
Chapter 1The intermitten
y route to 
haoti
dynami
sL J D��az, I L Rios, M Viana 1PUC-Rio, U F Fluminense, IMPARio de Janeiro, BrazilTo Floris, whose work has been a 
ontinuous sour
e of inspirationThe expression intermitten
y des
ribes a me
hanism of transition fromsimple behaviour to turbulen
e in dissipative 
onve
tive 
uids, and manyother dissipative dynami
al systems. The pioneer work of Pomeau, Man-neville [26℄ analyzed intermitten
y in the Lorenz model, as well as in fami-lies of systems unfolding a saddle-node, a 
ip, or a Hopf bifur
ation. Theirarti
le presented numeri
al eviden
e indi
ating that in these bifur
ationsthe Lyapunov exponent grows 
ontinuously from zero beyond the bifur
a-tion threshold.A 
on
eptual formulation of intermitten
y in a broad setting was pro-posed by Floris Takens in [30℄: An ar
 (1-parameter family) of di�eomor-phisms (��)� on a manifold has an intermitten
y bifur
ation for � = �0 ata 
ompa
t invariant set K if� for every � < �0 the di�eomorphism �� has an attra
ting 
ompa
tset K� (not ne
essarily transitive), 
onverging to K in the Hausdor�sense when � tends to �0 from below;� for � > �0 
lose to �0 there are no ��-attra
ting sets near K, yetthe ��-orbit of Lebesgue almost every point in a neighbourhood of Kreturns 
lose to K in�nitely often.Su
h bifur
ations are a

ompanied by profound 
hanges of the dynam-i
s, both at the lo
al level (in a neighbourhood of the 
ompa
t set K) and1 Partially supported by CNPq 001/2000, Faperj, and Pronex-Dynami
al Systems. 1



Saddle-nodes of di�eomorphisms 2at the global level. As we shall see, these global 
hanges are mainly in-
uen
ed by the way points return to the vi
inity of K, for the bifur
ationparameter.The best studied situations 
orrespond to the 
ase where the set K
onsists of a unique �xed (or periodi
) orbit, of saddle-node type: onemultiplier is equal to 1, all the others are less than 1 in norm. This isalso the setting we have in mind in this review, spe
ially when the globalre
urren
e stems from the presen
e of a 
y
le, that is periodi
 points with
y
li
 interse
tions of their stable and unstable manifolds.Other interesting 
ases in
lude, for example, transitions from Anosovto derived from Anosov di�eomorphisms [29, 32℄, as well as 
ertain bifur-
ations of partially hyperboli
 sets in dimension 3 or bigger.1.1 Saddle-nodes of di�eomorphisms1.1.1 De�nitions and basi
 fa
tsA saddle-node of a Cr di�eomorphism � :M !M is a �xed (or periodi
)point P of �, su
h that D�(P ) has a multiplier equal to 1 and all the othersless than 1 in norm. The tangent spa
e TPM splits into two D�-invariantspa
es, the one-dimensional 
entral spa
e E
, whi
h is the eigenspa
e asso-
iated to the multiplier 1, and the stable spa
e Ess, 
orresponding to theremaining multipliers.By normal hyperboli
ity theory [11, 19℄, there are lo
ally invariantimmersed 
entral manifold W 
 and strong stable manifold W ss, tangent atP to E
 and to Ess, respe
tively. The stable manifold is unique and of
lass Cr. In general, there are several 
entral manifolds, and they may beless smooth than the di�eomorphism �.PSfrag repla
ements � < �0 � = �0 � > �0W 
W 
Fss W ssS� PA� Figure 1.1. Lo
al dynami
s at a saddle-node bifur
ationIt is part of the de�nition of saddle-node that, for some 
hoi
e of W 
,the restri
tion of � to the 
entral manifold has a non-vanishing 2-jet at P :there is a 
oordinate x on W 
 (with P 
orresponding to x = 0) su
h that�(x) = x+ � x2 +O(jxj3) with � 6= 0:



Saddle-nodes of di�eomorphisms 3Then P is a semi-attra
tor restri
ted to W 
, as depi
ted at the 
enter ofFigure 1.1, and it also follows that the 
entral manifold is of 
lass Cr. Theunstable manifold W u of P is an immersed half-line 
ontained in W 
. Thestable manifold W s is a 
losed half-spa
e with W ss as its boundary.Moreover, there is a unique �-invariant foliation of the stable manifoldof P by 
o-dimension 1 sub-manifolds havingW ss as a leaf. It is 
alled thestrong stable foliation Fss of the saddle-node.1.1.2 Unfolding saddle-nodesSaddle-nodes are obtained by 
ollapsing a saddle S� and a periodi
 attra
-tor (node) A� into a single point, as des
ribed in Figure 1.1. Afterwards,the periodi
 points disappear and there is no attra
ting set in the regionwhere the saddle-node P was formed. The �rst part of Takens' de�nitionof intermitten
y is ful�lled taking K = P and K� to be the 
losure of theseparatrix 
onne
ting S� to A�. To have the se
ond one, we shall assumelater that the saddle-node is part of a 
y
le.An ar
 of di�eomorphisms (��)� unfolds generi
ally a saddle-node Pof a di�eomorphism � = ��0 if it 
uts the hyper-surfa
e of di�eomorphismswith a saddle-node point transversely at �. Here is an alternative formu-lation, in terms of lo
al expressions.One 
onsiders a 
ontinuation W 
� of the 
entral manifold W 
, fornearby parameter values (this exists be
ause the invariant manifold W 
is normally hyperboli
 [11℄ for the di�eomorphism � = ��0). Generi
 un-folding means that, up to a 
onvenient 
hoi
e of 
oordinates x inW 
�, and are-parameterization of the family, the restri
tion of �� to W 
� has the form��(x) = x+ �+ �x2 + � x�+ 
 �2 +O(j�j3 + jxj3):After re-parameterization, the bifur
ation parameter has be
ome � = 0.From now on we shall always 
onsider �0 = 0.The notion of saddle-node may be extended to in
lude other non-hyperboli
 periodi
 points obtained by 
ollapsing two saddle-points withdi�erent stable dimensions: they have a unique multiplier equal to 1, andall the others are di�erent from 1 in norm. See [7℄ for results in this setting.1.1.3 Saddle-node 
y
lesA di�eomorphism � has a saddle-node k-
y
le, k 2 N, if there are a saddle-node p0 and hyperboli
 periodi
 saddles p1; : : : ; pk�1, su
h that W u(pj�1)interse
ts transversely W s(pj) for every j and W u(pk�1) meets W s(p0).The 
y
le is 
riti
al if W u(pk�1) is non-transverse to the strong stablefoliation of the saddle-node. Otherwise, it is 
alled non-
riti
al . Figure 1.2exhibits three di�erent types of saddle-node 
y
les: from left to right we



Saddle-nodes of di�eomorphisms 4have a 
riti
al 1-
y
le, a 
riti
al saddle-node horseshoe, and a non-
riti
al2-
y
le (non-
riti
al saddle-node horseshoe).PSfrag repla
ements QP PWu(P ) Wu(P )Wu(P ) W ss(P )W ss(P )W ss(P )W s(P ) W s(P )
Figure 1.2. Saddle-node 
y
lesAn ar
 of di�eomorphisms (��)� unfolds generi
ally a saddle-node 
y-
le of � = �0 if it unfolds generi
ally the saddle-node p0 involved in that
y
le. This is a remarkably ri
h me
hanism of bifur
ation. For instan
e,Theorem 1. (Newhouse, Palis, Takens [19℄) If an ar
 (��)� of surfa
e dif-feomorphisms unfolds generi
ally a 
riti
al saddle-node 
y
le of �0, thenthere is a sequen
e of parameters �n ! 0 su
h that, for every �n, the dif-feomorphism ��n has a homo
lini
 tangen
y whi
h is unfolded generi
allyby the family (��)�.This result extends to arbitrary dimension, see [8℄. Moreover, the 
on-verse is also true (L. Mora): the generi
 unfolding of a homo
lini
 tangen
yby a family of surfa
e di�eomorphisms always in
ludes the formation andgeneri
 unfolding of 
riti
al saddle-node 
y
les.From Theorem 1 one dedu
es that any phenomena o

urring duringa homo
lini
 bifur
ation (e.g. the 
reation of attra
tors) are also presentwhen a 
riti
al saddle-node 
y
le is unfolded. However, saddle-node bifur-
ations have a very distin
tive feature, that we state as the following infor-mal prin
iple: persistent phenomena (positive Lebesgue measure of valuesof �) are, a
tually, prevalent (positive Lebesgue density at � = 0). Morepre
ise statements and an explanation of the me
hanism behind this prop-erty are provided in the next se
tions.1.1.4 Persisten
e and prevalen
eLet (��)� be an ar
 of di�eomorphisms on a manifold M , going throughsome bifur
ation at � = 0. Let P be some dynami
al property, like hyper-boli
ity, 
o-existen
e of in�nitely many sinks, or presen
e of non-hyperboli
strange attra
tors.The property P is persistent after the bifur
ation if for every " > 0 thesubset E" � [0; "℄ of parameter values for whi
h �� veri�es P has positive



Transition maps 5Lebesgue measure. P is 
alled prevalent at the bifur
ation iflim inf"!0 jE"j" > 0;where jE"j denotes the Lebesgue measure of E". Finally, P is fully prevalentif the limit is 1.For instan
e, Newhouse, Palis, Takens [18, 20, 21℄ prove that hyper-boli
ity is fully prevalent in ar
s of surfa
e di�eomorphisms unfolding ho-mo
lini
 tangen
ies asso
iated to hyperboli
 sets with Hausdor� dimensionless than 1. This is not true if the Hausdor� dimension is bigger than 1,by Palis, Yo

oz [23℄, but the union of hyperboli
ity and persistent tangen-
ies (Newhouse's phenomenon [17℄) is always fully prevalent at homo
lini
bifur
ations in dimension 2, by Moreira, Yo

oz [15℄.In the same setting, Mora, Viana [13℄ proved that existen
e of non-hyperboli
 strange attra
tors is a persistent phenomenon. By a re
entresult of Palis, Yo

oz [25℄, it 
an not be prevalent. On the other hand,as we shall see in a while, non-hyperboli
 strange attra
tors are alwaysa prevalent phenomenon in the unfolding of 
riti
al saddle-node 
y
les.This is a striking realization of the informal prin
iple we stated before: Insaddle-node bifur
ations, persistent properties tend to be prevalent.This remarkable feature results from the existen
e of a repetition pat-tern in parameter spa
e that is 
hara
teristi
 of intermitten
y bifur
ations:One 
an �nd sequen
es �n 
onverging to the bifur
ation value 0 su
h thatthe ar
s obtained by restri
ting the parameter to ea
h interval [�n+1; �n℄have roughly the same dynami
s for all large n, up to 
onvenient parame-terization.This is properly explained by means of the following 
onstru
tion ofNewhouse, Palis, Takens [19℄, that plays a 
ru
ial role in the sequel. For
larity, we shall restri
t ourselves to the 
ase of surfa
e di�eomorphisms.However, this 
onstru
tion extends to any dimension [8℄.1.2 Transition mapsLet (��)� be an ar
 of di�eomorphisms unfolding generi
ally a saddle-nodeof � = �0. Fix, on
e and for all, a 
ontinuation W 
� of a 
entral manifold,and a 
oordinate system x in ea
h W 
� so that��(x) = x+ �+ �x2 + � x�+ 
 �2 +O(j�j3 + jxj3):It is no restri
tion to assume � > 0. Then, for � = 0, the subsets fx < 0gand fx > 0g of the 
entral manifold of the saddle-node are 
ontained in itsstable and unstable manifolds, respe
tively. See Figure 1.1.



Transition maps 61.2.1 Finite-time transition mapsFor � = 0, the presen
e of the �xed point prevents the transition of orbitsfrom the left fx < 0g to the right hand side fx > 0g. However, thisobstru
tion disappears when the parameter � be
omes positive. We 
anthen de�ne transition maps, in the following way.Fix 
ompa
t fundamental domains D� � fx < 0g and D+ � fx > 0gof �� restri
ted to W 
�. Their dependen
e on � is not relevant here, so weomit it in our notations. For ea
h � > 0 let k = k(�) be the smallest integersu
h that �k�(D�) interse
ts D+. As � de
reases to zero, more and moreiterates are needed for D� to rea
h D+, whi
h means that k(�) ! 1 as� tends to zero from above. There is a de
reasing sequen
e of parameters�n ! 0 su
h that k(�) = n for all � 2 [�n+1; �n) and �n�n(D�) = D+. SeeFigure 1.3.
PSfrag repla
ements

P1
0 �n D� D+�n+1�n� �n�n+1(D�)�n�(D�)�n�n(D�)a bFigure 1.3. Dynami
al normalizations of parameter spa
eIt is useful to identify points in fx < 0g if they are in the same orbitof ��, and similarly in fx > 0g, and we shall often do it in the sequel. Thisidenti�
ation turns D� and D+ into smooth 
ir
les. For ea
h large n and� 2 [�n+1; �n), we 
onsider the 
ir
le map~Tn(�; �) : D� ! D+indu
ed by the nth iterate �n�, and 
all it the time-n transition map of thesaddle-node ar
 (��)�.The repetition pattern we announ
ed before 
omes from the fa
t thatthese ar
s of �nite-time transitions behave roughly the same when n is large:up to dynami
ally de�ned normalizations of the domain in parameter spa
e,the ar
s ~Tn 
onverge to some limit T1 when n tends to in�nity.1.2.2 Parameter normalization and in�nite-time transitionA 1-parameter family of ve
tor �elds (X�)� is a saddle node ar
 if (in lo
al
oordinates around the origin) the ve
tor �elds are of the formX�(x) = �+ �x2 + � x�+ 
 �2 +O(j�j3 + jxj3);



Transition maps 7for some 
onstants �; �; 
 with � > 0.The ar
 (X�)� is adapted to (��)� if ��(x) 
oin
ides with X1�(x) forall � � 0 and x 
lose to zero, where X1� is the time-1 
ow map of the ve
tor�eld X� ([19℄ use a weaker 
ondition, the present de�nition is from [8℄).For the existen
e of adapted ar
s of ve
tor �elds see [12, 33℄.Let us write D� = [a; ��(a)℄ and D+ = [b; ��(b)℄ with a < 0 < b. Bythe de�nition of the �n, the point �n+1�n (a) 
oin
ides with the right end-point ��(b) of D+, whereas �n+1�n+1(a) 
oin
ides with the left end-point b ofD+. Moreover, [�n+1; �n℄ 3 � 7! �n+1� (a) 2 D+is in
reasing (if n is large).For ea
h � 2 [�n+1; �n℄ we denote �n(�) the time the 
ow of theadapted ar
 of ve
tor �elds X� takes to go from �n+1� (a) to ��(b). That is,X�n(�)� ��n+1� (a)� = ��(b) , Xn+�n(�)� (a) = b�n maps [�n+1; �n℄ onto [0; 1℄ in a de
reasing fashion. We de�ne the nthparameter spa
e normalization �n: [0; 1℄ ! [�n+1; �n℄ to be the inverse ofthis map �n.The adapted ar
 (X�)� also allows us to exhibit in�nite-time transitionmaps T1: [0; 1℄�D� ! D+, given byT1(�; x) = Xt(x)��0 (b);where t(x) is the time the 
ow spends from a to x, that is, Xt(x)0 (a) = x.Keep in mind that we think of D� and D+ as 
ir
les, under identi�
ationsof points in the same orbit.Note that, if one takes t(x) mod 1 as a new 
oordinate in D� and,similarly, 
onsiders the time the 
ow of X0 takes to go from b to any pointin D� as a new 
oordinate in D�, these T1(�; �) be
ome 
ir
le isometries.In fa
t, ea
h T1(�; �) is obtained 
omposing T1(0; �) with the rigid rotationof angle ��.1.2.3 Convergen
e and distortion propertiesLet Tn be the ar
s of transformations from D� to D+ obtained by re-parameterizing the �nite-time transitions ~Tn a

ording to �n:Tn: [0; 1℄�D� ! D+; Tn(�; x) = ~T (�n(�); x):That is, Tn(�; �) is the map indu
ed by the restri
tion of �n�n(�)(x) to the
entral manifold, in the quotient spa
es obtained by identifying points inthe same orbit, on fx < 0g and on fx > 0g. Here is the 
onvergen
estatement we had announ
ed:



Global aspe
ts: ghost dynami
s 8Theorem 2. (Newhouse, Palis, Takens [19℄, D��az, Ro
ha, Viana [8℄) Thesequen
e of maps Tn: [0; 1℄�D� ! D+
onverges to T1: [0; 1℄�D� ! D+ in the Cr-topology when n!1.Most important for the kind of problems we want to deal with, there-parameterizations �n have uniformly bounded distortion:Proposition 3. ([8, Proposition 2.2℄) For every " > 0 there is n0 su
h that(1� ")jAj < j�n(A)j�n � �n+1 < (1 + ")jAjfor every measurable subset A of [0; 1℄ and every n � n0.We have been 
on
erned only with the dynami
s restri
ted to the
entral manifold. The reason is that the dynami
s of the transition mapstransverse to W 
� vanishes when � approa
hes zero: all that is left is thedynami
s along the 
entral manifold, des
ribed by T1. Here is a morepre
ise explanation.Consider neighbourhoods C� and C+ of D� and D+. If C� and C+are 
onveniently 
hosen, their quotients after identi�
ation of points in thesame orbit (that we 
ontinue denoting in the same way) are di�eomorphi
to 
ylinders D� � [�1; 1℄. De�ne T̂n(�; �) to be the map from C� to C+indu
ed by the di�eomorphism �n�n(�)(x) (now we do not restri
t to the
entral manifold). Sin
e our di�eomorphisms are 
ontra
ting transverselyto the 
entral manifold, the image of T̂n(�; �) gets 
loser and 
loser to theequator D+ � f0g of C+ when n in
reases. Indeed, we have the followinghigher dimensional version of Theorem 2:Theorem 4. ([8, Theorem 2.6℄) The sequen
e T̂n: [0; 1℄� C� ! �C+ 
on-verges to the ar
T̂1: [0; 1℄� C� ! C+; T̂1(�; x; y) = (T1(�; x); 0)in the Cr topology, when n!1.1.3 Global aspe
ts: ghost dynami
sNow we analyze the unfolding a saddle-node 
y
les, from the global pointof view. The situation when the saddle-node is the unique periodi
 pointinvolved in the 
y
le deserves a separate treatment.



Global aspe
ts: ghost dynami
s 91.3.1 A return map for 1-
y
lesLet (��)� be an ar
 of di�eomorphisms generi
ally unfolding a 
riti
al 1-
y
le. Fix fundamental domains D� and D+, as in the previous se
tion.We assume that the unstable manifold of the saddle-node P is 
ontained inits stable manifold. Then there exists l � 1 su
h that �l0(D+) is 
ontainedin the region fx < 0g, inside the lo
al stable manifold of P . See Figure 1.4.PSfrag repla
ements D�
D+D+D+D+D+C� C+�l0(D+) R1(�; �)

Figure 1.4. Ghost 
ir
le mapsFix fundamental regions C� � D� and C+ � D+, as before, su
hthat �l�(C+) is 
ontained in fx < 0g for every � 
lose to zero, and theorbit of any point of �l�(C+) has a representative in C�: it suÆ
es thatthat C+ be suÆ
iently short, and C� be long enough along the verti
al(strong-stable) dire
tion. Then, identifying points in the same �� orbit aswe have been doing, there is a well de�ned ar
 of smooth maps	� : C+ ! C�from the 
ylinder C+ to the 
ylinder C�, indu
ed by �l�.Moreover, if � denotes the proje
tion from the stable manifold ontoW 
 along the leaves of the strong-stable foliation, we 
an de�ne a smooth
ir
le map  0 : D+ ! D�from the 
ir
le D+ to the 
ir
le D�, indu
ed by � Æ�l0. Observe that if the
y
le is 
riti
al then this 
ir
le map exhibits (at least two) 
riti
al points.This is the 
ase Figure 1.4 refers to, and the one we are most interested infor the time being.Composing the 	� with the transition maps that were introdu
ed be-fore, we obtain ar
s of global return mapsRn: [0; 1℄� C+ ! C+; Rn(�; �) = T̂n(�; �) Æ	�n(�)(�):These maps en
ode the whole dynami
s of the di�eomorphisms �� 
lose tothe 
y
le. Moreover, by Theorems 2 and 4, the sequen
e Rn 
onverges, in



Global aspe
ts: ghost dynami
s 10the Cr topology, to the ar
 of ghost mapsR1: [0; 1℄�C+ ! C+; R1(�; x; y) = T̂1(�;  0(x); 0) = (T1(�;  0(x)); 0):It is important to observe that, sin
e the last variable y plays no rolein R1, we may also think of it as an ar
 of 
ir
le maps:R1: [0; 1℄�D+ ! D+; R1(�; x) = T1(�;  0(x)):Thus, the unfolding of the saddle-node 
y
le may, to some extent, be re-du
ed to a 1-dimensional problem: From understanding the dynami
s ofthese 
ir
le maps R1(�; �), one may draw 
on
lusions about the behaviourof �� for small � > 0. Next 
omes an important appli
ation of this idea.1.3.2 Prevalen
e of hyperboli
itySuppose P is a robust property, that is, the set of dynami
al systems thatsatisfy P is open. Suppose, in addition, that P holds for some ghost 
ir
lemap R1(�; �) : D+ ! D+. Then, by robustness, P is satis�ed by Rn(�; �)for every large n and every � in some interval J � [0; 1℄. Sin
e ea
hRn(�; �) is a quotient map of an iterate of ��n(�) (identi�
ation of points inthe same orbit), we 
on
lude that, up to 
onvenient translation, propertyP is satis�ed by �� for all parameters � in the set E = Sn �n(J).On the other hand, by the bounded distortion property in Proposi-tion 3, jE \ [�n+1; �n℄jj[�n+1; �n℄j � (1� ")jJ j � 12 jJ jfor every large n. So, E has positive density at � = 0. In other words, theproperty P is prevalent at the bifur
ation for the ar
 (��)�.For instan
e, take P to be hyperboli
ity (Axiom A plus strong trans-versality [29℄). It is not diÆ
ult to ensure, for a 
riti
al saddle-node ar
(��)�, that some ghost 
ir
le map R1(�; �) is hyperboli
. For instan
e, onemay 
hoose R1(1=2; �) su
h that it has exa
tly two 
riti
al points, both
ontained in the basin of attra
tion of a �xed point s0, and the norm ofthe derivative is larger than 1 outside neighbourhoods of the 
riti
al points
ontained in the basin of s0. Then the non-wandering set of R1(1=2; �)is hyperboli
 (implying the Axiom A) and the map satis�es the strongtransversality 
ondition. It follows, by robustness of hyperboli
ity, that ��is hyperboli
 for a sizable subset of parameters �. Along these lines onegetsTheorem 5. (D��az, Ro
ha, Viana [8℄) There exists an open set of ar
s ofdi�eomorphisms unfolding a 
riti
al saddle-node 1-
y
le for whi
h hyper-boli
ity is a prevalent property at the bifur
ation.This result extends to 
riti
al saddle-node l-
y
les, any l � 1 [8℄.



Global aspe
ts: ghost dynami
s 11Question 1. Is prevalen
e of hyperboli
ity a generi
 property (open anddense) among ar
s of di�eomorphisms unfolding 
riti
al saddle-node 
y
leswith �nitely many 
riti
alities (for the ghost 
ir
le maps) ?One way to prove this would be to show that given a generi
 multi-modal map R of the 
ir
le (�nitely many 
riti
al points), there exists �su
h that R� � (
omposition with the rotation by ��) is hyperboli
.1.3.3 Saddle-node horseshoesThe kind of systems des
ribed in the 
entral part of Figure 1.2 was �rsttreated by Zeeman [34℄, and was pointed out by Takens [30℄ as an importantmodel of intermitten
y.One 
onsiders a 2-dimensional disk D and an embedding �:D ! Dwhose limit set in D 
onsists of a horseshoe � and a periodi
 attra
tor.Then one lets the attra
tor and the a

essible �xed point of the horseshoe
ollapse into a saddle-node. At the bifur
ation, the limit set �0 is topolog-i
ally 
onjugate to the initial horseshoe, but it is no longer hyperboli
, asit 
ontains the saddle-node. Sin
e �0 has a dense subset of periodi
 points,the di�eomorphism exhibits saddle-node l-
y
les for any l � 2.A key di�eren
e with respe
t to the 
ase of 1-
y
les we dis
ussed aboveis that now the unstable manifold of the saddle-node P is not 
ompletely
ontained in its stable manifold: for instan
e, W u(P ) interse
ts the stablemanifolds of all the other periodi
 points in the non-hyperboli
 horseshoe�0. This means that there is no family of global returns maps, as we wereable to 
onstru
t in the previous 
ase.PSfrag repla
ements D� D+ D+ I
IW ss(P ) Wu(P )�l0(I)

R1(�; �)
Figure 1.5. Saddle-node horseshoes: partially de�ned ghost mapsHowever, it is possible to 
onstru
t partially de�ned return maps, asfollows. One �xes fundamental domains D� and D+ as before, and 
on-siders a maximal open subinterval I of D+ 
ontained in W u(P ) and whoseextremes are points of the strong stable manifold W ss(P ). Then one de-�nes, in mu
h the same way as before, an ar
 of ghost return maps R1(�; �)
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e of lo
al and global strange attra
tors 12from I to D+. In the example des
ribed in Figure 1.5, the return mapshave a unique 
riti
al point. Note that the norm of the derivative goes toin�nity at the boundary of I . The 
onvergen
e Theorems 2, 4 remain validon 
ompa
t subsets of I .Partially de�ned ghost maps are used by Costa [4℄ in her proof thatglobal strange attra
tors are a prevalent phenomena in the unfolding ofsaddle-node horseshoes, in a robust (open) 
lass of 
ases. Prevalen
e ofhyperboli
ity had been proven in [8℄, for another robust 
lass. A detailedstudy of these return maps R1(�; �) is 
arried out by D��az, Rios [6℄, whoprovide a geometri
 model for the unfolding of saddle-node horseshoes.Another use of partially de�ned return maps, by D��az, Ures [9℄, will bedis
ussed in a forth
oming se
tion.In a related setting, Crovisier [5℄ shows, in great generality, that saddle-node horseshoes give rise to true (hyperboli
) horseshoes when the saddle-node is unfolded in the dire
tion of negative parameters. Cao, Kiriki [3℄study the unfolding of non-
riti
al horseshoes, as on the right hand side ofFigure 1.2.1.4 Prevalen
e of lo
al and global strange attra
torsAn attra
tor of a di�eomorphism � :M !M is a 
ompa
t invariant subset� of M that is transitive (dense orbits) and whose basin (or stable set)W s(�) = fx 2M : �n(x)! � as n! +1ghas positive Lebesgue measure. A repeller of f is just an attra
tor of theinverse map f�1. One 
alls the attra
tor strange if orbits in the basinare sensitive with respe
t to initial 
onditions: almost every pair of orbitsstarting in nearby points diverge from ea
h other as time in
reases.In this se
tion we dis
uss saddle-node 
y
les as a privileged me
hanismfor 
reating strange attra
tors, spe
ially non-hyperboli
 ones.1.4.1 A general prevalen
e resultA

ording to Theorem 1, the generi
 unfolding of a 
riti
al saddle-node
y
le always involves the formation and generi
 unfolding of homo
lini
tangen
ies. On the other hand, Mora, Viana [13℄ prove, based on the workof Benedi
ks, Carleson [1℄, that the presen
e of non-hyperboli
 strangeattra
tors is a persistent phenomenon in generi
 ar
s of surfa
e di�eomor-phisms unfolding a homo
lini
 tangen
y. See also [28, 31℄ for the extensionto arbitrary dimension. It follows that strange attra
tors are persistentalso in the unfolding of saddle-node 
riti
al 
y
les.In view of the ideas dis
ussed in Se
tion 1.3.2, one may expe
t thepresen
e of strange attra
tors to be a prevalent phenomenon in this setting
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e of lo
al and global strange attra
tors 13of saddle-node 
y
les. However, one should stress that the situation ismu
h more subtle than in the 
ase of hyperboli
ity, that we settled inSe
tion 1.3.2, be
ause in the present 
ontext one la
ks robustness: the setsof systems 
onstru
ted in [1, 13, 31℄, for whi
h strange attra
tors are knownto exist, have empty interior. Thus, a deli
ate analysis of the bifur
ationme
hanisms is needed to justify that expe
tation:Theorem 6. (D��az, Ro
ha, Viana [8℄) Existen
e of non-hyperboli
 strangeattra
tors is a prevalent property at the bifur
ation for every ar
 of di�eo-morphisms (��)� unfolding generi
ally a 
riti
al saddle-node 
y
le.1.4.2 Global strange attra
torsThe strange attra
tors obtained by the previous 
onstru
tion have a lo
alnature: they are periodi
, with high periods, and their basins have a largenumber of 
onne
ted 
omponents, with small total Lebesgue measure. Thisis entirely in the nature of things: without further assumptions about thegeometry at the bifur
ation, the set of points whose forward orbits remainforever 
lose to the 
y
le may have small volume, for all positive values ofthe parameter of �.
PSfrag repla
ements P U

Figure 1.6. Global invariant region for 1-
y
lesOn the other hand, in some relevant 
ases one 
an identify a globalregion around the 
y
le that remains forward invariant for all parameters
lose to zero. An important example, 
orresponding to a saddle-node 1-
y
le, is des
ribed in Figure 1.6, where the invariant region is an annulus.In su
h 
ases, it is natural to ask whether a unique attra
tor 
an be found,in a persistent or even prevalent way, that a

ounts for the whole dynami
albehaviour, in the sense that its basin 
ontains the entire invariant region.The �rst 
onstru
tion of non-hyperboli
 strange attra
tors with su
h aglobal 
hara
ter was given by the followingTheorem 7. (D��az, Ro
ha, Viana [8℄) Presen
e of a global non-hyperboli
strange attra
tor is prevalent at the bifur
ation for an open 
lass of ar
s ofdi�eomorphisms unfolding a 
riti
al saddle-node 1-
y
le.
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e of tangen
ies 14Other 
onstru
tions appeared subsequently, in
luding [4℄ in the set-ting of saddle-node horseshoes, where one may take a disk as the forwardinvariant region.1.5 Persisten
e of tangen
iesIn this se
tion we dis
uss fra
tal dimensions and the phenomenon of per-sistent tangen
ies in the 
ontext of saddle-node bifur
ations.1.5.1 Fra
tal dimensions in homo
lini
 bifur
ationsStarting in the early seventies, works of Newhouse, Palis, Takens [18, 21, 20℄and, later, also Yo

oz, Moreira [23, 15℄, have unveiled a deep 
onne
tionbetween fra
tal dimensions (su
h as the Hausdor� dimension) of invariantsets, and the frequen
y of hyperboli
ity in the unfolding of homo
lini
tangen
ies of surfa
e di�eomorphisms. Let us outline this 
onne
tion.One 
onsiders a homo
lini
 tangen
y asso
iated to a periodi
 point P
ontained in a horseshoe �. See Figure 1.7. The existen
e of a homo
lini
tangen
y implies that the invariant (stable and unstable) foliations of �are tangent along a di�erentiable 
urve 
 
ontaining the homo
lini
 pointin its interior and transverse to both foliations. The interse
tion of 
 withthe leaves of the foliations 
orresponding to points of the hyperboli
 set �de�nes two Cantor sets �s and �u.PSfrag repla
ements P 

 W s(�)
Wu(�)

W s(��)Wu(��)
�
Figure 1.7. Persistent tangen
ies between invariant foliationsGiven an ar
 (��)� of di�eomorphisms unfolding the tangen
y, one
onsiders the 
orresponding interse
tions �s� and �u� of 
 with the stableand unstable leaves through the points of the hyperboli
 
ontinuation ��of �. Clearly, if the sets �s� and �u� have non-empty interse
tion there is ahomo
lini
 tangen
y asso
iated to ��. Identifying 
 with an interval of Rone 
an think of �s� and �u� as �-translations of the 
antor sets �s and �u.



Persisten
e of tangen
ies 15Newhouse [16℄ introdu
ed a notion of thi
kness , that allowed him togive a suÆ
ient 
riterion for two Cantor sets to interse
t. It is de�ned asfollows. Consider the pro
ess of 
onstru
tion of the Cantor set by, su

es-sively removing the 
orresponding gaps, in a non-in
reasing order of theirlengths. Ea
h time a gap is removed, 
ompute the ratio between the lengthsof the two remaining nearby intervals and the length of the gap itself. Thethi
kness is the in�mum of all these ratii.Newhouse's gap lemma [16℄ states that two Cantor sets su
h that theprodu
t of their thi
knesses is larger than 1 must interse
t, unless one ofthem is 
ontained in a gap of the other. Building on this, he was able to
onstru
t examples of ar
s of di�eomorphisms (��)� generi
ally unfoldinga homo
lini
 tangen
y of � = �0 su
h that for a dense subset of a wholeinterval [0; "℄ of values of � the di�eomorphism �� has another homo
lini
tangen
y. One speaks of interval of persistent tangen
ies . Later, in [17℄,he proved that persistent tangen
ies o

ur in any generi
 unfolding of anyhomo
lini
 tangen
y by an ar
 of surfa
e di�eomorphisms.Then, the series of papers by Newhouse, Palis, Takens, Yo

oz, Mor-eira mentioned above identi�ed the Hausdor� dimension as a key fra
talinvariant determining the frequen
y of hyperboli
ity in the unfolding of ho-mo
lini
 tangen
ies on surfa
es. In general terms, hyperboli
ity is prevalentat the bifur
ation if and only if the Hausdor� dimension of the horseshoe� is less than 1.More re
ent results of Moreira, Palis, Viana [14, 24℄ and Romero [28℄have shown that this prin
iple remains valid on manifolds with arbitrarydimension. In dimension larger than 2 there are other me
hanisms (notinvolving fra
tal dimensions expli
itly) yielding persisten
e of tangen
iesin the C1 topology, see Bonatti, D��az [2℄. Moreover, Rios [27℄ extendedmany of the previous results to the unfolding of homo
lini
 tangen
iesa

umulated by periodi
 points (the homo
lini
 orbit is 
ontained in thelimit set of the di�eomorphism).1.5.2 Thi
k horseshoes in saddle-node 
y
lesSaddle-node 
y
les exhibit some original features, from the point of viewof the dis
ussion in the previous se
tion. One of the most striking is thepossibility of thi
k horseshoes to be 
reated, \out of nowhere", immediatelyafter the bifur
ation. In fa
t, su
h horseshoes may be seen as a kind of
ontinuation of thi
k invariant sets of the ghost return maps. Let us explainthis in the 
ase of 
riti
al 1-
y
les.We may 
onstru
t examples of 
riti
al saddle-node 1-
y
les su
h thatthe ghost 
ir
le map R1(�; �) has a hyperboli
 Cantor set with large thi
k-ness for some subset of parameters � 2 [0; 1℄. For instan
e, one may takefor R1(�; �) a 
ir
le map su
h that the derivative is larger than 1 in normoutside two intervals �1 and �2 (around the 
riti
al points) with length
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ies 16Æ bounded by some small Æ > 0. Then the maximal invariant set �� ofR1(�; �) in the 
omplement of �1 [ �2 is hyperboli
 and its thi
kness isof order of 1=Æ.Then, using the 
onvergen
e Theorems 2 and 4, and the 
ontinuousdependen
e of the thi
kness on the di�eomorphism [17℄, one gets that thedi�eomorphism ��, � = �k(�) has a hyperboli
 set with stable thi
kness(transverse thi
kness of the stable foliation) of order 1=Æ, for every large k.This observation is at the origin of a result of D��az, Ures [9℄ we aregoing to state next, saying that the unfolding of 
ertain saddle-node 
y
lesleads to an interval of persisten
e of tangen
ies immediately after the bi-fur
ation (the interval is of the form [0; "0℄ for some "0 > 0), even if theHausdor� dimension of the limit set at the bifur
ation is smaller than 1.However, the previous 
onstru
tion is not suÆ
ient to prove su
h aresult. One problem is that it proves the existen
e of thi
k horseshoesonly for 
ertain subintervals in the spa
e of parameters �. Another, moreserious, diÆ
ulty is that the hyperboli
 sets one gets in this way mighthave very small unstable thi
kness, and so the gap lemma might not applyto them.1.5.3 Thi
k horseshoes from saddle-node horseshoesThese diÆ
ulties 
an be bypassed for 
ertain robust 
lasses of ar
s of di�eo-morphisms unfolding a saddle-node horseshoe: one obtains hyperboli
 setswith large produ
t of stable and unstable thi
knesses for all small valuesof the parameter �, even if the saddle-node horseshoes itself is thin.As we have seen in Se
tion 1.3.3, in this situation ghost return mapsR1(�; �) may be de�ned on 
onvenient subintervals I of the fundamentaldomain D+. The end-points of I 
orrespond to points of the strong stablemanifold of the saddle-node and that the norm of the derivative of R1(�; �)goes to in�nity at the end-points. See Figures 1.5 and 1.8.One proves that, in an open 
lass of 
ases, the map R1(�; �) has ahyperboli
 Cantor set �� with large stable thi
kness, for every parameter�. In fa
t, the stable thi
kness admits a lower boundM that is of the orderof 1=jBj where B is the smallest of the following intervals: the 
onne
ted
omponents of (D+ n I) and an interval around the 
riti
al point outsideof whi
h the derivative is larger than 1. Assuming the gap of the initialhorseshoe is big enough, we 
an take I proportionally big in D+, and thenwe 
an make M as large as we like.Next, one has to ensure that the unstable thi
kness remains boundedfrom zero, by some small 
onstant that may be �xed independently of M .For this one argues that almost all (a subset with nearly the same thi
kness)of the initial saddle-node horseshoe persists, as a hyperboli
 horseshoe,after the unfolding of the saddle-node. This uses also the 
ontinuity of thethi
kness with the dynami
s. Sin
e the unstable thi
kness of the saddle-
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PSfrag repla
ementsP D+IFigure 1.8. Thi
k invariant Cantor sets for the maps R1(�; �)node horseshoe is positive, we 
on
lude that the unstable thi
kness of thesehyperboli
 sub-horseshoe are bounded from zero by some m > 0.Sin
e M and m depend on the geometry of the saddle-node horseshoein di�erent dire
tions (respe
tively stable and unstable), we may indeedin
rease M without redu
ing m, so that their produ
t is larger than 1.This is a main ingredient in the proof ofTheorem 8. (D��az, Ures [9℄) For every " > 0 there is an open set of ar
s(��)� unfolding at � = 0 a 
riti
al saddle-node horseshoe of Hausdor�dimension less that 1=2+" su
h that some (0; �0℄ is an interval of persisten
eof tangen
ies.Let us observe that a saddle-node horseshoe always has Hausdor� di-mension stri
tly bigger than 1=2, by [10℄.Question 2. Is there a ne
essary and suÆ
ient 
ondition involving fra
taldimensions of the saddle-node horseshoe �0 guaranteeing the existen
e ofan interval J of the form (0; �0) of persisten
e of tangen
ies ?A 
orresponding question was originally asked by Palis and Takens[22, Se
tion 7℄, in the 
ontext of homo
lini
 bifur
ations. As we explained,in that 
ontext the frequen
y of hyperboli
ity is essentially determined bythe Hausdor� dimension of the hyperboli
 set asso
iated to the tangen
y.Here, in view of the previous observations, a natural approa
h would be to
onsider not only the dimension of the saddle-node horseshoe but also thedimensions of the hyperboli
 sets of the 
ir
le maps R1(�; �).Question 3. Does there exist a non-empty open subset of the spa
e O(M)of ar
s (��)� of di�eomorphisms unfolding generi
ally a 
riti
al saddle-node 1-
y
le su
h that for any ar
 in this subset the di�eomorphisms ��are non-hyperboli
 for all small � > 0 ?
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