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Abstract

We consider parametrized families of diffeomorphisms bifurcating through the cre-
ation of critical saddle-node cycles. We show that they always exhibit Hénon-like
strange attractors for a set of parameter values with positive Lebesgue density at the
bifurcation value. In open classes of such families the strange attractors are of global
type: their basins contain an a priori defined neighbourhood of the cycle. Further-
more, the bifurcation parameter may also be a point of positive density of hyperbolic
dynamics.

1 Introduction

In this paper we address the problem of determining which dynamical features are more
frequently displayed by parametrized families of diffeomorphisms in the sequel of a bifurca-
tion. Frequency is to be understood in the sense of Lebesgue measure in parameter space
and the general question may be stated as follows, see e.g. [PT2, Chapter 7]. Let M be
a smooth manifold of dimension m > 2 and f: M — M be a diffeomorphism exhibiting
a bifurcation of codimension ! > 1. Let £ > [ and (f,), be a generic k-parameter family
of diffeomorphisms on M passing through f, say fo = f. Then one aims at describing the
dynamical phenomena exhibited by f, for a set E of values of ;1 with positive Lebesgue
measure (persistent phenomena) and at determining which of these are even prevalent near
the bifurcation, meaning that m(E N (—¢,&)*) > conste® for some const > 0 and every
small € > 0.

We deal with the unfolding of critical saddle-node cycles by smooth 1-parameter fam-
ilies (fu)uer; smooth means that R x M 3 (u,z) — fu(z) € M is a C*° map. Critical
saddle-node cycles present a special interest from the point of view of the problem we have
just stated. On the one hand, they exhibit a very complex bifurcation diagram, including
nearly every known form of complicated and/or unstable dynamics. A converse is also true:
the formation/destruction of such cycles is part of the unfolding of other main bifurcation
mechanisms, e.g. homoclinic tangencies. On the other hand, for the unfolding of critical
saddle-node cycles we are able to give here a fairly precise description of the dynamics re-
lated to the bifurcation, leading to stronger statements than have been obtained so far for



such related mechanisms with a similar degree of complexity. We focus on analysing the
occurrence of strange attractors vs. hyperbolicity of the dynamics, see below. In very brief
terms, we show that Hénon-like strange attractors are always a prevalent phenomenon in
the unfolding of such a cycle and the same holds for hyperbolicity in an open set of cases.
Before we explain these ideas in more detail and state our results, let us give the precise
definitions of the main notions involved.

By a saddle-node of a diffeomorphism f: M — M we understand a periodic orbit O(py),
of period ty > 1 say, such that D f%(py) has a unique eigenvalue in the unit circle and this
is equal to 1. In what follows we always take saddle-nodes to be normally contracting: all
the other eigenvalues are strictly less than 1 in norm. Thus the tangent space to M at pq
admits a D f*(p,)-invariant splitting T,,M = E¢@® E** with dim E¢ = 1, D f%(p,)|E¢ =id
and D f%(py)|E** a contraction. According to invariant manifold theory, [HPS], there exist
1-dimensional center manifolds W§, tangent to E at py and locally invariant under f% in the
sense that f%(W¢) contains a neighbourhood of py in W¢. We also assume all saddle-nodes
to be nondegenerate — or quadratic — meaning that (f*|W¢)"(py) # 0 for some choice of a
(twice differentiable) center manifold W§; actually, in this case one may take W§ to be C*,
see e.g. [Sh].

We say that the diffeomorphism f exhibits a saddle-node £-cycle, £ > 1, if it has periodic
orbits O(py), O(p1), - .-, O(pe-1), where O(py) is a saddle-node and O(p;), 1 <i < £ -1,
are hyperbolic saddles, satisfying

e W"(O(p;_1)) has some transverse intersection with W*(O(p;)), for every 1 < i < £—1;
o W"(O(pe_1)) intersects the interior of W*(O(py)).

For £ = 1 we require W*(O(py)) to be contained in the interior of W?*(O(py)). Note that
W(O(po)) = Uy f{(W™(po)) and W*(py) is (strictly) contained in W¢. On the other hand,
W*(O(py)) is the union of the f(W?*(py)), 0 <1 < ty—1, and W*(py) C M is a (codimension
zero) submanifold with boundary: 0W?*(py) = W** is the strong-stable manifold of py, i.e.
the unique f%-invariant submanifold satisfying 7,,W** = E**, see [HPS].
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Following [NPT], we say that a saddle-node cycle is critical if W"(O(p;_1)) has some
point x of nontransverse intersection with a leaf F' of F*°. Here F*° denotes the strong-
stable foliation of py, i.e. the unique f-invariant foliation of W*(py) by codimension-1
submanifolds, having W?** as a leaf, see [NPT, Theorem I1.3.4]. We always assume the
criticality to be generic: W*(p;) and F' have a quadratic contact at x. Two examples of
critical cycles — a 1-cycle and a 2-cycle — are depicted in Figure 1. Note that this 2-cycle may
be thought of as the result of collapsing a periodic attractor with a saddle point contained
in a horseshoe; clearly, such an example also exhibits /-cycles for every ¢ > 2.

Now let (fu)ucr be a smooth family of diffeomorphisms with fo = f. Then, [HPS],
there exist two-dimensional submanifolds W*¢ of R x M, tangent to R x E°€ at (0,pg) and
locally invariant under R x M 3 (u, 2) = (u, f1°(2)) € R x M. For each such W* we have
W§=Wen ({0} x M) a center manifold for f,. We say that (f,), unfolds the saddle-node
— and the saddle-node cycle — generically if one may take W€ so that 9,(¢|W¢)(0,po) # 0,
where o(u,z) = f/°(z). In more precise terms: there are local coordinates (u,z) on W¢,
with respect to which ¢|W¢ is given by

o, 7) =z +vp+ oz’ + Bz + yp® + O(|uf* + |z,

with v # 0 (and « # 0, recall above). Such coordinates (and parametrized center manifold
W¢€) may be taken with an arbitrarily high degree of smoothness, up to restricting the
parameter range to a sufficiently small neighbourhood of © = 0. Here, for the sake of
technical simplicity, we take them to be C* but a finite amount of smoothness is sufficient
for all our arguments.

Families of diffeomorphisms bifurcating via saddle-node cycles, both critical and non-
critical, were studied in [NPT] from the point of view of structural stability. Their analysis
shows that the presence of a criticality leads to a much richer and unstable unfolding. Indeed,
NPT, Theorem III.4.1], any family of diffeomorphisms going through a critical saddle-node
cycle exhibits homoclinic tangencies, at parameter values arbitrarily close to zero. As a
consequence, it must display a wide variety of phenomena which are known to be involved
in the unfolding of such tangencies: cascades of period-doubling bifurcations [YA], [Mr];
frequency of hyperbolicity ws. bifurcations determined by fractal dimensions [PT1], [PY];
persistence of tangencies, coexistence of infinitely many sinks [N2], [Rb], [PV]; Hénon-like
strange attractors [BC|, [MV], [Vi]. In particular, the results in [MV], [Vi], in view of the
previous conclusion from [NPT], imply that strange attractors are persistent in the unfolding
of any critical saddle-node cycle. Our first result here asserts a much stronger fact: strange
attractors even constitute a prevalent phenomenon.

Theorem A Let (f,), be a generic smooth family of diffeomorphisms on a manifold M,
unfolding a critical saddle-node cycle. Then the set S of values of p for which f, exhibits
Hénon-like strange attractors satisfies

lim inf ™ (8N (=2,2))

m 11 9% > 0.




By a strange attractor of a transformation g: M — M we mean a compact g-invariant
sett A C M such that

e the stable set W*(A) = {z € M:lim,_,, dist (¢"(z), A) = 0} has nonempty interior;

e there exists Z € A such that the orbit {g™(Z):n > 0} is dense in A and there exist
¢>0,0>1and v € T:;M such that ||[Dg"(Z)v|| > co™ for every n > 0.

The strange attractors we encounter here have some additional properties, namely
e A coincides with the closure of W*(O(q)) for some hyperbolic saddle point ¢;

e Aisnot (uniformly) hyperbolic: it contains critical points, admitting tangent directions
which are contracted by both positive and negative iteration under Dg.

We call them Hénon-like strange attractors, cf. [BC], [MV]. See also [BY] for important
ergodic features of this kind of attractors.

Let us point out that a converse to [NPT, Theorem III.4.1] is also true, as observed by
L. Mora: critical saddle-node cycles are formed whenever a homoclinic tangency is generically
unfolded, see [PT2, page 150]. On the other hand, it remains an interesting open question
whether strange attractors can be a prevalent phenomenon in the unfolding of a homoclinic
tangency. It follows from [PT1] that this can not always be the case: in a large (open) class
of examples hyperbolicity is fully prevalent, in the sense that the limit set of f,, see below,
is hyperbolic for a set of values of u with Lebesgue density 1 at 4 = 0. On the other hand,
it may be that prevalence of strange attractors does hold in some relevant situations in this
setting, e.g. for homoclinic tangencies occurring in the Hénon family (z,y) — (1—az?®+vy, bx)
at parameter values (a,b) close to (2,0).

In a somewhat opposite direction, we observe that hyperbolicity of the dynamics related
to the cycle may also be a prevalent feature, at least for an open set of parametrized families
(fu), unfolding a critical saddle-node cycle. In order to illustrate this fact, we consider two
different situations, corresponding to the two types of cycles described in Figure 1. In both
cases we fix a compact set V' C M such that all the periodic orbits involved in the cycle are
contained in int (V') and, moreover, fo(V) C int (V). This last condition remains true for
fu, any p close to zero, and then L(f,|V) = L(f,) N V. Recall that the limit set of f, is
defined by

L(f) = U al@)u | wl),

zeM TeM
where the a-limit a(z), resp. the w-limit w(z), is the set of accumulation points of f}(x)
as n — —oo, resp. n — +o0o. Moreover, L(f,|V) is defined in a similar way, restricting
to those orbits which are contained in V. Then we denote by H the set of values of pu for
which L(f,|V) is a hyperbolic set of f, (and so the dynamics of f, restricted to V is stable
[N1]). Note that # is disjoint from S since Hénon-like strange attractors are, by definition,
nonhyperbolic.



Theorem B There exist open sets of smooth families of diffeomorphisms (f,)uer unfolding
a critical saddle-node cycle, for which H satisfies

lim inf - (N (e9)

m 11 9% > 0.

For the proof of Theorem A we combine the results in [MV], [Vi] with a careful analysis
of the distribution of parameter values corresponding to homoclinic tangencies. A main
ingredient is the notion of transition maps, which we borrow from [NPT] and further develop
in Section 2. This construction yields attractors which are related to the dynamics in the
vicinity of homoclinic orbits and thus have just a semi-global character. Under additional
hypotheses, we can further push our arguments to obtain, for the first time, prevalent Hénon-
like attractors of a truly global nature. For that we consider the setting of 1-cycles. Given
any diffeomorphism fo: M — M exhibiting a saddle-node 1-cycle, one may construct a
compact subset V' C M as above, such that fo(V) C int (V') and the closure of W*(O(py))
is contained in int (V'); see Section 4.1. Then we also have f, (V) C int (V) for every small
i, which means that all the asymptotic dynamics of f, near the cycle is concentrated on
Ay = Npxo £ (V). It follows from Theorem A that A, contains strange attractors for a large
set of parameter values. Actually, a stronger statement holds, at least in an open set of
cases:

Theorem C For an open class Ay of smooth families of diffeomorphisms (f)uer unfolding
a critical saddle-node 1-cycle, A, is a Hénon-like attractor for a set G of parameter values

with
lim inf m(G N (e e))
e—0 2

> 0.

Observe that, by construction, the basin W?*(A4,) of A, contains V, which depends only
on the initial map fo.
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2 Saddle-node local dynamics: transition maps

2.1 The one-dimensional case

Throughout this section ¢ = (¢,), denotes a saddle-node arc of 1-dimensional maps. By
this we mean a C* map ¢: (—dp, dp) X (—do,d0) — R, (11, ) = o(u, ) = ¢, (x), satisfying



Up to performing simple (affine) changes of the coordinate x and of the parameter y we may,
and do from now on, assume that 2a = 92¢(0,0) > 0 and 9,¢(0,0) = 1. Then

(1) ou(@) =z + p+ ax® + Bap +yp® + O(uf’ + =)

The local dynamics of these arcs may be analysed by considering certain related families of
real vector fields of the form

(2) X(p,x) = p+ ax® + Brp + v’ + O(|pl® + |z|*)  with a >0,

so-called saddle-node arcs of vector fields. One way is through (an extension) of the notion
of adapted arc of vector fields in [NPT], see also [Le], [T1], [T2]. Here we just take the
arc (¢,), to embbed as the time-1 of an arc (X (y,-)), as in (2). This alternative approach
implies no restriction in our setting since, by [IY, Section 3|, such an embbeding always
exists restricted to closed sectors containing {(x, ) : p > 0}, and this is all we need here.
Now let ¢ be a saddle-node arc and fix X a saddle-node arc of vector fields with ¢ = X;
on {(z, ) : u > 0}. Let moreover a < 0 < b be fixed, close enough to zero so that X (0,z) > 0
for all z € [p52(a), p3(b)]\{0}. For k € N and small 2 > 0 we define o4(u) by the relation

Xk—|—ak(u) (Nv a’) =b,
where X(u,-) denotes the time-s map of X (u, -).

Proposition 2.1 For sufficiently large k > 1 there is a unique uy > 0 satisfying oy (uy) = 0.
Moreover, oy: [jt5 1, i) — [0,1] is a C™ (decreasing) diffeomorphism onto [0, 1].

We also get that the reparametrization maps py = (ok| [ 1, i) ™" 2 [0, 1] — [k y1s 23]
have uniformly bounded metric distorsion:

Proposition 2.2 Given € > 0 there is kg € N such that for every k > ko and every Borel
subset A of [0,1] we have
A
(1—e)m(A) < M <(1+¢e)m(A) (m= Lebesgue measure).
m([thi1s 5]

For o' (a) < 2 < ¢o(a) and |u| small we define ¢(u, z) by = Xy(,,4) (1, a) and then the
main result of this section is

Theorem 2.3 The sequence Ty: [0,1] x [y (a), po(a)] — R, Ti(o,2) = goﬁk(g)(ac), con-
verges in the C® topology to the transition map Th: [0, 1] X [y ' (a), ¢o(a)] — R defined by
TOO(O', 33) = Xt(o,m)_(,((), b).

Starting the proof of these statements, we define for p > 0 small

b dx
P
W= X
Then b = Xy, (1, a), that is f(u) = k + ox(p) for any k& € N.



Lemma 2.4 For every i > 0,

i1/2 () () — Y (=1)%! /W/2 2%
ull)r(r)lJru [ (u)=C; = N cos™ x dx.

Proof: A direct calculation gives

) R z ")

where each Fj is a polynomial function of the partial derivatives of X, (9;X), r <i. We
claim that

. b 1 /2 )
s i+1/2 _ 21 .
(4) uh_f(rﬁ st / m =5 Jue coszdr fori>0
. z—|—1/2 lz|dz .
(5) uh_f(r)l+ X,ux“rl_o for s > 1.

First we explain how the lemma follows from these claims. Observe that case i = 0 is a
direct consequence of claim (4). From now on we consider ¢ > 1. Returning to (3), we get
for every 1 < j <1

b dz |
o X7
where M = sup{|F;(p,z)[:1<j <4, a <z <b, |u| <d/2}. Then claim (4) implies

. b F R b g .
mz+1/2/a fdex‘ < Mﬂzg+1|ug1/2/a %| < Myl D+1/2

(6) lim ,u+1/2/ 5 -dx =0, for every 1 < j <.

u—0t

Now, in order to prove that

i b(OuX) 1 .
(7) uli,%l+u+1/2/a <)€fi+1 _Xz'+1> dx = 0 for each i > 1,

we use (2) and then

(0uX)' = 1= (1+ Bz +2yu+ O(® + 2°))" — 1 = Ai(n,2)(Bz + 2yp + O(p* + 2?)),
where A;(p, 7) = X4 26(1 + Bz + 2y + O(u? + 2%))?. Note also that for some ¢ > 0 we have
X(u,x) > c(p®+z ) for all small z and p > 0. Hence,

(0, X)" 1] b |x| dac b dx
[ o e e (o1 [ o [ [

for some K = K; > 0. Now, it is clear that the claims imply (7) and, on their turn, (6), (7)
and claim (4) imply the conclusion of the lemma. Now we come to the proof of the claims.
First we note that for the particular arc X (u, z) = p+ ax?, (4) and (5) follow, easily, from



an explicit calculation of the integrals. On the other hand, for a general saddle-node arc of
vector fields X (i, ) as in (2),

X(p,x
1= Ol + lal) < T <14 O(lul + ).

(1, )

Hence, given any € > 0 we may fix 6 > 0 and v > 0 such that

X
1—-e< M <1l+4+e forevery (u,z)€ (0,v)x[=6,0].
X(p, z)
Observing that
. b dx . b dx
. i+1/2 1 i+1/2
imoup ™ |y = limewo ™ [
for both Y = X and Y = X, we obtain
. b dx ) dx
1 i+1/2 . ' z—|—1/2/ _
lirij)ljp“ o X = (1= g)itl uhot e Xitl
and, analogously,
. b dx 1 . dzx
e i1)2 > z—|—1/2/ !
lggéglf/ﬁ o X+ = (14 )i uaor e Xl
Since € > 0 is arbitrary this proves that
. b dx . b dx
. i+1/2 _ i+1/2
uli}(l)l*' H ~/a XH‘I a plif})l*'/jl o X'l

implying that claim (4) holds for X. Claim (5) is proved in the same way. 0O

In particular, lim,_,o+ f(1) = 400 and lim, ,o+ f'(1) = —oo. Hence, for each sufficiently
large k € N there is a unique p = pj such that f(u) = k, i.e. ox(pf) = 0. Note that the
sequence (uj)r — 0: in fact

- s _ = T
(8) Jim ky/pi = Co = 7
The relation oy (pj,,) = 1 is obvious and so the proof of Proposition 2.1 is complete.
Lemma 2.5 For each i € N there exists C; € R such that
(%)

lim My (‘7 )

P e = C, uniformly on o € [0, 1].



Proof: From f(u(0)) =k + o we get f'(ug)u), = 1. Then, by Lemma 2.4,

lim%’i/z: 1im$:~i.
k—00 Ly, k—00 Wy, fl(ﬂk) 01

Now we proceed by induction on 7. A simple inductive argument shows that for every i > 2

] n(i)
9) Fln) +3.Gy=0
j=1

with n(i) > 1 and each G;, 1 < j < n(i), having the form fO® (u) - (uf)™ “‘(Nl(ci_l))mifl

with mq,...,m;_1 > 0 satisfying 1 < [ = Zi;ll ms < Zi;ll smg = 1. Then, using this last
property, we find
. Mg ~ .
i Gi o SO () T G o
kggo ' 1+i/2 — kggo ' 1+1/2 H 1+s/2 - C’_ H s
S () ), 551 \ 1 521

for every 1 < j < n(i). In view of (9), this proves that ,ug) / ,u,lfi/ ? converges as k — 0o and

it is also clear from the argument that this convergence is uniform. O

Proposition 2.2 is a direct consequence of (8) and Lemma 2.5. Indeed, let ¢ > 0; if & is
large enough then for every oy, 0, € [0, 1]

, 3/2

In particular,
/1 C)
= ([ 4])
and the proposition follows immediately.
On the other hand, (8) and Lemma 2.5 imply that (ug), converges in the C*° topology
to the null function. This completes the proof of Theorem 2.3.

<1+e forevery o€ [0,1]

2.2 The general setting

Now we prove a higher-dimensional version of Theorem 2.3. Let M be a smooth manifold,
m = dimM > 2, and let (f,).ecr be a smooth arc of diffeomorphisms unfolding a saddle-
node bifurcation on M, recall the Introduction. Let the point (0, py) € R x M to correspond
to the saddle-node. Then there are smooth coordinates (u,z,Y) € R x R x R™ ! on a
neighbourhood U of (0, py), such that f,(z,Y) = (pu(z), ¥(x, z,Y)) with

(a) ¢ a l-dimensional saddle-node arc and

(b) ¥(u,x,0)=0and ||Oy¥(u,z,Y)|| < A <1 for every (p,z,Y) € U.



As in the previous section, we denote by ;. the reparametrization maps of ¢ and by T, its
transition map. We fix V' a small neighbourhood of 0 € R™ !, and using the coordinates
above we define Ty, Tho: [0,1] X [¢g ' (a), 0o(a)] x V — R x R™ ! by

Ty(o,2,Y) = uk(o) (z,Y) and Tu(o,z,Y) = (Tx(o,z),0).

Theorem 2.6 The sequence (Tk)k converges to the map T in the C® topology.

Proof: We have Tj(0,z,Y) = (gp’;k(a) (), Ye(px(0),z,Y), where the Y} are defined induc-
tively by Yo(u,#,Y) =Y and Vi1 (p, 2,Y) = U(u, z;,Y;), z; = ¢l (x). We begin with the
following auxiliary statement: given u, v > 0 there are £ > 0 and m > 0 such that

(10) 18,0505, (x)] < EE™ for all z € [pg(a), po(a)], phsr < i< pyand 0 <5 <k

In order to prove (10) we note that, given any smooth function v, (x) = ¥(p, z), we have

020 (0 (Vu(2))) = Oppu(Wu(@)) - 02D, () + X1 I, where m(u, v) > 0 and each ; has

the form ,

ekintvu(a) T,
t=1
with a, b, s, ¢;, d; >0, (a+b) < (u+v), s < (u+wv) and (¢; +d;) < (u+ v —1). Then, by
induction on j
n(u v,7)

(11) L), Z J;

where n(u,v,j) < jm(u,v) + 1 and each J; can be written
(12) 8I<pﬂ “p Z(m)) . 8;8b<pu gpu Ha“adt

with a, b, s, ¢, di, e >0, (a+b) < (u+v),s < (u+v), (¢t +di) < (u+v—1)and e < j.
On the other hand, there is £} > 0 such that for any large &

X (, SOL+6( )) Pt E, < 20k

X i(z)) — m?

for every (i, z) € (1,1, 5] X (05" (a), po(a)] and e, @ > 0 with e +i < k. Here (X (1,-)),
is any arc of vector fields having X;(u,-) = ¢, on {(g, z): p > 0}. Case u,v = 0 of (10) is
trivial. For general (u,v), (11), (12) and (13) give, by induction on (u + v),

k2

(13) 0o, (9 (2)) =

n(u,v,j)

0102 (z)] < z Eyk? HEct, dy) k(e )

) < (u+),(12) € (0,0] x [195 " (a), 0o(b)]}-

with By, = (2aE;/72) sup{|0.04u(2)|: (i + j
u,v) =3+ (u+v)sup{m(c,d): (c+d) < (u+v—1)}

Therefore, it is sufficient to take m( ,V)

10



and E(u,v) = (m(u,v) + 1)Ey(sup{E(c,d): (¢ +d) < (u+ v — 1)})**. This completes the
proof of (10).

Now we claim that given any p,q,r > 0 there are Cy > 0 and mg > 0 such that for every
1<j<k

(14) sup{|00205 Y, (1, 2, V)||: (1,2, Y) € [, 1f] X [05(0), po(@)] X V} < CojN k™.

In particular, sup{||02020% Yx||} < CoA*k™o*! — 0 which, together with Lemma 2.5, implies
that (Y), converges to zero in the C* topology. In view of Theorem 2.3, this proves our
statement. Hence, we are left to prove the claim and we do this by induction on p + ¢ + r.
First, we note that (b) implies ||Y;(u, z,Y)|| < M||Y|| and so in case p, ¢,r = 0 it is sufficient
to take Cy = 1 and my = 0. Now, given any p,q,r > 0 we assume that (14) holds for
every derivative of order strictly less than p + ¢ + r and we conclude that it also holds
for 0R0%0LY), any 1 < j < k. Case j = 1 is easy: clearly, ||05007Y1|| < Ci, where
Cy = sup [|07020% V||, and so we only have to take Cy > C1/A. Observe now that successive
derivation of Yj1(u, z,Y) = ¥ (u, z;,Y;) leads to

lo
(15) RN Yy 11,7, Y) = Oy U(js, 5, V) PO Yy (1,2, V) + S H

i
=1
where Iy = ly(p,q,7) > 0 and each H; has the form

S0 to
010,05 Wy 25, ;) 11 05 0ea; T] By 003 Y;

s=1 t=1
with a, b, ¢, sg, as, Bs, to, Us, v, wy > 0 depending only on p,q,r, [ and satisfying a + b+ ¢ <
p+q+r, X(as+8s)+ > (ug+vi+wy) < p+qg+rand e < Y (u+vi+wy) < p+g+r—1. By
(10), we have |05 OPax;| < Cy k™2 for some Co s > 0 and my ; > 0 depending only on ay, f3;.
Moreover, (b) above implies ||3%05% (1, z,Y)|| < Cs[Y]| for some Cs = Cs(a, b). Finally, we
denote Cy = sup [|8%0505 ¥||, where the supremum is taken over all a+b+c¢ < p+¢+7. In
order to estimate |H;| we distinguish two cases. Suppose first that ¢ > 1. Then it must be
ty > 1 (because ¢ < 3% (u; + v, + w;)) and, by induction, we get

S0 to
|Hl‘ < Cy H(ngskmzs) H(Co,tj)\jkmo’t) < C5)\jkm5

s=1 t=1

where Co; = Co(us, vi, wy), Moy = mo(uy, vy, wy) and Cs > 0, ms > 1, depend only on p, ¢, 7, .
On the other hand, if ¢ = 0 we have

S0 to
|Hl| < C3)\j H(CQ,Ska’s) H(Co’tj)\jkmo’t) < C5)\jl€m5

8:1 t:l

(for possibly larger Cs, ms). Replacing these estimates in (15) we get
|9R0R5 s a]) < N|GRORRY; | + Corik™,
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where Cg, mg are determined by p, ¢, 7. Thus, by induction on j,
1020285, Y 41]| < CogNTHE™ + CeNE™ < Co(j + 1)NTHE™,

as long as we fix Cy > Cg/A and my > mg. This finishes the proof of the claim (14) and so
our argument is complete. O

3 Proof of Theorem A

As we said before, the strange attractors we exhibit for the proof of Theorem A are associated
to homoclinic tangencies occurring in the unfolding of any critical saddle-node cycle. The
existence of such tangencies is a particularly subtle fact in the setting of 1-cycles, see [NPT],
and so we treat first the relatively simpler case of /-cycles, £ > 2.

3.1 Saddle-node /-cycles, ¢ > 2

Let fy:M — M, p € R, be a smooth arc of diffecomorphisms unfolding a critical saddle-
node /-cycle, £ > 2. For the sake of clearness we treat first the case when £ = 2 and the
periodic orbits involved in the cycle O(py), O(p1), both consist of fixed points. On the other
hand, our arguments extend easily to the general case, as we shall explain afterwards.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2:

Let (z,Y) be smooth coordinates on a small neighbourhood U of py as in Section 2.2:
fu(@,Y) = (pu(z),¥,(z,Y)) with ¢ a saddle-node arc on the real line, ¥(u, z,0) = 0 and
|0y ¥ (u, 2, Y)|| < X < 1 for every (u,z,Y). For simplicity we assume the diffeomorphism
fo to be CV-linearizable near p;: there exist a neighbourhood U of p1 and CV coordinates
(Z,Y) on U such that fo(&,Y) = (p&, AY), where p € R and A € GL(R™ ') satisfy ||A]| <
1 < |p|- Here N is a fixed integer; for all our purposes it is sufficient to take N > 3.
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Let x = (a,Yy) € U, a < 0, be a critical point, i.e. a point of tangency of W"(p;) with
some strong-stable leaf of py. We fix [ > 1 such that ¥ = f,'(x) € U; up to rescaling the
coordinate ¥, we may suppose X = (—1,0). We assume the criticality to be quadratic and
then for (Z,Y) near (—1,0)

fi@3Y)=(a+Bi(F+ 1)+ (2 +1,Y), Yy + Hi( + 1,Y))

with 8; # 0 and hy = 9zhy = 02hy = 0 = H; at (0,0). We also fix k = (¢,0) € U, a

point of transverse intersection of W*(py) and W*(p,) close to py. Extending U by negative
iteration if necessary, we may suppose that x € U, see Figure 2. Then we let ¥ = ['(Z) be
the expression of W*(pg) in (5:,57) coordinates, near k. On the other hand, we take X to
be a saddle-node arc of vector fields with X; = ¢ on {(z, x): u > 0} and, using a above and
b = Xi,2(0,q), we define the transition maps To(0, z) of ¢ and Too(o,2,Y) = (Too(o, z),0)
of f, recall Section 2. Then T (1/2, %) = « and so there is a neighbourhood V of (1/2,x)
such that TOO(V) C U. It is clear from the definition Too(0,7) = X¢0,2)-0(0,0) that 0,T
and 0,7, are nonzero. Hence we may write Two:V — U as

A

To(o,2,Y) = (3,1(7)), T = Pa(c —1/2) + Bs(z —a) + ho(oc — 1/2,7 — a),

with 5263 7& 0 and hg = aghz = awhg = 0 at the origin. B
Now we introduce n-dependent parameter § = 7,(c) and coordinates (£,0) = ¢,(Z,Y)
as follows. Let z,,0, € R, close to zero, be given implicitly by

(a) 2B12p + Ozhi(wn) =0, wyp = (zp, AT (p (=14 z,)))
(b) Boon + p7" 4 Bifsxy + Baha(wn) 4+ ha(2n) =0, 24 = (00, frx) + hi(wy)).

Note that 0zh1(0,0) = 0,h2(0,0) = 0 # (152, together with ||A|| < 1, assures the existence
of z, and o, for every large n. Then we define

0=p"(0c—1/2—0y,) E=p"(F+1—1,) 0 = p*" (Y — A"T(p™"%))
and we let 1, be the expression of f o Ti, o f} with respect to (6, &,©), that is

Pn(0,£,0) = ¢y 0 £ 0 Tog(7,,(8),-) 0 fo 0 6,7 (£, 0).

Proposition 3.1 Given any compact K C R™", 4, is defined on K for every sufficiently
large n. Moreover, (V,|K), converges in the CN topology to the map ¢: K — R™ given by

(0,£,0) — (820 + B153€%,0).

Proof: The first part is an easy consequence of the fact that (7', ¢, 1) (K) — (1/2,%)
as n — oo. This, on its turn, follows immediately from the definitions above: note, in
particular, that lim, . z, = lim,_,., 0, = 0. As to the second part, a direct calculation
gives

%(9, é‘a @) = (529 + 52P2nan + pn + ﬁlﬂ&ozn('xn + pinf)2 + ﬂ3p2nh1 (w) + p2nh’2(z)’ O)a
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where
w = (Tn+p "E, AT (7" (—142n+p ")) +p°"O), 2 = (0n+p 0, Bi(za+p "E)*+ha(w)).
We set
Fu(€,0) = Bip™ (@ +p "€) + pu(w) and  Ga(0,€,0) = 2 hs(2)
and then, in view of our definition of o,
Bap™ o + p" + B3 (0,0) + G (0,0) = 0.

Let us estimate the partial derivatives of F,,. Let p,q > 0 be such that 1 <p —1—g < N. Itis
easy to see (e.g. by induction on p+¢) that 9f0(hi(w)) may be written as 3,2 P9 . each
H; having the form

l
a’gag;lhl (w)pfkni&m H (Anr(sj)(p*n(_]_ + 2, + pfné‘))p*QSjn) ’
j=1

with 0 < k,l <pand 1< si,...,s < pdepending only on p, ¢, and satisfying k+3 55 =
As a direct consequence,

(1) 16208 Fo (€, ©)[| < comst p=(+3a)n
and so 9704 F;, converges to zero, for all p 4 3¢ > 2. Moreover, due to our definition of ,
Ockn(0,0) = Opha (wn) A" (), Y = p™" (=1 + ),
and so 0¢F,,(0,0) — 0. On the other hand,
O Fr(0,0) = 281 + 92h1 (wy) + 0505 by (wa) AT (yn ) p~ "+

+0% ha(wa) (AT (yn))*p ™" + Oy ha (wa) AT (y) p =",

which, together with 03h,(0,0) = 0, proves that 0 F,,(0,0) — 26;. Now we show that all
partial derivatives of G, converge to zero. Observe that z=(on+p 20, p2"F,(£,0)) and

so, for every 1 <p +q+r < N, we may write 0f050; (ha(2)) = £;2 vrar) K. each K; having
the form

k
pmardkha(z) [1 0008 (0 " (€, ©))
7j=1

with 0 <k < (p+q), 1< (s;+t;) < (p+q), and SFs; =p, SFt; = ¢. Using (1) to bound
the 0’ 8% (92" F,) we conclude that

102080;G (6,€,0)|| < p&-Crirtiom
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and so 82’ 0803Gy, — 0 whenever 2r +p+ 3g > 2. This leaves out three cases, which we treat
separately. For (p,q,r) = (0,0,1) we have

09Gn(0,0,0) = 0, ho(2n) — 0,
because 0,h2(0,0) = 0. For (p,q,r) = (1,0,0) we recall that 0,h2(0,0) = 0 and then
0:G(0,0,0) = Oyha(2,)0:F,,(0,0) — 0,
since both factors converge to zero. Finally, for (p,q,7) = (2,0,0)
0 Gn(0,0,0) = Ozha(2n)0; Fn(0,0) + p~>"02ha(2n) (8 F(0,0))* = 0
where we use once more the fact that 0,h2(0,0) = 0. Altogether this shows that

Bo + Bop™ 0 + p" + B3F,(€,0) + Gr(6,€,0) — B20 + B155E°

in the C topology as n — oo and so the proof of the proposition is complete. [

_ Weset (0,€,0) = (7(0),6a(%,Y)) = (=$1525:0, (6:0) '€, ©) and then the expression
y, of fio Ty o fl with respect to (6,,0) converges to the map (0, &,0) = (1 — 0£2,0) as
n — o0o. We take n > 1 to be fixed from now on. On the other hand, by Theorem 2.6,

A

Jjn,k(é: éa é) = an o .fZLH—k_'—l o ngjl(é‘a 6), n = /Lk(%n_l(e))’

converges to ¥, as k — oo. Hence, for k large 1[)nk is a Hénon- (or quadratic-) like family, in
the sense that it is C'V-close to the family of quadratic maps 1&, some N > 3. According to
[MV], [Vi], any such family has Hénon-like strange attractors for a positive Lebesgue measure
set of parameter values. Actually, the proof of this fact even provides a uniform lower bound
for the measure of these sets on a neighbourhood of the family 1,@ We conclude that there
are ¢; > 0 and k; > 1 such that for every k > k; the set ¥ of values of 0 for which the
diffeomorphism 4, (6, -) exhibits Hénon-like attractors has Lebesgue measure m(Z;) > c;.
Now we denote Si = (7, (Zk)) C s 41, #44). Then, by construction, the dynamics of f,
contains Hénon-like strange attractors for every p € Sy and & > k;. Moreover, using also
Proposition 2.2, m(Sk) > ca(uy — p5,,) for every k > k; and some ¢, > 0 independent of k.
Recalling, in addition, that pj_,/u; — 1 we conclude that

MUz Sk) N [—6,6]) | e
2e -

and the statement of the theorem follows immediately.

Finally, we discuss the general case of saddle-node ¢-cycles, £ > 2. Let O(po), O(p1), - - -,
O(pe—1) be the periodic orbits involved in the cycle and let tg, ¢1, . . ., t,_1 be the corresponding
periods. We fix a point py in the saddle-node orbit. On the other hand, we assume f°% to
be CV-linearizable on a neighbourhood of O(p;) for some 1 < i < £ — 1 and we fix such an i
from now on. Note also that, by the inclination lemma, we may take the point p; and some
0 <t <ty satisfying

for every small ¢ > 0
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e W*"(p;) has a critical intersection x with W#(py);

o W¥(ft(po)) has a transverse intersection & with W*(p;).

We choose neighbourhoods U of py, and U of p; as before and we may suppose x = (a,Yp) €
Uand £ € U. We fix | > 1 such that ¥ = f = (—1,0) € U and we also denote
k = f7'(k) = (¢,0) € U. Then we define the transition map Th of f&% in U. From this
point on the argument proceeds in just the same way as before, with f3"% o (f¢ ol %) © f”‘]t”‘,
resp. fun+k+l)t°tl+t, in the place of f o Th o fi, resp frket,

3.2 Saddle-node 1-cycles

Now we prove Theorem A for critical cycles involving a unique (saddle-node) periodic orbit
O(po). For simplicity we take py to be a fixed point, the general case following from this in
just the same way as in the previous section. Once more, let U be a small open neighbourhood
of pp and (z,Y’) be coordinates on U such that f,(z,Y) = (pu(z), V,(z,Y)), where ¢ is a
1-dimensional saddle-node arc, ¥(u, z,0) = 0 and ||0y ¥ (p, z,Y)|| < A < 1. We also continue
to denote by X some saddle-node arc of vector fields having ¢ as its time-1.

Let ~, be the equivalence relation on U spanned by

2~y fu(z) forevery zeUn f,'(U)

and denote by m,: U — (U/ ~,) the canonical projection associated to it. Fora™ < 0 < a™
close to zero we let D¥ = {(z,0) € U:a* < z < ¢,(a*)} and D = 7, (D). Then, as long
as |p| < |a*], each DjE is a smooth circle and diffeomorphisms gbi D;;L — St may be taken
depending smoothly on x. In addition, up to replacing (¢7), by (7% o (¢5) 7! 0 ¢F), with
7=(mo(,0)) = [, X(0,5)""'ds mod 1, we may suppose that 65 = ¢ o m, satisfies

(2) 05 (X,(0,a%)) =t mod 1, for every t.

Next, we let C¥ = {(z,Y) € U:a® < 2 < ¢,(a*)} and endow CF = m,(CE) with the
quotient manifold structure. Clearly, every C’;‘E is diffeomorphic to the solid m-torus S x B,
B =unit ball in R™™', and we may choose C* diffeomorphisms

o CF — S x B, ®(my(z,Y)) = (65(2), 07 (z,Y))

depending smoothly on , with 63 as above and ©F(z,0) = 0 for every p and z.

Now we construct smooth maps ¥, ¥: [0,1] x S’ x B — S' x B in the following way. Up
to taking |a*| small enough, we may fix a (large) integer I such that f{(Df) is contained in
{(z,Y) € U:z < @o(a~)}. Then f} induces a smooth map h;: Df — Cy: hyomy =m0 fL.
Let T = (T, 0) be the transition map of f, witha =a~, b= a™, recall Section 2. Given
0 < ¢ <1, we denote by 7,: C; — Df ¢ Cg the map 1nduced by T (0,-). Then we define
¥(o,) = (I)O ohjoT,o0(®;)L. Note that ®f o7, o (d5)71(, @) (0 — o mod1,0), in view
of (2) and the definition of Ty, Ts,. We write &5 o ;o (®F)71(6,0) = (9(h), G(A)) and then

¥(0,0,0) = (go R_,(0),GoR_,(0)), R_,(0)=0— 0 modl.
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On the other hand, we set ¢(o,-) = @, 0hyys 0 (@;)_1, where hy o CN'M_ — é’; denotes
the map induced by f/,™* and p = pi (o). By Theorem 2.6, this is well defined for every large
k and (t)y)x converges to 1 in the C'* topology.

By [NPT, Theorem 3.7], the family of circle maps (g, = g o R_,)se[o,1] unfolds generi-
cally homoclinic tangencies associated to some hyperbolic periodic point. In other words,
there are I C [0, 1] an open interval, & € I and smooth maps I 3 ¢ — p,,c, With p, a re-
pelling periodic point and ¢, a critical point of g,, such that ¢z € W¥(p;), gk(cs) = ps
and 8, (¢/(c,) —po,) (6) # 0 for some j > 1. We assume g to be a Morse function
and then such tangencies are quadratic. As a consequence, for every large k the family
Yk = (Yk(0,-))sep, of diffeomorphisms of S* x B unfolds generically quadratic homoclinic
tangencies associated to some hyperbolic saddle point. Hence, we may conclude from [MV],
[Vi], that 9 (o, -) has Hénon-like strange attractors for a set ¥ of values of o with positive
Lebesgue measure (smooth linearizability near the saddle is not necessary for this conclu-
sion, see [Rm].) Moreover, the fact that the limit family v itself undergoes generic quadratic
tangencies permits to apply the renormalization scheme in [MV], [Vi], uniformly to the se-
quence (), to conclude that m(Xg) is uniformly bounded away from zero. Let us explain
this in more detail. First one constructs for ¢ a sequence (¢,), of local coordinates such
that, up to an appropriate n-dependent reparametrization o = Tn(v), the expression of ¢"
in these coordinates converges to ¥: (v,z,Y) — (1 — vz?,0) as n — oo. More precisely:
(¢ 0 V(Ta(v),-) 0 p7)(2,Y) = h(v,2,Y) in the CV topology, for some fixed N > 3. Thus,
for every n and k sufficiently large (¢, o ¥x (7. (v), ) 0 ¢, 1), is a Hénon-like family and so it
exhibits strange attractors for a set of values of the parameter v whose Lebesgue measure is
positive and even uniformly bounded away from zero. We fix n large and conclude in this
way that there are ¢; > 0 and k; > 1 such that m(X;) > ¢; for every k > k;. Now we
let Sy, = pe(Xk) C K41, 1) and then precisely the same argument as in the previous case
shows that (Ug>k, Sk) has positive density at p = 0. Finally, it is immediate to check that
[, has Hénon-like strange attractors for every p € (Ug>k, Sk). The proof of Theorem A is
complete.

4 Proof of Theorem B

Here we construct open classes of families of diffeomorphisms bifurcating through critical
saddle-node cycles, for which hyperbolicity of the dynamics near the cycle is also a prevalent
feature. We exhibit two such classes Ay, A,, corresponding, respectively, to 1- and 2-cycles,
cf. the Introduction. The conditions in the definition of A;, Aj, are just meant as simple
sets of assumptions assuring hyperbolic behaviour and no effort was made to optimize them.

4.1 Hyperbolicity for 1-cycles

In the present section (f,), always refers to a smooth family of diffecomorphisms unfolding
a critical saddle-node 1-cycle of f;. We keep the notations of Section 3.2.

17



First, we let h:[—1/2,1/2] — [-1/2,1/2] be given by h(z) = x(—a+ 4(1 + a)z?), where
a € (0,1) is fixed. Note that h has three fixed points —1/2,0,1/2. Since h'(—1/2) = h'(1/2),
we may identify h with a C' endomorphism of S = [-1/2,1/2]/(—1/2 ~ 1/2) and we do so
in the sequel. On the other hand, the origin is an attractor, |A'(0)] = @ < 1, and its basin
W*#(0) contains both critical points of h. This last statement follows, for instance, from the
fact that h has negative schwarzian derivative, [Si], using also that it is an odd function. As
a consequence, [Ma], K = SY\W?(0) is a hyperbolic set for h: there are N > 1 and p > 1
such that |(hY)'(#)| > p for all # € K. Moreover, these dynamical features are robust under
small perturbations of the map: there exists a neighbourhood A of h in C'(S!, S') such
that, given any h € N, h has a fixed attractor z(h) close to zero and K(h) = S'\W*(z(h))
is a hyperbolic set for h.

Now we define Ay, simply, by the condition (recall Section 3.2)

(1) (gOR,%)E.N'.

Let us show that the conclusion of Theorem B is indeed satisfied by every family (f,),
as above. This requires a few preliminary considerations. We introduce

Up={(z,Y) € Uic <z < go(a), [[Y| <&(x)} and C=UynCy.

Here ¢ < a~ and £ are chosen in such a way that f4(C) C int (Up) and fo(Up\C) C int (Up).
Then there are compact sets U;_1,...,U; such that

A

o fo(C) C int (Uy), fo(U;) C int (Ujsq) for 1 < j <1 —2and fo(Ui_1) C int (Up).

As a consequence, V = Uy U U, U --- U U;_; satisfies fo(V) C int (V). Now our goal is to
show that L(f,|V) is a hyperbolic set of f,, for a set of values of y with positive Lebesgue
density at u = 0.

In order to do this we consider the maps 1, v;:[0,1] x S' x B — S' x B introduced
in Section 3.2. Recall that ¥(0,0,0) = (9o R_,(0),Go R_,(0)) and (¢x)r — ¢ as k — oo.
Condition (1) implies that g, = go R_, € N for ¢ in some interval I = [1/2 — §,1/2 + 4];
from now on we always consider ¢ € I. Then %(0,-):S* x B — S! x B has a fixed
attractor z, close to {§ = 0} and W*(z,) = (K(g,) X B)*. We fix N > 1, py > 1 and W
an open neighbourhood of K(g,) such that |(g¥) (0)| > p; for every # € W. Then, for k
sufficiently large, (o, -) has a fixed attractor zj, satisfying (zx,)r — 2, as k — oo and
W#(zr,,) D (W x B)°. Moreover,

Apo = (S" x B\W*(21,) = {z € S' x B:9}(0,2) € W x B for every integer n}

is a hyperbolic set of the diffeomorphism vy (o,-). Indeed, invariant stable and unstable
cone fields for (0o, -) on W x B may be constructed in a fairly straightforward way, see for
instance [PT2, Chapter 6.3], where a similar situation is treated.

Now we go back to analysing the limit set of f, in V. We consider y = (o), with o € T
and k large. Let w be any point in L(f,|V'). In particular, the orbit of w is contained in V'
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and it follows from our construction that there are ny = ny(u, w) with n. < 0 < n, such
that both points wi = f;*(w) belong to C. We take ny minima (in absolute value) with
that property and then they satisfy

(2) Ins(p, w)| < k + const

where const is independent of u, w, k (basically, it is determined by the choice of a®).
Moreover, (o, w_-) = Wy, where Wy = m,(wy). At this point we distinguish two cases.
Suppose first that Wy € W*(2,). Since Wy belong to the limit set of ¢, (o, -), we must have
Wy = W_ = 2, and so w € O(Z,), where Z, denotes any point in 7" (2,,). Clearly, O(2,) is
a periodic attractor for f,. Now assume that . € Ay, and let E5@E% be the corresponding
splitting of the tangent space of (S' x B) at w.. We take T,M = E: & E® to be given by
Dm, - Dfp+(Ey) = E* for x = s,u. We set this for every w € A, = L(f,|V)\W*(3,) and
then the splitting E* @ E" of the tangent bundle over [\u defined in this way is invariant
under Df,. Moreover, the uniform bound (2) assures that this is a hyperbolic splitting:
there are A < 1 and L > 1 (depending on k) such that ||DfL|E®||, |[Df, *|E*|| < A.

Altogether, we have proved that L(f,|V') is hyperbolic for every u € Ugug(I): more
precisely, it may be written as O(Z,) U A“, where O(Z,) is a hyperbolic periodic attractor
and Au is a hyperbolic set of saddle-type. On the other hand, Uy (I) has positive Lebesgue
density at u = 0, as a consequence of Proposition 2.2. Our argument is complete.

4.2 Hyperbolicity for 2-cycles

For the construction of A, we start with a (linear) horseshoe map 1: R — R as described
in Figure 3. More precisely, we let R be a compact rectangle in R™ = R x R™™, m > 2,

Figure 3:

and we write R = Ry U --- U Rj, satisfying ¥(R; U Rs) C int (R;), ¥(R3) C int (Rs5) and
0 0 — 0
Dy|Ry = <§ A ) Dy|R; = ( A ) Dy|(Ry U Rs) = ( S )
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where p1, p, > 1, A is a contraction on R™™', and € is some smooth function defined on R.
For the sake of notational simplicity we take the fixed saddle point py of ¥ in Ry to coincide
with the origin. Moreover, ¢ has a fixed sink sy in Ry, with sy = (s,0) for some s € R.

Now we modify v in order to collapse py and s to a saddle-node point, in the following
way. We fix compact intervals Wy, W in R x {0} C R x R™! such that

{po, so} C int (W), Wy C int (W) and (W) C int (R U---U Ry).

Then we let ¢,: W — R, p € [—1,1], be a C* saddle-node arc, in the sense of Section 2.1,
such that

o ¢ =m oW and ¢,|(W\Wy) = m; o p|(W\W,) for every p;
e the map ¢, has a fixed saddle-node point at the origin;
e the derivative ¢/, is a monotone function, for every small y.

Here 7:R x R™' — R and m:R x R™ ' — R™ ! are the canonical projections. We
also consider ¢:R™™' — R to be a C* bump function with support contained in 75(R),
satisfying @|ma(1)(Rz)) = 1 and ¢|me(¢p(R4)) = 0. Then we set

fu@,Y) =4, Y) + 6(Y)(pu(z) =m0 9(2,Y),0)

ifx € Wand f,(z,Y) =¢(z,Y) otherwise. This defines a family of smooth transformations
of R into itself, unfolding a critical saddle-node cycle and, clearly, given any m-dimensional
manifold M one may extend (f,), to a family of diffeomorphisms on M. Now we show
that ¢ and (¢,), may be chosen in such a way that this family satisfies the conclusion of
Theorem B, with V = R.

In order to do this we fix a < 0 < b such that (a,0) € int (R;) and (b,0) € int (R,) and
we let pu,(0), Ti(o,2) = ¢f (@), Ty(o,2,Y) = fh (@, Y) be as in Section 2. It follows
from Theorem 2.3 that there is 7 > 0 such that |(g0,’jk(a))’(:v)| > 7, for every x € [¢y'(a), al,
o € [0,1], and k large enough. From now on we assume that p,7 > 1 and ¢(R5) C int (C),) for
all small y1, where C,, = {(z,Y) € R:z € [p;"(a),a]}. These properties may be obtained just
by supposing that 71 (R;) and 71 (Rj5) have sufficiently small diameters. Actually, by further
reducing the diameter of 7;(Rs) if necessary, we may assume that Th (o, ¥(Rs)) C int (Rs),
for some interval J of values of 0. As a consequence, flf:(?,)(Rg,) C Ry for every o € J and
k sufficiently large; moreover, it is easy to see that this construction may be performed in
such a way that ||Dflf:((2,)\R5|| < 1. Hence, every f,, pn € pk(J), has an attracting (k + 2)-
periodic orbit O(s,) whose basin contains R5 and R;. From now on we restrict to values of
p € Ugsio i (J), for some large kg, and we prove that L(f,|R) is a hyperbolic set for f,.

First we note that L(f,|R) C H,U O(s,), where H,, is the maximal invariant set of f,
in Ry U Ry U Ry, and so we only have to show that H), is a hyperbolic set. We introduce the
(constant) cone fields on U = int ((R; U Ro U Ry) N¢(R)) defined by

C'(z)={w=(u,V)eT,R:|ul >||V|} and C°(z) ={w=(uv,V) e T,R: |ul <||V|}
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In the sequel we always take ||w|| = sup{|ul, ||[V||}. Note that f,(R) C ¢(R) and so H, C U;
moreover, D f,|U has the form

Mu 0

0 +A /-

Clearly, we may assume, right from the start, that ||A|| is small enough so as to assure that
|An; ] < 1 on U, for every small u. This implies the invariance of the two cone fields above

Df,(C"(2)) C C*(fu(2)) and Df(C%(2)) C C°(f;'(2))

and it also follows that vectors in C*(z) are geometrically expanded by D Ju 1. Now we claim
that there is > 1 such that, given any z € H,, there exists j = j(z) < k + 2 for which

|Dfi(z)w]| > 6]|w]| for all w € C*(z)

(k is determined by the condition p € 1, (J)). Note that hyperbolicity of H,, is an immediate
consequence of this claim together with the previous arguments. On the other hand, the
claim may be justified as follows. Given z € H), let [ > 0 be minimum such that fﬁ(z) € Ry;
then, by construction, [ < k4 1 (at most k iterates are spent in R; U Ry, near the origin).
We take 7 =1+ 1 and then

IDfi (2wl = IDfu(£,(2)) - Df(2)wll > parllw]],

(here we make use of the monotonicity of ¢,). This proves the claim with 0 = p,7.

Observe now that Ugsk,ux(J) has positive Lebesgue density at zero, as a consequence
of Proposition 2.2. Therefore, we have proved that the conclusion of the theorem holds
for the family (f,),. Finally, it is clear that the previous arguments and conclusions carry
on to every one-parameter family close enough to (f,), and so we may take A, to be any
sufficiently small neighbourhood of (f,),.

As a concluding remark, let us note that appropriate choices of ¢, Ry,..., Rs, and ¢,
above lead to L(fo|R) having Hausdorff dimension arbitrarily close to m > 2. In particular,
this shows that in the present context prevalence of hyperbolicity is compatible with large
Hausdorf dimension of the limit set, compare [PT1], [PY].

5 Proof of Theorem C

Our proof is based on two main results which we state in Sections 5.1 and 5.2. The definition
of the open class Ay in the statement is given in Section 5.5, involving these results. In
Section 5.5 we also put together all the ingredients to conclude the proof. From Theorem
5.1 we deduce that, for any family (f,), € Ay and for a large set of values of ;1, the maximal
invariant set A, coincides with the closure of the unstable manifold of some periodic saddle.
Then we also need an extension of the arguments in [BC] and [MV] for more general families
of dissipative diffeomorphisms, which may viewed as perturbations of multimodal maps of

21



the interval. In Section 5.2 we describe a class of such “multimodal Hénon-like families”
suitable for our purposes. Then Sections 5.3-5.4 are devoted to proving that Hénon-like
attractors are a persistent phenomenon in any such family (Theorem 5.2). At this point we
assume that the reader is familiar with the methods in [BC|, [MV]. Indeed, most steps follow
closely those papers and, as a rule, we do not reproduce them here. Instead, we sketch the
global structure of the argument and detail the changes one has to perform to adapt it to
the present situation. For our presentation we take M to be a surface but the general case
m = dim M > 2 follows directly from combining the ideas in this paper with those in [Vi].

5.1 Maps of the annulus with global attractors

Let £&:R — R, with a > 1/27, be given by &,(x) = x —asin 2rz. Clearly, &, is a 1-periodic
odd function with negative schwarzian derivative. Its fixed points have the form n/2 and
the critical points are +y, +n, with n an arbitrary integer and x, = (1/27) arccos(1/a27) €
(0,1/4). Moreover, a — &,(—xa) = —&a(Xa) is strictly increasing, converging to infinity as
a — oo and to zero as a — 1/27. Hence, there is a unique a > 1/27 satisfying £;(+xs) = F1-
In what follows we denote £ = &; and x = x5 and let x; € R, 1 <7 < 4, be given by

0<z<my<x<xy<Ty<1/2, &(21) =&(22) = —1/2 and &(z3) = E(zy) =21 — 1.

Now we consider the endomorphism h: S' — S* induced by £ on S* = R/(z ~ z + 1).
Let m: R — S! be the canonical projection and consider in S! the orientation induced by
the usual order of R. Then h is a degree-1 map with two fixed points p = m1(0), ¢ = m(£1/2),
and two critical points ¢t = m;(4x). Both fixed points are repelling since h(c*) = p, see
[Si]. Moreover, h is surjective (and monotone) on each of the intervals [¢™, ¢t] and [c¢T, ¢7].
As a consequence, both unstable sets W*(p) and W*(g) fill-in the whole S*.

We also introduce A = R?/((z,y) ~ (z+1,y+1)) and let H: A — A be the map induced
on A by (z,y) — (&(x),x). Clearly, H has the same dynamics as h (up to semiconjugacy).
In particular, it has exactly two fixed points P = m5(0,0), Q) = mo(£1/2,£1/2), and these
are hyperbolic saddles (with one zero eigenvalue). We fix some r > @ and denote by A, C A
the image of {(z,y):|z| < 1/2, |y — 2| < r} under the canonical projection my: R?> — A.
Note that r > @ ensures H(A,) C int (4A,)

The following topological result plays a key role in the proof of Theorem C.

Theorem 5.1 There is an open neighbourhood N of (H|A,) in C'(A,, A,) such that for
every diffeomorphism (onto its image) F € N

ﬁ F*(A,) = closure (W"(Pr)),

n=0

where Pp s the continuation for F' of the fixed point P of H.

Proof: Let ¢i = m(+x;) € S', for 1 <4 < 4. Then we have h(q{)
(g5,

h(gs) = h(gy) = ¢, and h(gf) = h(g¢f) = ¢i. Denote K = (g5 ,¢5) U Zf) C S' and
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let A = {z € S":h"*(z) ¢ K for all n > 0}. Then A is an invariant hyperbolic set for h:
hyperbolicity follows, for instance, from the fact that int (K ) contains all the critical points
of h, see [Ma]. Moreover, the subintervals of S"\K bounded by the points ¢, ¢, 1 < i < 4,
form a Markov partition for h\f\ It is immediate to check that the corresponding subshift of
finite type is topologically mixing. We also consider parallel objects for H. Given 1 <7 < 4,
we let QF = my(£x4, Fys), where 3; € (0, ) is defined by £(y;) = —2;. The local stable set of
Q is the vertical line I through it. Then W#(Q) also contains H~ (') D I'f uT'y UTy UT;
and H Y(I'F) D I's UL, where T'f is the vertical line passing through Q3. Furthermore,
W*(P) = W*(Q) = H(A). On the other hand, we let K = 7 ((—z4, —23) U (z3,24) X R)
and A = {z € H(A): H"(z2) ¢ K for all n > 0}. The previous statements give that A is an
invariant hyperbolic set for H and that H|A admits a topologically mixing Markov partition.

Now let F: A, — A, be a diffeomorphism onto its image, close to (H|A,). We take F
to preserve orientation: the opposite case is treated in the same way and we do not detail it
here. As a first step, we extend it into an area-dissipative surjective diffeomorphism A — A,
which we continue to denote by F (this leads to no ambiguity, as neither N, F™(A,) nor
closure (W*(Pr)) depend on the choice of the extension). In the sequel we invoke a number
of well-known facts, see [HPS], concerning persistence and continuous variation of hyperbolic
objects under small C! perturbations of the dynamical system. At each stage, we assume
(F'|A,) to be close enough to (H|A,) so that the corresponding perturbation statement holds;
these conditions are our definition of A/. We observe that these statements remain valid in
a noninvertible situation such as ours, see e.g. [PT2, Appendices 1, 4].

~

K
y=X+r
T e
+ 410 M) T+ Q
\s\\ \\\
yoxt L e Le Le
<
Figure 4:

23



Let Pr, Qr, be the continuations for F' of the fixed points P, . One may view the Qi as
transverse intersections between W*(P) and W*(Q) and we let Q; € W*(Pp) NW*(Qr) be
the corresponding continuations for F'. By continuity of local stable manifolds with respect to
the map, W*(Qr) must contain a nearly straight and vertical segment I'r passing through
Qr and crossing both connected components of dA,. Iterating twice under (F|A,)™! we
conclude that W*(Qp) also contains segments PEI,EF through each Q;"EF, 1 <4 < 4, with similar
properties. On the other hand, W*(Qr) is diffeomorphic to R, since F' is a diffeomorphism,
and so these ['p, Pz?'fF, must be connected to each other in A. The connections between I'x
and Ff o I‘Qi, » C F7Y(T'r) are shown in Figure 4 and can be justified in the following way.
Both eigenvalues of DF(Pr), resp. DF(Qp) are negative, resp. positive, since F' preserves
orientation. In particular, QIF and Q;’, 7 belong to the same separatrix of W*(Qr) as their
own images. Moreover, F(Q{ ) separates F(Q3 ) from Qp inside W*(Qp) and so the
same must hold for Q7 » and Q3 5, respectively. See Figure 5. Finally, I'r has exactly two
intersections with F'(94,) in between F(QY ) and F(Q3 r), hence the segment of W*(Qr)
in between Qt rand Q;’  intersects 0A, exactly twice. Of course, the same reasoning applies

for Q1 p, @o,p-

FQy)
F(Qgc)%
. T
Q, ©
FQy
F(Q,)

Figure 5:

The hyperbolic set A also admits a continuation Ap, which may be characterized as
follows. Let Kp = Ky U Kj;, where K7 C A, is the domain bounded by I's, Tf, and
O0A,. Then Ap = {z € A,: F"(z) ¢ K for all —oco < n < +o00} and a topologically mixing
Markov partition for F'|Ap is provided by the set of subdomains of A,\ K bounded by 0A,,
I'r and the F;t, 1 <14 <4. We call Lr the subdomain containing Pg, which is to play some
role below. Moreover, there is a foliation Fr of A,\Kr by nearly vertical curves joining
the two connected components of dA, which is invariant and contracting under F': for some
6 <1 and any z € A, \Kp with F(z2) € A \KF, we

(1) we€ Fr(z) = F(w) € Fr(F(2)) and dist (F(w), F(z)) < #dist (w, 2).

Such a foliation may be constructed following well-known arguments from [HPS] (as the
fixed point of a convenient graph-transform operator).

Now let z € A, be such that F~"(z) € A, for every n > 0. We want to show that
z € closure (W*(Pr)) and the proof is divided into two cases.
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Suppose first that F~"#(z) € K for some sequence n; — co. By construction, F(Kg) C
Ly and so F~™%1(z) € Lr. Now, see Figure 4, Ly C Ly where Lp is a domain in A bounded
by two segments of W*(Pr) and two segments of W*(Qp). Note that area (F"(Lp)) — 0,
because F' is area-dissipative. Hence, the fact that z € F ”k’l(f,p) for each k implies
dist (z, 0F™(Lp)) — 0. On the other hand, the boundary of F™ (Ly) consists of seg-
ments of W*(Pr) and W*(Qp) and the lengths of the latter ones go to zero as k¥ — oo. This
yields dist (z, W*(Pr)) = 0, as we claimed.

Now assume that F~"(z) ¢ Ky for every n > ng, some ng > 0. It is no restriction to
assume 1y = 0 and we do so from now on. By construction, the leaf Fr(F~"(z)) intersects
W*(Pr) in some point w,. By (1)

dist (z, W*(Pp)) < dist (z, F"(w,)) < 0" dist (F"(2),w,) < const §".
Since n is arbitrary this gives dist (z, W*(P)) =0. O

Note also that the map h defined above is topologically mixing: given any open interval
J C S! there is n > 1 such that A"(J) = S'. This can be seen as follows. We claim that .J
must intersect the negative orbit of {¢~,c*}. Indeed, otherwise there is a maximal interval
J D J such that h,j\j is a homeomorphism for every j > 1. Since h has no wandering
intervals, see [MS], it must be h/(J) N J # O for some j > 1 and then the maximality of J
yields h7(J) C J. Then, necessarily, h has some periodic attractor or semi-attractor in J. On
the other hand, such an attractor or semi-attractor can not exist, by [Si]. This contradiction
proves our claim. Now, this claim means that there is m > 1 such that A™(J) contains a
neighbourhood of ¢*. Then A™*1(.J) contains at least a half neighbourhood of P. Finally,
it is easy to check that both separatrices of W¥(P) fill-in the whole S* and so it must be
h™(J) = S! for some n > m.

A direct consequence is that all the periodic points of H are heteroclinically related
(mutual transverse intersections between their stable and unstable sets). Thus, given any
pair of periodic points, their continuations for nearby diffeomorphisms remain heteroclinically
related and so the corresponding unstable manifolds are mutually dense in each other. It
follows that the conclusion of the theorem holds for the continuation of any one of these
periodic points of H (the neighbourhood A depends on the periodic point, though).

5.2 Nonsingular perturbations of multimodal maps

Let N denote either S or a compact interval of R. For each fixed d > 1, k> 3, 6 > 0, we
consider the class of all C* families of maps ¢,: N — N, with v € [=§, d], satisfying

1. (invariance) ¢o(NN) C int (V) (this is automatic if N = S');

2. (nondegenerate critical points) ¢, has exactly d critical points ¢y, ..., cq and ¢f(c;) # 0
for all i =1, ..., d; moreover, ¢y(c;) # c; for all 1 < 4,5 < d;

3. (negative schwarzian derivative) S¢q(z) < 0 for every x # ¢4, ..., cq;
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4. (topological mixing) for any open intervals Ji,J, C N there is ng = ng(Jy,J2) > 1
such that ¢f(J1) N Jo # 0 for every n > ny;

5. (preperiodicity) for each 1 < i < d there is k; > 1 such that p; = ¢§(c;) is a (repelling)
periodic point of ¢g;

6. (generic unfolding) 0, ((}551(@(1/)) —pi(y)) # 0 at v = 0, where ¢;(v), p;(v) are the
continuations for ¢,, small v, of ¢;, p;, respectively.

We refer to the elements of this class, simply, as d-modal families. We fix some p > 0 and
denote B, = [—p, p|. Given b > 0, a C* family of diffeomorphisms ¢,: N x B, — N x B,
is a nonsingular b-perturbation of the d-modal family (¢,), if ||¢ — @|| < b, where we write
o, z,y) = ¢,(z,y) and ¢(v,z,y) = d,(z,y) = (¢,(2),0), and || - || is the C*-norm over
(v,z,y) € [-6,0] x N x B,.

Theorem 5.2 Let (¢,), be a d-modal family and P be a periodic point of ¢o. Then there
are b > 0 and x > 0 such that given any nonsingular b-perturbation (¢,), of (¢,), there
exists S C [—9, 6] with m(S) > x and (P, denotes the continuation for ¢, of the periodic
point (P,0) of q@o) for every v € S there is some Z € W*(P,) satisfying

i) the orbit {¢(Z):n > 0} of Z is dense in closure (W*(P,));

it) ¢, has a positive Lyapunov exponent at z, that is, there are ¢ > 0, 0 > 1, and v # 0
such that || D} (Z)v|| > co™ for allm > 0;

ii1) there is w # 0 such that || D¢"(Z)w|| — 0 as both n — +oo.

Let us briefly comment on the strategy to prove this result. Diffeomorphisms ¢, as above
combine two rather distinct types of dynamics: away from C = UL {z = ¢;} they behave in
an essentially hyperbolic way, namely they admit invariant stable and unstable cone fields
(see Corollary 5.4 below); on the other hand, the “foldings” occurring near C prevent such
invariant cone fields from extending to the whole dynamical plane. In order to deal with this
combination of hyperbolic and critical (folding) behaviour we follow the approach of [BC].
This is based on constructing, for a positive measure set of parameters, a sequence of critical

sets (Cp)x>1 as follows. Each Cj, = Ci(v) is a finite subset of W*(P,) located close to C. Each

element z(()k) € Cy, is a critical approximation (of order k), meaning that the tangent direction

to W*(P,) at 2P = go,,(z(()k)) is contracted by the first k iterates of Dy,. Moreover, 2"

expands during k iterates: ||Dg0{',(z§k))|| > const o/ for some fixed 0 > 1 and all 1 < j < k.

The point Z in the statement is found as the limit of a convenient sequence zgk) as k — oo.
One shows that, up to an additional (unimportant) restriction on the parameter, its orbit is
dense in the closure of W*(P,).

In the sequel we concentrate on the case when N = S! and the maps ¢, have nonzero
degree, which is the one we actually use here and allows for a slightly more elegant treat-

ment. The general case follows in basically the same way. In fact, these arguments apply
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also to d-modal families of maps in compact 1-dimensional branched manifolds (nonsingular
perturbations are diffeomorphisms on tubular neighbourhoods of the manifold), providing
other examples of Hénon-like attractors with rich topology. We also note that our particular
choice of assumptions 1-6 above is somewhat arbitrary. Further extension of Theorem 5.2,
for instance in the spirit of [TTY], can also be carried out along similar lines, combining the
arguments in that paper with the present ones.

5.3 Critical approximations

In this section we describe the initial steps in the construction of the critical sets C,. We
fix a d-modal family (¢, ), and a periodic point P of ¢g, and take (¢,), to be a nonsingular
b-perturbation, for sufficiently small b. First we recall a few notions and facts from [BC],
[MV]. For the time being, the parameter v is fixed, close to zero.

A point z; is A-expanding up to time m if ||Dpk(21)(1,0)|| > MF for all 1 < k < m. We
always suppose b < . For such a point and 1 < k < m, let ¢®) and f*) denote unit
vectors corresponding, respectively, to the maximal contraction and the maximal expansion
of ||Dg¥(2)||. Then e® and f*) are orthogonal and the same holds for Dk (z;)e®) and
Dyt (2)f®). Since ¢, is a b-perturbtion of ¢,, we have |det Dy,| < constb. Then the
expansiveness assumption gives

k
const b
1D () £ = X, hence ||Dso’;<z1>e<k>||s( ) -

A

The properties of such contracting approzimations e®) were studied in [MV, Section 6] and
[Vi, Section 4] in a fairly abstract setting and all the results obtained there apply directly in
the present situation. In particular, we have

(2) e — e®|| < (constd) and || Dgzy)e® || = || Dy f*|| < const b,

for 1 < j < k < m, where D(,,,) is derivation with respect to all three variables (v,z,y)
and the constants depend only on A and the family (¢,),.

We say that a curve v C W¥(PB,) is b-flat if it is the graph of a C? function y = y(x)
with |y/| < b2 and |y”| < b2. A point zo € W*(P,) is a k-th critical approzimation if
21 = ¢, (20) is A-expanding up to time &, the vector e®)(z;) is tangent to W*(P,) at z;, and
the r*-neighbourhood (2, 7¥) of 2o in W*(P,) is a b-flat curve. The constant r > 0 is fixed
(see next section) and we suppose b < r. We denote a kth critical approximation by z(()k)

and let 2" = ¢! (20") for i > 1.

Lemma 5.3 Let (¢,), be a d-modal family. There exist o > 1, &y > 0, and Cy > 0 such
that for all 0 < 6 < &g there are vo(0) > 0 and C(5) > 0 satisfying

i) [(¢7)'(x)| = C(0)og;
i) if ¢))(x) € Bs(C) then |(¢},)'(z)] > Coof;
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for all |v| < vy(8) and every x with z,...¢" ' (x) € Bs(C).

Here B;s(C) denotes the d-neighbourhood of the critical set C = {¢y,...,cqs} of ¢g. We
postpone the proof of this result to the end of the section. From similar arguments we also
get the following higher-dimensional version.

Corollary 5.4 Reducing o9 > 1, o > 0, Cy > 0, v(d) > 0, C(6) > 0, if necessary, we
have, for any nonsingular b-perturbation (,), of (¢,), with b < 6,

i) |slope| (D@l (z)v) < 1 for all 1 < j < n;
i) || Dgy (z0)v]| > C(0)ay;
iii) if x, € Bs(C) then ||D¢%(2)v|| > Coof;

for any trajectory z; = (zj,y;) = ¢L(20) having z; ¢ Bs(C) for 0 < j < n —1, and any
tangent vector v at zy with |slope| (v) < 1.

Recall that we are treating the case when N = S! and the degree of ¢, is nonzero, in
particular ¢, is surjective. As ¢g(c;) # ¢; for every ¢ and j, we may take compact intervals
Ui,...,Us C N\C and fix § > 0 small enough so that

a) each U; is contained in a different connected component of N\ B;(C);
b) the intervals ¢¢(U;), 1 < i < d, cover the manifold N;
c) if ¢o(U;) intersects Bj(c;) then it actually contains Bj(c;).

Recall that W*(P) = N. Then, by Lipschitz dependence of unstable manifolds on the
dynamics (see e.g. [MV, Proposition 7.1]), W*(P,) contains segments U;(v), 1 < i < d,
such that each U;(v) is const b-close to U; x {0} in the C? topology. In particular, each
Vi(v) = ¢,(Ui(v)) is a b-flat curve and the length of 7 (V;(v)) C N is uniformly bounded
from below. Moreover, we may take analogs of properties b) and c) to hold for the V;(v):

b’) the intervals 1 (V;(v)), 1 < i < d, cover N,
¢’) if m (Vi(v)) N Bs(c;) # 0 then 7y (V;(v)) D Bs(cy)-

Let Hy(v) = UL, V;(v). For each j € {1,...,d} there is at least one segment V;(v) whose

projection contains Bj(c;). We choose such a segment once and for all, and denote by z(()??

the unique point in V;(v) such that Wl(z(()?;) = ¢;. By Corollary 5.4 the point zﬂ) = go,,(z(()?;)
is A\-expanding up to some time M; > 1, where A = C'(§)op > b. Note that M; can be made
arbitrarily large by taking 6 > 0, b > 0, and v sufficiently small. Consider a parametrization
2(s) = (¢; + s,y(s)) of Vi(v) with z(0) = z(()oj) Denote by t(s) the tangent vector to W*(P,)

at ¢, (2(s)) given by 1(s) = D, (2(s))(1,9/(s)). Then

[t(0) - fM(2,(0))] < constb and | Ds(t(s) - eV (2(s)))| > const > 0.
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Indeed, the first inequality follows from the fact that V;(v) is const b-close to the horizontal,
recall above, and that f() is also nearly horizontal ( |slope| (f(!)) < constb) away from
{z € C}. The second one is a consequence of (2) and the quadratic nature of the critical
point ¢;. See [MV, Section TA]. We conclude that there is a unique s;, with |s;| < const b,
such that ¢(s;) - fM(z1(s1)) = 0, in other words, such that z(()? = 2z(s1) is a 1st critical
approximation.

Now a similar argument permits to construct, by recurrence, a sequence z(()k]) € Vi(v),
1 < k < M;, with |7r1(z(()]ff1)) - 71'1(2(()]3” < (const b)*, such that each z((]k]) is a kth criti-

cal approximation, and each chj) = go,,(z(()?) is A-expanding up to time M;. Observe that

|7r1(z(()lfj)) —c¢;| < 0 for all k if b is small. We let M = min{M;,..., My} and for 1 <k < M we

define the kth critical set Cy of ¢, by Cx = {z(()kl) RN z(()kc%} The construction of the critical
sets of order k£ > M requires parameter exclusions and will be sketched in the next section.

Proof of Lemma 5.3: First we note that, see [MS, Theorem II1.3.3], given any 6; > 0
there are m > 1 and o; > 1 such that [(¢7) (z)| > o if z, ¢o(x), - - -, o~ (x) & Bs, (C). We
shall fix 0 < §; < L in b) below, depending only on ¢o. Then, by continuity and reducing
o1 > 1 if necessary, there is v; > 0 such that the same holds for all ¢, with |v| < v;:

(3) (#)") ()] > 0" whenever z,¢,(z), -, )" *(z) & Bs, (C).

Let Ct = {¢}(c1):5 >0, 1 < i < d}. By condition 5 in the definition of d-modal family, C*
is finite, hence L = { inf{|z — w|: 2 € CT,w € CT, z # w} is strictly positive. We claim

a) There are Cy > 0, 03 > 1, 0 < d2 < L, and v, > 0 such that, given any 1 < ¢ < m and
lv| < vy, if ¢4(x) € B, (C) then |(¢%)(x)] > Cyob. Moreover, Cy > 0 may be taken
independent of m.

Clearly, it suffices to consider the case v = 0, the general statement then following by
continuity. We begin by noting that there is ¢/, such that if I is a monotonicity interval for
@k with k > £y then |Iz| < L/2 (even more, the length of these I; must go to uniformly to
zero as k — o00). Otherwise, by considering a convenient sequence I, with k, — oo and
passing to the limit, one would get a nondegenerate interval I with ¢%|/ monotone for every
k > 1. In particular, each ¢f(I) would be contained in some connected component of N\C,
contradicting the assumption of topological mixing. We fix 0 < J, < L small enough so that
Cy = s inf{[(¢f)'(y)|: 1 < k < Ly, ¢§(y) € Bs,(C)} be strictly positive (using preperiodicity
once more). We also take oy = 2w > 1. Let £ and z be as in the statement of a). If £ < 4
then |(¢§)'(z)| > 2Cy > Cy0$, by definition. Now, suppose £ > £ and let I, = [ay, by] be the
maximal interval containing z on which ¢§ is monotone. The maximality of I, gives that
#5(a;) and @§(b,) are in CT\C, hence (since d; < L) |¢([as, x])| > L and |¢5([z, be])| > L,
where | - | denotes length. As a consequence, there is 1 € (ay, ) such that

0h([asa])| _ L

()" (21)] =



and, in the same way, there is zo € (,b;) such that |(¢§)'(x2)| > 2. Recall that we are
assuming ¢, to have negative schwarzian derivative. Since I, does not contain critical points
of ¢§, the minimum principle (see [MS]) yields |(¢§)'(x)| > 2 > of, proving a).

In the sequel we shall also need

b) There is 03 > 1 such that, if 6; > 0 is fixed small enough (depending only on ¢y),
then for each z € By, (C)\C there is k(z) > 1 such that |(¢£®) (z)| > C%a:’,f‘”) and
#(x) & B, (C) for every 1< j < k().

In order to prove b), suppose that z € Bs (c;)\{c;}. Take k; > 1 minimum such that
P = qbgi (¢;) is a periodic point of ¢g. Let s; > 1 be the period of p; and fix p; > 1 and small
numbers 0 < &1 < g5 < L (depending only on ¢g), such that

(pi —€2)% < |(d9')'(y)| < (pi +€2)* whenever |y —p;| <e;.

Then we take 1 < 03 < ((p; — €2)/\/pi + €2) (assuming €5 small enough). Since the critical
point ¢; is quadratic, there are constants 0 < k; < ks, depending only on ¢q, such that

(4) kilz — cil® < |8b (z) — pil < kolz — .

We suppose 6; > 0 small enough so that k207 < &, and then we let ¢(z) > 0 be the maximum
integer such that (p; + 2)%°@|ggi(z) — pi| < e1. Since we assume 6;,e; < L, this ensures
that ¢ (z) & By, (C) for all 1 < j < k(z), where k(z) = s;s(z) + k;. Moreover, using (4) and
the maximality of ¢(z),

ki sis(z)
KOV () > kale — a1l (pr — £0) 5@ > kg [ LPCEV TP veist@) s, (P E2
(60 ") (@)| = kslz — ci|(pi — €2)% > ks ks (pi — €2)7 = ky e

where k3, ks > 0 depend only on ¢g. Observing that ¢(z) can be made arbitrarily large by
fixing 6; > 0 sufficiently small, we deduce |(¢f™)(z)| > Ciza:])f @) which completes the proof
of claim b).

The relation (4) also implies that ¢(z) is bounded from above if |z — ¢;| is bounded from
below. This remark, together with a continuity argument, yields

c¢) There is 03 > 1 and for each 0 < 0 < §; there is v3(J) > 0 such that given |v| < v3(9)
and z € By, (C)\B5(C) we have |(65®))'(z)] > Lo5® and ¢}(z) ¢ Bj,(C) for every
1<j <k().

Now we derive the conclusion of the lemma. Take m > 1 as above, oy = min{oy, 09,03} > 1,
do = min{dy, b2}, Co = Cy, 19(0) = min{vy, e, v3(0)}, and C(§) = C, (inf |¢,(y)|/0o0)™,
where the infimum is over |v| < vo(d) and y & B;(C). For any z with z,..., ¢} (z) & Bs(C),
we list 0 < 4, < ... < i, < n the integers with ¢/ (x) € Bj;, (C). The last statement
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in ¢) implies that ¢;41 > 4; + k;, where k; = k( Y (z)). For each 1 < j < s we write
ij+1 — 4, =gm+r+k; with 0 <r <m — 1. Then, by (3), a), and ¢),

. . - 1 . Gia1—i;
(5) (6577Y (94 (2)| > 01" Caos -4’ > 017",
2
If 4, > 0 we also write i; = ¢gm + 7,0 <r < m — 1, and then (3) and a) give

(6) (63 (2)] 2 of™Ca0 > Cooy

Consider first case ii), that is ¢"(z) € Bs(C). Writing n — i; = mq + r + ks we get, in the
same way as in (5), . . .

(7) (@p7") (6 (2)] = 57"

On the other hand, in case i) we may write n — iy = gm + r with 0 < r < m — 1 and then,
using a) and the definition of C'(9),

(8) (@Y (6 @) > (1) (65 @) ot > &

The lemma is a direct consequence of (5)—(8) O

Now Corollary 5.4 can be easily deduced using the following remarks. Let (z,y) be such
that x € Bs(C), and v be a vector with [slope| (v) < 1. Then [slope| (Dy,(z,y)v) < 1, in
the sense that the bound goes to zero when b — 0. Moreover, | Dy, (z,y)v||/||v] = ¢, (z),
up to a multiplicative constant which goes to 1 when b — 0. Both statements follow directly
from the fact that ¢, is b-close to (%,, in the C? sense.

5.4 The induction

In this section we outline the inductive procedure defining the critical sets C, C W*(P,) of
order k, for k > M. This is similar to the constructions in [BC], [MV], [Vi], to which we
refer the reader for details.

At each step n we assume that all sets C;, with k¥ < n —1 were already defined, satisfying
a number of conditions which we list in (P1)-(P4) below, and we explain how to construct
Cn. This requires two conditions on the parameter, stated in (CP1)-(CP2), which are also
supposed to hold for all previous steps.

We let 0y > 1 be as in Corollary 5.4 and fix 1 < ¢ < gy and small constants 7 > 0, p > 0
(see below). Our first property is

(P1) Each element 2 of €y is a critical approximation. In fact, (i) AP = wy(zék)) has

1Dl (27)(1,0)]| > consto? for all 1 < j < k+1, (i) e®(2¥) is tangent to W*(P,)
at zgk), and (iii) the 7p%*-neighbourhood v(z(()k), 7p%) of z(()k) in W*(P,) is a b-flat curve.

We take 7 > 0 to be a lower bound for the distance from each critical approximation

z(()k]) € Hy(v), k < M, to the boundary of the corresponding segment V;(v), recall the previous
section. Then (P1) holds for all C; with & < M. Now we define H;(v) = ¢! (Hy(v)), for

j > 1, and further assume
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(P2) (i) Cx C Up<jer H;(v), where § = (b) = const /log L, and (ii) if 2§ € H;(v) with
j > 1 then Dpi~! expands every tangent vector of @14 (v(2$¥, rp*)).

By construction C;, C Hy(v) for all £ < M, so that (P2) holds for these first critical sets.

Clearly, the total length of H;(v) grows, at most, exponentially as a function of j. More-
over, it is not difficult to see that each b-flat curve fy(z(()k), 7p%) contains at most one critical
approximation. Hence (P2)(i) and (P1)(iii) yield the following bound on the number of
elements of Cy:

9) #C), < (const )?*d
The definition of C,, involves two different mechanisms:

a) Given z(()n_l) € C,_ there exists a unique nth approximation z(()") in ’y(z(()"fl),Tp‘g(”_l))

(this makes sense because we take z%n_l) to be expanding up to time n). Moreover,

dist (20, 2§"™) < const b", hence y(2{™, 7o) C y(28"V, 7pf™D). We let C’, be the

set of all z§™ found in this way. By construction they satisfy (P1)—(P2).

b) Let 2" " € Co_y and ¢y € H,(v) with O(n—1) < m < n. Let v(, p°™~) be b-flat and
both dist (o, z(()nfl)) and the angle between the tangents to W*(P,) at 2" and ¢
be less than %Tpk. Then there exists a unique nth approximation Cén) in (¢, 'rpa("_l))

and, actually, ~( én),TpG”) C v(Co, o™ V). We take C" to be the set of all Cé")
obtained in this way which satisfy (P2) (property (P1) follows from the construction)

and dist (¢{", 25" < const bm/10,

Then we take C,, =C, UC].

The fact that all points z(()") € C, are taken very close to C,_; ensures that the corre-

sponding z§n) are expanding up to time n. In order to prove that

(10) 1D (o) (1,0)]| = comst o™

we introduce the notions of return (roughly, an iterate j for which m (z](")) € B;s(C)), free
period, binding period, folding period, and binding point. These are defined in the same
way as for Hénon-like families, we only make a few simple comments concerning the capture
procedure leading to the construction of binding points (cf. [MV, Section 7C]). Let a point z
be A-expanding up to time k and such that 71 (z) ¢ B;(C). By integrating the kth contracting
vector field e*) one obtains a curve I'*) which (i) is exponentially contracted by ¢ for all
1 < j <k, and (ii) is nearly vertical and crosses the region {(z,y): |y| < Vb}. In particular,
I'®) intersects Hy(v), recall that m (Hy(v)) = N and Hy(v) is const b-close to N x {0}. Even
more, in view of our definitions, we may always choose some b-flat segment V;(v) C Hy(v)
intersecting T'®*) at a point w, in such a way that dist (w,dVj(v)) remains bounded away
from zero (independent of z, k, or v). We also take 7 > 0 to be a lower bound for this
distance.
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Now, suppose that n is a (free) return for a point zy = z(()") € C, and that a corresponding
binding point (y = Cén) has been found. For the estimates to appear in (P3) we need z, and
(o to be in tangential position, meaning that dist (z,,7) << dist (2, (y), where 7 is some
b-flat curve in W*(P,) containing (y. This is ensured by the following assumption on the
parameter v:

(CP1) d,(20) = dist (2, (o) > e ™.

Here « is a small positive constant (in particular, we want 1 < ¢ < 03~*). Note that
(CP1) (as well as (P3), (P4) below) is void for n < M: if v and b are small then the points
in C, k < M, have no returns prior to time M (recall that the critical points of ¢, are
preperiodic).

The statement of the inductive hypotheses (P3)—(P4) involves the following splitting
algorithm. Given 2y € C,, let wp(z1) = wo(z1) = (1,0) and op(z1) = (0,0). Then write
wy(21) = Dph(21)(1,0) = wy(21)+0,(21), where w,(21) is defined inductively in the following
way. For each > 1, let @,(21) = Dy, (2,)wy—1(21). Then

i) If 1 is a return for 2z, with folding period [p + 1, u + €], write @,(21) = Bu(21)(1,0) +
o, (21)e,, where e, = e (z,,1). Then let w,(z1) = B.(21)(1,0).

ii) If 1 is the end of some folding period of zg, let u1 < ps < ... < s < p be all the returns
with p; + €; = p ([u; + 1, w; + 4] the folding period corresponding to p;). Then, define

wy(21) = @u(21) + D oy (21) Dy (241) -
i=1
iii) If p is neither a return nor the end of a folding period, let w,(z1) = @, (z1).

This algorithm is designed in such a way that w,(2;) is almost horizontal for all x> 0. Now
we may state the remaining induction assumptions.

(P3) Let zp € Cy, k < n, and p < k be a return for zy. Suppose that m(z,) € Bs(c;) and
denote a; = |¢g(c;)| > 0. Then
|Bu(z1)] [lws (z)

1
_aid (ZO) S = S 2a,d (20),
2" [wp1 (2O llwv—a(20)] g

and
o (21)| < const bl|wy—1(z1)]]-

(P4) Moreover, the binding point (o of z, and the binding period [ + 1, + p] satisfy
p < const ap < pu and

1 [[wuts (21) ] [wWutp(z0)]l 1)/3
— < <A; and EPEULG (29) > Apo®PHDB > 1.
A = 1Bulz)llws ()N~ ()l 7 ’

for fixed positive constants A, As.
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In order to prove the expansion property (10) one combines the last inequality with
Corollary 5.4, but we also need a second condition on the parameter. Given z, € C, we
take M < py < ... < ps < n to be its (free) returns and let py,...,ps be the length of the
corresponding binding periods. Set the total binding time of zy to be B, (20) = X571 (1 + pi).-
By definition, this is zero if n < M. We exclude the parameters that do not satisfy

(CP2) B, (%) < an.

Given any 2y € C,, the set of parameters values for which (CP1) or (CP2) do not hold
has Lebesgue measure bounded by conste 2", some v > 0 independent of b. Combining
this with (9) we get that, if b is small enough, the total measure of the exclusions at time
n decreases exponentially fast: it is bounded by conste™". In this way one gets that a
positive measure set S of parameter values satisfy both conditions at all times n > 1.

Then, for every parameter v € S we choose a sequence (z™), such that each 2™ is
obtained from 2"~ by mechanism a) in the definition of C,, and we define z(v) = lim 2.
By construction,

ID¢l(Z2(v))(1,0)|| > const o™ for all n > 1.

Moreover, there is a full measure subset S of S such that the forward orbit of Z(v) is dense
in W*(P,) for all v € S. This follows from precisely the same argument as in the last section
of [BC], observing that, since we take ¢q to be topologically mixing, the preorbit of any of
its periodic points is dense in V.

5.5 Conclusion of the proof

Now we are in a position to complete the proof of Theorem C. First, we describe a suitable
C3-open set Ay of parametrized families of diffeomorphisms unfolding a critical saddle-node
1-cycle. Then we show, using the analysis in the previous sections, that such families satisfy
the conclusion of the theorem. We keep the notations of Sections 3.2, 4.2, 5.1 and 5.2.

Let R_,:A, — A, be induced by (z,y) — (z — v,y — v) and denote H, = Ho R_,,.
Let N C CY(A,,A,) be as in Theorem 5.1. We fix § > 0 small enough so that H, € N
for every |v| < §. We also let ¢, = ho R_,, where R_, is induced by x — x — v. Then
(#v)ve[—s,9) is a 2-modal family, recall Sections 5.1 and 5.2. We take b > 0 as given by Theorem
5.2 for this family. In the sequel we identify A, with S’ x B, where B = [—1,1], via the
diffeomorphism n: A — S'xR, n(m(z,y)) = (m1(x), (y—=)/r). Now, given (f,), a family of
diffeomorphisms unfolding a critical saddle-node 1-cycle, we let ¢(o, -) = ®; ohjor,0(®y )~ =
(9o R_s,GoR_,) be as in Section 3.2 and we also write 7, = (9o R_(1/24,)).- Then we define
A() by

(o) EN forallc € J=[1/2—4,1/2 + ¢] and
() (fun € Ao = { Iy — 6l < b/2 with || - || = C3-norm over [—3, 6] x S.

The first condition in (11) ensures that, given any (f,), € Ao, there is k; > 1 such
that ¢y (c,) € N for every o € J and k > ki. Recall that 14(0,-) = @, 0 by 0 ()77,

“w
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with hj;, = map induced by ff” on éu_’ and that v, — 1 as k — oo. Here and in what
follows we always consider u = (o), with o € J and k > k;. Let Py, be the fixed point of
(o, -) close to P = (0,0). By Theorem 5.1 applied to ¢%(o, ), given any z € A, ~ S' x B
such that ¢, "(0,2) € A, for all n > 0, there is (z;); — 2z with z; € W*(P;,) for all
i > 0. Write 7, = ®, om,:C, — S' x B, recall Section 3.2, and take P, = 7, (Py,0)-
Clearly, P, is a periodic point of f,. We claim that W*(P,) is dense in A, = Nyxof} (V).
In order to justify this claim, we begin by observing that W*(P,) intersects W*(f(P,))
transversely: this corresponds to transverse homoclinic intersections associated to Py ,. As
a consequence, closure (W*(P,)) = closure (W*(f}(P,))) for all i. On the other hand, recall

the construction of V' in Section 4.2,

a) given any £ € V there is p; > 0 such that fi+(£) € C;

;1L & € A, then there is also
p- > 0 such that f7P-(§) € C;

b)if¢ € A,NC}; and p. are the minima integers as above, then p. < p for some p depending
only on k and [ (not on &) and 7, (f7*(£)) = %u(fj(k“)(g)) = ¥ (0, 7,(€)).

In particular, the claim will follow if we show that every £ € A, N C, is accumulated by
points & in the unstable manifold of some iterate of P,. We write z = 7,(£) and then take
(z:)s = z with z; € W*(Py,), and & = 7 '(z;) € C,;. Let i be fixed and, for each j > 0,
denote w; = 1(0,z) and n; = 7, ' (w;). The fact that w; — Py, implies that n; — P,
and so the a-limit set of & contains P,. On the other hand, by b), n; = fi’(n;4+1) with
0 < p; < pforall j > 0. It follows that a(£) consists only of periodic points with period less
than p. Since P, is isolated in the set of such points (because it is hyperbolic), we conclude
that (&) coincides with the orbit of P,. This completes the proof of the claim.
Now we introduce the families ¢ (o, -) and ¢y (o, ) of maps of S* x B, given by

p(0,) =®f o, o hyo (@)™ and  @u(0,) = B 0 he o (B) 7

Here 7,, h;, and hj,;, have the same meaning as in Section 3.2 and p > 0 is fixed small
enough so that these maps are well defined. Clearly, ¢k (o, -) is conjugate to ¥, (o, -) by the
map &, = @ om0 (@j)_l, where 7, ,: C;F — C is induced by f}, The same arguments
as in Section 3.2 give that ¢(o,z,y) = (9 0 R_4(2),0) = (Vs—1/2(%),0) and ¢ — ¢ as
k — o0o. Therefore, the second condition in (11) implies that there is ks > 1 such that
(pk(1/2 + v,-)), is a nonsingular b-perturbation of (¢,), for all £ > ky. From now on we
suppose k > ko = max{ki, k2}. We denote Qy, = 5,;(1,(Pk,a), which is the continuation for
¢k (o, -) of the fixed point (0,0) of $o. Now, by Theorem 5.2, there is Sy C [—0, ] with
m(Sk) > x such that, given any o € (1/2 + S) C J, there is 2 € W*(Qk,) a critical
point for ¢y (o, ) whose orbit is dense in closure (W"(Qy,,)) and which exhibits exponential
growth of the derivative. Clearly, these three features are preserved by C' conjugacies and
so W = & ,(w) has the analogous properties with respect to ¢ (o, -) and closure (W"(Py,)).
Let £ = @,'(w) € C,. It is easy to check, using a) above together with the arguments in
the previous paragraph, that the trajectory of £ is dense in closure (W*(P,)). Moreover,
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using b) we also get that £ is a critical point of f, and exhibits exponential growth of the
derivative.

Altogether, these two last paragraphs show that, given any family (f,), € Ao, the max-
imal invariant set A, is a Hénon-like attractor for every p in G = Ug>kour(1/2 + Sk). The
fact that G has positive Lebesgue density at ;4 = 0 is a direct consequence of Proposition
2.2. The proof of Theorem C is now complete.
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