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Abstract. We consider one-parameter families of torus diffeomorphisms that bifurcate
from global hyperbolic maps (Anosov) to DA maps (derived from Anosov). For an
open set of these families, we show that the Hausdorff dimension and limit capacity
of the nonwandering set are not continuous across the bifurcation. We also study
the behaviour of equilibrium measures near the bifurcation.

0. Introduction . ..
In [10] Smale showed that global hyperbolic (Anosov) diffeomorphisms on the
torus can be modified to get Axiom A diffeomorphisms whose nonwandering set
consists of a fixed source and a one-dimensional attractor (DA maps). It is a natural
question to ask if the dimension of the nonwandering set varies continuously during
the process of construction of these DA diffeomorphisms. In [4] McCluskey and
Manning gave an afirmative answer to this question; however their proof is incorrect
as pointed out by Manning in [6]. In fact we show here that the result itself is false:
.in general just the opposite is true. We prove for an open family of arcs of C*
diffeomorphisms from Anosov to DA with a nondegenerate saddle-node bifurcation,
that the Hausdorff dimension and limit capacity are discoatinuous, since at the
‘bifurcation value they are strictly smaller than 2. On the other hand, we can also
show that these dimensions may have continuous variations across a degenerate
bifurcation from Anosov toc DA maps. Another interesting question ([2, Chapter
6]) is to describe the behaviour of equilibrium states of DA maps near the bifurcation.
We prove that for arcs with generic saddle-node bifurcations as above the equilibrium
states of log | Df;|es| (where B denotes the stable bundle of f) converge to the Dirac
measure supported at the saddle-node,
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1. Baric definitions and statement of results
Let M be a compact surface. We recall some results on Hausdorfl dimension and
limit capacity of basic sets of difieomorphisms on M. For Hausdorff dimension
these resuits arc mostly due to McCluskey and Manning [4). Elementary proofs
and further informations were provided in [8]. Sce Takens [11] for the relation
between Hausdorfl dimension and limit capacity.

For X a metric space and « >0 we define the a-measure of X by

m, (X) =supiaf (m, (%)),
a0 WU

where )
m, (%)= 3, (diam (U))"

Uedti

and the infimum is taken over ail countable covers of X by zets with diameter less
than &. It is not hard to scc that there is a unigue number, the Hausdorfl dimension
of X, denoted by HD(X), such that, for ¢ <HD(X), m,(X}=0c0, and, for
a> HD(X), m,(X)=0.

The limit capacity of X is defined by

d(X)=limsup log n(X, £)/log e},
=0
where n{X, &) is the minimum number of e-balls that cover X.

It is easy to see that both Hausdorfl dimension and limit capacity are invariant
by Lipschitz homeomorphisms and that d(X)= HD(X) for all X,

Recall that a compact A< M is a basic set for a diffeomorphism f of M if it is
invariant, hyperbolic, transitive, has a dense subset of periodic orbits and it is the
maximal invariant set for f in a neighbourhood U of A ([3]). For a basic set A the
values of HD(An W¥(x f)) and d{An W'(x, f)) are independent of x€ A and
called stable Hausdorff dimension (HD'(A)) and stable limit capacity (d'{(A}} of
A, respectively. Dually we define HD"(A) and 42%(A). In this case

HD'(A)=d"'(A), i=su,
and ) .
HD(A)= HD*(A)+ HD"(A) = d*(A)+ d"(A)=d(A).

Moreaver these invariants depend continuously on the diffcormorphism in the sense
that HD(A,) and d'(A;), i = 5, 4, are continuous functions of g (in the C' topology)
where A, ={), g"(U) is the analytical continuation of A for g close to £
We now sketch the construction of DA arcs (see Williams [13] for details). Let
Ge GIZ,2) have eigenvalues A and A7), 0<A<1<A7', and g be the Anosov
diffieomorphism on T?=R?/Z? induced by G. Denote by ¢ the fixed point of g
We deform g by isotopy to construct an arc (f;), of C? diffeomorphisms such
that (see figure 1): '
(1) f.,=g and f, is Anosov for ¢ <0 (we denote A, = T7)
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8,

Sl Wiee .

FiGURE 1

(2) fohas a fixed quadratic saddle-node point p,, near 8, and T?=int (W*(py)) v Aq
with A, compact, invariant and transitive
(3) for 1> 0 the saddle-node splits into two fixed points, a source g, and a saddle
P.; Ji is Axiom A, T?= W"(g,)w A, and Q(f)={q,} v A,, where A, is a one-
dimensional hyperbolic attractor, locally homeomorphic to the product of a
Cantor set and an interval.
For Theorem A we need some technical hypothesis whose statement is postponed
to § 2. We point out that these hypotheses are satisfied by an open set of arcs of
diffeomorphisms,

THEOREM A. Let (f;), be an arc of C*-diffeomorphisms as above, samjj!mg conditions
(C1)-(C5) of § 2. Then:

(a) 3< HD(A,) <2,

(b) lim,.o+ HD(A,) = HD{A,),

(¢) HD(Ag)=d(Ay).

Since HD(A,})=2 for 1<0 the upper bound in (a) implies that HD(A,} is not
continuous at ¢ = 0, although by (b), it is continuous on the right. As d(A,) = HD(A,)
for all ¢ # O (see above) (c) implies analogous facts for the limit capacity.

We now consider a different construction of DA maps. Let g be deformed by
isotopy through an arc of C>-diffeomorphisms (f;), such that:

(1) f.,=g and f; is Anosov for r<90.
(2} For f, there is & nonhyperbolic fixed saddie point 8, near 8, with eigenvalue 1,

_and Q(fp) =T
(3} For 1>0, 8, splits into three fixed points: a source 8, and two saddles p, and

q; J; is Axiom A, TP = A, u W“(8,) and Q(f,) = A, {6,}, A, being a hyperbolic
attractor, '
In this case we state:
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THEOREM B. Let (£), be an arc of C*-diffeomarphisms as above satisfying conditions
(C1)-(C5) of § 2. Then:

lim HD(A,) =1lim d(A,)=2.
0% -0t

Since HD(A,)=d(A,) =2 for 1 =0, it follows immediately from Theorem B that
the Hausdorff dimension and the limit capacity of the non-wandering set are
continuous along the arc.

Let A be a compact metric space and f:A- A an expansive map. The pressure
of a continuous real function ¢: AR is defined by '

a=1
P(g)= Ii::ﬂlp %los sup “EB exp ( § ev(f(x)).

where the supremum is taken over {(n, 8)-separated sets E and & is an cxpansive
constant for f|x. By the variational principle (Walters (12D

P(p)=sup (h,‘(f)+ J. «pd,.).

where the supremum is taken over f-invariant Borel probability measures. An
equilibrium state for ¢ is an f-invariant measure 4 such that Pe)=h(f)+]ed,.
If A is a basic set of an Axiom A diffeomorphism f, then equilibrium states exist
and are unique for all Holder continuous functions (Bowen [1]).

Let ¢ =log |D*f;, where D, denotes the derivative of Ji in the stable direction.
Theorem A aliows us to give a description of the behaviour of the equilibrium states
of ¢ near the bifurcation.

Taeorem C. Let {f), be as in Theorem A and k. be the equilibrium state for ¢:,
Then p,- 5 as 10", where 3 is the Dirac measure supporied at the saddle-node.
Moreover & is the unique equilibrium siate for $o

These results are proved in the sections below. In order to simplify the notations
we will in what follows omit the subscript +=0 (and so write f for Jo. p for p,,
A for A, etc), except where dependence on ¢ is directly involved.

2. The unstable foliation .

If 2 is a basic set of a C? diffecmorphism on a surface then (Hirsch and Pugh [3])
the unstable foliation %* of €}, defined by ¥y = W"(x) for xc, is differentiable
in the sense that its holonomy projections can be extended to C! mappings. This
is still true for the non-hyperbolic attractor A = Ag. In fact we prove somewhat more:

PROPOSITION 2.1. Under conditions (C1)-(C5) below, there is an f-invariamt C"
Joliation F* of T? whose leaves are uniformly expanded by f and such thas A is
F-invariant (i.e. it is a union of F*-leaves). )

Proof. The proposition follows from essentially the same argument as the hyperbolic
‘case, 50 we only sketch here the main ideas. Consider (local) coordinates (£ ) on
T? such that



Discontinuity of Hausdorff dimension 407

5% 'm= Da{x) - v* and 3%[.(,)=D7r(x} - o' forall xeR?,

where v" (resp. v”) is some expanding (resp. contracting} eigenvector of G. Take
the Riemann metric on the torus for which {3/8¢|,, 3/3%/,} is an orthonormal basis
of T,(T?) for all z€ T* (for our pyrposes it dees not matter which Riemann metric
we use since they are all Lipschitz equivalent). Let f(£ 5) = (¢(& %), ¢{& 1)) be
the local representation of f We assume that

(C1) |¢;’I <A+ts,

(C2) |q5,l|< £,

(03) I'ibfl <&

(C4) |l <(1+e),

(C5) |yl <a+s outside a small neighbourhood Q of the non- hyperbohc fixed

. point p (resp. & in Theorem B), .

where &> 0 is such that {14+ &) - (A + &)} < 1. Then (minor additional restrictions on
the value of & > 0 may still be needed), the methods of [3] can be used to construct
a 1-dimensional, C" vector bundle on T2, E*, such that Df]¢« is uniformly expanding.
. Let ¥ be the integral foliation of E". Since int (W¥(p)) is F*-invariant (£ is
contracting on the leaves of $* and moreover $(p) = W*(p)), the same holds’
for A= (int (W*“(p)))". This ends the proof of the proposition. (]

Remark -2.2. In particular, projections along the leaves of &%= .?" are Lipschitz
continuous. Now, conditions (C1)-(C5) persist for small perturbations of f =f;, sa
the arguments above also yield the uastable foliation $* of A,, for all small values
of t. Moreover, by the uniformity of the construction we get that Lipschitz constants
for the holonomy maps of ;' may be taken independent of ¢ (smalil). We wiil use
this fact in § 6 and § 7.

From the propasition (and the remark) it follows that A, is locally Lipschitz
homeomorphic to F/{x)x (T, N A,), where ¥, is any (small) section transversal to
¥, at xe A,, Then

ata)=d(@: ) +a(Lna) =1 +(zna,)
and (Marstrand [7])
HD(A) = 1+HD(2,H A )

On the other hand again by Proposition 2.1 (see [8] for example), d(X. () A,) and
HD(Y, (1 A,) are independent of ¥, and x < A,. We denote their values by d*(A,)
and HD'(A,) respectively. Since HD(A,)=d(A,) for ail ¢ this reduces the proof
of Thcorcms Aand Bto provmg, respectively,

TrEOREM A'. Under the hypothesis of Theorem A
(a) $<HD(Ao)<1,.

(b) HD"(A,)~ HD*(A,) as t» 0%,

(e} HD'(Ag) = d*(Ao).
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THEOREM B'. Under the hypothesis of Theorem B
HD'(A}>1 ast->0%.

We cnd this section by showing that f is uniformly contractive on W*({p), outside
some small neighbourhood Q of p (recall (C5)). Note first that, if £>> 0 is smali,
then T,W?(p) must be almost vertical {relative to coordinates {£, m)) at all point
ze W(p). In fact, suppose that for some zc W*(p), the angle between T.W'p)
and the p-direction were not small. Then, by conditions (C1)-{C5), it would be
increased by Df" and we would get T,W*(p) =lim, T, W*(p) nearly horizontal.
This is absurd because Df expands in the ¢-direction. So that angle must be
(uniformly) small. Now, conditions {C1)-(C5) (specially (C5)), imply that | D*f (2)|=
Ao, for all ze W*(p) — Q, where A <Ao<1 and D*f(z) = Df|r,w+(). This is what we
wanted to prove.

3. HD*(Ag) <1

First we introduce some notations, In what follows < is the natural ordering in
W= W*(p) —{p} such that f(x) < x for all x& W, Denote the length of a connected
subset [ of W*(p} by I(I). Define a u-rectangle to be an apen set S contained in
W*(p), whose closure is an imbedded rectangie bounded by W“(8,), W*(p) and
two segments of W*(p). The union of the segments of W¥(8,) and W*“(p) bounding
8§, is denoted by 4"S.

To prove that HD*(A) <1 it is sufficient to find 8¢(0,1) and a sequence (¥,).,
of coverings of A W}, (p) such that diam 4, > 0 and {mz(%,)), is bounded. Let
Aq be a u-rectangle with {8,, p} < 3“4, and x € W~ W*(4,), ye Wn W*(p) be the
two smallest (for the < ordering) elements of W a“A,. Let G, =(f(x), f(y)),
j=0,and C;={F(y), /" (x)).j=1, and take (A;);=0 to be a sequence of u-rectangles

FIGURE 2
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such that

(Pl) Ajn[ply]= q’

{P2) f(A;)= Ay, forall j=0 and

(P3) there is k=1 such that for every connected component C of W— (T A)
cither 3C = (3"4,,Ua"A)), j=2, or 8Cc (3¥Ag U a%A)) for some j, 1=<j<k
(see figure 2).

Replacing f by f* we can, and do, assume k=1,

Let € be the family of connected components of W— (U3 A4,) and, for j=1,

€={Ce€aCc 3“A; L %A, ). We define :

U, ={"CIn[p.x): Cc€}, n=o0.
Note that ¥, is not really a covering of An[p, x] since it fails to cover some of
the points in W*™(p)n[p, x] (more precisely: every point in W (pInlp, x] is
eventually not covered by %, ). However this is unessential because W*“(p)~ [p, x]
is countable and Hausdorff dimensions of spaces differing by a countable set of
poiats are equal.

Since diam ¥, - 0 it is now enough to find 8 € (0, 1) such that mg(Up) <00 and
(my(%,)), is non-increasing. Let U=s""(C)e Yy, Cc . If Ce %, j=2, then
S HC)Ie €. If Ce %, then f(C) can be written : '
HC)=(CluGluCiuGlu--+)

V(G CiuGILCILGIL - - YU -

U(GpuCiuGluCiuGlu- - ),
where the G} are connected components of W A; and the Cje €;. Note that |
cannot be arbitrarily large because I{f~'(C)) is uniformly bounded above and the
distance in W between connected components of W Aq is uniformly bounded
below. It follows that U = f( /7' C), either is also an element of %, or can be written

U=s(UluViu- Yu(ViuUio Vi - )u- - uVio Ulu Viu. .. ),

with Vij=/"(G)), Uj=f"(C}e¥, and ! uniformly bounded. To get
mg(U,) = mg(U,,) we should show that ¥, ({U)? =< (I(U))* for all Uec %, ,
(and some suitable & (0, 1) independent of I and n). This is done by taking
x; = WU/ KU), y}= 1V} H(U) and g = K[ F(x), F~'(x)]) in the following lemma.

LemMa 3.1. Given 1=1, a>0,b>0,a€(0,1) and (2));=1 4 sequence in [0, 1] with
IV zf <o, there is B=B(1, a, b, a, (5);) € (e, 1) such that for all sequences (X[);e,
and (y});=y, 1=<i=[ in [0,1)] satisfying
(1) L, (xj+y)s1
2) xj= ay, forallj=1and 1=i=<]
(3) (xj+y)<bz forall j=1 and 1= i=<1
we have T, (x)}¥ =<1.

We leave the proof of this result to the end of this section and proceed now to
find a€(0,1), a>Q and b >0 such that the sequences (), (x}), and (y]), above
satisfy the conditions in Lemma 3.1.

Lemma 3.2. 7 I(LF(x), £~ (x)1)* converges, for all >}
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Proof. Let ¢:[0,+0)—+ W'(p) be the parametrization of W*(p) by arc-length
and  f=p7' o (flu,) o @:[0,+0)>[0,+0) and denote % = p='(f(x)).
Since p is a quadratic saddle-node for f there are<,>0 and a,>0 such that
1-2a,* < f(1}st—a,1® for all O=t=¢. Take m=1 such that Zn St and
ma =1 and let @;=max {m- %,, a,'). By induction we have X =ay/j for all
j=zm:
5‘} Sa/isa/m=st=i,, =.?(£1)£f(“2/j)5 ax/j—ayaifj*
=(a/(F+1) - [(j+1} - G—ama) /P l= ay/ (j+1).
It follows that, for > m,
HLP LD = (Fey = F G- ) S 20,5 -, )2 = 20,03/ (- 1)
and this clearly implies the iemma, o
Observe that

ma(Uy) =$ (P (), P ) sif KA (), 0],

so Lemma 3.2 already implies that mg{¥,) <o for all Be(1/2,1). .

The next result is the main step in the proof of Theorem A. We postpone its proof
to § 4.
Lemma 3.3, (Distortion Lemma). There is ¢ 0 such that T3 I(F(Cu G))=e¢ for
all connected component C of W- (T A;) and all connected componenis G of
WS A) with 3C N3G # ¢.

The sequences (xj = I(U})/ I U)); and (y} = I(VI)/ K U)), that we are considering,
clearly, satisfy condition (1) in Lemma 3.1, so we are left to find a=>0 and b>0
as in (2) and (3). This is done in the following corollaries of the Distortion Lemma.

CoraoLLarY 3.4. There is a >0 such that for all C and G as in Lemma 3.3 we have
a ' s OIS (G))<a for all n=0.

Proof. Every C e € can be written as C = f/(C,) for some j=0 and Coe 6,, so we
can assume from the beginning that C € %, andf G is a cornected component of
WnA; or Wn A,. We note that the set of values of (N CY H) for such C and
G is bounded away from 0 and +<0. Now, for n =0,

Qe 1 (@GN =ey eN - IIp™&l/| D (o)l

for some £e C, 5e G. This can be written

HMONIUNG)=LI(C) I(G)] exp (”g (log [DA)(f£) - log !D-'ﬂ(f“n)))

<[HC)/UG) exp ( Lip Gog D7 3 1A o)))
<[H(CY/G)] exp (e Lip (log |D1)
=a ’

for some universal a> 0. The other inequality is obtained in the same way and this
completes the preof of the corollary, O
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COROLLARY 3.5, There is b> 0 such that for Ce €,
BTHLL ), AT @D = (G U G (CH=b- KLf (x), 770,

Jor all C; & 6, and G, a connected component of W 01 A;, with (Cyu G)) < f(C), and

all n>0.

Progf. As in the proof of Corollary 3.4 we get

LU (G0 GO ;
S[HGw G/ C))-exp (Lip og DY) irey).

Note that I(C; v G} =r- ([ F(x), F/~*(x)]), where r>0 is a Lipschitz constant for
the unstable holonomy projection 7“(see § 2). Then
_ (G GN/KLT(C))) = rby exp (Lip (tog [Df]) - (b, +¢))
with b,>0 such that b7'=1(f"'(C))=b,, for all Ce%,. The other inequality
follows in the same way, The proof of the corollary is complete, a
We end this section by proving Lemma 3.1.

Proof of Lemma 3.1. Since )
P =(+a™y* ¥ (x)+y))?
i _ i
and
(1+a™)*>(1+a")'<1 when 81,
it is sufficient to show that ¥, ; (xj+ y/)? is close to 2., (xj+y)=1, for g close to
1, Now, for a< 8 <1,
Ly -(x+yh]l= ¥ ! [Cci+ y;)® = (xj+ y})1+ . L (x+y)”
Ly =

1%ix =1
1<j%n It

= ! E‘ , [(xj+y,‘-)’«~(x}+y})]+f° b -_,:.Z.: z;.
Isjsn .

Let 5>0 and take n=1 such that Lioa %[ S 8/2/6° and B close to 1 so that
(€8 = £)=8/2In for all £€[0, 1]. Then

L {(xj+y)? —(xj+yD)]s In (8/2In) + b*(5/21b") = 5.

i ) .

This proves the lemma, a

4. Proof of the distortion lemma _
For the sake of clearness we divide the proof into three steps:

Step 1. Let C and G be as in the statement of the lemma. Clearly (I{f/(C v G)))jao
is decreasing and I(f**'(C L @) s A/(f/(C ' G)) whenever F(Cu G)n Q=2.
Moreover (f(Cu G))jne is a disjoint family, To prove this we only need to show
that supw (f(C v G)) <infw(C u G), since flw : W~ W is a homeomorphism with
S(x)<x forall xe W. Let G=(a, ) and C= [8, ¥] with a <8 < v. Then:

(i) fla)<a,

(ii) f(B)<a(f(B)#a,f(B)<p and f(B)&(a, B)), and
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(i) f(v)=a(f{y)>a implies f'(a)e(8,7) and this is absurd since
SR 8"4) = (UP a"A;)).
Case a > 8> y is analogous.

Step 2. Let Gy=(f(x),f(»)), j=0, and G=LL)n 7 (x)], j=1. Clearly
KGo)+3 " NCu G)=K[p, y]). We claim that there is a, > G such that, forall I J
intervals in W contained in {C, U G;) (resp. Gi_, U C,) for some k=1, we have

ay 'L/ KD [ )]s a LT/ 1))
for all n = 0. To prove this we write:

(D)KL INT=[KT)/ ()] - o (oo ()i
=[HI)/NJ)) exp ();l (log | DfI(f'€)—log ID‘.ﬂ(f"n)))

=[I(N/1N]- cxp(Lip (tog D)) .g. d(f'g f"n))

={UI)/ (1)) - exp (Lip (lag |*/]) - K[ p, y])),
where £ and n ¢ J The other inequality is obtained in the same way.
Siep 3. Take 0= my=sn,<m, <p, <+~ < m, < n, < m,,., =0 such that
(i) FICUG)NQ=¢ for m;=j<n, and
(i) FICUG)NQ# ¢ for m=j<m,,, O=iss,

and write
Tisevan=1 (5 npcoon+ s Kreoa).

Note that, by Step 1,
Hf(C LG =Ag™ ™I ™ (CL GY = A(S™(C U G))
at least for i> 0, and
M Cua)=iricua)
for all i=0. Therefore _
M (Cu G = A (S™(C U GY)

and, by induction,
M {Cu@)=A(CuG)

for all i=0. Hence

R CIENIIEY :E M I((C L G)
1=} j= =0 jm= i,
x m—1 o 2
=L L amaricoasi (i) e @
im0 j=pm, . 0

where 4, is a uniform upper bound for /(C v G), with C and G as in the statement

of the lemma.
Now we estimate ¥, ™' I(#(C L G)). Consider first i =0 and define for /= 0,

Hi=7'(@" (™ CuG))),
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where w“:Q+tp, y] is the projection along the feaves qf " in Q. Then, by Step
1, (HD)jz0 is disjoint, so

m,—1
L P(CuGl=r =, IHY=r- Wp, s

=g )
where r is a Lipschitz constant for w* (see figure 3). Define now, for i=1, 120,
Hi=f(z"(f"(Cu G
mmmd e e mmmmmm e mm—————— T
m— 1T i
R . .l}
w— | T ‘

FIGURE 3

Since both (HY), and (H}), are disjoint families we must have (H§w H§) contained
in some fundamental domain (C, v G;) (or G,_,; v C;) of W. Therefore, by Step 2,

I(H )= a J(HDLH)/ I(HY)]
= a(HDLIHY/W(™(C v GNIIS(Cu G fH(C v G))]
x[Hf™(C v G/ HY]

< &, rAgr(HY)
for all 1=0. It follows that
':z KPCOCH=r T IHY

=a,r'Ap ‘g.o I(H})=a,r’A{l{[p, y]).
Finally we get
£ 78 HACUG)E £ arain )

o <arilpD(Ir). @)

The lemma now follows from (1)-(3). O
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3. HD (Ao} =d'(Ag) >4
In order to prave that the Hausdorff dimension and the limit capacity of An[p, x]

are equal’ we need to refine the analysis of § 3. Our argument uses ideas from the
proof of the corresponding result in the hyperbolic case, see Takens [11].
We begin by noting that for every {' € €, there are:

(i) intervals H,, ..., H, covering /~(C), and
(i) for each 1=isk, wi i H;+[p, x] an F*-holonomy which is an r-Lipachitz

homcomorphism with r-Lipschitz inverse (sec figure 4).
Moreover k and r may be taken independent of Ce %:.

'

/ '

FiourE 4

We now construct a sequence (X"),., of coverings of An{p, x]. These will be
usedto give estimates of HD{A n [p, x]) and d(A n [p, x]) which imply their equality,
Define

X'={K:j=1),

where X;=[f(»), /' (x)]. Note that, for all j=1,
f_jﬂ(KJ) =K,¢%,.

Therefore (recall § 3)
FAUK)Y=(CLuGLuChu - UG
U(C'LuGi,uC}:;,u---)u---uc},o
u(CLuG},,uC}Ju---)

with C; x € %, G}, a connected component of W A; and =1 uniformly bounded
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above by some Iy = 1. Let Kj,=f{(Cj,)c K, and define
H={K;uj=1l,k=1 and 1ss=I()=<]).
Note that for all Kj, e %* we have
FURN(KI)e@,.
Suppose now already constructed

A= {K;h---d'-:jl = 1’ e ijl 21 and l=s= !(Jl 3. pju—l) = 13-1}
‘with
f-u‘+"'+J")+1(K}._"_J-) & (el
for all Kj _, € X" Then
FTUTN R ) =(CR Y 7B IRY o WP VIRED IVERRUY < /P
VLGS i Gl W CRL sy )
with each C €%, . We define %"** as the family of

Kl ot =SOTHCH L VK
o'btgined in this way. Clearly it can be written as
H =K it hEL o Jemn=1 and 1ss= Wy, )12}
. For the sake of notational simplicity we will, from now on, write J and M} in
place of j,, ... »Jus and jy+- - -+ j, respectivety. Define, for Kied™,
y=inf DYV} g
and
| 7=sup D)),
where K3 =7"I(K4). Let, for y>0and nz=1,
Aa(7v) =§ (As/ )"

and
Ay)=k ); (rA3)7,
where k=1 and_r> 0 are as above.

ProPoOsITION 5.1,

(a) For n=1 big enough, A, and A, are finite, continuous and strictly decreasing
Junctions in (3, +00).  Maoreover Hmy oy Au(y)=lim, ., Ay (¥) =0 and
lim-y-o(l/!)-i- Au(?) = Iim-r-u(l/!)+ An(?) + 0. .

(b) Let, for n=1 big, a,, B, (%, +%0) be such that An(an) =1=A,(B,). Then:

() HD(An[p, x])za,,
(ii} d(An[p,x])=8,,
(iii) (ﬁn "' au)n +0.
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Clearly Proposition 5.1 implies Theorem A’(c). We collect in the following lemma
the main estimates used in the proof of this proposition.

Denote by p} the accumulation point of the sequence (K3},), and let A3 be the
length of the convex hull (in W) of K2 s ipih

LeMMA 5.2. There are a, b, d, >0 and 0<Ay<1 such that
(a) a”'ASsHK3)=aA3,
(b} Aj=bX%,
(e) Ai=ag™,
(d) IT;d 7" /ji=sHK3) <[ d/j3,
(e) A5 = (e/PITTa/it,
Jorailn,J=(j,...,J,), jand s.
Proof.
(a) Just take 4> 0 such that a'si{f(C))=a for all Ce %, and note that
I(K3)=UR3) - |D'\(£)| for some £e K,.
(b) From the definitions

Hi=1 - '
Aj/As=cxp (Lip (log |DY)) - %ﬁ 1K 5))) = exp (Lip (log |DYf]) - (a+c)),

where ¢> 0 is given by Lemma 3.3 and 2 >0 is as in (a).
(c) Take Aq=sup {|D¥f(£)|: £ C and Ce %,}. Noting that for all 1<i=<n,
FU 0¥ R is contained in some Cle €,, we get

n—1
AS=T] sup|D¥lcf=ag™
1

(d} We first prove the lower bound for n=1. Let P A X, &, a, and m be a5 in

Lemma 3.2. Take a;>> 0 such that 2, < min {mx,,, a,/4). Since
/i =5 S o= Fn = a2 afi~2aial/) = 0,/ (j+1)
we have X, = a,/j for all j= m. Then, for j> m
| (F-1 %)= ay(F )= ayad/ (G- 1)°

and this, as (I(X;)/ K[ f(x), F/~'(x)])) is bounded away from zero (see Step 2 in

§ 4), implies 1(K,)=d,/;?, for some d,>0 and all j=1.
Now for any K} e X" take K;e X", I=(j,,..., ju,), such that K3< K{. Then

(KD UKD I=1D7) D ) IR/ K ))
for some £ 9 in fY(K}). By construction of K} we have f(K3e %, so
1K) = r (K, ), with r>0 a Lipschitz constant for the unstable foliation
holonomy. Also f (K} e f Y (%,) so I UK 1)) = a. Replacing above we get
I(Kj)zexp (~Lip (log [Df])(a+c)) - ra ' I K, JI(K}).

By induction it follows
-1

n o
KKD=z]]—
1 I
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d z=exp (Lip (log |DY)) - (a+¢)) rad;?.
For the upper bound, case n =1 is contained in the proof of Lemma 3.2 and the

inductive step is proved as above.
(e} Case n=0 is contained in the proof of Lemma 3.2 and for the general case

we show as in (d) that

A3y = ra.exp (Lip (log |Df|)(a+ eNAIK ),
This completes the proof of the lemma, : O
Froof of 5.1.a. From Lemma 5.2 we get in a straightfonvard way

A.(v)sus(mbd")*ﬁu-")".

Hence A.(v)=A,(y) < for y>>} and A,, A, are continuous on v. It follows from
Lemma 5.2(c) that sup, ;{A3/r, rA3} <1 for n=1 big. This implies that A, and A,
are decreasing and im,, ., 1 A, (y) = lim, . yu A,(¥) = 0. Finally, from

Au(y) = (rabd “)"'{.‘ oy
it follows tim,. ;a4 An(y) = Lm0 Al(7) = +00, This ends the proof of 5.1.a,

Proof of 5.1.b(i). Suppose HD(A [px])<a<a,. Then
YA/ >1.

Take # a finite set of indices (s, J) such that this inequality remains true when -
the sum is taken over # Let g be such that if ¥ is & covering of An(p, x]
with m, (%)= ¢, then every Ue % intersects at most one K3, (s, J)e J. Since
HD(AN[p, x]}<a there is such an %, Denote Ur={Ue¥U: UnK}#@). Then
Ly ma (U3} = m (W)= &, s0 there is (1, Lyeg L=(1,...,1),such that m (%)=
(AL/7)"es. Form & = wi(Hyf(%})) where H,= f(K}) and #?: H,-[p, ]
are as at the beginning of the section. For every Uec % ¢ we have

diam (m}(A, S HUUY)) = (r/1L) - diam (U),

so m (%)= (r/A L)°m.(U})=< g4. On the other hand % has strictly less elements

than 4. Repeating this argument we get a covering of A [p, x] with no elements
at gll. This contradiction proves HD(An[p,x)=a, forall n=1.
Proof. of 5.1.b(ii). Suppose d(An[p, x))> B.: then A (d(An[p, x]))<1. Let
B> d(An(p x])> a>] and take A,> 0 such that

nle)=n(Anlpx],e)s A, e
for all O0<e=<) If % is a covering of An[p, x] by e-balls with not more than
(Aoe™®) clements and H; < /M K3) and 7% H.» [2, x are as at the beginning of
the section, then X, j*"'((vr}‘)“'(%!)) is a covering of X} by no more than (kAge~?)
inte;vals, each one of them contained in some (Aj - re)-ball. Therefore
n(Kj, A} re)skAgs™
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for0<e=xl,je.,
n(Kj, £)<kAg(A]-r)P - ¢#

if 0<g=rAj. Take, for every 0<§=1,
F=FE) ={(s,)): €= rA3)
Then
MESE kAN - ) r’+u(l;4 K3.¢)

Claim. There is A> 0 such that n(Us K5, &)= A&7 for all 0< £s1,
We postpone the proof of this claim and proceed to prove that it implies 5.1.b(ii).
Replacing above we get

n{£)=AcAn(B) - EF+A £ m A f)- €77
for all 0< ¢=1, where
A{€) = Ah,(B)+ A £,
Repeating this argument we prove
n(€)s A(£)¢*
for0<£=1 and i=1, where (4,(£)), is defined by
A =A,(B) - A(H)+A-¢#=
(and Ag(£)= A,).
Clearly A,(£)= Ax(A.(B)). Let A, be such that
An(d(An[p, xD)<Ap<1
and, given 0< £=1, take j=1 minimum such that
A E77> Ay (Ap=Aa(B)) - A,(BY.
By induction, A(§)=<A,- Aj for all 0= i=j and so
n(§)< AA}- £77
It follows that
[tog n(£)/log £™'1= B+ (log Au/log £7') + (log Al/log £71)
=B —(log Ag/log £)—[(B—a) - (jlog Ag)/(j log A,(8)
+log (Ao(Ae— A.(8))/ A))].
Making £ 0 (and so j-» @) we get
dAnpx))sB~[(B-a)-log As/log A,(B)]

and this leads to a contradiction when 8- d(An [p, x]). _
To prove the claim it is sufficient to show that for S0mMe Cq,..., 6,y and B> 0
we have

"(EJ K3, f) =gV ’(ng ¢ (log (bt 2))‘).

Let

" (1
farAiara“H(—s)-
1 \d

it
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Suppose first

E=ra (E?) ‘
Then, by the estimates in Lemma 5.2, A, = cW€ where ¢,= ev/ad/r. This mecans
that such X are contained in the c,v/g-ball centered at p and so their union may
be covered by cof~/*£-balls, In general take k minimum such that
. e
fzra ]:[ (H}—f)
Then, again by Lemma 5.2,

- A}.._.Jgs bk‘/z/(jl Tt .jk—l): .
where b, = evad™ %/ r, and so these K% are contained in the buVE/ (i + * Ju_r)-ball
centered at the corresponding p; ik o NOte that, by definition of k,

1\ ™
= m—'n*"'(—,) -
¢ YN T d
for all 1=i<k-1. Therefore the union of such Kj can be covered by not

more than (662 T 1/, - - - ji,) ¢-balls, where the sum is taken on the set of
Jis 1=i=k—1, with j,=<vr/{adf). Now

VriadE k-1 '
LIVG - de-d)= ( }1:«1; l/j) = (clog (bog~"/?)*!

for some universal ¢>0 and b,=v7/ad. Repeating the argument for every
I=k=n-1we get -

n(u,= K, s) =672 F (o (g (b))

with ¢ = ¢ "Bl for j=1. _
Proof of 5.1.b(iii). Let 8, = ~(log k(br*)*/log (A3~*r)). Then
An(an+8,)=k 2 (AS1)™* % < k(A37'r)™ T (A%r)*
aF 27

Sk(A§T')*(dr))™ T (A3/r)™ =1,

2
Since A, is decreasing it follows 8, < a, + 4. As (a,)a is bounded (by HD{A[p, x]))
this ends the proof of 5.1.b(iii) and so of Proposition 5.1,
From the proposition it also follows HD'(A,)= d*(Ag)>1/2. Note that
d(A¢n[p, x]) =1 is a simple consequence of the fact that dist (F(x), p) is of order
1/j (Lemmas 3.2 and 5.2) together with d({1/j: j=1} U {0}) =1 (see Takens [11]).

Remark 5.3. The hypothesis that p is a quadratic saddle-node for J is not funda-
mental. If we assume that k=2 is the order of the first non-degenerate jet of f at
the saddie-node then Lemmas 3.2 and 5.2 can be easily modified to give estimates
for I(K3) and A} similar to the ones above. In particular one gets

k—1

HD(ABP‘ [Ph x]) = d(Aoﬁ [ps x]) > k
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6. HD*(A,)-» HD"(A,) as 1 - 0* :

We show that the result HD*(Ap) = lim, a,, =lim,, Bn obtained in § 5 can be extended
to HD'(A,)=lim, a,(¢) =lim, 8,(t) for smalil positive 1, where «,(#), B.(¢) are
constructed below. These functions turn out to be continuous at zero and this implies
that HD*(A,) is continuous on the right at =0, Since ,(1), 8,(1) are natural
extensions of «,, 8, we just sketch their construction and go into details only when
they differ from § 5.

Let (A,(1)); be a family of u-rectangles for f, satisfying, for every f=0, properties
analogous 1o (Py)—(P,) of §3, with A,{0) =A; for all =1 and depending con-
tinvously on ¢, By & ¥-rectangle we mean here an open imbedded rectanglte contained
in W*(q,) and bounded by W*(4,), W*(p,) and two segments of W*(p,). Asin § 5
we define x,, y,, K;{1), K5(1), X'(e), A3(1), AS(1), pi(r) and A% ,(1). Finally let
a()=|D%(p)).

LemMa 6.1. Therearea, b, d,, d;, e>0 and 0<Ag<1 such thas:
(a) a™'AS()=HK}(1)) = aAi(1),
(B) A3(ry=bas(1),
(€) AX()=ag™,
(di) HK3(e))=N1dy/jf3,
(d)) HK3()y=dja(s),
() A3,(r)=(e/ITd/R,
Joralln, J=(j,,...,j,), J. s and i>0 small.
Proaf. (a) and (c) are proved as in Lemma 5.2, The same holds for (b) once we
have extended Lemma 3.3. for t=0, (which is straightforward), with constant ¢> 0
independent .of 1. This is possible because Lipschitz constaats for % holonomies
may be taken uniformly (see Remark 2,2).

To prove (d,} let ¢,: [0, +00) = {p,} W, be the parametrization by arc-length,
%=, x)and f = @7 o f, 2 o, Take 4>0, x>0 and a,> 0 such that

o()x—2a,x*= fi(x)= o(t)x —a,x*

for 0=x=x,and 0=¢x 4, Take m=1 such thatf',“(f,)s(xofz) for0=1t= and
ma,xp=1 and let

a,=max {n,", sup {f:“(f,) Tg e '\(1), 0=y < !o}}.
By induction we get, for j=m,
FE) = a0 (sy! / ("§ am‘).
Then
HK () s Fi&) - (%)

= [aza(t)‘"(l — (1)) J%:l a(t)! +2alt:.'§(;!'(4!)2"_2]/(%l c‘.nr(t_)')2

< aya (1) / (Jg a(r)') s as/j?
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for some a; >0 and all j = m. This proves case n =1 in (d,). The inductive step goes
as in the proof of Lemma 5.2{d).

Case n=1 in (d,) and n =0 in (&) are weaker versions of estimates in the proof
of {d,). The inductive step goes again as in Lemma 5.2. The proof of Lemma 6.1 is
complete. O

Let, as in § 5,

Ay y)= 5 (A5(0)/ )"

and
A (s, )=k E (rAI(H)Y,
=

where r is some uniform Lipschitz constant for F; holonomies.

PrapPosITION 6.2 .
(a) For n=1 big enough, A,.{1,-) and A,(3,-) are finite, continuous and strictly
decreasing functions in (0, +00). Moreover im,, 4o A, (2, ¥) =lim,, 400 Ap(t, ¥) =
0 and lim, g+ A.{8, ¥} =lim, .+ An(2, y) =400,
(b} Let, for n big 0<a,{t}=B,(¢) <+00 be such that A, (1, a,{¢)) =1 = A, (1, 8,(1)).
Then: ' '
(i) HD'(A) =z a, (1),
(i) d7(A)=p.{1),
(iii) (8.(t)—aa(1)).~0.
Proof. All the affirmatives in (a) proved as in Proposition 5.1 except for the last one
(which here is trivial). The same holds for b(i) and b(iii). Finally b(ii} also follows
as in Proposition 5.1, once we have shown that 4°(A,)> 3, which is a consequence
of 5.1, 6.2.h({i) and the proposition below. 0

PROPOSITION 6.3. For n big a,(1) = «, and 8,(1)> B, as > 0",

Proof. Let £>0: then Y., (A3/r)* *>1. Take # finite and &>0 such that
T A3/ )" >1 for all 0=¢=5. Then A, (1, &, —€)>1, and so a,{(t)>a,~¢
On the other hand ¥, (A3/r)™**=1-1 for some 7>>0. Take # finite such that
T A3/ )" < 7/2 for all ¢ close to zero (recall Lemma 6.1(a) and specially
(d,}). Now, if ¢ is small enough, ¥, {AJ(8)/rY=*"<t-—r1/2and so A,(L, a,+e) <1,
which implies ¢,+ &> a,(t). The proof for B8,(t) is the same. This proves the
proposition. ‘ . : O
Continuity of HD*(A,) and d*(A,) as - 0% now follows easily.

7. Proof of Theorem B’

Let a defining sequence for a Cantor set K = R be a decreasing family (K"),»q of
compact parts of R with K =[5 K", such that KX° is an interval and for n =1 each
K" '.component is a finite disjoint union of K"-components and open intervals,
the X "-gaps. In the proof of Theorem B’ we use the lower bound for the Hausdorft
dimension biven by

LEmma 7.1, Let >0 and K be a Cantor set with a defining sequence (K"), such
that [1{C})/ {G)) & for all K"-component C and K"-gap G with 3C ndG # {J, and
all n2=0. Then HD(K ) =log 2/log (2+ 7).
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Proof. We need the following result whose (eclementary) proof we leave to the reader:
Let »>0 and B =log2/log (2+77"). Then '

xtytz=a x=Ty,z=0y withx, p, 2> 0=3xF +28 2 gP

Let 8=log2/log (24 +"). We prove that for all finite open covering ¥ of K we
have mg(%)=(diam K°)*. We may assume that % is disjoint, since if U, Ued
have non-empty intersection then (H{ U, v U;))% = ({U))* + ({U,))*, which means
that the covering obtained from: 4 replacing U, U, by U,u U, has smaller
B-measure than ¥. Let now n=0 be the smallest integer such that ¥ covers
K" Let G be a K"-gap not covered by % and C,, C, by the K ".components with
dC; NG AP #IGNIC,. Denote by U, U, the elements of ¥ containing
C: and C, respectively and Jet U be their convex hull and ¥ = U~ (U, u U,). Then

KU)=HC), KU Y= I(C,), KV)=HG)
which implies {Uj}=7- I(V), {U,) =7+ V) and so (I(U}))* +(H(U,))* = {U))A.
This means that replacing U, U, by U in % we get a covering of K with smaller
B-measure than 4. Repcating the argument we construct a covering ¥ of K°
with mg(V) = mg(¥U). Since we must have my(¥)=(diam K°* this proves the
lemma. O

FIGURE §

We now prove Theorem B'. Take, for 1> 0, A4, a u-rectangle (i.c. an open domain
contained in W*(8,) and bounded by W*(p,), W"(gq,) and two segmeants of W'(p,))
containing 6, and let D,=A,~f7(A,) be a fundamental domain for W*(@,).
Let W, be the separatrix of W*(p,)—{p,} not contained in W (8,) and let
x, € W,n W*(q,) be the smallest element of W, 3“4, {for the natural ordering in
W,, see § 3). .

Define K;=[p,, x] and, for =1, K= K0—f7(A,) = K="~ f(D,). Then A, A
[Py, x,]=(o K7 and (K7}, is a defining sequence for A, n[p,, x,]. Note that C is
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a K7-component if and only if C = JH{Co) = [p, %] for some connected component
Co of W,—A,. Also the K-gaps arc the G =f1(Ga)=[p, %), G, a connected
component of W, ~ D,.

Claim. There is @ >0 such that [I(f"(Co))/ IS (Go))] = a(}(Cy)/ 1{Go}] for all com-
ponent C, of W, — A,, all component G, of W, D, with aC n G # D,andall nx 1
and > 0. :

Take then b(#) =inf (I(Co)/I(Gy): Cy, G, as above}. Clearly b(t)>> 0 and 6(s) >
+00 as - 0", From the claim we get [I{C)/ K G)]= ab(¢) for all K"-component ¢
and K7-gap G with 3C N3G =, Theorem B’ now follows from Lemma 7.1,

We are now left to prove the claim above. Let W, be the separatrix of W'(g,) - {a.}
not contained in W"(4,) and let z;& W: W"“(p,) be the smallest elcment of
Wi a“A, (for the natural ordering in W/, see § 3).

Take y, € W,n W*(p,) and w,€ W:n W*(q,} such that [x,, y.] and [z,, w,] are
connected components of W;n A4, and Win A, respectively. Let B, and C, be
u-rectangles intersecting ail the connected components of W,— A, and such that

Balp, x1=[£(y:)] and C,n[q., z]1=[£(z), fi(w)]. (See figure 6.)

FIGQURE 6

Lemma 7.2. (Distortion Lemma). There is ¢>0 such that 2o NGy wH)) = ¢
Jor every conmected component G, of W,nD, every connected component H,
of W.—(A,v B,u C) with 3Hyn3G,# & and all t > 0.

Lemma 7.2 is proved in almost the same way as Lemma 3.3 so we do not g0 into
details here. We just note that, by construction, iterates of (Gyu H) passing near
P (resp. q,) project into disjoint intervals in W, (resp. W!) and this permits the
same kind of estimates for the sum of the lengths of those iterates as in the proof
of Lemma 3.3 (see also the remark at the end of this section). We should also point
out that, in order to get ¢>>0 independent of ¢> 0, one must use the fact that



424 . L. J. Diaz and M. Viana

Lipschitz constanis for the unstabie holonomy #“ may be taken uniform on ¢
(Remark 2.2). .

Let now C, and G, be as in the statement of the claim. Take H, a connected
component of W, —{A,u B,u C,} contained in C,, with 3Gy~ aH,# &. Then, for
some £€ G, and n € Hy, we have

[ (CoD/ UL (Ga))) 2 [ (Ho)) 11 (Go))]
=[I(Ho)/ {Ga) - [|D7)/1Df 7 (4]

= [C)/ K G)] - [HHo)/ K CoY] exp (z log | Dl f£) —log lD'ﬁI(ﬁnJ)

= [H(C)/HGo)] - a; - exp (—up GogIDf -5 ()

z a, + exp (—c- Lip (log [DiD) « [I(Ca}/ K Gy)),
where ¢>0 is given by Lemma 7.2 and @, =0 is some uniform lower bound for
(I{Hy)/ H{C)), with H, and C, as above. Since (f)), is continuous in the C*-topology
Lip (log | D*f]) is bounded, s0 we may take a = a, exp (—c sup, Lip (log |D*/,|)). This
ends the proof of cur claim and thus of the theorem.

Remark 1.3. 35" HJ/ (Cyo Gg)), Co a component of (W, — A,) and G, a component
of (W, n D,) with 3Cyn aG, # &, is not uniformly boundead,. For example, it is not
hard to see that ¥ I{f7([p., x,]}}»+c0 as 1+ 0*. Note that (f7([p,, x,})), is not
disjoint.

8. Proof of Theorem C -

We first claim that lim u,(¢7)+0 as 1= 0", In fact by the variational principle
Plagi)=h, (f)+ap(¢;), a =0, with equality for « =1, and by Theorem 1 in [4]
we have P(HD’(A,)¢])=0 (see figure 7). Then noting that ¢! <0 on A, we get

h.p

FiGurs 7
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0= p(¢7)= P(¢1)/ (1~ HD'(A,)). Since HD'(A,)+ HD'(Ao) <1as t > 0 the claim
now follows from the fact that P(¢7)-» 0 as 1 0*. This was done in [4] but for the
sake of completeness we reproduce the argument here. Let &, be the Dirac measure
at the fixed point p,. Clearly hy (f) =0 and 5,(¢!) = #1(p,) so (see also Theorsm
4.11 in [1]) we have 0> P(¢;) = ¢{(p,) > 0 as 10", Now the claim, together with
¢¢<0on A,, casily implies u, > 5 as t» 0.

To show that 8-is the unique equilibrium state for ¢ we first note that

0= he(fo) +8(¢3) = P(s) =sup {h. (S} + u($}): p  f-invariant} =0

(see Ruelie [9] for the last inequality).
Now if u is an equilibrium state for ¢; we must have u($]) =0 and so a=8
Otherwise by Manning [5] we would have

HD*(Ag)= HD(Wio(p) A Gy = — b, (fo)/ u(3) =1

{where G, is the set of generic points for ) and this contradicts Theorem A'(a).
We should note that, although Manning's theorem is stated for Axiom A
difleomorphisms, the proof of the inequality we use here is more general and still
applies in our context. -

REFERENCES

[1] R. Bowen. Equilibrium states and ergodic theory of Axiom A diffeomorphisms. Lecture Notes in
Mathematics 470. Springer Verlag: New York, 1975.

[2] R Bowen. On Axiom A diffeomorpkisms. Conference Board Marh, Sciences 3% Amer. Math. Soc.
{1977). )

(3] M. Hirsch & C. Pugh. Stabic manifolds and hyperbolic sets. Global Analysis. Proc. Symp. in Pure
Math. XIV, Amer. Math. Soc. (1970), 133-163. .

[4] H. McCluskey & A. Manning. Hausdorff dimension for horseshoes. Ergod. Th. & Dynam. Sys. 3
(19283), 231-260. ; .

[3} A. Manning. A rélation between Lyapunov exponents, Hausdorff dimension and catropy. Ergod.
Th. & Dynam. Sys. 1 {1981), 451-459, '

[6] A Manning. Errati to *Hausdorff dimension for horseshoes’. Frgod Th. & Dynam, Sys. 5 (1985}, 319.

{71 ). M. Marstrand. The dimension of cartesian products of seis. Proc. Cambridge Phil Soc. 30 (1954),
198-202, .

{81 & Palis & M. Viana. On the continuity of Hausdor dimensions and limit capacity for horseshoes,
Topics in Dynamics, Proceedings Chilean Symp., Lacture Notes in Math, 1331, Springer Verlag:
New Yok, 1988, :

{91 I Ruelle. Anincquuliry for the entropy of differentiable maps. ol Soc. Bras. de Mat,9 (1978),83-87.

[10] 8. Smale. Diffcrentiable dynaxsical systems. Bull Amer. Math, Soc. 73 {1967), 7147-817.

[11) F. Takens, Limit capacity and Hausderff dimension of dynamically defined Cantar scts. Topics in
Dynumics, Proceedings Chilean Symp., Lecture Notes in Math. 1331, Springer Yerlag: New York,
1988, '

[¥2) P. Walters. A vatistional principle for the pressure of tontinwous translormations. Amer. J. Math,
97 {1976), 937971, : ) )

[13] & Williams. The "DA” maps of Smale and structural stability, Globel Analysis, Prac. Symp. in Pure
Mati. XIV Amer. Afath. Soc, (1970}, 320-334.




