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Preface

In short terms, Ergodic Theory is the mathematical discipline that deals with
dynamical systems endowed with invariant measures. Let us begin by explaining
what we mean by this and why these mathematical objects are so worth study-
ing. Next, we highlight some of the major achievements in this field, whose roots
go back to the Physics of the late 19th century. Near the end of the preface, we
outline the content of this book, its structure and its pre-requisites.

What is a dynamical system?

There are several definitions of what a dynamical system is, some more general
than others. We restrict ourselves to two main models.

The first one, to which we refer most of the time, is a transformation f :
M → M in some space M . Heuristically, we think of M as the space of all
possible states of a given system. Then f is the evolution law, associating with
each state x ∈ M the one state f(x) ∈ M the system will be in a unit of time
later. Thus, time is a discrete parameter in this model.

We also consider models of dynamical systems with continuous time, namely
flows. Recall that a flow in a space M is a family f t : M → M , t ∈ R of
transformations satisfying

f0 = identity and f t ◦ f s = f t+s for all t, s ∈ R. (0.0.1)

Flows appear, most notably, in connection with differential equations: take f t

to be the transformation associating with each x ∈ M the value at time t of the
solution of the equation that passes through x at time zero.

We always assume that the dynamical system is measurable, that is, that
the space M carries a σ-algebra of measurable subsets that is preserved by the
dynamics, in the sense that the pre-image of any measurable subset is still a
measurable subset. Often, we take M to be a topological space, or even a metric
space, endowed with the Borel σ-algebra, that is, the smallest σ-algebra that
contains all open sets. Even more, in many of the situations we consider in
this book, M is a smooth manifold and the dynamical system is taken to be
differentiable.
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What is an invariant measure?

A measure in M is a non-negative function µ defined on the σ-algebra of M ,
such that µ(∅) = 0 and

µ
(
∪n An) =

∑

n

µ(An)

for any countable family {An} of pairwise disjoint measurable subsets. We call µ
a probability measure if µ(M) = 1. In most cases, we deal with finite measures,
that is, such that µ(M) < ∞. Then we can easily turn µ into a probability ν:
just define

ν(E) =
µ(E)

µ(M)
for every measurable set E ⊂ M.

In general, we say that a measure µ is invariant under a transformation f if

µ(E) = µ(f−1(E)) for every measurable set E ⊂ M. (0.0.2)

Heuristically, this may be read as follows: the probability that a point is in any
given measurable set is the same as the probability that its image is in that set.
For flows, we replace (0.0.2) by

µ(E) = µ(f−t(E)) for every measurable set E ⊂ M and t ∈ R. (0.0.3)

Notice that (0.0.2)–(0.0.3) do make sense since, by assumption, the pre-image
of a measurable set is also a measurable set.

Why study invariant measures?

As in any other branch of mathematics, an important part of the motivation
is intrinsic and aesthetical: as we will see, these mathematical structures have
deep and surprising properties, which are expressed through beautiful theorems.
Equally fascinating, ideas and results from Ergodic Theory can be applied in
many other areas of Mathematics, including some that do not seem to have
anything to do with probabilistic concepts, such as Combinatorics and Number
Theory.

Another key motivation is that many problems in the experimental sciences,
including many complicated natural phenomena, can be modelled by dynamical
systems that leave some interesting measure invariant. Historically, the most
important example came from Physics: Hamiltonian systems, which describe
the evolution of conservative systems in Newtonian Mechanics, are described by
certain flows that preserve a natural measure, the so-called Liouville measure.
Actually, we will see that very general dynamical systems do possess invariant
measures.

Yet another fundamental reason to be interested in invariant measures is that
their study may yield important information on the dynamical system’s behavior
that would be difficult to obtain otherwise. Poincaré’s recurrence theorem, one
of the first results we analyze in this book, is a great illustration of this: it
asserts that, relative to any finite invariant measure, almost every orbit returns
arbitrarily close to its initial state.
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Brief historic survey

The word ergodic is a concatenation of two Greek words, ǫργoν (ergon) = work
and oδoσ (odos) = way, and was introduced in the 19th century by the Austrian
physicist L. Boltzmann. The systems that interested Boltzmann, J. C. Maxwell
and J. C. Gibbs, the founders of the kinetic theory of gases, can be described
by a Hamiltonian flow, associated with a differential equation of the form

(
dq1
dt

, . . . ,
dqn
dt

,
dp1
dt

, . . . ,
dpn
dt

)
=

(
∂H

∂p1
, . . . ,

∂H

∂pn
,−∂H

∂q1
, . . . ,− ∂H

∂qn

)
.

Boltzmann believed that typical orbits of such a flow fill in the whole energy
surface H−1(c) that contains them. Starting from this ergodic hypothesis, he
deduced that the (time) averages of observable quantities along typical orbits
coincide with the (space) averages of such quantities on the energy surface,
which was crucial for his formulation of the kinetic theory of gases.

In fact, the way it was formulated originally by Boltzmann, this hypothesis
is clearly false. So, the denomination ergodic hypothesis was gradually displaced
to what would have been a consequence, namely, the claim that time averages
and space averages coincide. Systems for which this is true were called ergodic.
And it is fair to say that a great part of the progress experienced by Ergodic
Theory in the 20th century was motivated by the quest to understand whether
most Hamiltonian systems, especially those that appear in connection with the
kinetic theory of gases, are ergodic or not.

The foundations were set in the 1930’s, when J. von Neumann and G. D.
Birkhoff proved that time averages are indeed well defined for almost every
orbit. However, in the mid 1950’s, the great Russian mathematician A. N.
Kolmogorov observed that many Hamiltonian systems are actually not ergodic.
This spectacular discovery was much expanded by V. Arnold and J. Moser, in
what came to be called KAM (Kolmogorov-Arnold-Moser) theory.

On the other hand, still in the 1930’s, E. Hopf had given the first important
examples of Hamiltonian systems that are ergodic, namely, the geodesic flows
on surfaces with negative curvature. His result was generalized to geodesic flows
on manifolds of any dimension by D. Anosov, in the 1960’s. In fact, Anosov
proved ergodicity for a much more general class of systems, both with discrete
time and in continuous time, which are now called Anosov systems.

An even broader class, called uniformly hyperbolic systems, was introduced
by S. Smale and became a major focus for the theory of Dynamical Systems
through the last half a century or so. In the 1970’s, Ya. Sinai developed the
theory of Gibbs measures for Anosov systems, conservative or dissipative, which
D. Ruelle and R. Bowen rapidly extended to uniformly hyperbolic systems. This
certainly ranks among the greatest achievements of smooth ergodic theory.

Two other major contributions must also be mentioned in this brief survey.
One is the introduction of the notion of entropy, by Kolmogorov and Sinai,
near the end of the 1950’s. Another is the proof that the entropy is a complete
invariant for Bernoulli shifts (two Bernoulli shifts are equivalent if and only if
they have the same entropy), by D. Ornstein, some ten years later.
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By then, the theory of non-uniformly hyperbolic systems was being initiated
by V. I. Oseledets, Ya. Pesin and others. But that would take us beyond the
scope of the present book.

How this book came to be

This book grew from lecture notes we wrote for the participants of mini-courses
we taught at the Department of Mathematics of the Universidade Federal de
Pernambuco (Recife, Brazil), in January 2003, and at the meeting Novos Talen-
tos em Matemática held by Fundação Calouste Gulbenkian (Lisbon, Portugal),
in September 2004.

In both cases, most of the audience consisted of young undergraduates with
little previous contact with Measure Theory, let alone Ergodic Theory. Thus,
it was necessary to provide very friendly material that allowed such students to
follow the main ideas to be presented. Still at that stage, our text was used by
other colleagues, such as Vanderlei Horita (São José do Rio Preto, Brazil), for
teaching mini-courses to audiences with a similar profile.

As the text evolved, we have tried to preserve this elementary character of the
early chapters, especially Chapters 1 and 2, so that they can used independently
of the rest of the book, with as few prerequisites as possible.

Starting from the mini-course we gave at the 2005 Colóquio Brasileiro de
Matemática (IMPA, Rio de Janeiro), this project acquired a broader purpose.
Gradually, we evolved towards trying to present in a consistent textbook format
the material that, in our view, constitutes the core of Ergodic Theory. Inspired
by our own research experience in this area, we endeavored to assemble in a
unified presentation the ideas and facts upon which is built the remarkable
development this field experienced over the last decades.

A main concern was to try and keep the text as self-contained as possible.
Ergodic Theory is based on several other mathematical disciplines, especially
Measure Theory, Topology and Analysis. In the appendix, we have collected
the main material from those disciplines that is used throughout the text. As a
rule, proofs are omitted, since they can easily be found in many of the excellent
references we provide. However, we do assume that the reader is familiar with
the main tools of Linear Algebra, such as the canonical Jordan form.

Structure of the book

The main part of this book consists of 12 chapters, divided into sections and
subsections, and one appendix, also divided into sections and subsections. A list
of exercises is given at the end of every section, appendix included. Statements
(theorems, propositions, lemmas, corollaries, etc.), exercises and formulas are
numbered by section and chapter: for instance, (2.3.7) is the seventh formula in
the third section of the second chapter and Exercise A.5.1 is the first exercise
in the fifth section of the appendix. Hints for selected exercises are given in a
special chapter after the appendix. At the end, we provide a list of references
and an index.
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Chapters 1 through 12 are organized as follows:

• Chapters 1 through 4 constitute a kind of introductory cycle, in which
we present the basic notions and facts in Ergodic Theory - invariance,
recurrence and ergodicity - as well as some main examples. Chapter 3
introduces the fundamental results (ergodic theorems) upon which the
whole theory is built.

• Chapter 4, where we introduce the key notion of ergodicity, is a turning
point in our text. The next two chapters (Chapters 5 and 6) develop a
couple of important related topics: decomposition of invariant measures
into ergodic measures and systems admitting a unique, necessarily ergodic,
invariant measure.

• Chapters 7 through 9 deal with very diverse subjects - loss of memory, the
isomorphism problem and entropy - but they also form a coherent struc-
ture, built around the idea of considering increasingly “chaotic” systems:
mixing, Lebesgue spectrum, Kolmogorov and Bernoulli systems.

• Chapter 9 is another turning point. As we introduce the fundamental
concept of entropy, we take our time to present it to the reader from several
different viewpoints. This is naturally articulated with the content of
Chapter 10, where we develop the topological version of entropy, including
an important generalization called pressure.

• In the two final chapters, 11 and 12, we focus on a specific class of dynam-
ical systems, called expanding transformations, that allows us to exhibit
a concrete (and spectacular!) application of many of the general ideas
presented in the text. This includes Ruelle’s theorem and its applications,
which we view as a natural climax of the book.

Appendices A.1 through A.2 cover several basic topics of Measure and Inte-
gration. Appendix A.3 deals with the special case of Borel measures in metric
spaces. In Appendix A.4 we recall some basic facts from the theory of mani-
folds and smooth maps. Similarly, Appendices A.5 and A.6 cover some useful
basic material about Banach spaces and Hilbert spaces. Finally, Appendix A.7
is devoted to the spectral theorem.

Examples and applications have a key part in any mathematical discipline
and, perhaps, even more so in Ergodic Theory. For this reason, we devote special
attention to presenting concrete situations that illustrate and put in perspective
the general results. Such examples and constructions are introduced gradually,
whenever the context seems better suited to highlight their relevance. They
often return later in the text, to illustrate new fundamental concepts as we
introduce them.

The exercises at the end of each section have a threefold purpose. There are
routine exercises meant to help the reader become acquainted with the concepts
and the results presented in the text. Also, we leave as exercises certain argu-
ments and proofs that are not used in the sequel or belong to more elementary



viii

related areas, such as Topology or Measure Theory. Finally, more sophisticated
exercises test the reader’s global understanding of the theory. For the reader’s
convenience, hints for selected exercises are given in a special chapter following
the appendix.

How to use this book?

These comments are meant, primarily, for the reader who plans to use this
book to teach a course. Appendices A.1 through A.7 provide quick references
to background material. In principle, they are not meant to be presented in
class.

The content of Chapters 1 through 12 is suitable for a one-year course, or a
sequence of two one-semester courses. In either case, the reader should be able
to cover most of the material, possibly reserving some topics for seminars given
by the students. The following sections are especially suited for that:

Section 1.5, Section 2.5, Section 3.4, Section 4.4, Section 6.4, Section 7.3,
Section 7.4, Section 8.3, Section 8.4, Section 8.5, Section 9.5, Section 9.7,
Section 10.4, Section 10.5, Section 11.1, Section 11.3, Section 12.3 and Sec-

tion 12.4.

In this format, Ruelle’s theorem (Theorem 12.1) and its applications are a nat-
ural closure for the course.

In case only one semester is available, some selection of topics will be neces-
sary. The authors’ suggestion is to try and cover the following program:

Chapter 1: Sections 1.1, 1.2 and 1.3.
Chapter 2: Sections 2.1 and 2.2.
Chapter 3: Sections 3.1, 3.2 and 3.3.
Chapter 4: Sections 4.1, 4.2 and 4.3.
Chapter 5: Section 5.1 (mention Rokhlin’s theorem).
Chapter 6: Sections 6.1, 6.2 and 6.3.
Chapter 7: Sections 7.1 and 7.2.
Chapter 8: Section 8.1 and 8.2 (mention Ornstein’s theorem).
Chapter 9: Sections 9.1, 9.2, 9.3 and 9.4.
Chapter 10: Sections 10.1 and 10.2.
Chapter 11: Section 11.1.

In this format, the course could close either with the proof of the variational prin-
ciple for the entropy (Theorem 10.1) or with the construction of absolutely con-
tinuous invariant measures for expanding maps on manifolds (Theorem 11.1.2).

We have designed the text in such a way as to make it feasible for the
lecturer to focus on presenting the central ideas, leaving it to the student to
study in detail many of the proofs and complementary results. Indeed, we
devoted considerable effort to making the explanations as friendly as possible,
detailing the arguments and including plenty of cross-references to previous
related results as well to the definitions of the relevant notions.

In addition to the regular appearance of examples, we have often chosen to
approach the same notion more than once, from different points of view, if that
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seemed useful for its in-depth understanding. The special chapter containing the
hints for selected exercises is also part of that effort to encourage and facilitate
the autonomous use of this book by the student.
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Chapter 1

Recurrence

Ergodic Theory studies the behavior of dynamical systems with respect to mea-
sures that remain invariant under time evolution. Indeed, it aims to describe
those properties that are valid for the trajectories of almost all initial states
of the system, that is, all but a subset that has zero weight for the invariant
measure. Our first task, in Section 1.1, will be to explain what we mean by
‘dynamical system’ and ‘invariant measure’.

The roots of the theory date back to the first half of the 19th century. By
1838, the French mathematician Joseph Liouville observed that every energy-
preserving system in Classical (Newtonian) Mechanics admits a natural invari-
ant volume measure in the space of configurations. Just a bit later, in 1845,
the great German mathematician Carl Friedrich Gauss pointed out that the
transformation

(0, 1] → R, x 7→ fractional part of
1

x
,

which has an important role in Number Theory, admits an invariant measure
equivalent to the Lebesgue measure (in the sense that the two have the same
zero measure sets). These are two of the examples of applications of Ergodic
Theory that we discuss in Section 1.3. Many others are introduced throughout
this book.

The first important result was found by the great French mathematician
Henri Poincaré by the end of the 19th century. Poincaré was particularly in-
terested in the motion of celestial bodies, such as planets and comets, which
is described by certain differential equations originating from Newton’s Law of
Universal Gravitation. Starting from Liouville’s observation, Poincaré realized
that for almost every initial state of the system, that is, almost every value of
the initial position and velocity, the solution of the differential equation comes
back arbitrarily close to that initial state, unless it goes to infinity. Even more,
this recurrence property is not specific to (Celestial) Mechanics: it is shared by
any dynamical system that admits a finite invariant measure. That is the theme
of Section 1.2.

The same theme reappears in Section 1.5, in a more elaborate context: there,

1
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we deal with any finite number of dynamical systems commuting with each
other, and we seek simultaneous returns of the orbits of all those systems to the
neighborhood of the initial state. This kind of result has important applications
in Combinatorics and Number Theory, as we will see.

The recurrence phenomenon is also behind the constructions that we present
in Section 1.4. The basic idea is to fix some positive measure subset of the
domain and to consider the first return to that subset. This first-return trans-
formation is often easier to analyze, and it may be used to shed much light on
the behavior of the original transformation.

1.1 Invariant measures

Let (M,B, µ) be a measure space and f : M → M be a measurable transforma-
tion. We say that the measure µ is invariant under f if

µ(E) = µ(f−1(E)) for every measurable set E ⊂ M . (1.1.1)

We also say that µ is f -invariant, or that f preserves µ, to mean just the
same. Notice that the definition (1.1.1) makes sense, since the pre-image of
a measurable set under a measurable transformation is still a measurable set.
Heuristically, the definition means that the probability that a point picked “at
random” is in a given subset is equal to the probability that its image is in that
subset.

It is possible, and convenient, to extend this definition to other types of
dynamical systems, beyond transformations. We are especially interested in
flows, that is, families of transformations f t : M → M , with t ∈ R, satisfying
the following conditions:

f0 = id and f s+t = f s ◦ f t for every s, t ∈ R. (1.1.2)

In particular, each transformation f t is invertible and the inverse is f−t. Flows
arise naturally in connection with differential equations of the form

dγ

dt
(t) = X(γ(t))

in the following way: under suitable conditions on the vector field X , for each
point x in the domain M there exists exactly one solution t 7→ γx(t) of the
differential equation with γx(0) = x; then f t(x) = γx(t) defines a flow in M .

We say that a measure µ is invariant under a flow (f t)t if it is invariant
under each one of the transformations f t, that is, if

µ(E) = µ(f−t(E)) for every measurable set E ⊂ M and t ∈ R. (1.1.3)

Proposition 1.1.1. Let f : M → M be a measurable transformation and µ be
a measure on M . Then f preserves µ if and only if

∫
φdµ =

∫
φ ◦ f dµ (1.1.4)

for every µ-integrable function φ : M → R.
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Proof. Suppose that the measure µ is invariant under f . We are going to show
that the relation (1.1.4) is valid for increasingly broader classes of functions.
Let XB denote the characteristic function of any measurable subset B. Then

µ(B) =

∫
XB dµ and µ(f−1(B)) =

∫
Xf−1(B) dµ =

∫
(XB ◦ f) dµ.

Thus, the hypothesis µ(B) = µ(f−1(B)) means that (1.1.4) is valid for char-
acteristic functions. Then, by linearity of the integral, (1.1.4) is valid for all
simple functions. Next, given any integrable φ : M → R, consider a sequence
(sn)n of simple functions, converging to φ and such that |sn| ≤ |φ| for every n.
That such a sequence exists is guaranteed by Proposition A.1.33. Then, using
the dominated convergence theorem (Theorem A.2.11) twice:

∫
φdµ = lim

n

∫
sn dµ = lim

n

∫
(sn ◦ f) dµ =

∫
(φ ◦ f) dµ.

This shows that (1.1.4) holds for every integrable function if µ is invariant. The
converse is also contained in the arguments we just presented.

1.1.1 Exercises

1.1.1. Let f : M → M be a measurable transformation. Show that a Dirac
measure δp is invariant under f if and only if p is a fixed point of f . More
generally, a probability measure δp,k = k−1

(
δp+δf(p)+· · ·+δfk−1(p)

)
is invariant

under f if and only if fk(p) = p.

1.1.2. Prove the following version of Proposition 1.1.1. Let M be a metric
space, f : M → M be a measurable transformation and µ be a measure on M .
Show that f preserves µ if and only if

∫
φdµ =

∫
φ ◦ f dµ

for every bounded continuous function φ : M → R.

1.1.3. Prove that if f : M → M preserves a measure µ then, given any k ≥ 2,
the iterate fk also preserves µ. Is the converse true?

1.1.4. Suppose that f : M → M preserves a probability measure µ. Let B ⊂ M
be a measurable set satisfying any one of the following conditions:

1. µ(B \ f−1(B)) = 0;

2. µ(f−1(B) \B) = 0;

3. µ(B∆f−1(B)) = 0;

4. f(B) ⊂ B.

Show that there exists C ⊂ M such that f−1(C) = C and µ(B∆C) = 0.

1.1.5. Let f : U → U be a C1 diffeomorphism on an open set U ⊂ Rd. Show
that the Lebesgue measure m is invariant under f if and only if | detDf | ≡ 1.
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1.2 Poincaré recurrence theorem

We are going to study two versions of Poincaré’s theorem. The first one (Sec-
tion 1.2.1) is formulated in the context of (finite) measure spaces. The theo-
rem of Kac̆, that we state and prove in Section 1.2.2, provides a quantitative
complement to that statement. The second version of the recurrence theorem
(Section 1.2.3) assumes that the ambient is a topological space with certain ad-
ditional properties. We will also prove a third version of the recurrence theorem,
due to Birkhoff, whose statement is purely topological.

1.2.1 Measurable version

Our first result asserts that, given any finite invariant measure, almost every
point in any positive measure set E returns to E an infinite number of times:

Theorem 1.2.1 (Poincaré recurrence). Let f : M → M be a measurable trans-
formation and µ be a finite measure invariant under f . Let E ⊂ M be any
measurable set with µ(E) > 0. Then, for µ-almost every point x ∈ E there exist
infinitely many values of n for which fn(x) is also in E.

Proof. Denote by E0 the set of points x ∈ E that never return to E. As a
first step, let us prove that E0 has zero measure. To this end, let us observe
that the pre-images f−n(E0) are pairwise disjoint. Indeed, suppose there exist
m > n ≥ 1 such that f−m(E0) intersects f−n(E0). Let x be a point in the
intersection and y = fn(x). Then y ∈ E0 and fm−n(y) = fm(x) ∈ E0. Since
E0 ⊂ E, this means that y returns to E at least once, which contradicts the
definition of E0. This contradiction proves that the pre-images are pairwise
disjoint, as claimed.

Since µ is invariant, we also have that µ(f−n(E0)) = µ(E0) for all n ≥ 1. It
follows that

µ
( ∞⋃

n=1

f−n(E0)
)
=

∞∑

n=1

µ(f−n(E0)) =

∞∑

n=1

µ(E0).

The expression on the left-hand side is finite, since the measure µ is assumed to
be finite. On the right-hand side we have a sum of infinitely many terms that
are all equal. The only way such a sum can be finite is if the terms vanish. So,
µ(E0) = 0 as claimed.

Now let us denote by F the set of points x ∈ E that return to E a finite
number of times. It is clear from the definition that every point x ∈ F has some
iterate fk(x) in E0. In other words,

F ⊂
∞⋃

k=0

f−k(E0).

Since µ(E0) = 0 and µ is invariant, it follows that

µ(F ) ≤ µ
( ∞⋃

k=0

f−k(E0)
)
≤

∞∑

k=0

µ
(
f−k(E0)

)
=

∞∑

k=0

µ(E0) = 0.
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Thus, µ(F ) = 0 as we wanted to prove.

Theorem 1.2.1 implies an analogous result for continuous time systems: if
µ is a finite invariant measure of a flow (f t)t then for every measurable set
E ⊂ M with positive measure and for µ-almost every x ∈ E there exist times
tj → +∞ such that f tj (x) ∈ E. Indeed, if µ is invariant under the flow then, in
particular, it is invariant under the so-called time-1 map f1. So, the statement
we just made follows immediately from Theorem 1.2.1 applied to f1 (the times
tj one finds in this way are integers). Similar observations apply to the other
versions of the recurrence theorem that we present in the sequel.

On the other hand, the theorem in the next section is specific to discrete
time systems.

1.2.2 Kac̆ theorem

Let f : M → M be a measurable transformation and µ be a finite measure
invariant under f . Let E ⊂ M be any measurable set with µ(E) > 0. Consider
the first-return time function ρE : E → N ∪ {∞}, defined by

ρE(x) = min{n ≥ 1 : fn(x) ∈ E} (1.2.1)

if the set on the right-hand side is non-empty and ρE(x) = ∞ if, on the contrary,
x has no iterate in E. According to Theorem 1.2.1, the second alternative occurs
only on a set with zero measure.

The next result shows that this function is integrable and even provides the
value of the integral. For the statement we need the following notation:

E0 = {x ∈ E : fn(x) /∈ E for every n ≥ 1} and

E∗
0 = {x ∈ M : fn(x) /∈ E for every n ≥ 0}.

In other words, E0 is the set of points in E that never return to E and E∗
0 is

the set of points in M that never enter E. We have seen in Theorem 1.2.1 that
µ(E0) = 0.

Theorem 1.2.2 (Kac̆). Let f : M → M be a measurable transformation, µ
be a finite invariant measure and E ⊂ M be a positive measure set. Then the
function ρE is integrable and

∫

E

ρE dµ = µ(M)− µ(E∗
0 ).

Proof. For each n ≥ 1, define

En = {x ∈ E : f(x) /∈ E, . . . , fn−1(x) /∈ E, but fn(x) ∈ E} and

E∗
n = {x ∈ M : x /∈ E, f(x) /∈ E, . . . , fn−1(x) /∈ E, but fn(x) ∈ E}.

That is, En is the set of points of E that return to E for the first time exactly
at time n,

En = {x ∈ E : ρE(x) = n},
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and E∗
n is the set points that are not in E and enter E for the first time exactly at

time n. It is clear that these sets are measurable and, hence, ρE is a measurable
function. Moreover, the sets En, E

∗
n, n ≥ 0 constitute a partition of the ambient

space: they are pairwise disjoint and their union is the whole of M . So,

µ(M) =
∞∑

n=0

(
µ(En) + µ(E∗

n)
)
= µ(E∗

0 ) +
∞∑

n=1

(
µ(En) + µ(E∗

n)
)
. (1.2.2)

Now observe that

f−1(E∗
n) = E∗

n+1 ∪ En+1 for every n. (1.2.3)

Indeed, f(y) ∈ E∗
n means that the first iterate of f(y) that belongs to E is

fn(f(y)) = fn+1(y) and that occurs if and only if y ∈ E∗
n+1 or else y ∈ En+1.

This proves the equality (1.2.3). So, given that µ is invariant,

µ(E∗
n) = µ(f−1(E∗

n)) = µ(E∗
n+1) + µ(En+1) for every n.

Applying this relation successively, we find that

µ(E∗
n) = µ(E∗

m) +

m∑

i=n+1

µ(Ei) for every m > n. (1.2.4)

The relation (1.2.2) implies that µ(E∗
m) → 0 when m → ∞. So, taking the limit

as m → ∞ in the equality (1.2.4), we find that

µ(E∗
n) =

∞∑

i=n+1

µ(Ei). (1.2.5)

To complete the proof, replace (1.2.5) in the equality (1.2.2). In this way we
find that

µ(M)− µ(E∗
0 ) =

∞∑

n=1

( ∞∑

i=n

µ(Ei)
)
=

∞∑

n=1

nµ(En) =

∫

E

ρE dµ,

as we wanted to prove.

In some cases, for example when the system (f, µ) is ergodic (this property
will be defined and studied later, starting from Chapter 4), the set E∗

0 has zero
measure. Then the conclusion of the Kac̆ theorem means that

1

µ(E)

∫

E

ρE dµ =
µ(M)

µ(E)
(1.2.6)

for every measurable set E with positive measure. The left-hand side of this
expression is the mean return time to E. So, (1.2.6) asserts that the mean return
time is inversely proportional to the measure of E.

Remark 1.2.3. By definition, E∗
n = f−n(E) \ ∪n−1

k=0f
−k(E). So, the fact that

the sum (1.2.2) is finite implies that the measure of E∗
n converges to zero when

n → ∞. This fact will be useful later.
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1.2.3 Topological version

Now let us suppose that M is a topological space, endowed with its Borel σ-
algebra B. A point x ∈ M is recurrent for a transformation f : M → M if
there exists a sequence nj → ∞ of natural numbers such that fnj (x) → x.
Analogously, we say that x ∈ M is recurrent for a flow (f t)t if there exists a
sequence tj → +∞ of real numbers such that f tj (x) → x when j → ∞.

In the next theorem we assume that the topological space M admits a count-
able basis of open sets, that is, there exists a countable family {Uk : k ∈ N}
of open sets such that every open subset of M may be written as a union of
elements Uk of this family. This condition holds in most interesting examples.

Theorem 1.2.4 (Poincaré recurrence). Suppose that M admits a countable
basis of open sets. Let f : M → M be a measurable transformation and µ be
a finite measure on M invariant under f . Then, µ-almost every x ∈ M is
recurrent for f .

Proof. For each k, denote by Ũk the set of points x ∈ Uk that never return to
Uk. According to Theorem 1.2.1, every Ũk has zero measure. Consequently, the
countable union

Ũ =
⋃

k∈N

Ũk

also has zero measure. Hence, to prove the theorem it suffices to check that
every point x that is not in Ũ is recurrent. That is easy, as we are going to
see. Consider x ∈ M \ Ũ and let U be any neighborhood of x. By definition,
there exists some element Uk of the basis of open sets such that x ∈ Uk and
Uk ⊂ U . Since x is not in Ũ , we also have that x /∈ Ũk. In other words, there
exists n ≥ 1 such that fn(x) is in Uk. In particular, fn(x) is also in U . Since
the neighborhood U is arbitrary, this proves that x is a recurrent point.

Let us point out that the conclusions of Theorems 1.2.1 and 1.2.4 are false,
in general, if the measure µ is not finite:

Example 1.2.5. Let f : R → R be the translation by 1, that is, the transfor-
mation defined by f(x) = x + 1 for every x ∈ R. It is easy to check that f
preserves the Lebesgue measure on R (which is infinite). On the other hand, no
point x ∈ R is recurrent for f . According to the recurrence theorem, this last
observation implies that f can not admit any finite invariant measure.

However, it is possible to extend these statements for certain cases of infinite
measures: see Exercise 1.2.2.

To conclude, we present a purely topological version of Theorem 1.2.4, called
the Birkhoff recurrence theorem, that makes no reference at all to invariant
measures:

Theorem 1.2.6 (Birkhoff recurrence). If f : M → M is a continuous transfor-
mation on a compact metric space M then there exists some point x ∈ M that
is recurrent for f .
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Proof. Consider the family I of all non-empty closed sets X ⊂ M that are
invariant under f , in the sense that f(X) ⊂ X . This family is non-empty, since
M ∈ I. We claim that an element X ∈ I is minimal for the inclusion relation if
and only if the orbit of every x ∈ X is dense in X . Indeed, it is clear that if X
is a closed invariant subset then X contains the closure of the orbit of each one
of its elements. Hence, in order to be minimal, X must coincide with every one
of these closures. Conversely, for the same reason, if X coincides with the orbit
closure of each one of its points then it has no proper subset that is closed and
invariant. That is, X is minimal. This proves our claim. In particular, every
point x in a minimal set is recurrent. Therefore, to prove the theorem it suffices
to prove that there exists some minimal set.

We claim that every totally ordered set {Xα} ⊂ I admits a lower bound.
Indeed, consider X = ∩αXα. Observe that X is non-empty, since the Xα are
compact and they form a totally ordered family. It is clear that X is closed and
invariant under f and it is equally clear that X is a lower bound for the set
{Xα}. That proves our claim. Now it follows from Zorn’s lemma that I does
contain minimal elements.

Theorem 1.2.6 can also be deduced from Theorem 1.2.4 together with the
fact, which we will prove later (in Chapter 2), that every continuous transfor-
mation on a compact metric space admits some invariant probability measure.

1.2.4 Exercises

1.2.1. Show that the following statement is equivalent to Theorem 1.2.1, mean-
ing that each one of them can be obtained from the other. Let f : M → M be
a measurable transformation and µ be a finite invariant measure. Let E ⊂ M
be any measurable set with µ(E) > 0. Then there exists N ≥ 1 and a positive
measure set D ⊂ E such that fN(x) ∈ E for every x ∈ D.

1.2.2. Let f : M → M be an invertible transformation and suppose that µ is
an invariant measure, not necessarily finite. Let B ⊂ M be a set with finite
measure. Prove that, given any measurable set E ⊂ M with positive measure,
µ-almost every point x ∈ E either returns to E an infinite number of times or
has only a finite number of iterates in B.

1.2.3. Let f : M → M be an invertible transformation and suppose that µ is
a σ-finite invariant measure: there exists an increasing sequence of measurable
subsets Mk with µ(Mk) < ∞ for every k and ∪kMk = M . We say that a point
x goes to infinity if, for every k, there exists only a finite number of iterates of x
that are in Mk. Show that, given any E ⊂ M with positive measure, µ-almost
every point x ∈ E returns to E an infinite number of times or else goes to
infinity.

1.2.4. Let f : M → M be a measurable transformation, not necessarily invert-
ible, µ be an invariant probability measure and D ⊂ M be a set with positive
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measure. Prove that almost every point of D spends a positive fraction of time
in D:

lim sup
n

1

n
#{0 ≤ j ≤ n− 1 : f j(x) ∈ D} > 0

for µ-almost every x ∈ D. [Note: One may replace lim sup by lim inf in the
statement, but the proof of that fact will have to wait until Chapter 3.]

1.2.5. Let f : M → M be a measurable transformation preserving a finite
measure µ. Given any measurable set A ⊂ M with µ(A) > 0, let n1 < n2 < · · ·
be the sequence of values of n such that µ(f−n(A) ∩ A) > 0. The goal of this
exercise is to prove that VA = {n1, n2, . . . } is a syndetic, that is, that there
exists C > 0 such that ni+1 − ni ≤ C for every i.

1. Show that for any increasing sequence k1 < k2 < · · · there exist j > i ≥ 1
such that µ(A ∩ f−(kj−ki)(A)) > 0.

2. Given any infinite sequence ℓ = (lj)j of natural numbers, denote by S(ℓ)
the set of all finite sums of consecutive elements of ℓ. Show that VA

intersects S(ℓ) for every ℓ.

3. Deduce that the set VA is syndetic.

[Note: Exercise 3.1.2 provides a different proof of this fact.]

1.2.6. Show that if f : [0, 1] → [0, 1] is a measurable transformation preserving
the Lebesgue measure m then m-almost every point x ∈ [0, 1] satisfies

lim inf
n

n|fn(x)− x| ≤ 1.

[Note: Boshernitzan [Bos93] proved a much more general result, namely that
lim infn n

1/dd(fn(x), x) < ∞ for µ-almost every point and every probability
measure µ invariant under f : M → M , assuming M is a separable metric
whose d-dimensional Hausdorff measure is σ-finite.]

1.2.7. Define f : [0, 1] → [0, 1] by f(x) = (x+ω)−[x+ω], where ω represents the
golden ratio (1 +

√
5)/2. Given x ∈ [0, 1], check that n|fn(x)− x| = n2|ω − qn|

for every n, where (qn)n → ω is the sequence of rational numbers given by
qn = [x+ nω]/n. Using that the roots of the polynomial R(z) = z2 − z − 1 are
precisely ω and ω −

√
5, prove that lim infn n

2|ω − qn| ≥ 1/
√
5. [Note: This

shows that the constant 1 in Exercise 1.2.6 cannot be replaced by any constant
smaller than 1/

√
5. It is not known whether 1 is the smallest constant such that

the statement holds for every transformation on the interval.]

1.3 Examples

Next, we describe some simple examples of invariant measures for transforma-
tions and flows that help us interpret the significance of the Poincaré recurrence
theorem and also lead to some interesting conclusions.
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1.3.1 Decimal expansion

Our first example is the transformation defined on the interval [0, 1] in the
following way:

f : [0, 1] → [0, 1], f(x) = 10x− [10x].

Here and in what follows, we use [y] as the integer part of a real number y, that
is, the largest integer smaller than or equal to y. So, f is the map sending each
x ∈ [0, 1] to the fractional part of 10x. Figure 1.1 represents the graph of f .

0 2/10 4/10 6/10 8/10

1

1

E

Figure 1.1: Fractional part of 10x

We claim that the Lebesgue measure µ on the interval is invariant under the
transformation f , that is, it satisfies

µ(E) = µ(f−1(E)) for every measurable set E ⊂ M. (1.3.1)

This can be checked as follows. Let us begin by supposing that E is an interval.
Then, as illustrated in Figure 1.1, its pre-image f−1(E) consists of ten intervals,
each of which is ten times shorter than E. Hence, the Lebesgue measure of
f−1(E) is equal to the Lebesgue measure of E. This proves that (1.3.1) does
hold in the case of intervals. As a consequence, it also holds when E is a finite
union of intervals. Now, the family of all finite unions of intervals is an algebra
that generates the Borel σ-algebra of [0, 1]. Hence, to conclude the proof it is
enough to use the following general fact:

Lemma 1.3.1. Let f : M → M be a measurable transformation and µ be a
finite measure on M . Suppose that there exists some algebra A of measurable
subsets of M such that A generates the σ-algebra B of M and µ(E) = µ(f−1(E))
for every E ∈ A. Then the latter remains true for every set E ∈ B, that is, the
measure µ is invariant under f .

Proof. We start by proving that C = {E ∈ B : µ(E) = µ(f−1(E))} is a mono-
tone class. Let E1 ⊂ E2 ⊂ . . . be any increasing sequence of elements of C and
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let E = ∪∞
i=1Ei. By Theorem A.1.14 (see Exercise A.1.9),

µ(E) = lim
i
µ(Ei) and µ(f−1(E)) = lim

i
µ(f−1(Ei)).

So, using the fact that Ei ∈ C,

µ(E) = lim
i
µ(Ei) = lim

i
µ(f−1(Ei)) = µ(f−1(E)).

Hence, E ∈ C. In precisely the same way, one gets that the intersection of any
decreasing sequence of elements of C is in C. This proves that C is indeed a
monotone class.

Now it is easy to deduce the conclusion of the lemma. Indeed, since C is as-
sumed to contain A, we may use the monotone class theorem (Theorem A.1.18),
to conclude that C contains the σ-algebra B generated by A. That is precisely
what we wanted to prove.

Now we explain how one may use the fact that the Lebesgue measure is
invariant under f , together with the Poincaré recurrence theorem, to reach
some interesting conclusions. The transformation f is directly related to the
usual decimal expansion of a real number: if x is given by

x = 0.a0a1a2a3 · · ·

with ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and ai 6= 9 for infinitely many values of i, then
its image under f is given by

f(x) = 0.a1a2a3 · · · .

Thus, more generally, the n-th iterate of f can be expressed in the following
way, for every n ≥ 1:

fn(x) = 0.anan+1an+2 · · · (1.3.2)

Let E be the subset of points x ∈ [0, 1] whose decimal expansion starts with
the digit 7, that is, such that a0 = 7. According to Theorem 1.2.1, almost every
element in E has infinitely many iterates that are also in E. By the expression
(1.3.2), this means that there are infinitely many values of n such that an = 7.
So, we have shown that almost every number x whose decimal expansion starts
with 7 has infinitely many digits equal to 7.

Of course, instead of 7 we may consider any other digit. Even more, there is
a similar result (see Exercise 1.3.2) when, instead of a single digit, one considers
a block of k ≥ 1 consecutive digits. Later on, in Chapter 3, we will prove
a much stronger fact: for almost every number x ∈ [0, 1], every digit occurs
with frequency 1/10 (more generally, every block of k ≥ 1 digits occurs with
frequency 1/10k) in the decimal expansion of x.
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1.3.2 Gauss map

The system we present in this section is related to another important algorithm
in Number Theory, the continued fraction expansion, which plays a central role
in the problem of finding the best rational approximation to any real number.
Let us start with a brief presentation of this algorithm.

Given any number x0 ∈ (0, 1), let

a1 =

[
1

x0

]
and x1 =

1

x0
− a1.

Note that a1 is a natural number, x1 ∈ [0, 1) and

x0 =
1

a1 + x1
.

Supposing that x1 is different from zero, we may repeat this procedure, defining

a2 =

[
1

x1

]
and x2 =

1

x1
− a2.

Then

x1 =
1

a1 + x2
and so x0 =

1

a1 +
1

a2 + x2

.

Now we may proceed by induction: for each n ≥ 1 such that xn−1 ∈ (0, 1),
define

an =

[
1

xn−1

]
and xn =

1

xn−1
− an = G(xn−1),

and observe that

x0 =
1

a1 +
1

a2 +
1

· · ·+ 1

an + xn

. (1.3.3)

It can be shown that the sequence

zn =
1

a1 +
1

a2 +
1

· · ·+ 1

an

(1.3.4)

converges to x0 when n → ∞. This is usually expressed through the expression

x0 =
1

a1 +
1

a2 +
1

· · ·+ 1

an +
1

· · ·

, (1.3.5)
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which is called continued fraction expansion of x0.
Note that the sequence (zn)n defined by the relation (1.3.4) consists of ratio-

nal numbers. Indeed, one can show that these are the best rational approxima-
tions of the number x0, in the sense that each zn is closer to x0 than any other
rational number whose denominator is smaller than or equal to the denominator
of zn (written in irreducible form). Observe also that to obtain (1.3.5) we had
to assume that xn ∈ (0, 1) for every n ∈ N. If in the course of the process one
encounters some xn = 0, then the algorithm halts and we consider (1.3.3) to be
the continued fraction expansion of x0. It is clear that this can happen only if
x0 itself is a rational number.

This continued fraction algorithm is intimately related to a certain dynamical
system on the interval [0, 1] that we describe in the following. The Gauss map
G : [0, 1] → [0, 1] is defined by

G(x) =
1

x
−
[
1

x

]
= fractional part of 1/x,

if x ∈ (0, 1] andG(0) = 0. The graph ofG can be easily sketched (see Figure 1.2),
starting from the following observation: for every x in each interval Ik = (1/(k+
1), 1/k], the integer part of 1/x is equal to k and so G(x) = 1/x− k.

...

0 1

1

1/21/31/4

Figure 1.2: Gauss map

The continued fraction expansion of any number x0 ∈ (0, 1) can be obtained
from the Gauss map, in the following way: for each n ≥ 1, the natural number
an is determined by

Gn−1(x0) ∈ Ian ,

and the real number xn is simply the n-th iterate Gn(x0) of the point x0. This
process halts whenever we encounter some xn = 0; as we explained previously,
this can only happen if x0 is a rational number (see Exercise 1.3.4). In particular,
there exists a full Lebesgue measure subset of (0, 1) such that all the iterates of
G are defined for all the points in that subset.
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A remarkable fact that makes this transformation interesting from the point
of view of Ergodic Theory is that G admits an invariant probability measure
that, in addition, is equivalent to the Lebesgue measure on the interval. Indeed,
consider the measure defined by

µ(E) =

∫

E

c

1 + x
dx for every measurable set E ⊂ [0, 1], (1.3.6)

where c is a positive constant. The integral is well defined, since the function
in the integral is continuous on the interval [0, 1]. Moreover, this function takes
values inside the interval [c/2, c] and that implies

c

2
m(E) ≤ µ(E) ≤ cm(E) for every measurable set E ⊂ [0, 1]. (1.3.7)

In particular, µ is indeed equivalent to the Lebesgue measure m.

Proposition 1.3.2. The measure µ is invariant under G. Moreover, if we
choose c = 1/ log 2 then µ is a probability measure.

Proof. We are going to use the following lemma:

Lemma 1.3.3. Let f : [0, 1] → [0, 1] be a transformation such that there exist
pairwise disjoint open intervals I1, I2, . . . satisfying

1. the union ∪kIk has full Lebesgue measure in [0, 1] and

2. the restriction fk = f | Ik to each Ik is a diffeomorphism onto (0, 1).

Let ρ : [0, 1] → [0,∞) be an integrable function (relative to the Lebesgue measure)
satisfying

ρ(y) =
∑

x∈f−1(y)

ρ(x)

|f ′(x)| (1.3.8)

for almost every y ∈ [0, 1]. Then the measure µ = ρdx is invariant under f .

Proof. Let φ = χE be the characteristic function of an arbitrary measurable set
E ⊂ [0, 1]. Changing variables in the integral,

∫

Ik

φ(f(x))ρ(x) dx =

∫ 1

0

φ(y)ρ(f−1
k (y))|(f−1

k )′(y)| dy.

Note that (f−1
k )′(y) = 1/f ′(f−1

k (y)). So, the previous relation implies that

∫ 1

0

φ(f(x))ρ(x) dx =
∞∑

k=1

∫

Ik

φ(f(x))ρ(x) dx

=

∞∑

k=1

∫ 1

0

φ(y)
ρ(f−1

k (y))

|f ′(f−1
k (y))| dy.

(1.3.9)
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Using the monotone convergence theorem (Theorem A.2.9) and the hypothesis
(1.3.8), we see that the last expression in (1.3.9) is equal to

∫ 1

0

φ(y)
∞∑

k=1

ρ(f−1
k (y))

|f ′(f−1
k (y))| dy =

∫ 1

0

φ(y)ρ(y) dy.

In this way we find that
∫ 1

0
φ(f(x))ρ(x) dx =

∫ 1

0
φ(y)ρ(y) dy. Since µ = ρdx and

φ = XE , this means that µ(f−1(E)) = µ(E) for every measurable set E ⊂ [0, 1].
In other words, µ is invariant under f .

To conclude the proof of Proposition 1.3.2 we must show that the condition
(1.3.8) holds for ρ(x) = c/(1 + x) and f = G. Let Gk denote the restriction of
G to the interval Ik = (1/(k+1), 1/k), for k ≥ 1. Note that G−1

k (y) = 1/(y+k)
for every k. Note also that G′(x) = (1/x)′ = −1/x2 for every x 6= 0. Therefore,

∞∑

k=1

ρ(G−1
k (y))

|G′(G−1
k (y))| =

∞∑

k=1

c(y + k)

y + k + 1

( 1

y + k

)2
=

∞∑

k=1

c

(y + k)(y + k + 1)
. (1.3.10)

Observing that

1

(y + k)(y + k + 1)
=

1

y + k
− 1

y + k + 1
,

we see that the last sum in (1.3.10) has a telescopic structure: except for the
first one, all the terms occur twice, with opposite signs, and so they cancel out.
This means that the sum is equal to the first term:

∞∑

k=1

c

(y + k)(y + k + 1)
=

c

y + 1
= ρ(y).

This proves that the equality (1.3.8) is indeed satisfied and, hence, we may use
Lemma 1.3.1 to conclude that µ is invariant under f .

Finally, observing that c log(1 + x) is a primitive of the function ρ(x), we
find that

µ([0, 1]) =

∫ 1

0

c

1 + x
dx = c log 2.

So, picking c = 1/ log 2 ensures that µ is a probability measure.

This proposition allows us to use ideas from Ergodic Theory, applied to the
Gauss map, to obtain interesting conclusions in Number Theory. For example
(see Exercise 1.3.3), the natural number 7 occurs infinitely many times in the
continued fraction expansion of almost every number x0 ∈ (1/8, 1/7), that is,
one has an = 7 for infinitely many values of n ∈ N. Later on, in Chapter 3, we
will prove a much more precise statement, that contains the following conclusion:
for almost every x0 ∈ (0, 1) the number 7 occurs with frequency

1

log 2
log

64

63

in the continued fraction expansion of x0. Try to guess right away where this
number comes from!
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1.3.3 Circle rotations

Let us consider on the real line R the equivalence relation ∼ that identifies any
numbers whose difference is an integer number:

x ∼ y ⇔ x− y ∈ Z.

We represent by [x] ∈ R/Z the equivalence class of each x ∈ R and denote by
R/Z the space of all equivalence classes. This space is called the circle and
is also denoted by S1. The reason for this terminology is that R/Z can be
identified in a natural way with the unit circle {z ∈ C : |z| = 1} on the complex
plane, by means of the map

φ : R/Z → {z ∈ C : |z| = 1}, [x] 7→ e2πxi. (1.3.11)

Note that φ is well defined: since the function x 7→ e2πxi is periodic of period
1, the expression e2πxi does not depend on the choice of a representative x for
the class [x]. Moreover, φ is a bijection.

The circle R/Z inherits from the real line R the structure of an abelian group,
given by the operation

[x] + [y] = [x+ y].

Observe that this is well defined: the equivalence class on the right-hand side
does not depend on the choice of representatives x and y for the classes on the
left-hand side. Given θ ∈ R, we call rotation of angle θ the transformation

Rθ : R/Z → R/Z, [x] 7→ [x+ θ] = [x] + [θ].

Note that Rθ corresponds, via the identification (1.3.11), to the transformation
z 7→ e2πθiz on {z ∈ C : |z| = 1}. The latter is just the restriction to the unit
circle of the rotation of angle 2πθ around the origin in the complex plane. It is
clear from the definition that R0 is the identity map and Rθ ◦ Rτ = Rθ+τ for
every θ and τ . In particular, every Rθ is invertible and the inverse is R−θ.

We can also endow S1 with a natural structure of a probability space, as
follows. Let π : R → S1 be the canonical projection, that assigns to each x ∈ R

its equivalence class [x]. We say that a set E ⊂ S1 is measurable if π−1(E) is a
measurable subset of the real line. Next, let m be the Lebesgue measure on the
real line. We define the Lebesgue measure µ on the circle to be given by

µ(E) = m
(
π−1(E) ∩ [k, k + 1)

)
for every k ∈ Z.

Note that the left-hand side of this equality does not depend on k, since, by
definition, π−1(E) ∩ [k, k + 1) =

(
π−1(E) ∩ [0, 1)

)
+ k and the measure m is

invariant under translations.

It is clear from the definition that µ is a probability. Moreover, µ is invariant
under every rotation Rθ (according to Exercise 1.3.8, it is the only probability
measure with this property). This can be shown as follows. By definition,
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π−1(R−1
θ (E)) = π−1(E) − θ for every measurable set E ⊂ S1. Let k be the

integer part of θ. Since m is invariant under all the translations,

m
(
(π−1(E)− θ) ∩ [0, 1)

)
= m

(
π−1(E) ∩ [θ, θ + 1)

)

= m
(
π−1(E) ∩ [θ, k + 1)

)
+m

(
π−1(E) ∩ [k + 1, θ + 1)

)
.

Note that π−1(E)∩ [k+1, θ+1) =
(
π−1(E)∩ [k, θ)

)
+1. So, the expression on

the right-hand side of the previous equality may be written as

m
(
π−1(E) ∩ [θ, k + 1)

)
+m

(
π−1(E) ∩ [k, θ)

)
= m

(
π−1(E) ∩ [k, k + 1)

)
.

Combining these two relations we find that

µ
(
R−1

θ (E)
)
= m

(
π−1(R−1

θ (E) ∩ [0, 1))
)
= m

(
π−1(E) ∩ [k, k + 1)

)
= µ(E)

for every measurable set E ⊂ S1.
The rotations Rθ : S1 → S1 exhibit two very different types of dynamical

behavior, depending on the value of θ. If θ is rational, say θ = p/q with p ∈ Z

and q ∈ N, then

Rq
θ([x]) = [x+ qθ] = [x] for every [x].

Consequently, in this case every point x ∈ S1 is periodic with period q. In the
opposite case we have:

Proposition 1.3.4. If θ is irrational then O([x]) = {Rn
θ ([x]) : n ∈ N} is a

dense subset of the circle R/Z for every [x].

Proof. We claim that the set D = {m + nθ : m ∈ Z, n ∈ N} is dense in R.
Indeed, consider any number r ∈ R. Given any ε > 0, we may choose p ∈ Z and
q ∈ N such that |qθ − p| < ε. Note that the number a = qθ − p is necessarily
different from zero, since θ is irrational. Let us suppose that a is positive (the
case when a is negative is analogous). Subdividing the real line into intervals
of length a, we see that there exists an integer l such that 0 ≤ r − la < a. This
implies that

|r − (lqθ − lp)| = |r − la| < a < ε.

As m = lq and n = −lq are integers and ε is arbitrary, this proves that r is in
the closure of the set D, for every r ∈ R.

Now, given y ∈ R and ε > 0, we may take r = y− x and, using the previous
paragraph, we may find m,n ∈ Z such that |m + nθ − (y − x)| < ε. This is
equivalent to saying that the distance from [y] to the iterate Rn

θ ([x]) is less than
ε. Since x, y and ε are arbitrary, this shows that every orbit O([x]) is dense in
S1.

In particular, it follows that every point on the circle is recurrent for Rθ (this
is also true when θ is rational). The previous proposition also leads to some
interesting conclusions in the study of the invariant measures of Rθ. Among
other things, we will learn later (in Chapter 6) that if θ is irrational then the
Lebesgue measure is the unique probability measure that is preserved by Rθ.
Related to this, we will see that the orbits of Rθ are uniformly distributed
subsets of S1.
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1.3.4 Rotations on tori

The notions we just presented can be generalized to arbitrary dimension, as we
are going to explain. For each d ≥ 1, consider the equivalence relation on Rd

that identifies any two vectors whose difference is an integer vector:

(x1, . . . , xd) ∼ (y1, . . . , yd) ⇔ (x1 − y1, . . . , xd − yd) ∈ Z
d.

We denote by [x] or [(x1, . . . , xd)] the equivalence class of any x = (x1, . . . , xd).
Then we call the d-dimensional torus or, simply, the d-torus the space

T
d = R

d/Zd = (R/Z)d

formed by those equivalence classes. Let m be the Lebesgue measure on Rd.
The operation

[(x1, . . . , xd)] + [(y1, . . . , yd)] = [(x1 + y1, . . . , xd + yd)]

is well defined and turns Td into an abelian group. Given θ = (θ1, . . . , θd) ∈ Rd,
we call

Rθ : Td → T
d, Rθ([x]) = [x] + [θ]

the rotation by θ (sometimes, Rθ is also called the translation by θ). The map

φ : [0, 1]d → T
d, (x1, . . . , xd) 7→ [(x1, . . . , xd)]

is surjective and allows us to define a Lebesgue probability measure µ on the
d-torus, through the following formula:

µ(B) = m
(
φ−1(B)

)
for every B ⊂ T

d such that φ−1(B) is measurable.

This measure µ is invariant under Rθ for every θ.
We say that a vector θ = (θ1, . . . , θd) ∈ R

d is rationally independent if, for
any integer numbers n0, n1, . . . , nd, we have that

n0 + n1θ1 + · · ·+ ndθd = 0 ⇒ n0 = n1 = · · · = nd = 0.

Otherwise, we say that θ is rationally dependent. One can show that θ is
rationally independent if and only if the rotation Rθ is minimal, meaning that
the orbit O([x]) = {Rn

θ ([x]) : n ∈ N} of every [x] ∈ Td is a dense subset of Td.
In this regard, see Exercises 1.3.9–1.3.10 and also Corollary 4.2.3.

1.3.5 Conservative maps

Let M be an open subset of the Euclidian space Rd and f : M → M be a
C1 diffeomorphism. This means that f is a bijection, both f and its inverse
f−1 are differentiable and the two derivatives are continuous. Denote by vol
the restriction to M of the Lebesgue measure (volume measure) on Rd. The
formula of change of variables asserts that, for any measurable set B ⊂ M ,

vol(f(B)) =

∫

B

| detDf | dx. (1.3.12)

One can easily deduce the following consequence:
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Lemma 1.3.5. A C1 diffeomorphism f : M → M preserves the volume measure
vol if and only if the absolute value | detDf | of its Jacobian is equal to 1 at every
point.

Proof. Suppose that the absolute value | detDf | of its Jacobian is equal to 1 at
every point. Let E be any measurable set E and B = f−1(E). The formula
(1.3.12) yields

vol(E) =

∫

B

1 dx = vol(B) = vol(f−1(E)).

This means that f preserves the measure vol and so we proved the “if” part of
the statement.

To prove the “only if,” suppose that | detDf(x)| > 1 for some point x ∈ M .
Then, since the Jacobian is continuous, there exists a neighborhood U of x and
some number σ > 1 such that

| detDf(y)| ≥ σ for all y ∈ U.

Then, applying (1.3.12) to B = U , we get that

vol(f(U)) ≥
∫

U

σ dx ≥ σ vol(U).

Denote E = f(U). Since vol(U) > 0, the previous inequality implies that
vol(E) > vol(f−1(E)). Hence, f does not leave vol invariant. In precisely the
same way, one shows that if | detDf(x)| < 1 for some point x ∈ M then f does
not leave the measure vol invariant.

1.3.6 Conservative flows

Now we discuss the invariance of the volume measure in the setting of flows f t :
M → M , t ∈ R. As before, take M to be an open subset of the Euclidean space
Rd. Let us suppose that the flow is C1, in the sense that the map (t, x) 7→ f t(x)
is differentiable and all the derivatives are continuous. Then, in particular, every
flow transformation f t : M → M is a C1 diffeomorphism: the inverse is f−t.
Since f0 is the identity map and the Jacobian varies continuously, we have that
detDf t(x) > 0 at every point.

Applying Lemma 1.3.5 in this context, we find that the flow preserves the
volume measure if and only if

detDf t(x) = 1 for every x ∈ U and every t ∈ R. (1.3.13)

However, this is not very useful in practice because most of the time we do not
have an explicit expression for f t and, hence, it is not clear how to check the
condition (1.3.13). Fortunately, there is a reasonably explicit expression for the
Jacobian of the flow that can be used in some interesting situations. Let us
explain this.
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Let us suppose that the flow f t : M → M corresponds to the trajectories of
a C1 vector field F : M → Rd. In other words, each t 7→ f t(x) is the solution
of the differential equation

dy

dt
= F (y) (1.3.14)

that has x as the initial condition (when dealing with differential equations we
always assume that their solutions are defined for all times).

The Liouville formula relates the Jacobian of f t to the divergence divF of
the vector field:

detDf t(x) = exp
( ∫ t

0

divF (f s(x)) ds
)

for every x and every t.

Recall that the divergence of a vector field F is the trace of its Jacobian matrix,
that is

divF =
∂F1

∂x1
+ · · ·+ ∂Fd

∂xd
. (1.3.15)

Combining the Liouville formula with (1.3.13), we obtain:

Lemma 1.3.6 (Liouville). The flow (f t)t associated with a C1 vector field F
preserves the volume measure if and only if the divergence of F is identically
zero.

We can extend this discussion to the case when M is any Riemannian man-
ifold of dimension d ≥ 2. The reader who is unfamiliar with this notion may
wish to check Appendix A.4.5 before proceeding.

For simplicity, let us suppose that the manifold is orientable. Then the
volume measure on M is given by a differentiable d-form ω, called the volume
form (this remains true in the non-orientable case, except that the form ω is
defined up to sign only). What this means is that the volume of any measurable
set B contained in the domain of local coordinates (x1, . . . , xd) is given by

vol(B) =

∫

B

ρ(x1, . . . , xd) dx1 · · · dxd,

where ω = ρdx1 · · · dxd is the expression of the volume form in those local
coordinates. Let F be a C1 vector field on M . Writing

F (x1, . . . , xd) = (F1(x1, . . . , xd), . . . , Fd(x1, . . . , xd)),

we may express the divergence as

divF =
∂(ρF )

∂x1
+ · · ·+ ∂(ρF )

∂xd

(it can be shown that the right-hand side does not depend on the choice of the
local coordinates). A proof of the following generalization of Lemma 1.3.6 can
be found in Sternberg [Ste58]:
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Theorem 1.3.7 (Liouville). The flow (f t)t associated with a C1 vector field
F on a Riemannian manifold preserves the volume measure on the manifold if
and only if divF = 0 at every point.

Then, it follows from the recurrence theorem for flows that, assuming that
the manifold has finite volume (for example, if M is compact) and divF = 0,
then almost every point is recurrent for the flow of F .

1.3.7 Exercises

1.3.1. Use Lemma 1.3.3 to give another proof of the fact that the decimal
expansion transformation f(x) = 10x − [10x] preserves the Lebesgue measure
on the interval.

1.3.2. Prove that, for any number x ∈ [0, 1] whose decimal expansion contains
the block 617 (for instance, x = 0.3375617264 · · · ), that block occurs infinitely
many times in the decimal expansion of x. Even more, the block 617 occurs
infinitely many times in the decimal expansion of almost every x ∈ [0, 1].

1.3.3. Prove that the number 617 appears infinitely many times in the continued
fraction expression of almost every number x0 ∈ (1/618, 1/617), that is, one has
an = 617 for infinitely many values of n ∈ N.

1.3.4. Let G be the Gauss map. Show that a number x ∈ (0, 1) is rational if
and only if there exists n ≥ 1 such that Gn(x) = 0.

1.3.5. Consider the sequence 1, 2, 4, 8, . . . , an = 2n, . . . of all the powers of 2.
Prove that, given any digit i ∈ {1, . . . , 9}, there exist infinitely many values of
n for which an starts with that digit.

1.3.6. Prove the following extension of Lemma 1.3.3. Let f : M → M be a
C1 local diffeomorphism on a compact Riemannian manifold M . Let vol be the
volume measure on M and ρ : M → [0,∞) be a continuous function. Then f
preserves the measure µ = ρ vol if and only if

∑

x∈f−1(y)

ρ(x)

| detDf(x)| = ρ(y) for every y ∈ M.

When f is invertible this means that f preserves the measure µ if and only if
ρ(x) = ρ(f(x))| detDf(x)| for every x ∈ M .

1.3.7. Check that if A is a d×d matrix with integer coefficients and determinant
different from zero then the transformation fA : Td → Td defined on the torus
by fA([x]) = [A(x)] preserves the Lebesgue measure on Td.

1.3.8. Show that the Lebesgue measure on S1 is the only probability measure
invariant under all the rotations of S1, even if we restrict to rational rotations.
[Note: We will see in Chapter 6 that, for any irrational θ, the Lebesgue measure
is the unique probability measure invariant under Rθ.]
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1.3.9. Suppose that θ = (θ1, . . . , θd) is rationally dependent. Show that there
exists a continuous non-constant function ϕ : Td → C such that ϕ ◦ Rθ = ϕ.
Conclude that there exist non-empty open subsets U and V of T

d that are
disjoint and invariant under Rθ, in the sense that Rθ(U) = U and Rθ(V ) = V .
Deduce that no orbit O([x]) of the rotation Rθ is dense in Td.

1.3.10. Suppose that θ = (θ1, . . . , θd) is rationally independent. Prove that if
V is a non-empty open subset of Td invariant under Rθ, then V is dense in
Td. Conclude that ∪n∈ZR

n
θ (U) is dense in the torus, for every non-empty open

subset U . Deduce that there exists [x] whose orbit O([x]) under the rotation
Rθ is dense in Td. Conclude that O([y]) is dense in Td for every [y].

1.3.11. Let U be an open subset of R2d and H : U → R be a C2 function. De-
note by (p1, . . . , pd, q1, . . . , qd) the coordinate variables in R2d. The Hamiltonian
vector field associated with H is defined by

F (p1 , . . . , pd , q1 , . . . , qd) =

(
∂H

∂q1
, . . . ,

∂H

∂qd
,−∂H

∂p1
, . . . , −∂H

∂pd

)
.

Check that the flow defined by F preserves the volume measure.

1.3.12. Let f : U → U be a C1 diffeomorphism preserving the volume measure
on an open subset U of Rd. Let H : U → R be a first integral of f , that is, a
C1 function such that H ◦ f = H . Let c be a regular value of H and ds be the
volume measure defined on the hypersurface Hc = H−1(c) by the restriction of
the Riemannian metric of Rd. Prove that the restriction of f to the hypersurface
Hc preserves the measure ds/‖ gradH‖.

1.4 Induction

In this section we describe a general method, based on the Poincaré recurrence
theorem, to construct from a given system (f, µ) other systems, that we refer to
as systems induced by (f, µ). The reason this is interesting is the following. On
the one hand, it is often the case that an induced system is easier to analyze,
because it has better global properties than the original one. On the other
hand, interesting conclusions about the original system can often be obtained
from analyzing the induced one. Examples will appear in a while.

1.4.1 First return map

Let f : M → M be a measurable transformation and µ be an invariant probabil-
ity measure. Let E ⊂ M be a measurable set with µ(E) > 0 and ρ(x) = ρE(x)
be the first-return time of x to E, as given by (1.2.1). The first-return map to
the domain E is the map g given by

g(x) = fρ(x)(x)
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whenever ρ(x) is finite. The Poincaré recurrence theorem ensures that this is
the case for µ-almost every x ∈ E and so g is defined on a full measure subset
of E. We also denote by µE the restriction of µ to the measurable subsets E.

Proposition 1.4.1. The measure µE is invariant under the map g : E → E.

Proof. For every k ≥ 1, denote by Ek the subset of points x ∈ E such that
ρ(x) = k. By definition, g(x) = fk(x) for every x ∈ Ek. Let B be any
measurable subset of E. Then

µ(g−1(B)) =

∞∑

k=1

µ(f−k(B) ∩ Ek). (1.4.1)

On the other hand, since µ is f -invariant,

µ
(
B
)
= µ

(
f−1(B)

)
= µ

(
f−1(B) ∩ E1

)
+ µ

(
f−1(B) \ E

)
. (1.4.2)

Analogously,

µ
(
f−1(B) \ E

)
= µ

(
f−2(B) \ f−1(E)

)

= µ
(
f−2(B) ∩ E2

)
+ µ

(
f−2(B) \ (E ∪ f−1(E))

)
.

Replacing this expression in (1.4.2), we find that

µ
(
B
)
=

2∑

k=1

µ
(
f−k(B) ∩ Ek

)
+ µ

(
f−2(B) \

1⋃

k=0

f−k(E)
)
.

Repeating this argument successively, we obtain

µ
(
B
)
=

n∑

k=1

µ
(
f−k(B) ∩Ek

)
+ µ

(
f−n(B) \

n−1⋃

k=0

f−k(E)
)
. (1.4.3)

Now let us go to the limit when n → ∞. It is clear that the last term is
bounded above by µ

(
f−n(E) \ ⋃n−1

k=0 f
−k(E)

)
. So, using Remark 1.2.3, that

term converges to zero when n → ∞. In this way we conclude that

µ
(
B
)
=

∞∑

k=1

µ
(
f−k(B) ∩ Ek

)
.

Together with (1.4.1), this shows that µ(g−1(B)) = µ(B) for every measurable
subset B of E. That is to say, the measure µE is invariant under g.

Example 1.4.2. Consider the transformation f : [0,∞) → [0,∞) defined by

f(0) = 0 and f(x) = 1/x if x ∈ (0, 1) and f(x) = x− 1 if x ≥ 1.

Let E = [0, 1]. The time ρ of first return to E is given by

ρ(0) = 1 and ρ(x) = k + 1 if x ∈ (1/(k + 1), 1/k] with k ≥ 1.
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So, the first-return map to E is given by

g(0) = 0 and g(x) = 1/x− k if x ∈ (1/(k + 1), 1/k] with k ≥ 1.

In other words, g is the Gauss map. We saw in Section 1.3.2 that the Gauss map
admits an invariant probability measure equivalent to the Lebesgue measure on
[0, 1). From this, one can draw some interesting conclusions about the original
map f . For instance, using the ideas in the next section one finds that f admits
an (infinite) invariant measure equivalent to the Lebesgue measure on [0,∞).

1.4.2 Induced transformations

In an opposite direction, given any measure ν invariant under g : E → E, we
may construct a certain related measure νρ that is invariant under f : M → M .
For this, g does not even have to be a first-return map: the construction that
we present below is valid for any map induced from f , that is, any map of the
form

g : E → E, g(x) = fρ(x)(x), (1.4.4)

where ρ : E → N is a measurable function (it suffices that ρ is defined on some
full measure subset of E). As before, we denote by Ek the subset of points
x ∈ E such that ρ(x) = k. Then we define

νρ(B) =

∞∑

n=0

∑

k>n

ν(f−n(B) ∩ Ek), (1.4.5)

for every measurable set B ⊂ M .

Proposition 1.4.3. The measure νρ defined in (1.4.5) is invariant under f and
satisfies νρ(M) =

∫
E ρ dν. In particular, νρ is finite if and only if the function

ρ is integrable with respect to ν.

Proof. First, let us prove that νρ is invariant. By the definition (1.4.5),

νρ
(
f−1(B)

)
=

∞∑

n=0

∑

k>n

ν
(
f−(n+1)(B) ∩Ek

)
=

∞∑

n=1

∑

k≥n

ν
(
f−n(B) ∩ Ek

)
.

We may rewrite this expression as follows:

νρ
(
f−1(B)

)
=

∞∑

n=1

∑

k>n

ν
(
f−n(B) ∩Ek

)
+

∞∑

k=1

ν
(
f−k(B) ∩Ek

)
. (1.4.6)

Concerning the last term, observe that

∞∑

k=1

ν
(
f−k(B) ∩ Ek

)
= ν

(
g−1(B)

)
= ν

(
B
)
=

∞∑

k=1

ν
(
B ∩ Ek

)
,
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since ν is invariant under g. Replacing this in (1.4.6), we see that

νρ
(
f−1(B)

)
=

∞∑

n=1

∑

k>n

ν
(
f−n(B) ∩ Ek

)
+

∞∑

k=1

ν
(
B ∩ Ek

)
= νρ

(
B
)

for every measurable set B ⊂ E. The second claim is a direct consequence of
the definitions:

νρ(M) =

∞∑

n=0

∑

k>n

ν(f−n(M) ∩ Ek) =

∞∑

n=0

∑

k>n

ν(Ek) =

∞∑

k=1

kν(Ek) =

∫

E

ρ dν.

This completes the proof.

It is interesting to analyze how this construction relates to the one in the
previous section when g is a first-return map of f and the measure ν is the
restriction µ | E of some invariant measure µ of f :

Corollary 1.4.4. If g is the first-return map of f to a measurable subset E and
ν = µ | E, then

1. νρ(B) = ν(B) = µ(B) for every measurable set B ⊂ E.

2. νρ(B) ≤ µ(B) for every measurable set B ⊂ M .

Proof. By definition, f−n(E) ∩ Ek = ∅ for every 0 < n < k. This implies that,
given any measurable set B ⊂ E, all the terms with n > 0 in the definition
(1.4.5) are zero. Hence, νρ(B) =

∑
k>0 ν(B∩Ek) = ν(B) as claimed in the first

part of the statement.
Consider any measurable set B ⊂ M . Then,

µ
(
B
)
= µ

(
B ∩ E

)
+ µ

(
B ∩Ec

)
= ν(B ∩ E) + µ

(
B ∩ Ec

)

=
∞∑

k=1

ν
(
B ∩ Ek

)
+ µ

(
B ∩ Ec

)
.

(1.4.7)

Since µ is invariant, µ(B∩Ec) = µ
(
f−1(B)∩f−1(Ec)

)
. Then, as in the previous

equality,

µ
(
B ∩ Ec

)
= µ

(
f−1(B) ∩E ∩ f−1(Ec)

)
+ µ

(
f−1(B) ∩ Ec ∩ f−1(Ec)

)

=

∞∑

k=2

ν
(
f−1(B) ∩Ek

)
+ µ

(
f−1(B) ∩ Ec ∩ f−1(Ec)

)
.

Replacing this in (1.4.7), we find that

µ
(
B
)
=

1∑

n=0

∑

k>n

ν
(
f−n(B) ∩ Ek

)
+ µ

(
f−1(B) ∩

1⋂

n=0

f−n(Ec)
)
.
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Repeating this argument successively, we get that

µ
(
B
)
=

N∑

n=0

∑

k>n

ν
(
f−n(B) ∩ Ek

)
+ µ

(
f−N (B) ∩

N⋂

k=0

f−n(Ec)
)

≥
N∑

n=0

∑

k>n

ν
(
f−n(B) ∩ Ek

)
for every N ≥ 1.

Taking the limit as N → ∞, we conclude that µ(B) ≥ νρ(B).

We also have from the Kac̆ theorem (Theorem 1.2.2) that

νρ(M) =

∫

E

ρ dν =

∫

E

ρ dµ = µ(M)− µ(E∗
0 ).

So, it follows from Corollary 1.4.4 that νρ = µ if and only if µ(E∗
0 ) = 0.

Example 1.4.5 (Manneville-Pomeau). Given d > 0, let a be the only number
in (0, 1) such that a(1 + ad) = 1. Then define f : [0, 1] → [0, 1] as follows:

f(x) = x(1 + xd) if x ∈ [0, a] and f(x) =
x− a

1− a
if x ∈ (a, 1].

The graph of f is depicted on the left-hand side of Figure 1.3. Observe that
|f ′(x)| ≥ 1 at every point, and the inequality is strict at every x > 0. Let (an)n
be the sequence on the interval [0, a] defined by a1 = a and f(an+1) = an for
n ≥ 1. We also write a0 = 1. Some properties of this sequence are studied in
Exercise 1.4.2.

...

00 1

1

1

1

a1

a1a1

f g

a2

a2a2 a3a3

Figure 1.3: Construction of an induced transformation

Now consider the map g(x) = fρ(x)(x), where

ρ : [0, 1] → N, ρ(x) = 1 +min{n ≥ 0 : fn(x) ∈ (a, 1]}.
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In other words, ρ(x) = k and so g(x) = fk(x) for every x ∈ (ak, ak−1]. The
graph of g is represented on the right-hand side of Figure 1.3. Note that the
restriction to each interval (ak, ak−1] is a bijection onto (0, 1]. A key point is
that the induced map g is expanding:

|g′(x)| ≥ 1

1− a
> 1 for every x ∈ [0, 1].

Using the ideas that will be developed in Chapter 11, one can show that g
admits a unique invariant probability measure ν equivalent to the Lebesgue
measure on (0, 1]. In fact, the density (Radon-Nikodym derivative) of ν with
respect to the Lebesgue measure is bounded from zero and infinity. Then, the
f -invariant measure νρ in (1.4.5) is equivalent to Lebesgue measure. It follows
(see Exercise 1.4.2) that this measure is finite if and only if d ∈ (0, 1).

1.4.3 Kakutani-Rokhlin towers

It is possible, and useful, to generalize the previous constructions even further,
by omitting the initial transformation f : M → M altogether. More precisely,
given a transformation g : E → E, a measure ν on E invariant under g and
a measurable function ρ : E → N, we are going to construct a transformation
f : M → M and a measure νρ invariant under f such that E can be identified
with a subset of M , g is the first-return map of f to E, with first-return time
given by ρ, and the restriction of νρ to E coincides with ν.

This transformation f is called the Kakutani-Rokhlin tower of g with time
ρ. The measure νρ is finite if and only if ρ is integrable with respect to ν. They
are constructed as follows. Begin by defining

M = {(x, n) : x ∈ E and 0 ≤ n < ρ(x)}

=

∞⋃

k=1

k−1⋃

n=0

Ek × {n}.

In other words, M consists of k copies of each set Ek = {x ∈ E : ρ(x) = k},
“piled up” on top of each other. We call each ∪k>nEk × {n} the n-th floor of
M . See Figure 1.4.

Next, define f : M → M as follows:

f(x, n) =

{
(x, n+ 1) if n < ρ(x)− 1
(g(x), 0) if n = ρ(x)− 1

.

In other words, the dynamics “lifts” each point (x, n) one floor at a time, until
reaching the floor ρ(x) − 1; at that stage, the point “falls” directly to (g(x), 0)
on the ground (zero-th) floor. The ground floor E × {0} is naturally identified
with the set E. Besides, the first-return map to E × {0} corresponds precisely
to g : E → E.

Finally, the measure νρ is defined by

νρ | (Ek × {n}) = ν | Ek
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...
...

E1 E2 E3 Ek

ground floor

1st floor

2nd floor

(k − 1)-st floor

k-th floor

g

Figure 1.4: Kakutani-Rokhlin tower of g with time ρ

for every 0 ≤ n < k. It is clear that the restriction of νρ to the ground floor
coincides with ν. Moreover, νρ is invariant under f and

νρ(M) =
∞∑

k=1

kν(Ek) =

∫

E

ρ dν.

This completes the construction of the Kakutani-Rokhlin tower.

1.4.4 Exercises

1.4.1. Let f : S1 → S1 be the transformation f(x) = 2x mod Z. Show that
the function τ(x) = min{k ≥ 0 : fk(x) ∈ (1/2, 1)} is integrable with respect
to the Lebesgue measure. State and prove a corresponding result for any C1

transformation g : S1 → S1 that is close to f , in the sense that supx{‖g(x) −
f(x)‖, ‖g′(x) − f ′(x)‖} is sufficiently small.

1.4.2. Consider the measure νρ and the sequence (an)n defined in Exam-
ple 1.4.5. Check that νρ is always σ-finite. Show that (an)n is decreasing
and converges to zero. Moreover, there exist c1, c2, c3, c4 > 0 such that

c1 ≤ ajj
1/d ≤ c2 and c3 ≤

(
aj − aj+1

)
j1+1/d ≤ c4 for every j. (1.4.8)

Deduce that the g-invariant measure νρ is finite if and only if d ∈ (0, 1).

1.4.3. Let σ : Σ → Σ be the map defined on the space Σ = {1, . . . , d}Z by
σ((xn)n) = (xn+1)n. Describe the first-return map g to the subset {(xn)n ∈ Σ :
x0 = 1}.

1.4.4. [Kakutani-Rokhlin lemma] Let f : M → M be an invertible transforma-
tion and µ be an invariant probability measure without atoms and such that
µ(∪n∈Nf

n(E)) = 1 for every E ⊂ M with µ(E) > 0. Show that for every
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n ≥ 1 and ε > 0 there exists a measurable set B ⊂ M such that the iterates
B, f(B), . . . , fn−1(B) are pairwise disjoint and the complement of their union
has measure less than ε. In particular, this holds for every invertible system
that is aperiodic, that is, whose periodic points form a zero measure set.

1.4.5. Let f : M → M be a transformation and (Hj)j≥1 be a collection of
subsets of M such that if x ∈ Hn then f j(x) ∈ Hn−j for every 0 ≤ j < n. Let
H be the set of points that belong to Hj for infinitely many values of j, that
is, H = ∩∞

k=1 ∪∞
j=k Hj . For y ∈ H , define τ(y) = min{j ≥ 1 : y ∈ Hj} and

T (y) = f τ(y)(y). Observe that T maps H inside H . Moreover, show that

lim sup
n

1

n
#{1 ≤ j ≤ n : x ∈ Hj} ≥ θ > 0 ⇒ lim inf

k

1

k

k−1∑

i=0

τ(T i(x)) ≤ 1

θ
.

1.4.6. Let f : M → M be a transformation preserving a measure µ. Let
(Hj)j≥1 and τ : M → N be as in Exercise 1.4.5. Consider the sequence of
functions (τn)n defined by τ1(x) = τ(x) and τn(x) = τ(f τn−1(x)(x)) + τn−1(x)
for n > 1. Suppose that

lim sup
n

1

n
#{1 ≤ j ≤ n : x ∈ Hj} ≥ θ > 0 for µ-almost every x ∈ M .

Show that τn+1(x)/τn(x) → 1 for µ-almost every x ∈ M . [Note: Sequences
with this property are called non-lacunary.]

1.5 Multiple recurrence theorems

Now we consider finite families of commuting maps fi : M → M , i = 1, . . . , q,
that is, such that

fi ◦ fj = fj ◦ fi for every i, j ∈ {1, . . . , q}.

Our goal is to explain that the results in Section 1.2 extend to this setting: we
find points that are simultaneously recurrent for these transformations.

The first result in this direction generalizes the Birkhoff recurrence theorem
(Theorem 1.2.6):

Theorem 1.5.1 (Birkhoff multiple recurrence). Let M be a compact metric
space and f1, . . . , fq : M → M be continuous commuting maps. Then there
exists a ∈ M and a sequence (nk)k → ∞ such that

lim
k

fnk
i (a) = a for every i = 1, . . . , q. (1.5.1)

The key point here is that the sequence (nk)k does not depend on i: we say
that the point a is simultaneously recurrent for all the maps fi, i = 1, . . . , q. A
proof of Theorem 1.5.1 is given in Section 1.5.1. Next, we discuss the following
generalization of the Poincaré recurrence theorem (Theorem 1.2.1):
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Theorem 1.5.2 (Poincaré multiple recurrence). Let (M,B, µ) be a probability
space and fi : M → M , i = 1, . . . , q be measurable commuting maps that pre-
serve the measure µ. Then, given any set E ⊂ M with positive measure, there
exists n ≥ 1 such that

µ
(
E ∩ f−n

1 (E) ∩ · · · ∩ f−n
q (E)

)
> 0.

In other words, for a positive measure subset of points x ∈ E, their orbits
under all the maps fi, i = 1, . . . , q return to E simultaneously at time n (we say
that n is a simultaneous return of x to E): once more, the crucial point with
the statement is that n does not depend on i.

The proof of Theorem 1.5.2 will not be presented here; we refer the interested
reader to the book of Furstenberg [Fur77]. We are just going to mention some
direct consequences and, in Chapter 2, we will use this theorem to prove the
Szemerédi theorem on the existence of arithmetic progressions inside “dense”
subsets of integer numbers.

To begin with, observe that the set of simultaneous returns is always infinite.
Indeed, let n be as in the statement of Theorem 1.5.2. Applying the theorem
to the set F = E ∩ f−n

1 (E) ∩ · · · ∩ f−n
q (E), we find m ≥ 1 such that

µ
(
E ∩ f

−(m+n)
1 (E) ∩ · · · ∩ f−(m+n)

q (E)
)

≥ µ
(
F ∩ f−m

1 (F ) ∩ · · · ∩ f−m
q (F )

)
> 0.

Thus, m+n is also a simultaneous return to E, for all the points in some subset
of E with positive measure.

It follows that, for any set E ⊂ M with µ(E) > 0 and for µ-almost every
point x ∈ E, there exist infinitely many simultaneous returns of x to E. Indeed,
suppose there is a positive measure set F ⊂ E such that every point of F has a
finite number of simultaneous returns to E. On the one hand, up to replacing
F by a suitable subset, we may suppose that the simultaneous returns to E of
all the points of F are bounded by some k ≥ 1. On the other hand, using the
previous paragraph, there exists n > k such that G = F ∩f−n

1 (F )∩· · ·∩f−n
q (F )

has positive measure. Now, it is clear from the definition that n is a simultaneous
return to E of every x ∈ G. This contradicts the choice of F , thus proving our
claim.

Another direct corollary is the Birkhoff multiple recurrence theorem (The-
orem 1.5.1). Indeed, if fi : M → M , i = 1, . . . , q are continuous commuting
transformations on a compact metric space then there exists some probability
measure µ that is invariant under all these transformations (this fact will be
checked in the next chapter, see Exercise 2.2.2). From this point on, we may
argue exactly as in the proof of Theorem 1.2.4. More precisely, consider any
countable basis {Uk} for the topology of M . According to the previous para-
graph, for every k there exists a set Ũk ⊂ Uk with zero measure such that every
point in Uk\Ũk has infinitely many simultaneous returns to Uk. Then Ũ = ∪kŨk

has measure zero and every point in its complement is simultaneously recurrent,
in the sense of Theorem 1.5.1.
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1.5.1 Birkhoff multiple recurrence theorem

In this section we prove Theorem 1.5.1 in the case when the transformations
f1, . . . , fq are homeomorphisms of M , which suffices for all our purposes in the
present chapter. The general case may be deduced easily (see Exercise 2.4.7)
using the concept of natural extension, which we will present in the next chapter.

The theorem may be reformulated in the following useful way. Consider the
transformation F : M q → M q defined on the product space M q = M × · · ·×M
by F (x1, . . . , xq) = (f1(x1), . . . , fq(xq)). Denote by ∆q the diagonal of M q,
that is, the subset of points of the form x̃ = (x, . . . , x). Theorem 1.5.1 claims,
precisely, that there exist ã ∈ ∆q and (nk)k → ∞ such that

lim
k

Fnk(ã) = ã. (1.5.2)

The proof of Theorem 1.5.1 is by induction on the number q of transforma-
tions. The case q = 1 is contained in Theorem 1.2.6. Consider any q ≥ 2 and
suppose that the statement is true for every family of q− 1 commuting homeo-
morphisms. We are going to prove that it is true for the family f1, . . . , fq.

Let G be the (abelian) group generated by the homeomorphisms f1, . . . , fq.
We say that a set X ⊂ M is G-invariant if g(X) ⊂ X for every g ∈ G. Observing
that the inverse g−1 is also in G, we see that this implies g(X) = X for every
g ∈ G. Just as we did in Theorem 1.2.6, we may use Zorn’s lemma to conclude
that there exists some minimal, non-empty, closed, G-invariant set X ⊂ M (this
is Exercise 1.5.2). The statement of the theorem is not affected if we replace M
by X . Thus, it is no restriction to assume that the ambient space M is minimal.
This assumption is used as follows:

Lemma 1.5.3. If M is minimal then for every non-empty open set U ⊂ M
there exists a finite subset H ⊂ G such that

⋃

h∈H

h−1(U) = M.

Proof. For any x ∈ M , the closure of the orbit G(x) = {g(x) : g ∈ G} is a non-
empty, closed, G-invariant subset of M . So, the hypothesis that M is minimal
implies that every orbit G(x) is dense in M . In particular, there is g ∈ G such
that g(x) ∈ U . This proves that {g−1(U) : g ∈ G} is an open cover of M . By
compactness, it follows that there exists a finite subcover, as claimed.

Consider the product M q endowed with the distance function

d
(
(x1, . . . , xq), (y1, . . . , yq)

)
= max{d(xi, yi) : 1 ≤ i ≤ q}.

Note that the map M → ∆q, x 7→ x̃ = (x, . . . , x) is a homeomorphism, and even
an isometry for this choice of a distance. Every open set U ⊂ M corresponds
to an open set Ũ ⊂ ∆q through this homeomorphism. Given any g ∈ G,
we denote by g̃ : M q → M q the homeomorphism defined by g̃(x1, . . . , xq) =
(g(x1), . . . , g(xq)). The fact that the group G is abelian implies that g̃ commutes
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with F ; note also that every g̃ preserves the diagonal ∆q. Then the conclusion
of Lemma 1.5.3 may be rewritten in the following form:

⋃

h∈H

h̃−1(Ũ) = ∆q. (1.5.3)

Lemma 1.5.4. Given ε > 0 there exist x̃ ∈ ∆q, ỹ ∈ ∆q and n ≥ 1 such that
d(Fn(x̃), ỹ) < ε.

Proof. Define gi = fi ◦f−1
q for each i = 1, . . . , q−1. Since the maps fi commute

with each other, so do the maps gi. Then, by induction, there exist y ∈ M and
(nk)k → ∞ such that

lim
k

gnk

i (y) = y for every i = 1, . . . , q − 1.

Denote xk = f−nk
q (y) and consider x̃k = (xk, . . . , xk) ∈ ∆q. Then,

Fnk(x̃k) = (fnk
1 f−nk

q (y), . . . , fnk
q−1f

−nk
q (y), fnk

q f−nk
q (y))

= (gnk
1 (y), . . . , gnk

q−1(y), y)

converges to (y, . . . , y, y) when k → ∞. This proves the lemma, with x̃ = x̃k,
ỹ = (y, . . . , y, y) and n = nk for every k sufficiently large.

The next step is to show that the point ỹ in Lemma 1.5.4 is arbitrary:

Lemma 1.5.5. Given ε > 0 and z̃ ∈ ∆q there exist w̃ ∈ ∆q and m ≥ 1 such
that d(Fm(w̃), z̃) < ε.

Proof. Given ε > 0 and z̃ ∈ ∆q, consider Ũ = open ball of center z̃ and radius
ε/2. By Lemma 1.5.3 and the observation (1.5.3), we may find a finite set

H ⊂ G such that the sets h̃−1(Ũ), h ∈ H cover ∆q. Since the elements of G are
(uniformly) continuous functions, there exists δ > 0 such that

d(x̃1, x̃2) < δ ⇒ d(h̃(x̃1), h̃(x̃2)) < ε/2 for every h ∈ H.

By Lemma 1.5.4 there exist x̃, ỹ ∈ ∆q and n ≥ 1 such that d(Fn(x̃), ỹ) < δ. Fix

h ∈ H such that ỹ ∈ h̃−1(Ũ). Then,

d
(
h̃(Fn(x̃)), z̃

)
≤ d

(
h̃(Fn(x̃)), h̃(ỹ)

)
+ d

(
h̃(ỹ), z̃

)
< ε/2 + ε/2.

Take w̃ = h̃(x̃). Since h̃ commutes with Fn, the previous inequality implies that
d(Fn(w̃), z̃) < ε, as we wanted to prove.

Next, we prove that one may take x̃ = ỹ in Lemma 1.5.4:

Lemma 1.5.6 (Bowen). Given ε > 0 there exist ṽ ∈ ∆q and k ≥ 1 with
d(F k(ṽ), ṽ) < ε.

Proof. Given ε > 0 and z̃0 ∈ ∆q, consider the sequences εj , mj and z̃j , j ≥ 1
defined by recurrence as follows. Initially, take ε1 = ε/2.
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• By Lemma 1.5.5 there are z̃1 ∈ ∆q and m1 ≥ 1 with d(Fm1(z̃1), z̃0) < ε1.

• By the continuity of Fm1 , there exists ε2 < ε1 such that d(z̃, z̃1) < ε2
implies d(Fm1(z̃), z̃0) < ε1.

Next, given any j ≥ 2:

• By Lemma 1.5.5 there are z̃j ∈ ∆q andmj ≥ 1 with d(Fmj (z̃j), z̃j−1) < εj .

• By the continuity of Fmj , there exists εj+1 < εj such that d(z̃, z̃j) < εj+1

implies d(Fmj (z̃), z̃j−1) < εj.

In particular, for any i < j,

d(Fmi+1+···+mj (z̃j), z̃i) < εi+1 ≤ ε

2
.

Since ∆q is compact, we can find i, j with i < j such that d(z̃i, z̃j) < ε/2. Take
k = mi+1 + · · ·+mj. Then,

d(F k(z̃j), z̃j) ≤ d(F k(z̃j), z̃i) + d(z̃i, z̃j) < ε.

This completes the proof of the lemma.

Now we are ready to conclude the proof of Theorem 1.5.1. For that, let us
consider the function

φ : ∆q → [0,∞), φ(x̃) = inf{d(Fn(x̃), x̃) : n ≥ 1}.
Observe that φ is upper semi-continuous: given any ε > 0, every point x̃ admits
some neighborhood V such that φ(ỹ) < φ(x̃) + ε for every y ∈ V . This is an
immediate consequence of the fact that φ is given by the infimum of a family of
continuous functions. Then (Exercise 1.5.4), φ admits some continuity point ã.
We are going to show that this point satisfies the conclusion of Theorem 1.5.1.

Let us begin by observing that φ(ã) = 0. Indeed, suppose that φ(ã) is
positive. Then, by continuity, there exist β > 0 and a neighborhood V of ã such
that φ(ỹ) ≥ β > 0 for every ỹ ∈ V . Then,

d(Fn(ỹ), ỹ) ≥ β for every y ∈ V and n ≥ 1. (1.5.4)

On the other hand, according to (1.5.3), for every x̃ ∈ ∆q there exists h ∈ H
such that h̃(x̃) ∈ V . Since the transformations h are uniformly continuous, we
may fix α > 0 such that

d(z̃, w̃) < α ⇒ d
(
h̃(z̃), h̃(w̃)

)
< β for every h ∈ H. (1.5.5)

By Lemma 1.5.6, there exists n ≥ 1 such that d(x̃, Fn(x̃)) < α. Then, using
(1.5.5) and recalling that F commutes with every h̃,

d
(
h̃(x̃), Fn(h̃(x̃))

)
< β.

This contradicts (1.5.4). This contradiction proves that φ(ã) = 0, as claimed.
In other words, there exists (nk)k → ∞ such that d(Fnk(ã), ã) → 0 when

k → ∞. This means that (1.5.2) is satisfied and, hence, the proof of Theo-
rem 1.5.1 is complete.
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1.5.2 Exercises

1.5.1. Show, by means of examples, that the conclusion of Theorem 1.5.1 is
generally false if the transformations fi do not commute with each other.

1.5.2. Let G be the abelian group generated by commuting homeomorphisms
f1, . . . , fq : M → M on a compact metric space. Prove that there exists some
minimal element X ⊂ M for the inclusion relation in the family of non-empty,
closed, G-invariant subsets of M .

1.5.3. Show that if ϕ : M → R is an upper semi-continuous function on a
compact metric space then ϕ attains its maximum, that is, there exists p ∈ M
such that ϕ(p) ≥ ϕ(x) for every x ∈ M .

1.5.4. Show that if ϕ : M → R is an (upper or lower) semi-continuous function
on a compact metric space then the set of continuity points of ϕ contains a
countable intersection of open and dense subsets of M . In particular, the set of
continuity points is dense in M .

1.5.5. Let f : M → M be a measurable transformation preserving a finite
measure µ. Given k ≥ 1 and a positive measure set A ⊂ M , show that for
almost every x ∈ A there exists n ≥ 1 such that f jn(x) ∈ A for every 1 ≤ j ≤ k.

1.5.6. Let f1, . . . , fq : M → M be commuting homeomorphisms on a compact
metric space. A point x ∈ M is called non-wandering if for every neighborhood
U of x there exist n1, . . . , nq ≥ 1 such that fn1

1 · · · fnq
q (U) intersects U . The

non-wandering set is the set Ω(f1, . . . , fq) of all non-wandering points. Prove
that Ω(f1, . . . , fq) is non-empty and compact.
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[Mañ85] R. Mañé. Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm.
Math. Phys., 100:495–524, 1985.
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family of all subsets, 440
A∆B

symmetric difference of sets, 444
B(x, T, ε)

dynamical ball for flows, 324
B(x,∞, ε)

infinite dynamical ball, 331
B(x, n, ε)

dynamical ball, 269
B(x, r)

ball of center x and radius r, 462
Bδ

δ-neighborhood of a set, 36
C∗

dual cone, 52
C0(M)

space of continuous functions, 50, 445,
466

C0
+
(M)
cone of positive functions, 52

Cβ(M)
space of Hölder functions, 422

Cr(M,N)
space of Cr maps, 470

Cn(ϕ,ψ)
correlations sequence, 188

Dl

lower density, 59
Du

upper density, 59
Df

derivative of a map, 471, 472
E(A,P )

conditional expectation, 157
E∗

dual of a Banach space, 49
G(f, φ)

pressure, via generating sets, 335
H(α)

entropy of an open cover, 308
Hβ(g)

Hölder constant, 409
Hµ(P)

entropy of a partition, 252
Hµ(P/Q)

conditional entropy, 254
Hβ,ρ(g)

local Hölder constant, 409
I(U)

set of invariant vectors, 67
I(A)

mean information of an alphabet, 251
I(a)

information of a symbol, 251
IP

information function of a partition, 252
L∞(µ)

space of essentially bounded functions,
480

Lp(µ)
space of p-integrable functions, 478

P (f, φ)
pressure, 332

P (f, φ, α)
pressure relative to an open cover, 332

P (x, ·)
transition probability, 196

Pi,j

transition probability, 197
Rθ

rotation on circle or torus, 16
S(f, φ)

pressure, via separated sets, 335
S1

circle, 16
S⊥

orthogonal complement, 483
Sd

sphere of dimension d, 469
TM

tangent bundle, 472
T 1M

unit tangent bundle, 477
TpM

tangent space at a point, 471
Uf

Koopman operator, 50, 51
U∗
f

dual of the Koopman operator, 51
V (µ,Φ, ε)

neighborhoods in weak∗ topology, 36

42
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V (v, {g1, . . . , gN}, ε)
neighborhoods in weak topology, 49

V ∗(g, {v1, . . . , vN}, ε)
neighborhoods in weak∗ topology, 50

Va(µ,A, ε)
neighborhoods in weak∗ topology, 37

Vc(µ,B, ε)
neighborhoods in weak∗ topology, 37

Vf (µ,F , ε)
neighborhoods in weak∗ topology, 37

Vp(µ,B, ε)
neighborhoods in pointwise topology, 44

Vu(µ, ε)
neighborhoods in uniform topology, 44

XB

characteristic function of a set, 449
Diffeor(M)

space of Cr diffeomorphisms, 471
Fix(f)

set of fixed points, 320
GL(d,R)

linear group, 79, 170, 474
O(d,R)

orthogonal group, 170
SL(d,R)

special linear group, 170, 475
ΣA, ΣP

shift of finite type, 199, 321
α ∨ β

sum of open covers, 308
α ≺ β

order relation for open covers, 308
αn, α±n

iterated sum of an open cover, 308, 315,
316

L1(µ)
space of integrable functions, 453

M(X)
space of measures, 50, 445

M1(M)
space of probability measures, 36

M1(f)
space of invariant probability measures,

121
Me(f)

space of ergodic probability measures,
121

P ≺ Q
order relation for partitions, 254

P ∨ Q
sum of partitions, 252

Pn, P±n

iterated sum of a partition, 256, 259
Ur(f, ε)

Cr neighborhood of a map, 470
δp

Dirac measure, 47

divF
divergence of a vector field, 20

degree(f)
degree of a map, 477

λ = (λα)α
length vector, 208

λmax

largest Lyapunov exponent, 86
λmin

smallest Lyapunov exponent, 86
µ ⊥ ν

mutually singular measures, 459
ν ≪ µ

absolutely continuous measure, 459
∂I

left endpoint of an interval, 209
∂P

boundary of a partition, 265, 349
Pd

projective space, 477
ρ(B)

spectral radius, 323
spec(L)

spectrum of a linear operator, 486
supessϕ

essential supremum of a function, 480
suppµ

support of a measure, 448, 486
tanh

hyperbolic tangent, 414
τ(E, x)

mean sojourn time, 65
θ(g1, g2)

projective distance, 412
ϕ̃

time average of a function, 73
Td

torus of dimension d, 18, 469
ϕ+

positive part of a function, 453
ϕ−

negative part of a function, 453
ϕn

orbital sum of a function, 332, 388
∨αUα

σ-algebra generated by a family, 286
d-adic interval, 498
d(M)

Hausdorff dimension, 425
e(ψ, x)

conditional expectation, 155
f∗µ

image of a measure, 45, 50
fA

linear endomorphism of the torus, 115
g(φ)
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topological entropy of flows, via gener-
ating sets, 325

g(f)
topological entropy, via generating sets,

311
h(f)

topological entropy, 309
h(f, α)

entropy relative to an open cover, 309
hµ(f)

entropy of a dynamical system, 257
hµ(f,P)

entropy relative to a partition, 257
hµ(f,P, x)

entropy (local) at a point, 269
h±µ (f, ε, x)

entropy (local) at a point, 269
md(M)

d-dimensional Hausdorff measure, 425
s(φ)

topological entropy of flows, via sepa-
rated sets, 325

s(f)
topological entropy, via separated sets,

311
w = (wα)α

translation vector, 208

1-parameter group, 68
σ-additive function, 443, 486
σ-algebra, 440

Borel, iii, 441
generated, 286, 441

up to measure zero, 444
product, 108, 456, 457

σ-finite measure, 8, 75, 442
C0 topology, 385
C1 topology, 385
Cr topology, 470
h-expansive map, 320, 331, 355
k-linear form, 473
L2 convergence, 70
L∞ norm, 480
Lp norm, 478
p-integrable function, 478

absolute continuity, 118, 447, 459
theorem, 137

absolutely
continuous measure, 121, 459
summable series, 481

action-angle coordinates, 127
adding machine, 176
additive

function, 442
sequence, 79

adjoint linear operator, 484

admissible sequence, 321
affine function, 292
algebra, 440

compact, 443
generating, 10
of functions, 468

separating, 468
of measures, 241

almost
every point, 99, 455
everywhere, 455

convergence, 455
integrable system, 126

alphabet, 208
alternate form, 473
Anosov

flow, 136
system, v
theorem, 136

aperiodic
stochastic matrix, 203
system, 29, 265

approximate eigenvalue, 228
approximation theorem, 444
area form, 207
arithmetic progression, 58

length, 58
atlas

compatible, 470
differentiable, 469
of class Cr , 469

atom, 466, 488
atomic measure, 466
Aubry-Mather set, 133
automorphism

Bernoulli, 282
Kolmogorov, 286, 289
Möbius, 423
of a group, 170

Avogadro constant, 339

Baire space, 122, 124, 471, 475
Banach space, 49, 478, 482
Banach-Alaoglu theorem, 484
Banach-Mazur theorem, 52
barycenter of a measure, 294
basin of a measure, 103, 360
basis

dual, 473
Fourier, 482
Hammel, 483
Hilbert, 482
of neighborhoods, 36, 37, 448

countable, 448
of open sets, 448

countable, 448
of the topology, 448



INDEX 45

Bernoulli
automorphism, 282
measure, 197, 457
shift, 108, 109, 197

billiard, 138
corner, 138
dispersing, 143
semi-dispersing, 144
table, 138

Birkhoff
ergodic theorem, 66, 71, 73, 75
ergodic theorem for flows, 78
multiple recurrence theorem, 29
normal form theorem, 131, 134
recurrence theorem, 7, 48

Boltzmann
constant, 340
ergodic hypothesis, v, 65, 124

Boltzmann-Sinai ergodic hypothesis, 138
Borel

σ-algebra, iii, 441
measure, 462
normal theorem, 108
set, 441

Borel-Cantelli lemma, 451
bottom of a pile, 177
boundary of a partition, 265, 349
bounded

distortion, 106, 107, 112
linear functional, 483
linear operator, 484, 485

Bowen-Manning formula, 388, 428
branch (inverse), 362, 429

contracting, 362, 372
Brin-Katok theorem, 270
bundle

cotangent, 129, 473
tangent, 130, 135

Bunimovich
mushroom billiard, 144
stadium billiard, 144

Cantor
set, 425
substitution, 178

Cauchy-Schwarz inequality, 479
Cayley-Klein distance, 423
Chacon

example, 228
substitution, 178

Champernowne constant, 107
change

of coordinates, 469
of variables formula, 304

characteristic function, 449
circle, 16

rotation, 16

class Cr

atlas, 469
diffeomorphism, 470
manifold, 469
map, 470

closed differential form, 474
coarser

cover, 308
partition, 151, 254

cocycle, 86
cohomological equation, 166
cohomologous potentials, 338, 406
cohomology relation, 338, 343
commuting maps, 29
compact

algebra, 443
group, 173
space, 443

compactness theorem, 41
compatible atlases, 470
complete

measure, 444
measure space, 444
metric space, 465
metrizable space, 471

completely metrizable space, 471
completion of a measure space, 444
complex measure, 445, 486
concave function, 480
condition

Keane, 209
twist, 128, 130, 132, 134

conditional
entropy, 254
expectation, 155, 157, 271
probability, 149

cone, 51, 411
dual, 52, 390
normal, 51

configuration space, 339
conformal

map, 428
repeller, 388, 428

conjecture of entropy, 327
conjugacy (topological), 223, 310
connected space, 469
conservative

flow, 19
map, 19
system, 49, 124

constant
Avogadro, 339
Boltzmann, 340
Champernowne, 107
of expansivity, 267, 319

continued fraction
expansion, 13
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of bounded type, 120
continuity

absolute, 118
at the empty set theorem, 443
from above theorem, 451
from below theorem, 451
set of a measure, 37

continuous
function, 449
linear functional, 467, 483
linear operator, 484
map, 449

contracting inverse branch, 362, 372
contraction, 314
convergence

almost everywhere, 455
in L2, 70
in distribution, 44
to equilibrium, 410

convex
function, 480
hull, 429
set, 45

convexity, 121, 292
coordinate change, 469
correlation, 187

decay, 215
correlations sequence, 188
cotangent

bundle, 129, 473
space, 129, 473

countable basis
of neighborhoods, 448
of open sets, 448

countable type shift, 236
countably

additive function, 442
generated system, 236

covariance
matrix, 240
sequence, 240

cover, 425
coarser, 308
diameter, 312, 316, 425
finer, 308
open, 308, 443

cross-ratio, 413
cross-section, 91
cube, 446
cylinder, 457

elementary, 457
measurable, 55
open, 55

decay of correlations, 215, 217
decimal expansion, 10

ergodicity, 106

decomposition
of Oseledets, 87
theorem of Hahn, 445
theorem of Lebesgue, 460

degree of a map, 362, 372, 477
Dehn twist, 495
density

lower, 59
of a measure, 361, 459
point, 458
upper, 59, 61
zero at infinity, 195

derivation theorem of Lebesgue, 458
derivative, 471, 472

exterior, 474
Radon-Nikodym, 361, 459

diagonal, 31
diameter

of a cover, 312, 316, 425
of a partition, 266, 461

diffeomorphism, 469, 470
of class Cr , 470

difference (orthogonal), 235
differentiable

atlas, 469
manifold, 469
map, 470

differential
form, 473, 474

closed, 474
exact, 474

dimension
Hausdorff, 425
Hilbert, 483

Diophantine
number, 168
vector, 128

Dirac
mass, 442
measure, 47, 442

direct sum (orthogonal), 483
discrete

spectrum, 221, 230
spectrum theorem, 242
topology, 110

disintegration
of a measure, 149
theorem of Rokhlin, 152, 161

dispersing billiard, 143
distance, 462

associated with Riemannian metric, 476
Cayley-Klein, 423
flat on the torus, 105
hyperbolic, 423
invariant, 174
Poincaré, 423
projective, 412
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distortion, 106, 107, 112
lemma, 363

distribution
function, 44
Gibbs, 341

divergence of a vector field, 20
domain

fundamental, 89
of invertibility, 301

dominated convergence theorem, 456
dual

basis, 473
cone, 52, 390
linear operator, 51, 388
of a Banach space, 49, 480
of a Hilbert space, 484

duality, 50, 215, 388, 479
dynamical

ball, 269, 311
for a flow, 324
infinite, 331

decomposition theorem, 377
system, iii

eigenvalue, 225
approximate, 228
multiplicity of, 225

elementary cylinder, 457
elliptic fixed point, 131–133, 135

generic, 132
endomorphism

of a group, 170
of the torus, 115

ergodic, 115
energy

hypersurface, 125
of a state, 340

entropy, v
conditional, 254
conjecture, 327
formula, 405
formula (Pesin), 280
function, 265
Gauss map, 276
local, 269
of a communication channel, 251
of a dynamical system, 257
of a linear endomorphism, 277
of a Markov shift, 274
of a partition, 252
of a state, 340
of an open cover, 308
relative to a partition, 257
relative to an open cover, 309
semi-continuity, 265
topological, 307, 309, 313

equation

cohomological, 166
Hamilton-Jacobi, 125, 127, 131

equidistributed sequence, 180
equilibrium state, 308, 339, 352
equivalence

ergodic, 167, 190, 221, 222, 241
invariant of, 223

spectral, 221, 224, 242
invariant of, 225

topological, 310
of flows, 326

equivalent
measures, 14, 459
topologies, 37

ergodic
decomposition theorem, 148
equivalence, 167, 190, 221, 222, 241

invariant of, 223
hypothesis, v, 65, 124, 138
isomorphism, 222, 241
measure, 75
system, 97, 98
theorem

Birkhoff, 66, 71, 73, 75
Birkhoff for flows, 78
Kingman, 66, 80
Kingman for flows, 87
multiplicative, 86, 279
Oseledets, 86, 279
subadditive, 66, 80
subadditive for flows, 87
von Neumann, 66, 69, 75
von Neumann for flows, 71
von Neumann multiple, 196

ergodicity
decimal expansion, 106
irrational rotation, 104, 105
linear endomorphism, 115
Markov shift, 201

essential supremum, 480
essentially bounded function, 480
Euclidean space, 469
exact differential form, 474
exactness, 291

topological, 366
example

Chacon, 228
Furstenberg, 166

existence theorem, 35
for flows, 48

expanding map, 27
of the interval, 368
on a manifold, 360
on a metric space, 369

expansive map, 267, 319, 362, 373
two-sided, 319

expansivity
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constant, 267, 319
one-sided, 267
two-sided, 267

expectation (conditional), 271
exponential

decay of correlations, 217
decay of interactions, 341
map, 476

extended real line, 441, 449
extension

natural, 54, 57
multiple, 57

of a transformation, 54
theorem, 443

exterior
derivative, 474
measure, 446

extremal element of a convex set, 121

factor, 261
topological, 310, 386

Fatou lemma, 456
Feigenbaum substitution, 178
Fibonacci substitution, 178, 319
filtration of Oseledets, 86
finer

cover, 308
partition, 151, 254

finite
Markov shift, 198
measure, 442
memory, 196, 206
signed measure, 445

finitely additive function, 443
first integral, 22, 125
first-return

map, 5, 22, 90, 91
time, 5, 23, 91

fixed point
elliptic, 131–133, 135

generic, 132
hyperbolic, 132
non-degenerate, 131, 134

flat distance on the torus, 105
flow, iii, 2, 472

Anosov, 136
conservative, 19
geodesic, 135, 476
Hamiltonian, 125, 131
horocyclic, 289
suspension, 89
uniformly continuous, 325
uniformly hyperbolic, 136

flows
Birkhoff ergodic theorem, 78
existence theorem, 48
Kingman ergodic theorem, 88

Poincaré recurrence theorem, 5
subadditive ergodic theorem, 88
topological entropy, 325, 326
von Neumann ergodic theorem, 71

flux of a measure, 92, 94
foliation

stable, 116, 117, 137
unstable, 116, 117, 137

form
k-linear, 473
alternate, 473
area, 207
differential, 473, 474

closed, 474
exact, 474

linear, 473
symplectic, 129
volume, 20, 129

formula
Bowen-Manning, 388, 428
change of variables, 304
entropy, 405
Liouvile, 20
of entropy (Pesin), 280
Pesin, 405
Rokhlin, 301, 303, 368

Fourier
basis, 482
series, 105, 115

fractional part, 10
free energy (Gibbs), 340
frequency vector, 127
Friedman-Ornstein theorem, 290
function

σ-additive, 442
p-integrable, 478
affine, 292
characteristic, 449
concave, 480
continuous, 449
convex, 480
countably additive, 442
entropy, 265
essentially bounded, 480
finitely additive, 442
Hölder, 217, 409
information of a partition, 252
integrable, 453
invariant, 70, 98
locally constant, 215
locally integrable, 458
measurable, 449
of distribution, 44
of multiplicity, 489
quasi-periodic, 127
semi-continuous, 33
simple, 450
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strongly affine, 299
uniformly quasi-periodic, 78

functional
bounded, 483
continuous, 467
norm, 467
positive, 454, 467

over a cone, 52
tangent, 53

functions algebra, 468
separating, 468

fundamental domain, 89
Furstenberg

example, 166
theorem, 166

Furstenberg-Kesten theorem, 86

gas
ideal, 140
lattice, 339

Gauss map, 13, 24
entropy, 276

Gaussian
measure, 239
shift, 239, 289

generated
σ-algebra, 286, 441
topology, 441

generating
algebra, 10
partition, 263, 265
set, 310

for flows, 324
generator

one-sided, 263
two-sided, 263

geodesic, 476
flow, 135, 476

Gibbs
distribution, 341
free energy, 340
state, 340, 342, 357, 387, 389

golden ratio, 9, 186
Gottschalk theorem, 168
Grünwald theorem, 63
Grassmannian manifold, 469
Green-Tao theorem, 60
group

1-parameter, 68
automorphism, 170
compact, 173
endomorphism, 170
Lie, 169
linear, 170, 474
locally compact, 170
metrizable, 173
orthogonal, 170

special linear, 170, 475
topological, 169

Hölder
function, 217, 409
inequality, 479, 481
map, 463

Haar
measure, 173
theorem, 171

Hahn decomposition theorem, 445, 455
Halmos-von Neumann theorem, 242
Hamilton-Jacobi equation, 125, 127, 131
Hamiltonian

flow, 125, 131
function, 125
non-degenerate, 128
system, 125
vector field, 22, 131

Hammel basis, 483
Hausdorff

dimension, 425
measure, 425
space, 36, 441

hereditary property, 42
heteroclinic

point, 494
Hilbert

basis, 482
dimension, 483
space, 482

Hindman theorem, 168
homeomorphism, 442

twist, 132
homoclinic point, 132
homomorphism of measure algebras, 241
horocyclic flow, 289
hyperbolic

distance, 423
fixed point, 132
matrix, 116

hypersurface of energy, 125

ideal gas, 140
idempotent linear operator, 486
identity

parallelogram, 485
polarization, 485

image of a measure, 45, 50
independent partitions, 252
induced map, 24
inequality

Cauchy-Schwarz, 479
Hölder, 479, 481
Jensen, 480
Margulis-Ruelle, 279
Minkowski, 478, 481
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Tchebysheff-Markov, 460
Young, 481

infinite
dynamical ball, 331
matrix, 239
measure, 7

infinitesimal generator, 68
information

function of a partition, 252
of a symbol, 251
of an alphabet, 251

inner product, 479, 482
integer part, 10
integrability, 453

uniform, 88, 460
integrable

function, 453
map, 130
system, 126

integral, 453, 454
first, 125
of a simple function, 453
with respect to a signed measure, 455
with respect to complex measure, 455

interval
d-adic, 498
exchange, 94, 207

irreducible, 209
in Z, 59

intrinsically ergodic map, 357
invariant

distance, 174
function, 70, 98
measure, 2, 45
of ergodic equivalence, 223
of spectral equivalence, 225
set, 56, 98, 365

inverse branch, 362, 429
contracting, 362, 372

invertibility domain, 301
irrational rotation, 17

ergodicity, 104, 105
irreducible

interval exchange, 209
stochastic matrix, 201

isometrically isomorphic spaces, 467, 483
isometry, 314

linear, 51, 484, 485
isomorphism

ergodic, 222, 241
of measure algebras, 241

iterate of a measure, 45, 50
iterated sum

of a partition, 256, 259
of an open cover, 308, 315, 316

Jacobian, 301

Jacobs theorem, 293, 294
Jensen inequality, 480

Kac̆ theorem, 5
Kakutani-Rokhlin

lemma, 29
tower, 27, 28

Keane
condition, 209
theorem, 210

Kingman ergodic theorem, 66, 80
for flows, 87

Kolmogorov
automorphism, 286, 289
system, 286, 289

Kolmogorov-Arnold-Moser
theorem, 128, 130
theory, v

Kolmogorov-Sinai
entropy, 257
theorem, 261

Koopman operator, 50, 51

lattice
gas, 339
system, 339

state, 339
leaf

stable, 117
unstable, 117

Lebesgue
decomposition theorem, 460
derivation theorem, 458
exterior measure, 446
integral, 453, 454
measurable set, 244, 447, 452
measure, 446

on the circle, 16
number of an open cover, 313, 466
space, 241, 244, 246
spectrum, 221, 233, 289

rank of, 236, 238
left

invariance, 173
translation, 170

lemma
Borel-Cantelli, 451
distortion, 363
Fatou, 456
Kakutani-Rokhlin, 29
Riemann-Lebesgue, 240
shadowing, 373
Vitali, 459
Zorn, 31

length
of a curve, 476
of an arithmetic progression, 58
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vector, 208
Levy-Prohorov metric, 39
Lie group, 169
lift

of an invariant measure, 56
of an invariant set, 56

limit of a sequence of sets
inferior, 441
superior, 441

linear
endomorphism of the torus, 115
form, 473
functional

bounded, 483
continuous, 467, 483
norm, 49, 467
positive, 454, 467
positive over a cone, 52
tangent, 53, 357

group, 170, 474
special, 475

isometry, 51, 484, 485
operator

adjoint, 484
bounded, 484, 485
continuous, 484
dual, 51, 388
idempotent, 486
Koopman, 50, 51
normal, 484, 488, 489
positive, 41, 51, 388
positive over a cone, 52
self-adjoint, 484, 486
spectrum, 486
unitary, 484, 488

Liouville
formula, 20
measure, iv, 125
theorem, 20, 21

Lipschitz map, 463
Livšic theorem, 387, 406
local

chart, 469
coordinate, 469
diffeomorphism, 477
entropy, 269

local diffeomorphism, 279
locally

compact group, 170
constant function, 215
integrable function, 458
invertible map, 301

logistic map, 319
lower density, 59
Lusin theorem, 464, 466
Lyapunov exponent, 87

Möbius automorphism, 423

manifold
differentiable, 469
Grassmannian, 469
leaf, 137
modeled on a Banach space, 469
of class Cr , 469
Riemannian, 476
stable, 117, 137
symplectic, 129
unstable, 117, 137

Manneville-Pomeau map, 26
map

h-expansive, 320, 331, 355
conformal, 428
conservative, 19
continuous, 449
decimal expansion, 10
degree, 362, 372, 477
derivative, 471, 472
differentiable, 470
expanding, 27, 369

of the interval, 368
on a manifold, 360

expansive, 267, 319, 362, 373
exponential, 476
first-return, 5, 22, 90, 91
Gauss, 13, 24
Hölder, 463
induced, 24
integrable, 130
interval exchange, 94, 207
intrinsically ergodic, 357
Lipschitz, 463
locally invertible, 301
logistic, 319
Manneville-Pomeau, 26
measurable, 449
minimal, 18, 105
non-degenerate, 130
of class Cr , 470
Poincaré, 90, 91
shift, 60, 109
symplectic, 129
time-1, 5
topologically

exact, 366
mixing, 190
weak mixing, 227

transitive, 110
two-sided expansive, 319

maps
topologically conjugate, 310
topologically equivalent, 310

Margulis-Ruelle
inequality, 279

Markov
measure, 197



52 INDEX

shift, 197
entropy, 274
ergodic, 201
finite, 198
mixing, 203

mass distribution principle, 436
Masur-Veech theorem, 211
matrix

hyperbolic, 116
infinite, 239
of covariance, 240
positive definite, 239
stochastic, 198

aperiodic, 203
irreducible, 201

symmetric, 240
transition, 321

maximal entropy measure, 352
Mazur theorem, 53
mean

information of an alphabet, 251
return time, 6
sojourn time, 65, 71

measurable
cylinder, 55
function, 449
map, 449
partition, 147, 151
set, iii, 440

Lebesgue, 244, 447, 452
space, 440

measure, iv, 442
σ-finite, 8, 75, 442
absolutely continuous, 121
algebra, 241

homomorphism, 241
isomorphism, 241

atomic, 466
barycenter of, 294
basin, 360
Bernoulli, 197, 457
Borel, 462
complete, 444
complex, 445, 486
density, 361
Dirac, 47, 442
ergodic, 75
exterior, 446
finite, 442
flux, 92, 94
Gaussian, 239
Haar, 173
Hausdorff, 425
infinite, 7
invariant, 2, 45
Lebesgue, 446

on the circle, 16

Liouville, iv, 125
Markov, 197
non-atomic, 466
non-singular, 301, 461
of maximal entropy, 352
of probability, iv, 442
physical, 367
positive, 444
product, 108, 456, 457
quotient, 148
reference, 389–391
regular, 462
signed, 50, 445

finite, 445
space, 442

complete, 444
completion, 444

spectral, 486
stationary, 57, 197
suspension of, 93
tight, 465
with finite memory, 196, 206

measures
equivalent, 14, 459
mutually singular, 122, 459

metric
Levy-Prohorov, 39
Riemannian, 475
space, 462

complete, 465
metrizable

group, 173
space, 39, 462

minimal
map, 18, 105
set, 8, 165, 168
system, 163, 165, 210

minimality, 18, 163, 210
minimizing curve, 476
Minkowski inequality, 478, 481
mixing, 188

Markov shift, 203
weak, 226

monkey paradox, 110
monotone

class, 444
theorem, 444

convergence theorem, 455
multiple

natural extension, 57
recurrence theorem

Birkhoff, 29
Poincaré, 29

von Neumann ergodic theorem, 196
multiplicative ergodic theorem, 86, 279
multiplicity

function, 489
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of a Lyapunov exponent, 87
of an eigenvalue, 225

mushroom billiard, 144
mutually singular measures, 122, 459

natural extension, 54, 57
multiple, 57

negative
curvature, 136
part of a function, 453

neighborhood
of a point, 448
of a set, 36

non-atomic measure, 466
non-degenerate

fixed point, 131, 134
Hamiltonian, 128
map, 130

non-lacunary sequence, 29
non-singular measure, 301, 461
non-trivial

partition, 289
probability space, 286

non-wandering
point, 34

super, 63
set, 34

norm, 479, 482
L∞, 480
Lp, 478
of a linear functional, 49, 467
of a matrix, 79
of a measure, 445
of an operator, 174, 323, 326
uniform convergence, 466

normal
cone, 51
linear operator, 484, 488, 489
number, 11, 107, 108

normalized restriction of a measure, 147, 163
number

Diophantine, 168
normal, 11, 107, 108

odometer, 176
one-sided

expansivity, 267
generator, 263
iterated sum

of a partition, 259
of an open cover, 308, 316

shift, 109
open

cover, 308, 443
diameter, 312, 316

cylinder, 55
operator

dual, 51, 388
Koopman, 50, 51
norm, 174, 323, 326
normal, 484, 488, 489
positive, 41, 51, 388

over a cone, 52
Ruelle-Perron-Frobenius, 388
transfer, 215, 388

orbital
average, 73
sum, 332, 388

orthogonal
complement, 67, 483
difference, 235
direct sum, 483
group, 170
projection, 66
vectors, 482

orthonormal set, 482
Oseledets

decomposition, 87
ergodic theorem, 86, 279
filtration, 86

Oxtoby-Ulam theorem, 124

parallelogram identity, 485
part

fractional, 10
integer, 10
negative, 453
positive, 80, 453

partition, 6, 251, 461
boundary, 265, 349
defined by a cover, 40, 266
diameter, 266, 461
generating, 263, 265
measurable, 147, 151
non-trivial, 289
of Z, 58

partitions
coarser, 151, 254
finer, 151, 254
independent, 252

path connected space, 477
periodic pre-orbit, 374
permutation, 77
Perron-Frobenius theorem, 198
Pesin entropy formula, 280, 405
phase transition, 339
physical measure, 367
pile

bottom, 177
simple, 177
top, 177

piling method, 177
Poincaré

distance, 423
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first-return map, 90, 91
last theorem, 132
recurrence theorem, 4, 7

for flows, 5
multiple, 29

Poincaré-Birkhoff fixed point theorem, 132
point

heteroclinic, 494
non-wandering, 34
of density, 458
recurrent, 7
simultaneously recurrent, 29
super non-wandering, 63
transverse homoclinic, 132

pointwise topology, 44
polarization identity, 485
Portmanteau theorem, 37
positive

definite matrix, 239
linear functional, 454, 467
linear operator, 41, 51, 388
measure, 444
over a cone, 52
part of a function, 80, 453

potential, 307, 332
cohomologous, 338, 406

pre-orbit, 55, 374
periodic, 374

pressure, 307, 332
of a state, 340, 341

primitive substitution, 178
principle

least action (Maupertuis), 340
mass distribution, 436
variational, 340, 344

probability
conditional, 149
measure, iv, 442
space, 442

non-trivial, 286
standard, 241

transition, 196
product

σ-algebra, 108, 456, 457
inner, 479, 482
measure, 108, 457
of measures, 456

countable case, 457
finite case, 456

space, 456, 457
topology, 110, 451, 458

Prohorov theorem, 42
projection, 486

orthogonal, 66
stereographic, 469

projective
distance, 412

quotient, 412
space, 477

pseudo-orbit, 373
periodic, 373

quasi-periodic function, 127
quotient

measure, 148
projective, 412

Radon-Nikodym
derivative, 361, 459
theorem, 459

random variable, 44
rank of Lebesgue spectrum, 236, 238
rational rotation, 17
rationally independent vector, 18, 209
Rauzy-Veech renormalization, 214
rectangle, 118, 446
recurrent point, 7

simultaneously, 29
reference measure, 389–391
regular

measure, 462
value of a map, 474

renormalization of Rauzy-Veech, 214
repeller, 427

conformal, 388, 428
residual set, 124, 471, 475
return

first, 5
simultaneous, 30
time, 89, 90
time (mean), 6

Riemann sum, 454
Riemann-Lebesgue lemma, 240
Riemannian

manifold, 476
metric, 475
submanifold, 476

Riesz-Markov theorem, 445, 467
right

invariance, 173
translation, 170

Rokhlin
disintegration theorem, 152, 161
formula, 301, 303, 368

root of a system, 291
rotation, 16

irrational, 17
number, 132
on the circle, 16
on the torus, 18
rational, 17
spectrum, 232

Ruelle
inequality, 279
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Ruelle theorem, 342, 387
Ruelle-Perron-Frobenius operator, 388

Sard theorem, 475
Schauder-Tychonoff theorem, 45
section transverse to a flow, 91
self-adjoint linear operator, 484, 486
semi-continuity of the entropy, 265
semi-continuous function, 33
semi-dispersing billiard, 144
separable

Hilbert space, 483
space, 39, 464, 467

separated set, 311
for flows, 324

separating
functions algebra, 468
sequence, 243

sequence
additive, 79
admissible, 321
equidistributed, 180
non-lacunary, 29
of correlations, 188
of covariance, 240
separating, 243
subadditive, 79, 80

series
absolutely summable, 481
Fourier, 105, 115

set
Aubry-Mather, 133
Borel, 441
Cantor, 425
convex, 45
generating, 310

for flows, 324
invariant, 56, 98, 365
Lebesgue measurable, 244, 447, 452
measurable, 440
minimal, 8, 165, 168
non-wandering, 34
of continuity of a measure, 37
of invariant vectors, 67
orthonormal, 482
residual, 124, 471, 475
separated, 311

for flows, 324
strongly convex, 294
syndetic, 9, 168
tight, 42
transitive, 122
with zero volume, 475

shadowing lemma, 373
Shannon-McMillan-Breiman theorem, 269
shift

Bernoulli, 108, 109, 197

Gaussian, 239, 289
map, 60, 109
Markov, 197

entropy, 274
ergodic, 201
finite, 198
mixing, 203

multi-dimensional, 339
of countable type, 236
of finite type, 199, 321
one-sided, 109
two-sided, 60, 109

Sierpinski triangle, 437
signed measure, 445

finite, 445
simple

function, 450
pile, 177

simultaneous return, 30
simultaneously recurrent point, 29
Sinai ergodicity theorem, 143
Sinai, Ruelle, Bowen theory, v
skew-product, 54
space

Baire, 122, 124, 471, 475
Banach, 49, 478, 482
compact, 443
completely metrizable, 471
connected, 469
cotangent, 129, 473
dual, 49, 480, 484
Euclidean, 469
Hausdorff, 36, 441
Hilbert, 482

separable, 483
Lebesgue, 241, 244, 246
measurable, 440
measure, 442

complete, 444
metric, 462

complete, 465
metrizable, 39, 462

complete, 471
of configurations, 339
path connected, 477
probability, 442

non-trivial, 286
product, 456, 457
projective, 477
separable, 39, 464, 467
tangent at a point, 130, 471
topological, 441
topological vector, 45

spaces
isometric, 467, 483
isomorphic, 467, 483

special linear group, 170, 475



56 INDEX

specification, 381, 382
by periodic orbits, 382

spectral
equivalence, 221, 224, 242

invariant of, 225
gap property, 215, 422
measure, 486
radius, 52, 323
representation theorem, 489
theorem, 488

spectrum
discrete, 221, 230
Lebesgue, 221, 233

rank of, 236, 238
of a linear operator, 225, 486
of a rotation, 232
of a transformation, 225

sphere of dimension d, 469
spin system, 339
stable

foliation, 116, 117, 137
leaf, 117, 137
manifold, 117, 137
set, 55

stadium billiard, 144
standard probability space, 241
state

energy of, 340
entropy of, 340
equilibrium, 308, 339, 352
Gibbs, 340, 342, 357, 387, 389
of a lattice system, 339
pressure of, 340, 341

stationary measure, 57, 197
stereographic projection, 469
stochastic matrix, 198

aperiodic, 203
irreducible, 201

Stone theorem, 68
Stone-Weierstrass theorem, 468
stronger topology, 37
strongly

affine function, 299
convex set, 294

subadditive
ergodic theorem, 66, 80

for flows, 87
sequence, 79, 80

subcover, 308, 443
submanifold, 470

Riemannian, 476
substitution, 177, 179

Cantor, 178
Chacon, 178
Feigenbaum, 178
Fibonacci, 178, 319
primitive, 178

Thue-Morse, 178
sum

direct orthogonal, 483
of a family of subspaces, 482
of a family of vectors, 482
of open covers, 308
of partitions, 252
orbital, 332, 388
Riemann, 454

super non-wandering point, 63
support

of a measure, 448
of a spectral measure, 486

suspension
flow, 89
of a measure, 90, 93
of a transformation, 89

symmetric
difference, 444
matrix, 240

symplectic
form, 129
manifold, 129
map, 129

syndetic set, 9, 168
system

almost everywhere invertible, 248
almost integrable, 126
Anosov, v
aperiodic, 29, 265
conservative, 49, 124
countably generated, 236
ergodic, 97, 98
Hamiltonian, 125
integrable, 126
Kolmogorov, 286, 289
lattice, 339

state, 339
Lebesgue spectrum

rank of, 236, 238
minimal, 163, 165, 210
mixing, 188
root, 291
spin, 339
totally dissipative, 49
uniquely ergodic, 163
weak mixing, 191, 226
with discrete spectrum, 221, 230
with finite memory, 196, 206
with Lebesgue spectrum, 221, 233, 289

Szemerédi theorem, 60, 61

tangent
bundle, 130, 135, 472

unit, 135, 477
linear functional, 53, 357
space at a point, 130, 471
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Tchebysheff-Markov inequality, 460
theorem

absolute continuity, 137
Anosov, 136
approximation, 444
Banach-Alaoglu, 50, 484
Banach-Mazur, 52
Birkhoff

ergodic, 66, 71, 73, 75
ergodic for flows, 78
multiple recurrence, 29
normal form, 131, 134
recurrence, 7, 48

Borel normal, 108
Brin-Katok, 270
compactness, 41
continuity

at the empty set, 443
from above, 451
from below, 451

discrete spectrum, 242
disintegration, 152
dominated convergence, 456
dynamical decomposition, 377
ergodic decomposition, 148
existence of invariant measures, 35

for flows, 48
extension of measures, 443
Friedman-Ornstein, 290
Furstenberg, 166
Furstenberg-Kesten, 86
Gottschalk, 168
Grünwald, 63
Green-Tao, 60
Haar, 171
Hahn decomposition, 445
Halmos-von Neumann, 242
Hindman, 168
Jacobs, 293, 294
Kac̆, 5
Keane, 210
Kingman ergodic, 66, 80

for flows, 87
Kolmogorov-Arnold-Moser, 128, 130
Kolmogorov-Sinai, 261
Lebesgue

decomposition, 460
derivation, 458

Liouville, 20, 21
Livšic, 387, 406
Lusin, 464, 466
Masur-Veech, 211
Mazur, 53
monotone class, 444
monotone convergence, 455
multiplicative ergodic, 86, 279
Oseledets, 86, 279

Oxtoby-Ulam, 124
Perron-Frobenius, 198
Poincaré

multiple recurrence, 29
recurrence, 4, 7

Poincaré-Birkhoff fixed point, 132
Portmanteau, 37
Prohorov, 42
Radon-Nikodym, 459
Riesz-Markov, 445, 467
Rokhlin, 152, 161
Ruelle, 342, 387
Sard, 475
Schauder-Tychonoff, 45
Shannon-McMillan-Breiman, 269
Sinai ergodicity, 143
spectral, 488
spectral representation, 489
Stone, 68
Stone-Weierstrass, 468
subadditive ergodic, 66, 80

for flows, 87
Szemerédi, 60, 61
Tychonoff, 110
van der Waerden, 58, 60
von Neumann ergodic, 66, 69, 75

for flows, 71
multiple, 196

Weyl, 180
Whitney, 476

Thue-Morse substitution, 178
tight

measure, 465
set of measures, 42

time
average, 73
constant of a subadditive sequence, 88
mean sojourn, 65, 71
of first return, 5, 23, 91
of return, 89, 90

time-1 map, 5
top of a pile, 177
topological

conjugacy, 223, 310
entropy, 307, 309, 313

for flows, 325, 326
equivalence, 310

of flows, 326
factor, 310, 386
group, 169
space, 441
vector space, 45
weak mixing, 227

topologically
conjugate maps, 310
equivalent maps, 310
exact map, 366
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mixing map, 190
weak mixing map, 227

topology, 441
C0, 385
C1, 385
Cr , 470
defined by

a basis of neighborhoods, 36
a distance, 462

discrete, 110
generated, 441
pointwise, 44
product, 110, 451, 458
stronger, 37
uniform, 44
uniform convergence, 385
weak, 49, 484
weak∗, 36, 50, 484
weaker, 37

torus, 18
of dimension d, 114, 469
rotation, 18

total variation, 445
totally dissipative system, 49
tower, 27

Kakutani-Rokhlin, 28
transfer operator, 215, 388
transition

matrix, 321
phase, 339
probability, 196

transitive
map, 110
set, 122

transitivity, 122
translation

in a compact group, 314
left, 170
right, 170
vector, 208

transversality, 475, 478
transverse

homoclinic point, 132
section, 91

twist
condition, 128, 130, 132, 134
Dehn, 495
homeomorphism, 132

two-sided
expansivity, 267
generator, 263
iterated sum

of a partition, 259
of an open cover, 315, 316

shift, 60, 109
Tychonoff theorem, 110

uniform

convergence norm, 466
integrability, 88, 460
topology, 44

uniformly
continuous flow, 325
hyperbolic flow, 136
quasi-periodic function, 78

unique ergodicity, 163
unit

circle, 16
tangent bundle, 135, 477

unitary linear operator, 484, 488
unstable

foliation, 116, 117, 137
leaf, 117, 137
manifold, 117, 137

up to measure zero, 444
upper density, 59, 61

van der Waerden theorem, 58, 60
variation, 445
variational principle, 340, 344
vector

Diophantine, 128
field, 472

Hamiltonian, 22, 131
frequency, 127
length, 208
rationally independent, 18, 209
translation, 208

Vitali
lemma, 459

volume
element, 135
form, 20, 129
induced by a Riemannian metric, 135,

171
von Neumann ergodic theorem, 66, 69, 75

for flows, 71
multiple, 196

weak
mixing, 191, 226
topology, 49, 484

weak∗ topology, 36, 50, 484
weaker topology, 37
Weyl theorem, 180
Whitney theorem, 476
word, 250

Young inequality, 481

zero volume set, 475
Zorn lemma, 31


