactly one point, where G∗ denotes either G or its
complement. Every Lebesgue space is isomorphic mod 0 to the union of
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an interval, endowed with Lebesgue measure, and a finite or countable
set of atoms. See Rokhlin [8, § 2].

Let m be a probability measure on M × P(Rd) such that P∗m = µ,
where P : M × P(Rd) → M is the canonical projection. Let

{mx : x ∈ M}
be the disintegration of m into conditional probability measures along
the fibers, that is, the family of probabilities mx on M × P(Rd), such
that x 7→ mx is B-measurable, every mx is supported inside the fiber
{x} × P(Rd), and

m(E) =

∫
mx(E) dµ(x)

for any measurable set E ⊂ M × P(Rd). Such a family exists, because
(M,B, µ) is a Lebesgue space, and it is unique mod 0. See [8, § 3].

Theorem 1 (Ledrappier [6]). Suppose λ+ = λ−. Let B0 ⊂ B be a
generating σ-algebra such that both f and A are B0-measurable mod 0.
Then the disintegration x 7→ mx of any F -invariant probability m with
P∗m = µ is B0-measurable mod 0.

We are going to deduce some consequences, following Ledrappier [6].
Then we state a generalization, Theorem 7, whose proof is given else-
where [1].

3. Given functions gα : M → Xα with values in measurable spaces
Xα, α ∈ I, we denote by span(gα : α ∈ I) the smallest σ-algebra on
M relative to which every gα is measurable. We call {∅,M} the trivial
σ-algebra.

Theorem 2. Suppose λ+ = λ− and

(1) span(A ◦ fn : n ≥ 0) ∩ span(A ◦ fn : n < 0) = {∅,M} mod 0.

Then there exists a probability η on P(Rd) such that A(x)∗η = η for
µ-almost every x ∈ M .

For the proof we need the following easy fact:

Lemma 3. Let B̂ = span(A◦fn : n ∈ Z) and B0 = span(A◦fn : n ≥ 0).
Then

(1) the σ-algebra B̂ is separable and complete mod 0

(2) the iterates fn(B0), n ∈ Z generate B̂
(3) both f and A are B0-measurable and, hence, B̂-measurable

Then (M, B̂, µ) is a Lebesgue space. Moreover, both f and A are

B̂-measurable. This means that, up to replacing B by B̂ from the
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start, we may suppose that the sub-σ-algebra B0 defined in Lemma 3
is generating.

Thus, applying Theorem 1, we get that x 7→ mx is B0-measurable
mod 0, for any F -invariant probability m such that P∗m = µ. More-
over, we may apply the same arguments with f and A replaced by
their inverses, and B0 replaced by B′0 = span(A ◦ fn : n < 0). Notice
that x 7→ A−1(x) = A(f−1(x))−1 is B′0-measurable. We conclude that
x 7→ mx is also B′0-measurable.

Thus, in view of (1), the disintegration is measurable mod 0 with
respect to the trivial σ-algebra. In other words, there exists η such that
mx = η for µ-almost every x ∈ M . Finally, note that A(x)∗mx = mf(x)

for µ-almost every x, because m is F -invariant and f is invertible. This
completes the proof of Theorem 2 from Theorem 1.

4. As a further consequence we obtain a theorem of Furstenberg on
products of random matrices. We call (M,B, µ, f, A) an independent
product of random matrices if there exists a probability ν supported
on some G ⊂ GL(d,R) such that M = GZ, B is the product σ-algebra
on M , µ is the Bernoulli measure νZ, f is the shift map of M , and
A(g) = g0 for every g = (gn)n∈Z in M .

Theorem 4 (Furstenberg [2]). Let (M,B, µ, f, A) be an independent
product of random matrices and suppose λ+ = λ−. Then there exists a
probability measure η on P(Rd) such that g∗η = η for every g ∈ G.

Indeed, span(A ◦ fn : n ≥ 0) is the σ-algebra generated by the
cylinders [0; G0, . . . , Gl], l ≥ 1, and span(A ◦ fn : n < 0) is the σ-
algebra generated by the cylinders [−l; G−l, . . . , G−1], l ≥ 1, and so the
hypothesis (1) is satisfied in this case. So, by Theorem 2, there exists
η on P(Rd) such that A(g)∗η = η for µ-almost every g ∈ M . In other
words, g∗η = η for ν-almost every g ∈ G. Then this invariance relation
must hold for every g in G = supp ν, as claimed in Theorem 4.

Most projective maps have very few invariant measures: for instance,
if all the eigenvalues of g ∈ GL(d,R) have distinct norms then the only
g-invariant probability measures in P(Rd) are the convex combinations
of Dirac masses at the eigenspaces. Thus, the conclusion of Theorem 4
is very strong: the theorem implies that λ+ > λ− for most independent
products of random matrices.

5. We call (M,B, µ, f, A) a Markov product of random matrices if
there exists G ⊂ GL(d,R) such that M = GZ, B is the product σ-
algebra on M , µ is a Markov measure on M , f is the shift map of M ,
and A(g) = g0 for every g = (gn)n∈Z in M . The condition on µ means
that there exists a family of transition probabilities p(g, ·), g ∈ G such
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that

µ([k; Gk, . . . , Gn, Gn+1]) =

∫

[k;Gk,...,Gn]

p(gn, Gn+1) dµ(g)

for any k ≤ n and Gk, . . . , Gn, Gn+1 ⊂ G.

Theorem 5 (Virtser [11], Guivarc’h [3], Royer [9]). Let (M,B, µ, f, A)
be a Markov product of random matrices and suppose λ+ = λ−. Then
there exists a measurable family (ηg)g∈G of probability measures on
P(Rd) such that g∗ηg = ηh for p(g, ·)-almost every h ∈ G.

6. Let (M,B, µ, f) be as before and AE : M → SL(2,R) be defined by

AE(x) =

(
V (x)− E −1

1 0

)

where the energy E is a real parameter and the potential V : M → R
is a measurable function satisfying∫

max{log |V (x)|, 0} dµ < ∞.

Let λ±(E) be the extremal Lyapunov exponents of the corresponding
linear cocycle. In this case λ− + λ+ = 0, because d = 2 and det A ≡ 1.

The potential V : M → R is called deterministic if

(2)
∞⋂

k=1

span(V ◦ fn : n ≥ k) = span(V ◦ fn : n ∈ Z) mod 0.

Observe that span(V ◦fn) = f−n(span(V )) decreases when n increases.
Thus, (2) may be read: the past values determine the future values of
V . Typically, quasi-periodic potentials (f is an irrational rotation) are
deterministic, whereas Bernoulli potentials (f is a Bernoulli transfor-
mation) are not.

Theorem 6 (Kotani [5], Simon [10]). If V is non-deterministic then
λ−(E) < 0 < λ+(E) for almost every value of E.

Ledrappier [6, § VI] shows how this result follows from Theorem 1.

7. Let (M,B, µ, f) be as before and P : E → M be a fiber bundle with
fibers Ex diffeomorphic to some Riemannian manifold N . A non-linear
cocycle over f is a measurable transformation F : E → E such that
P ◦ F = f ◦ P and every Fx : Ex → Ef(x) is a diffeomorphism. We
always assume that the norms of the derivative DFx(ξ) and its inverse
are uniformly bounded. Then the functions

(3) (x, ξ) 7→ log ‖DFx(ξ)‖ and (x, ξ) 7→ log ‖DFx(ξ)
−1‖
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are integrable, relative to any probability measure on E . The extremal
Lyapunov exponents of F at a point (x, ξ) ∈ E are

λ+(F, x, ξ) = lim
n→∞

1

n
log ‖DF n

x (ξ)‖ .

λ−(F, x, ξ) = lim
n→∞

1

n
log ‖DF n

x (ξ)−1‖−1 .

The limits exist m-almost everywhere, with respect to any F -invariant
probability m on E , by sub-additivity (Kingman [4]). Notice that

λ−(F, x, ξ) ≤ λ+(F, x, ξ),

because ‖DF n
x (ξ)‖‖DF n

x (ξ)−1‖ ≥ 1. Denote

λ± = λ±(F, m) =

∫
λ±(F, x, ξ) dm(x, ξ).

If (F, m) is ergodic then λ±(F, x, ξ) = λ± for m-almost every (x, ξ).
We consider probability measures m on E that project down to µ

under P . By [8, § 3], such a measure m admits a family {mx : x ∈ M} of
probabilities such that x 7→ mx is B-measurable, every mx is supported
inside the fiber Ex, and

m(E) =

∫
mx(E) dµ(x)

for any measurable set E ⊂ E . Moreover, such a family is essentially
unique. We call it the disintegration of m and refer to the mx as its
conditional probabilities along the fibers. The following result extends
Theorem 1:

Theorem 7. Suppose either λ+(x, ξ) ≤ 0 for m-almost every (x, ξ) or
λ−(x, ξ) ≥ 0 for m-almost every (x, ξ). Let B0 ⊂ B be a generating
σ-algebra such that both f and x 7→ Fx are B0-measurable mod 0. Then
x 7→ mx is B0-measurable mod 0.

8. Let us check that Theorem 1 follows from Theorem 7. Take E =
M×P(Rd). Given A : M → GL(d,R), consider Fx to be the projective
diffeomorphism induced by A(x) on the projective space N = P(Rd).
Locally, the points of P(Rd) may be represented by unit vectors ξ. Then

F n
x (ξ) =

An(x)ξ

‖An(x)ξ‖
for every x, ξ, and n. It follows that,

DF n
x (ξ)ξ̇ =

projAn(x)ξ(A
n(x)ξ̇)

‖An(x)ξ‖ ,
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where proju v = v−u(u·v)/(u·u) is the projection of v to the orthogonal
complement of u. This implies that

‖DF n
x (ξ)‖ ≤ ‖An(x)‖/‖An(x)ξ‖ ≤ ‖An(x)‖‖An(x)−1‖

for every x, ξ, and n. Consequently, λ(x, ξ) ≤ λ+(x)− λ−(x), where

λ+(x) = lim
n→∞

1

n
log ‖An(x)‖ and λ−(x) = lim

n→∞
1

n
log ‖An(x)−1‖−1.

Oseledets [7] ensures that these two limits exist almost everywhere and

λ± =

∫
λ±(x) dµ(x).

Clearly, λ+(x) ≥ λ−(x) at µ-almost every x. Hence, λ+ = λ− implies
λ+(x) = λ−(x) for µ-almost every x, and so λ(x, ξ) ≤ 0 for m-almost
every (x, ξ). Thus, Theorem 1 is indeed a particular case of Theorem 7.
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