
Chapter 1The intermitteny route to haotidynamisL J D��az, I L Rios, M Viana 1PUC-Rio, U F Fluminense, IMPARio de Janeiro, BrazilTo Floris, whose work has been a ontinuous soure of inspirationThe expression intermitteny desribes a mehanism of transition fromsimple behaviour to turbulene in dissipative onvetive uids, and manyother dissipative dynamial systems. The pioneer work of Pomeau, Man-neville [26℄ analyzed intermitteny in the Lorenz model, as well as in fami-lies of systems unfolding a saddle-node, a ip, or a Hopf bifuration. Theirartile presented numerial evidene indiating that in these bifurationsthe Lyapunov exponent grows ontinuously from zero beyond the bifura-tion threshold.A oneptual formulation of intermitteny in a broad setting was pro-posed by Floris Takens in [30℄: An ar (1-parameter family) of di�eomor-phisms (��)� on a manifold has an intermitteny bifuration for � = �0 ata ompat invariant set K if� for every � < �0 the di�eomorphism �� has an attrating ompatset K� (not neessarily transitive), onverging to K in the Hausdor�sense when � tends to �0 from below;� for � > �0 lose to �0 there are no ��-attrating sets near K, yetthe ��-orbit of Lebesgue almost every point in a neighbourhood of Kreturns lose to K in�nitely often.Suh bifurations are aompanied by profound hanges of the dynam-is, both at the loal level (in a neighbourhood of the ompat set K) and1 Partially supported by CNPq 001/2000, Faperj, and Pronex-Dynamial Systems. 1



Saddle-nodes of di�eomorphisms 2at the global level. As we shall see, these global hanges are mainly in-uened by the way points return to the viinity of K, for the bifurationparameter.The best studied situations orrespond to the ase where the set Konsists of a unique �xed (or periodi) orbit, of saddle-node type: onemultiplier is equal to 1, all the others are less than 1 in norm. This isalso the setting we have in mind in this review, speially when the globalreurrene stems from the presene of a yle, that is periodi points withyli intersetions of their stable and unstable manifolds.Other interesting ases inlude, for example, transitions from Anosovto derived from Anosov di�eomorphisms [29, 32℄, as well as ertain bifur-ations of partially hyperboli sets in dimension 3 or bigger.1.1 Saddle-nodes of di�eomorphisms1.1.1 De�nitions and basi fatsA saddle-node of a Cr di�eomorphism � :M !M is a �xed (or periodi)point P of �, suh that D�(P ) has a multiplier equal to 1 and all the othersless than 1 in norm. The tangent spae TPM splits into two D�-invariantspaes, the one-dimensional entral spae E, whih is the eigenspae asso-iated to the multiplier 1, and the stable spae Ess, orresponding to theremaining multipliers.By normal hyperboliity theory [11, 19℄, there are loally invariantimmersed entral manifold W  and strong stable manifold W ss, tangent atP to E and to Ess, respetively. The stable manifold is unique and oflass Cr. In general, there are several entral manifolds, and they may beless smooth than the di�eomorphism �.PSfrag replaements � < �0 � = �0 � > �0W W Fss W ssS� PA� Figure 1.1. Loal dynamis at a saddle-node bifurationIt is part of the de�nition of saddle-node that, for some hoie of W ,the restrition of � to the entral manifold has a non-vanishing 2-jet at P :there is a oordinate x on W  (with P orresponding to x = 0) suh that�(x) = x+ � x2 +O(jxj3) with � 6= 0:



Saddle-nodes of di�eomorphisms 3Then P is a semi-attrator restrited to W , as depited at the enter ofFigure 1.1, and it also follows that the entral manifold is of lass Cr. Theunstable manifold W u of P is an immersed half-line ontained in W . Thestable manifold W s is a losed half-spae with W ss as its boundary.Moreover, there is a unique �-invariant foliation of the stable manifoldof P by o-dimension 1 sub-manifolds havingW ss as a leaf. It is alled thestrong stable foliation Fss of the saddle-node.1.1.2 Unfolding saddle-nodesSaddle-nodes are obtained by ollapsing a saddle S� and a periodi attra-tor (node) A� into a single point, as desribed in Figure 1.1. Afterwards,the periodi points disappear and there is no attrating set in the regionwhere the saddle-node P was formed. The �rst part of Takens' de�nitionof intermitteny is ful�lled taking K = P and K� to be the losure of theseparatrix onneting S� to A�. To have the seond one, we shall assumelater that the saddle-node is part of a yle.An ar of di�eomorphisms (��)� unfolds generially a saddle-node Pof a di�eomorphism � = ��0 if it uts the hyper-surfae of di�eomorphismswith a saddle-node point transversely at �. Here is an alternative formu-lation, in terms of loal expressions.One onsiders a ontinuation W � of the entral manifold W , fornearby parameter values (this exists beause the invariant manifold W is normally hyperboli [11℄ for the di�eomorphism � = ��0). Generi un-folding means that, up to a onvenient hoie of oordinates x inW �, and are-parameterization of the family, the restrition of �� to W � has the form��(x) = x+ �+ �x2 + � x�+  �2 +O(j�j3 + jxj3):After re-parameterization, the bifuration parameter has beome � = 0.From now on we shall always onsider �0 = 0.The notion of saddle-node may be extended to inlude other non-hyperboli periodi points obtained by ollapsing two saddle-points withdi�erent stable dimensions: they have a unique multiplier equal to 1, andall the others are di�erent from 1 in norm. See [7℄ for results in this setting.1.1.3 Saddle-node ylesA di�eomorphism � has a saddle-node k-yle, k 2 N, if there are a saddle-node p0 and hyperboli periodi saddles p1; : : : ; pk�1, suh that W u(pj�1)intersets transversely W s(pj) for every j and W u(pk�1) meets W s(p0).The yle is ritial if W u(pk�1) is non-transverse to the strong stablefoliation of the saddle-node. Otherwise, it is alled non-ritial . Figure 1.2exhibits three di�erent types of saddle-node yles: from left to right we



Saddle-nodes of di�eomorphisms 4have a ritial 1-yle, a ritial saddle-node horseshoe, and a non-ritial2-yle (non-ritial saddle-node horseshoe).PSfrag replaements QP PWu(P ) Wu(P )Wu(P ) W ss(P )W ss(P )W ss(P )W s(P ) W s(P )
Figure 1.2. Saddle-node ylesAn ar of di�eomorphisms (��)� unfolds generially a saddle-node y-le of � = �0 if it unfolds generially the saddle-node p0 involved in thatyle. This is a remarkably rih mehanism of bifuration. For instane,Theorem 1. (Newhouse, Palis, Takens [19℄) If an ar (��)� of surfae dif-feomorphisms unfolds generially a ritial saddle-node yle of �0, thenthere is a sequene of parameters �n ! 0 suh that, for every �n, the dif-feomorphism ��n has a homolini tangeny whih is unfolded generiallyby the family (��)�.This result extends to arbitrary dimension, see [8℄. Moreover, the on-verse is also true (L. Mora): the generi unfolding of a homolini tangenyby a family of surfae di�eomorphisms always inludes the formation andgeneri unfolding of ritial saddle-node yles.From Theorem 1 one dedues that any phenomena ourring duringa homolini bifuration (e.g. the reation of attrators) are also presentwhen a ritial saddle-node yle is unfolded. However, saddle-node bifur-ations have a very distintive feature, that we state as the following infor-mal priniple: persistent phenomena (positive Lebesgue measure of valuesof �) are, atually, prevalent (positive Lebesgue density at � = 0). Morepreise statements and an explanation of the mehanism behind this prop-erty are provided in the next setions.1.1.4 Persistene and prevaleneLet (��)� be an ar of di�eomorphisms on a manifold M , going throughsome bifuration at � = 0. Let P be some dynamial property, like hyper-boliity, o-existene of in�nitely many sinks, or presene of non-hyperbolistrange attrators.The property P is persistent after the bifuration if for every " > 0 thesubset E" � [0; "℄ of parameter values for whih �� veri�es P has positive



Transition maps 5Lebesgue measure. P is alled prevalent at the bifuration iflim inf"!0 jE"j" > 0;where jE"j denotes the Lebesgue measure of E". Finally, P is fully prevalentif the limit is 1.For instane, Newhouse, Palis, Takens [18, 20, 21℄ prove that hyper-boliity is fully prevalent in ars of surfae di�eomorphisms unfolding ho-molini tangenies assoiated to hyperboli sets with Hausdor� dimensionless than 1. This is not true if the Hausdor� dimension is bigger than 1,by Palis, Yooz [23℄, but the union of hyperboliity and persistent tangen-ies (Newhouse's phenomenon [17℄) is always fully prevalent at homolinibifurations in dimension 2, by Moreira, Yooz [15℄.In the same setting, Mora, Viana [13℄ proved that existene of non-hyperboli strange attrators is a persistent phenomenon. By a reentresult of Palis, Yooz [25℄, it an not be prevalent. On the other hand,as we shall see in a while, non-hyperboli strange attrators are alwaysa prevalent phenomenon in the unfolding of ritial saddle-node yles.This is a striking realization of the informal priniple we stated before: Insaddle-node bifurations, persistent properties tend to be prevalent.This remarkable feature results from the existene of a repetition pat-tern in parameter spae that is harateristi of intermitteny bifurations:One an �nd sequenes �n onverging to the bifuration value 0 suh thatthe ars obtained by restriting the parameter to eah interval [�n+1; �n℄have roughly the same dynamis for all large n, up to onvenient parame-terization.This is properly explained by means of the following onstrution ofNewhouse, Palis, Takens [19℄, that plays a ruial role in the sequel. Forlarity, we shall restrit ourselves to the ase of surfae di�eomorphisms.However, this onstrution extends to any dimension [8℄.1.2 Transition mapsLet (��)� be an ar of di�eomorphisms unfolding generially a saddle-nodeof � = �0. Fix, one and for all, a ontinuation W � of a entral manifold,and a oordinate system x in eah W � so that��(x) = x+ �+ �x2 + � x�+  �2 +O(j�j3 + jxj3):It is no restrition to assume � > 0. Then, for � = 0, the subsets fx < 0gand fx > 0g of the entral manifold of the saddle-node are ontained in itsstable and unstable manifolds, respetively. See Figure 1.1.



Transition maps 61.2.1 Finite-time transition mapsFor � = 0, the presene of the �xed point prevents the transition of orbitsfrom the left fx < 0g to the right hand side fx > 0g. However, thisobstrution disappears when the parameter � beomes positive. We anthen de�ne transition maps, in the following way.Fix ompat fundamental domains D� � fx < 0g and D+ � fx > 0gof �� restrited to W �. Their dependene on � is not relevant here, so weomit it in our notations. For eah � > 0 let k = k(�) be the smallest integersuh that �k�(D�) intersets D+. As � dereases to zero, more and moreiterates are needed for D� to reah D+, whih means that k(�) ! 1 as� tends to zero from above. There is a dereasing sequene of parameters�n ! 0 suh that k(�) = n for all � 2 [�n+1; �n) and �n�n(D�) = D+. SeeFigure 1.3.
PSfrag replaements

P1
0 �n D� D+�n+1�n� �n�n+1(D�)�n�(D�)�n�n(D�)a bFigure 1.3. Dynamial normalizations of parameter spaeIt is useful to identify points in fx < 0g if they are in the same orbitof ��, and similarly in fx > 0g, and we shall often do it in the sequel. Thisidenti�ation turns D� and D+ into smooth irles. For eah large n and� 2 [�n+1; �n), we onsider the irle map~Tn(�; �) : D� ! D+indued by the nth iterate �n�, and all it the time-n transition map of thesaddle-node ar (��)�.The repetition pattern we announed before omes from the fat thatthese ars of �nite-time transitions behave roughly the same when n is large:up to dynamially de�ned normalizations of the domain in parameter spae,the ars ~Tn onverge to some limit T1 when n tends to in�nity.1.2.2 Parameter normalization and in�nite-time transitionA 1-parameter family of vetor �elds (X�)� is a saddle node ar if (in loaloordinates around the origin) the vetor �elds are of the formX�(x) = �+ �x2 + � x�+  �2 +O(j�j3 + jxj3);



Transition maps 7for some onstants �; �;  with � > 0.The ar (X�)� is adapted to (��)� if ��(x) oinides with X1�(x) forall � � 0 and x lose to zero, where X1� is the time-1 ow map of the vetor�eld X� ([19℄ use a weaker ondition, the present de�nition is from [8℄).For the existene of adapted ars of vetor �elds see [12, 33℄.Let us write D� = [a; ��(a)℄ and D+ = [b; ��(b)℄ with a < 0 < b. Bythe de�nition of the �n, the point �n+1�n (a) oinides with the right end-point ��(b) of D+, whereas �n+1�n+1(a) oinides with the left end-point b ofD+. Moreover, [�n+1; �n℄ 3 � 7! �n+1� (a) 2 D+is inreasing (if n is large).For eah � 2 [�n+1; �n℄ we denote �n(�) the time the ow of theadapted ar of vetor �elds X� takes to go from �n+1� (a) to ��(b). That is,X�n(�)� ��n+1� (a)� = ��(b) , Xn+�n(�)� (a) = b�n maps [�n+1; �n℄ onto [0; 1℄ in a dereasing fashion. We de�ne the nthparameter spae normalization �n: [0; 1℄ ! [�n+1; �n℄ to be the inverse ofthis map �n.The adapted ar (X�)� also allows us to exhibit in�nite-time transitionmaps T1: [0; 1℄�D� ! D+, given byT1(�; x) = Xt(x)��0 (b);where t(x) is the time the ow spends from a to x, that is, Xt(x)0 (a) = x.Keep in mind that we think of D� and D+ as irles, under identi�ationsof points in the same orbit.Note that, if one takes t(x) mod 1 as a new oordinate in D� and,similarly, onsiders the time the ow of X0 takes to go from b to any pointin D� as a new oordinate in D�, these T1(�; �) beome irle isometries.In fat, eah T1(�; �) is obtained omposing T1(0; �) with the rigid rotationof angle ��.1.2.3 Convergene and distortion propertiesLet Tn be the ars of transformations from D� to D+ obtained by re-parameterizing the �nite-time transitions ~Tn aording to �n:Tn: [0; 1℄�D� ! D+; Tn(�; x) = ~T (�n(�); x):That is, Tn(�; �) is the map indued by the restrition of �n�n(�)(x) to theentral manifold, in the quotient spaes obtained by identifying points inthe same orbit, on fx < 0g and on fx > 0g. Here is the onvergenestatement we had announed:



Global aspets: ghost dynamis 8Theorem 2. (Newhouse, Palis, Takens [19℄, D��az, Roha, Viana [8℄) Thesequene of maps Tn: [0; 1℄�D� ! D+onverges to T1: [0; 1℄�D� ! D+ in the Cr-topology when n!1.Most important for the kind of problems we want to deal with, there-parameterizations �n have uniformly bounded distortion:Proposition 3. ([8, Proposition 2.2℄) For every " > 0 there is n0 suh that(1� ")jAj < j�n(A)j�n � �n+1 < (1 + ")jAjfor every measurable subset A of [0; 1℄ and every n � n0.We have been onerned only with the dynamis restrited to theentral manifold. The reason is that the dynamis of the transition mapstransverse to W � vanishes when � approahes zero: all that is left is thedynamis along the entral manifold, desribed by T1. Here is a morepreise explanation.Consider neighbourhoods C� and C+ of D� and D+. If C� and C+are onveniently hosen, their quotients after identi�ation of points in thesame orbit (that we ontinue denoting in the same way) are di�eomorphito ylinders D� � [�1; 1℄. De�ne T̂n(�; �) to be the map from C� to C+indued by the di�eomorphism �n�n(�)(x) (now we do not restrit to theentral manifold). Sine our di�eomorphisms are ontrating transverselyto the entral manifold, the image of T̂n(�; �) gets loser and loser to theequator D+ � f0g of C+ when n inreases. Indeed, we have the followinghigher dimensional version of Theorem 2:Theorem 4. ([8, Theorem 2.6℄) The sequene T̂n: [0; 1℄� C� ! �C+ on-verges to the arT̂1: [0; 1℄� C� ! C+; T̂1(�; x; y) = (T1(�; x); 0)in the Cr topology, when n!1.1.3 Global aspets: ghost dynamisNow we analyze the unfolding a saddle-node yles, from the global pointof view. The situation when the saddle-node is the unique periodi pointinvolved in the yle deserves a separate treatment.



Global aspets: ghost dynamis 91.3.1 A return map for 1-ylesLet (��)� be an ar of di�eomorphisms generially unfolding a ritial 1-yle. Fix fundamental domains D� and D+, as in the previous setion.We assume that the unstable manifold of the saddle-node P is ontained inits stable manifold. Then there exists l � 1 suh that �l0(D+) is ontainedin the region fx < 0g, inside the loal stable manifold of P . See Figure 1.4.PSfrag replaements D�
D+D+D+D+D+C� C+�l0(D+) R1(�; �)

Figure 1.4. Ghost irle mapsFix fundamental regions C� � D� and C+ � D+, as before, suhthat �l�(C+) is ontained in fx < 0g for every � lose to zero, and theorbit of any point of �l�(C+) has a representative in C�: it suÆes thatthat C+ be suÆiently short, and C� be long enough along the vertial(strong-stable) diretion. Then, identifying points in the same �� orbit aswe have been doing, there is a well de�ned ar of smooth maps	� : C+ ! C�from the ylinder C+ to the ylinder C�, indued by �l�.Moreover, if � denotes the projetion from the stable manifold ontoW  along the leaves of the strong-stable foliation, we an de�ne a smoothirle map  0 : D+ ! D�from the irle D+ to the irle D�, indued by � Æ�l0. Observe that if theyle is ritial then this irle map exhibits (at least two) ritial points.This is the ase Figure 1.4 refers to, and the one we are most interested infor the time being.Composing the 	� with the transition maps that were introdued be-fore, we obtain ars of global return mapsRn: [0; 1℄� C+ ! C+; Rn(�; �) = T̂n(�; �) Æ	�n(�)(�):These maps enode the whole dynamis of the di�eomorphisms �� lose tothe yle. Moreover, by Theorems 2 and 4, the sequene Rn onverges, in



Global aspets: ghost dynamis 10the Cr topology, to the ar of ghost mapsR1: [0; 1℄�C+ ! C+; R1(�; x; y) = T̂1(�;  0(x); 0) = (T1(�;  0(x)); 0):It is important to observe that, sine the last variable y plays no rolein R1, we may also think of it as an ar of irle maps:R1: [0; 1℄�D+ ! D+; R1(�; x) = T1(�;  0(x)):Thus, the unfolding of the saddle-node yle may, to some extent, be re-dued to a 1-dimensional problem: From understanding the dynamis ofthese irle maps R1(�; �), one may draw onlusions about the behaviourof �� for small � > 0. Next omes an important appliation of this idea.1.3.2 Prevalene of hyperboliitySuppose P is a robust property, that is, the set of dynamial systems thatsatisfy P is open. Suppose, in addition, that P holds for some ghost irlemap R1(�; �) : D+ ! D+. Then, by robustness, P is satis�ed by Rn(�; �)for every large n and every � in some interval J � [0; 1℄. Sine eahRn(�; �) is a quotient map of an iterate of ��n(�) (identi�ation of points inthe same orbit), we onlude that, up to onvenient translation, propertyP is satis�ed by �� for all parameters � in the set E = Sn �n(J).On the other hand, by the bounded distortion property in Proposi-tion 3, jE \ [�n+1; �n℄jj[�n+1; �n℄j � (1� ")jJ j � 12 jJ jfor every large n. So, E has positive density at � = 0. In other words, theproperty P is prevalent at the bifuration for the ar (��)�.For instane, take P to be hyperboliity (Axiom A plus strong trans-versality [29℄). It is not diÆult to ensure, for a ritial saddle-node ar(��)�, that some ghost irle map R1(�; �) is hyperboli. For instane, onemay hoose R1(1=2; �) suh that it has exatly two ritial points, bothontained in the basin of attration of a �xed point s0, and the norm ofthe derivative is larger than 1 outside neighbourhoods of the ritial pointsontained in the basin of s0. Then the non-wandering set of R1(1=2; �)is hyperboli (implying the Axiom A) and the map satis�es the strongtransversality ondition. It follows, by robustness of hyperboliity, that ��is hyperboli for a sizable subset of parameters �. Along these lines onegetsTheorem 5. (D��az, Roha, Viana [8℄) There exists an open set of ars ofdi�eomorphisms unfolding a ritial saddle-node 1-yle for whih hyper-boliity is a prevalent property at the bifuration.This result extends to ritial saddle-node l-yles, any l � 1 [8℄.



Global aspets: ghost dynamis 11Question 1. Is prevalene of hyperboliity a generi property (open anddense) among ars of di�eomorphisms unfolding ritial saddle-node yleswith �nitely many ritialities (for the ghost irle maps) ?One way to prove this would be to show that given a generi multi-modal map R of the irle (�nitely many ritial points), there exists �suh that R� � (omposition with the rotation by ��) is hyperboli.1.3.3 Saddle-node horseshoesThe kind of systems desribed in the entral part of Figure 1.2 was �rsttreated by Zeeman [34℄, and was pointed out by Takens [30℄ as an importantmodel of intermitteny.One onsiders a 2-dimensional disk D and an embedding �:D ! Dwhose limit set in D onsists of a horseshoe � and a periodi attrator.Then one lets the attrator and the aessible �xed point of the horseshoeollapse into a saddle-node. At the bifuration, the limit set �0 is topolog-ially onjugate to the initial horseshoe, but it is no longer hyperboli, asit ontains the saddle-node. Sine �0 has a dense subset of periodi points,the di�eomorphism exhibits saddle-node l-yles for any l � 2.A key di�erene with respet to the ase of 1-yles we disussed aboveis that now the unstable manifold of the saddle-node P is not ompletelyontained in its stable manifold: for instane, W u(P ) intersets the stablemanifolds of all the other periodi points in the non-hyperboli horseshoe�0. This means that there is no family of global returns maps, as we wereable to onstrut in the previous ase.PSfrag replaements D� D+ D+ I
IW ss(P ) Wu(P )�l0(I)

R1(�; �)
Figure 1.5. Saddle-node horseshoes: partially de�ned ghost mapsHowever, it is possible to onstrut partially de�ned return maps, asfollows. One �xes fundamental domains D� and D+ as before, and on-siders a maximal open subinterval I of D+ ontained in W u(P ) and whoseextremes are points of the strong stable manifold W ss(P ). Then one de-�nes, in muh the same way as before, an ar of ghost return maps R1(�; �)



Prevalene of loal and global strange attrators 12from I to D+. In the example desribed in Figure 1.5, the return mapshave a unique ritial point. Note that the norm of the derivative goes toin�nity at the boundary of I . The onvergene Theorems 2, 4 remain validon ompat subsets of I .Partially de�ned ghost maps are used by Costa [4℄ in her proof thatglobal strange attrators are a prevalent phenomena in the unfolding ofsaddle-node horseshoes, in a robust (open) lass of ases. Prevalene ofhyperboliity had been proven in [8℄, for another robust lass. A detailedstudy of these return maps R1(�; �) is arried out by D��az, Rios [6℄, whoprovide a geometri model for the unfolding of saddle-node horseshoes.Another use of partially de�ned return maps, by D��az, Ures [9℄, will bedisussed in a forthoming setion.In a related setting, Crovisier [5℄ shows, in great generality, that saddle-node horseshoes give rise to true (hyperboli) horseshoes when the saddle-node is unfolded in the diretion of negative parameters. Cao, Kiriki [3℄study the unfolding of non-ritial horseshoes, as on the right hand side ofFigure 1.2.1.4 Prevalene of loal and global strange attratorsAn attrator of a di�eomorphism � :M !M is a ompat invariant subset� of M that is transitive (dense orbits) and whose basin (or stable set)W s(�) = fx 2M : �n(x)! � as n! +1ghas positive Lebesgue measure. A repeller of f is just an attrator of theinverse map f�1. One alls the attrator strange if orbits in the basinare sensitive with respet to initial onditions: almost every pair of orbitsstarting in nearby points diverge from eah other as time inreases.In this setion we disuss saddle-node yles as a privileged mehanismfor reating strange attrators, speially non-hyperboli ones.1.4.1 A general prevalene resultAording to Theorem 1, the generi unfolding of a ritial saddle-nodeyle always involves the formation and generi unfolding of homolinitangenies. On the other hand, Mora, Viana [13℄ prove, based on the workof Benediks, Carleson [1℄, that the presene of non-hyperboli strangeattrators is a persistent phenomenon in generi ars of surfae di�eomor-phisms unfolding a homolini tangeny. See also [28, 31℄ for the extensionto arbitrary dimension. It follows that strange attrators are persistentalso in the unfolding of saddle-node ritial yles.In view of the ideas disussed in Setion 1.3.2, one may expet thepresene of strange attrators to be a prevalent phenomenon in this setting



Prevalene of loal and global strange attrators 13of saddle-node yles. However, one should stress that the situation ismuh more subtle than in the ase of hyperboliity, that we settled inSetion 1.3.2, beause in the present ontext one laks robustness: the setsof systems onstruted in [1, 13, 31℄, for whih strange attrators are knownto exist, have empty interior. Thus, a deliate analysis of the bifurationmehanisms is needed to justify that expetation:Theorem 6. (D��az, Roha, Viana [8℄) Existene of non-hyperboli strangeattrators is a prevalent property at the bifuration for every ar of di�eo-morphisms (��)� unfolding generially a ritial saddle-node yle.1.4.2 Global strange attratorsThe strange attrators obtained by the previous onstrution have a loalnature: they are periodi, with high periods, and their basins have a largenumber of onneted omponents, with small total Lebesgue measure. Thisis entirely in the nature of things: without further assumptions about thegeometry at the bifuration, the set of points whose forward orbits remainforever lose to the yle may have small volume, for all positive values ofthe parameter of �.
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Figure 1.6. Global invariant region for 1-ylesOn the other hand, in some relevant ases one an identify a globalregion around the yle that remains forward invariant for all parameterslose to zero. An important example, orresponding to a saddle-node 1-yle, is desribed in Figure 1.6, where the invariant region is an annulus.In suh ases, it is natural to ask whether a unique attrator an be found,in a persistent or even prevalent way, that aounts for the whole dynamialbehaviour, in the sense that its basin ontains the entire invariant region.The �rst onstrution of non-hyperboli strange attrators with suh aglobal harater was given by the followingTheorem 7. (D��az, Roha, Viana [8℄) Presene of a global non-hyperbolistrange attrator is prevalent at the bifuration for an open lass of ars ofdi�eomorphisms unfolding a ritial saddle-node 1-yle.



Persistene of tangenies 14Other onstrutions appeared subsequently, inluding [4℄ in the set-ting of saddle-node horseshoes, where one may take a disk as the forwardinvariant region.1.5 Persistene of tangeniesIn this setion we disuss fratal dimensions and the phenomenon of per-sistent tangenies in the ontext of saddle-node bifurations.1.5.1 Fratal dimensions in homolini bifurationsStarting in the early seventies, works of Newhouse, Palis, Takens [18, 21, 20℄and, later, also Yooz, Moreira [23, 15℄, have unveiled a deep onnetionbetween fratal dimensions (suh as the Hausdor� dimension) of invariantsets, and the frequeny of hyperboliity in the unfolding of homolinitangenies of surfae di�eomorphisms. Let us outline this onnetion.One onsiders a homolini tangeny assoiated to a periodi point Pontained in a horseshoe �. See Figure 1.7. The existene of a homolinitangeny implies that the invariant (stable and unstable) foliations of �are tangent along a di�erentiable urve  ontaining the homolini pointin its interior and transverse to both foliations. The intersetion of  withthe leaves of the foliations orresponding to points of the hyperboli set �de�nes two Cantor sets �s and �u.PSfrag replaements P  W s(�)
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Figure 1.7. Persistent tangenies between invariant foliationsGiven an ar (��)� of di�eomorphisms unfolding the tangeny, oneonsiders the orresponding intersetions �s� and �u� of  with the stableand unstable leaves through the points of the hyperboli ontinuation ��of �. Clearly, if the sets �s� and �u� have non-empty intersetion there is ahomolini tangeny assoiated to ��. Identifying  with an interval of Rone an think of �s� and �u� as �-translations of the antor sets �s and �u.



Persistene of tangenies 15Newhouse [16℄ introdued a notion of thikness , that allowed him togive a suÆient riterion for two Cantor sets to interset. It is de�ned asfollows. Consider the proess of onstrution of the Cantor set by, sues-sively removing the orresponding gaps, in a non-inreasing order of theirlengths. Eah time a gap is removed, ompute the ratio between the lengthsof the two remaining nearby intervals and the length of the gap itself. Thethikness is the in�mum of all these ratii.Newhouse's gap lemma [16℄ states that two Cantor sets suh that theprodut of their thiknesses is larger than 1 must interset, unless one ofthem is ontained in a gap of the other. Building on this, he was able toonstrut examples of ars of di�eomorphisms (��)� generially unfoldinga homolini tangeny of � = �0 suh that for a dense subset of a wholeinterval [0; "℄ of values of � the di�eomorphism �� has another homolinitangeny. One speaks of interval of persistent tangenies . Later, in [17℄,he proved that persistent tangenies our in any generi unfolding of anyhomolini tangeny by an ar of surfae di�eomorphisms.Then, the series of papers by Newhouse, Palis, Takens, Yooz, Mor-eira mentioned above identi�ed the Hausdor� dimension as a key fratalinvariant determining the frequeny of hyperboliity in the unfolding of ho-molini tangenies on surfaes. In general terms, hyperboliity is prevalentat the bifuration if and only if the Hausdor� dimension of the horseshoe� is less than 1.More reent results of Moreira, Palis, Viana [14, 24℄ and Romero [28℄have shown that this priniple remains valid on manifolds with arbitrarydimension. In dimension larger than 2 there are other mehanisms (notinvolving fratal dimensions expliitly) yielding persistene of tangeniesin the C1 topology, see Bonatti, D��az [2℄. Moreover, Rios [27℄ extendedmany of the previous results to the unfolding of homolini tangeniesaumulated by periodi points (the homolini orbit is ontained in thelimit set of the di�eomorphism).1.5.2 Thik horseshoes in saddle-node ylesSaddle-node yles exhibit some original features, from the point of viewof the disussion in the previous setion. One of the most striking is thepossibility of thik horseshoes to be reated, \out of nowhere", immediatelyafter the bifuration. In fat, suh horseshoes may be seen as a kind ofontinuation of thik invariant sets of the ghost return maps. Let us explainthis in the ase of ritial 1-yles.We may onstrut examples of ritial saddle-node 1-yles suh thatthe ghost irle map R1(�; �) has a hyperboli Cantor set with large thik-ness for some subset of parameters � 2 [0; 1℄. For instane, one may takefor R1(�; �) a irle map suh that the derivative is larger than 1 in normoutside two intervals �1 and �2 (around the ritial points) with length



Persistene of tangenies 16Æ bounded by some small Æ > 0. Then the maximal invariant set �� ofR1(�; �) in the omplement of �1 [ �2 is hyperboli and its thikness isof order of 1=Æ.Then, using the onvergene Theorems 2 and 4, and the ontinuousdependene of the thikness on the di�eomorphism [17℄, one gets that thedi�eomorphism ��, � = �k(�) has a hyperboli set with stable thikness(transverse thikness of the stable foliation) of order 1=Æ, for every large k.This observation is at the origin of a result of D��az, Ures [9℄ we aregoing to state next, saying that the unfolding of ertain saddle-node ylesleads to an interval of persistene of tangenies immediately after the bi-furation (the interval is of the form [0; "0℄ for some "0 > 0), even if theHausdor� dimension of the limit set at the bifuration is smaller than 1.However, the previous onstrution is not suÆient to prove suh aresult. One problem is that it proves the existene of thik horseshoesonly for ertain subintervals in the spae of parameters �. Another, moreserious, diÆulty is that the hyperboli sets one gets in this way mighthave very small unstable thikness, and so the gap lemma might not applyto them.1.5.3 Thik horseshoes from saddle-node horseshoesThese diÆulties an be bypassed for ertain robust lasses of ars of di�eo-morphisms unfolding a saddle-node horseshoe: one obtains hyperboli setswith large produt of stable and unstable thiknesses for all small valuesof the parameter �, even if the saddle-node horseshoes itself is thin.As we have seen in Setion 1.3.3, in this situation ghost return mapsR1(�; �) may be de�ned on onvenient subintervals I of the fundamentaldomain D+. The end-points of I orrespond to points of the strong stablemanifold of the saddle-node and that the norm of the derivative of R1(�; �)goes to in�nity at the end-points. See Figures 1.5 and 1.8.One proves that, in an open lass of ases, the map R1(�; �) has ahyperboli Cantor set �� with large stable thikness, for every parameter�. In fat, the stable thikness admits a lower boundM that is of the orderof 1=jBj where B is the smallest of the following intervals: the onnetedomponents of (D+ n I) and an interval around the ritial point outsideof whih the derivative is larger than 1. Assuming the gap of the initialhorseshoe is big enough, we an take I proportionally big in D+, and thenwe an make M as large as we like.Next, one has to ensure that the unstable thikness remains boundedfrom zero, by some small onstant that may be �xed independently of M .For this one argues that almost all (a subset with nearly the same thikness)of the initial saddle-node horseshoe persists, as a hyperboli horseshoe,after the unfolding of the saddle-node. This uses also the ontinuity of thethikness with the dynamis. Sine the unstable thikness of the saddle-
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PSfrag replaementsP D+IFigure 1.8. Thik invariant Cantor sets for the maps R1(�; �)node horseshoe is positive, we onlude that the unstable thikness of thesehyperboli sub-horseshoe are bounded from zero by some m > 0.Sine M and m depend on the geometry of the saddle-node horseshoein di�erent diretions (respetively stable and unstable), we may indeedinrease M without reduing m, so that their produt is larger than 1.This is a main ingredient in the proof ofTheorem 8. (D��az, Ures [9℄) For every " > 0 there is an open set of ars(��)� unfolding at � = 0 a ritial saddle-node horseshoe of Hausdor�dimension less that 1=2+" suh that some (0; �0℄ is an interval of persisteneof tangenies.Let us observe that a saddle-node horseshoe always has Hausdor� di-mension stritly bigger than 1=2, by [10℄.Question 2. Is there a neessary and suÆient ondition involving frataldimensions of the saddle-node horseshoe �0 guaranteeing the existene ofan interval J of the form (0; �0) of persistene of tangenies ?A orresponding question was originally asked by Palis and Takens[22, Setion 7℄, in the ontext of homolini bifurations. As we explained,in that ontext the frequeny of hyperboliity is essentially determined bythe Hausdor� dimension of the hyperboli set assoiated to the tangeny.Here, in view of the previous observations, a natural approah would be toonsider not only the dimension of the saddle-node horseshoe but also thedimensions of the hyperboli sets of the irle maps R1(�; �).Question 3. Does there exist a non-empty open subset of the spae O(M)of ars (��)� of di�eomorphisms unfolding generially a ritial saddle-node 1-yle suh that for any ar in this subset the di�eomorphisms ��are non-hyperboli for all small � > 0 ?
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