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Introduction

The study of interval exchange maps is a classical topic in Dynamics that has
drawn a great deal of attention over the last decades. This is due to two main sorts
of reasons. On the one hand, these dynamical systems have a particularly simple
formulation and, yet, exhibit very rich dynamical behavior. On the other hand,
they relate closely to several other objects, in Dynamics as well as in many other
areas of Mathematics: measured foliations, translation flows, Abelian differentials,
Teichmüller flows, continued fraction expansions, polygonal billiards, renormaliza-
tion theory, to mention just a few.

Interest in this topic was renewed in very recent years, corresponding to the
solution of certain long standing problems. Firstly, Avila, Forni [1] have shown
that almost all interval exchange maps are weakly mixing. Topological weak mixing



ERGODIC THEORY OF INTERVAL EXCHANGE MAPS 3

had been established some years ago by Nogueira, Rudolph [18]. Then, Avila and
the present author [4, 3] proved the Zorich-Kontsevich [14, 25, 26] conjecture on
the Lyapunov spectrum of the Teichmüller, following important partial results by
Forni [8]. Then, even more recently, Avila, Gouezel, Yoccoz [2] showed that the
Teichmüller flow is exponentially mixing. Partial progress in this direction was also
obtained by Bufetov [7]

Results such as these rely on a substantial amount of information amassed since
the late seventies, starting from the pioneer works of Rauzy [19], Keane [9, 10],
Masur [17], Veech [21, 22, 23], Zorich [25, 26], and other authors. Amidst all this
information, it is often not easy to find the most relevant lines of development, nor
to unveil the geometric motivation underlying main ideas and arguments. In this
article we aim to bridge that gap.

Indeed, we give a unified treatment of the main classical results, starting from
the very definition of interval interchange map and culminating with the proof of
the Keane conjecture that almost every interval exchange map admits a unique
invariant probability measure. We put great emphasis on examples and geometric
interpretations of the main ideas. Besides the original papers mentioned previously,
we have also benefited from the presentations of Marmi, Moussa, Yoccoz [16, 24].

Our text may be divided into three main parts, each containing roughly ten
sections.

In the first part, we define and analyze the class of interval exchange maps.
One of the main tools is the Rauzy-Veech induction operator, that assigns to each
interval exchange map its first return to a convenient subinterval. The largest
subset where this operator can be iterated indefinitely has full Lebesgue measure
and is perfectly characterized by an explicit condition on the interval exchange map
that was introduced by Keane. Moreover, interval exchange maps that satisfy the
Keane condition are minimal, that is, all their orbits are dense.

We also introduce the Rauzy-Veech renormalization operator, defined by compos-
ing the induction operator with a rescaling of the domain. In addition, we consider
“accelerated” induction and renormalization operators, introduced by Zorich. The
Zorich renormalization operator may be seen as a high-dimensional version of the
classical continued fraction expansion, as we shall also see.

In the second third of the paper we define and study translation surfaces and
their geodesic flows. Translation surfaces provide a natural setting for defining
the suspensions of interval exchange transformations, and introducing invertible
versions of the induction and renormalization operators introduced previously in
terms of interval exchanges. We describe the suspension construction and explain
how the resulting translation surface may be computed from the combinatorial and
metric data of the exchange transformation.

Another important dynamical system in the space of translation surfaces, or of
zippered rectangles, is the Teichmüller flow. It is related to the Rauzy-Veech and
Zorich renormalization operators in that the latter may be seen as Poincaré return
maps of the Teichmüller flow to convenient cross-sections in the space of all interval
exchange maps.

The third and last part of the paper is devoted to the proof of the Keane con-
jecture: almost every interval exchange map is uniquely ergodic. The original
proof is due to Masur [17] and Veech [22], and alternative arguments were given by
Rees [20], Kerckhoff [12], and Boshernitzan [6]. Our presentation is based on the
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original strategy, where the crucial step is to prove that the renormalization oper-
ator admits a natural absolutely continuous invariant measure which, in addition,
is ergodic. The conjecture then follows by observing that interval exchange maps
that are typical for this invariant measure are uniquely ergodic.

It is in the nature of things that the Masur-Veech invariant measure is infinite.
However, the Zorich renormalization operator does admit an absolutely continuous
invariant probability measure, which is also ergodic. Since this probability plays an
important role in subsequent developments, we also review it construction in the
last section of the paper.

1. Interval exchange maps

Let I ⊂ R be an interval1 and {Iα : α ∈ A} be a partition of I into subintervals,
indexed by some alphabet A with d ≥ 2 symbols. An interval exchange map is a
bijective map from I to I which is a translation on each subinterval Iα. Such a
map f is determined by combinatorial and metric data as follows:

(1) A pair π = (π0, π1) of bijections πε : A → {1, . . . , d} describing the ordering
of the subintervals Iα before and after the map is iterated. This will be
represented as

π =

(

α0
1 α0

2 . . . α0
d

α1
1 α1

2 . . . α1
d

)

where αε
j = π−1

ε (j) for ε ∈ {0, 1} and j ∈ {1, 2, . . . , d}.
(2) A vector λ = (λα)α∈A with positive entries, where λα is the length of the

subinterval Iα.

We call p = π1 ◦ π−1
0 : {1, . . . , d} → {1, . . . , d} the monodromy invariant of the

pair π = (π0, π1). Observe that our notation, that we borrow from Marmi, Moussa,
Yoccoz [16], is somewhat redundant. Given any (π, λ) as above and any bijection
φ : A′ → A, we may define

π′
ε = πε ◦ φ, ε ∈ {0, 1} and λ′α′ = λφ(α′), α′ ∈ A′.

Then (π, λ) and (π′, λ′) have the same monodromy invariant and they define the
same interval exchange transformation. This means one can always normalize the
combinatorial data by choosing A = {1, 2, . . . , d} and π0 = id, in which case π1 coin-
cides with the monodromy invariant p. However, this notation hides the symmetric
roles of π0 and π1, and is not invariant under the induction and renormalization
algorithms that we are going to present. On the contrary, the present notation
π = (π0, π1) allows for a very elegant formulation of these algorithms, as we are
going to see.

Example 1.1. The interval exchange transformation described by Figure 1 corre-

sponds to the pair π =

(

C B A D
D B A C

)

. The monodromy invariant is equal to

p = (4, 2, 3, 1).

Example 1.2. For d = 2 there is essentially only one combinatorics, namely

π =

(

A B
B A

)

.

1All intervals will be bounded, closed on the left and open on the right. For notational sim-
plicity, we take the left endpoint of I to coincide with 0.
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Figure 1.

The interval exchange transformation associated to (π, λ) is given by

f(x) =

{

x+ λB if x ∈ IA
x− λA if x ∈ IB .

Identifying I with the circle R/(λA + λB)Z, we get

(1) f(x) = x+ λB mod (λA + λB)Z.

That is, the transformation corresponds to the rotation of angle λB/(λA + λB).

Example 1.3. The data (π, λ) is not uniquely determined by f . Indeed, let

π =

(

A B C
B C A

)

.

Given any λ, the interval exchange transformation f defined is

f(x) =

{

x+ λB + λC for x ∈ IA
x− λA for x ∈ IB ∪ IC .

This shows that f is also the interval exchange transformation defined by either of
the following data:

• (π, λ′) for any other λ′ such that λ′A = λA and λ′B + λ′C = λB + λC

• (π̃, λ̃) with π̃ =

(

A D
D A

)

and λ′′A = λA and λ′′D = λB + λC .

Translation vectors. Given π = (π0, π1), define Ωπ : RA → RA by

(2) Ωπ(λ) = w with wα =
∑

π1(β)<π1(α)

λβ −
∑

π0(β)<π0(α)

λβ .

Then the corresponding interval exchange transformation f is given by

f(x) = x+ wα, for x ∈ Iα.

We call w the translation vector of f . Notice that the matrix 2 (Ωα,β)α,β∈A of Ωπ

is given by

(3) Ωα,β =







+1 if π1(α) > π1(β) and π0(α) < π0(β)
−1 if π1(α) < π1(β) and π0(α) > π0(β)
0 in all other cases.

Example 1.4. In the case of Figure 1,

(wA, wB, wC , wD) = (λD − λC , λD − λC , λD + λB + λA,−λC − λB − λA).

The image of Ωπ is the 2-dimensional subspace

{w ∈ R
A : wA = wB = wC + wD}.

2Except where otherwise stated, all matrices are with respect to the canonical basis of R
A.
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On the other hand, for π =

(

A B C D
D C B A

)

we have

(wA, wB , wC , wD) = (λD +λC +λB, λD +λC −λA, λD −λB −λA,−λC −λB −λA)

and Ωπ is a bijection from RA to itself.

Lemma 1.5. We have λ · w = 0.

Proof. This is an immediate consequence of the fact that Ωπ is anti-symmetric. A
detailed calculation follows. By definition

λ · w =
∑

α∈A

λαwα =
∑

α∈A

λα





∑

π1(β)<π1(α)

λβ −
∑

π0(β)<π0(α)

λβ





and this is equal to
∑

π1(β)<π1(α)

λαλβ −
∑

π0(β)<π0(α)

λαλβ =
1

2

∑

α6=β

λαλβ − 1

2

∑

α6=β

λαλβ = 0.

This proves the statement. �

The canonical involution is the operation in the space of (π, λ) corresponding
to interchanging the roles of π0 and π1 while leaving λ unchanged. Clearly, under
this operation the monodromy invariant p and the transformation f are replaced
by their inverses. Moreover, Ωπ is replaced by −Ωπ, and so the translation vector
is also replaced by its symmetric.

2. Rauzy-Veech induction

Let (π, λ) represent an interval exchange transformation. For each ε ∈ {0, 1},
denote by α(ε) the last symbol in the expression of πε, that is

α(ε) = π−1
ε (d) = αε

d

Let us assume the intervals Iα(0) and Iα(1) have different lengths. Then we say that
(π, λ) has type 0 if λα(0) > λα(1) and type 1 if λα(0) < λα(1). In either case, the
largest of the two intervals is called the winner and the shortest one is called the
loser of (π, λ). Let J be the subinterval of I obtained by removing the loser, that
is, the shortest of these two intervals:

J =

{

I \ f(Iα(1)) if (π, λ) has type 0
I \ Iα(0) if (π, λ) has type 1.

The Rauzy-Veech induction of f is the first return map R̂(f) to the subinterval J .
This is again an interval exchange transformation, as we are going to explain.

If (π, λ) has type 0, take Jα = Iα for α 6= α(0) and Jα(0) = Iα(0) \ f(Iα(1)).
These intervals form a partition of J . Note that f(Jα) ⊂ J for every α 6= α(1).

This means that R̂(f) = f restricted these Jα. On the other hand,

f(Jα(1)) = f(Iα(1)) ⊂ Iα(0)

and so,

f2(Jα(1)) ⊂ f(Iα(0)) ⊂ J.

Consequently, R̂(f) = f2 restricted to Jα(1). See Figure 2.
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· · ·α(0)

α(0)

f

f

α(0)′

α(0)′

Figure 2.

If (π, λ) has type 1, define Jα(0) = f−1(Iα(0)) and Jα(1) = Iα(1) \ Jα(0), and
Jα = Iα for all other values of α. See Figure 3. Then f(Jα) ⊂ J for every

α 6= α(0), and so R̂(f) = f restricted these Jα. On the other hand,

f2(Jα(0)) = f(Iα(0)) ⊂ J,

and so R̂(f) = f2 restricted to Jα(0).

α(1)

α(1)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

α(0)

α(0)

α(0)

α(0)

f

f

α(0)′

α(0)′

Figure 3.

The induction map R̂(f) is not defined when the two rightmost intervals Iα(0)

and Iα(1) have the same length. We shall return to this point in Sections 3 and 5.

Remark 2.1. Suppose the n’th iterate R̂n(f) is defined, for some n ≥ 1, and let In

be its domain. It follows from the definition of the induction algorithm that R̂n(f)

is the first return map of f to In. Similarly, R̂n(f)−1 = R̂n(f−1) is the first return
map of f−1 to In.

Let us express the map f 7→ R̂(f) in terms of the coordinates (π, λ) in the space
of interval exchange transformations. It follows from the previous description that
if (π, λ) has type 0 then the transformation R̂(f) is described by (π′, λ′), where

• π′ =

(

π′
0

π′
1

)

=

(

α0
1 · · · α0

k−1 α0
k α0

k+1 · · · · · · α(0)
α1

1 · · · α1
k−1 α(0) α(1) α1

k+1 · · · α1
d−1

)

.

or, in other words,

(4) α0′

j = α0
j and α1′

j =







α1
j if j ≤ k
α(1) if j = k + 1
α1

j−1 if j > k + 1,
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where k ∈ {1, . . . , d− 1} is defined by α1
k = α(0).

• λ′ = (λ′α)α∈A where

(5) λ′α = λα for α 6= α(0), and λ′α(0) = λα(0) − λα(1).

Analogously, if (π, λ) has type 1 then R̂(f) is described by (π′, λ′), where

• π′ =

(

π′
0

π′
1

)

=

(

α0
1 · · · α0

k−1 α(1) α(0) α0
k+1 · · · α0

d−1

α1
1 · · · α1

k−1 α1
k α1

k+1 · · · · · · α(1)

)

.

or, in other words,

(6) α0′

j =







α0
j if j ≤ k
α(0) if j = k + 1
α0

j−1 if j > k + 1
and α1′

j = α1
j ,

where k ∈ {1, . . . , d− 1} is defined by α0
k = α(1).

• λ′ = (λ′α)α∈A where

(7) λ′α = λα for α 6= α(1), and λ′α(1) = λα(1) − λα(0).

Example 2.2. If π =

(

B C A E D
A E B D C

)

and λD < λC (type 1 case) then

π′ =

(

B C D A E
A E B D C

)

and λ′ = (λA, λB , λC − λD, λD, λE).

Operator Θ. Let us also compare the translation vectors w and w′ of f and R̂(f),
respectively. From Figure 2 we see that, if (π, λ) has type 0,

w′
α = wα for α 6= α(1), and w′

α(1) = wα(1) + wα(0).

Analogously, if (π, λ) has type 1,

w′
α = wα for α 6= α(0), and w′

α(0) = wα(0) + wα(1).

This may be expressed as

(8) w′ = Θ(w)

where Θ = Θπ,λ : RA → RA is the linear operator whose matrix (Θα,β)α,β∈A is

given by

(9) Θα,β =







1 if α = β
1 if α = α(1) and β = α(0)
0 in all other cases.

if (π, λ) has type 0, and

(10) Θα,β =







1 if α = β
1 if α = α(0) and β = α(1)
0 in all other cases.

if (π, λ) has type 1. Notice that Θ depends only on π and the type ε.
Observe that Θ is invertible and its inverse is given by

Θ−1
α,β =







1 if α = β
−1 if α = α(1) and β = α(0)
0 in all other cases
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when (π, λ) has type 0, and

Θ−1
α,β =







1 if α = β
−1 if α = α(0) and β = α(1)
0 in all other cases

when (π, λ) has type 1. So, the relations (5) and (7) may be rewritten as

(11) λ′ = Θ−1∗(λ) or λ = Θ∗(λ′)

where Θ∗ denotes the adjoint operator of Θ, that is, the operator whose matrix is
transposed of that of Θ.

Remark 2.3. The canonical involution does not affect the operator Θ: if π̃ is ob-
tained by interchanging the lines of π, then Θπ̃,λ = Θπ,λ. Notice that (π̃, λ) and
(π, λ) have opposite types.

3. Keane condition

Summarizing the previous section, the Rauzy-Veech induction is expressed by
the transformation

R̂ : R̂(π, λ) = (π′, λ′)

where π′ is given by (4) and (6), and λ′ is given by (5) and (7). Recall that

R̂ is not defined when the two rightmost intervals have the same length, that is,
when λα(0) = λα(1). We want to consider R̂ as a dynamical system in the space
of interval exchange transformations, but for this we must restrict the map to an
invariant subset of (π, λ) such that the iterates R̂n(π, λ) are defined for all n ≥ 1.

Let us start with the following observation. We say that a pair π = (π0, π1) is
reducible if there exists k ∈ {1, . . . , d− 1} such that

(12) π1 ◦ π−1
0 ({1, . . . , k}) = {1, . . . , k}.

Then, for any choice of λ, the subinterval

J =
⋃

π0(α)≤k

Iα =
⋃

π1(α)≤k

Iα

is invariant under the transformation f , and so is its complement. This means that
f splits into two interval exchange transformations, with simpler combinatorics.
Moreover, (π′, λ′) = R̂(π, λ) is also reducible, with the same invariant subintervals.
In what follows, we always restrict ourselves to irreducible data.

A natural possibility is to restrict the induction algorithm to the subset of ra-
tionally independent vectors λ ∈ RA

+ , that is, such that

(13)
∑

α∈A

nαλα 6= 0 for all nonzero integer vectors (nα)α∈A ∈ Z
A.

It is clear that this condition is invariant under iteration of (5) and (7), and that it

ensures that all iterates R̂n(π, λ) are defined. Observe also that the set of rationally
independent vectors has full Lebesgue measure in the cone R

A
+.

However, it was observed by Keane [9, 10] that rational independence is a bit
too strong: depending on the combinatorial data, failure of (13) for certain integer

vectors may not be an obstruction to further iteration of R̂. Let ∂Iγ be the left
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endpoint of each subinterval Iγ . Recall that we take the left endpoint of I to
coincide with the origin. Then

∂Iγ =
∑

π0(η)<π0(γ)

λη

represents the left endpoint of each subinterval Iγ . A pair (π, λ) satisfies the Keane
condition if the orbits of these endpoints are as disjoint as they can possible be 3:

(14) fm (∂Iα) 6= ∂Iβ for all m ≥ 1 and α, β ∈ A with π0(β) 6= 1.

This ensures that π is irreducible and (π′, λ′) = R̂(π, λ) is well-defined. Moreover,

property (14) is invariant under iteration of R̂, because R̂(f)-orbits are contained in

f -orbits. Thus, the Keane condition is sufficient for all iterates (πn, λn) = R̂n(π, λ),
n ≥ 0 to be defined. We shall see in Corollary 5.4 that it is also necessary.

Remark 3.1. The Keane condition (14) is not affected if one restricts to the case
π1(α) > 1. Indeed, suppose one has fm(∂Iα) = ∂Iβ > 0 with π1(α) = 1 and
m > 1. Then f(∂Iα) = 0 = ∂Iγ for some γ ∈ A. Then, fm−1(∂Iγ) = ∂Iβ .
Moreover, π1(γ) > 1 because π is irreducible and π0(γ) = 1.

The next result shows that, assuming irreducibility, the Keane condition is indeed
more general than rational independence. In particular, it also corresponds to full
Lebesgue measure.

Proposition 3.2. If λ is rationally independent and π is irreducible then (π, λ)
satisfies the Keane condition.

Proof. Assume there exist m ≥ 1 and α, β ∈ A such that fm(∂Iα) = ∂Iβ and
π0(β) > 1. Define βj , 0 ≤ j ≤ m, by

f j(∂Iα) ∈ Iβj
.

Notice that β0 = α and βm = β. Then

∂Iβ − ∂Iα =
∑

0≤j<m

wβj

where w = (wγ)γ∈A is the translation vector defined in (2). Equivalently,
∑

π0(γ)<π0(βm)

λγ −
∑

π0(γ)<π0(β0)

λγ =
∑

0≤j<m

(

∑

π1(γ)<π1(βj)

λγ −
∑

π0(γ)<π0(βj)

λγ

)

.

This may be rewritten as
∑

γ∈A nγλγ = 0, where

nγ = #{0 ≤ j < m : π1(βj) > π1(γ)} − #{0 < j ≤ m : π0(βj) > π0(γ)}.
Since we assume rational independence, we must have nγ = 0 for all γ ∈ A. Now
let D be the maximum of π0(βj) over all 0 < j ≤ m and π1(βj) over all 0 ≤ j < m.
Note that D ≥ π0(β) > 1. So, since we assume that π is irreducible, there exists
γ ∈ A such that π0(γ) < D ≤ π1(γ). The last inequality implies that π1(βj) ≤
π1(γ) for all 0 ≤ j < m. Since nγ = 0, this implies that π0(βj) ≤ π0(γ) < D for all
0 < j ≤ m. A symmetric argument shows that π1(βj) < D for all 0 ≤ j < m. This
contradicts the definition of D. This contradiction proves that (π, λ) satisfies the
Keane condition, as stated. �

3It is clear that if π0(β) = 1 then f(∂Iα) = ∂Iβ for α = π−1
1 (1).
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Example 3.3. Suppose d = 2. By (1), the interval exchange transformation is given
by f(x) = x + λB mod (λA + λB)Z. So, the Keane condition means that, given
any m ≥ 1 and n ∈ Z, both

mλB 6= λA + n(λA + λB) and λA +mλB 6= λA + n(λA + λB).

It is clear that this holds if and only if (λA, λB) is rationally independent.

Example 3.4. Starting from d = 3, the Keane condition may be strictly weaker

than rational independence. Consider, for instance, π =

(

A B C
C A B

)

. Then

f(x) = x+ λC mod (λA + λB + λC)Z and the Keane condition means that

mλC and λA +mλC and λA + λB +mλC

are different from λA + n(λA + λB + λC) and λA + λB + n(λA + λB + λC), for all
m ≥ 1 and n ∈ Z. This may be restated in a more compact form, as follows: given
any p ∈ Z and q ∈ Z,

pλC 6= q(λA + λB + λC) and pλC 6= λA + q(λA + λB + λC).

Clearly, this may hold even if (λA, λB) is rationally dependent.

4. Minimality

A transformation is called minimal if every orbit is dense in the whole domain
of definition or, equivalently, the domain is the only nonempty closed invariant set.

Proposition 4.1. If (π, λ) satisfies the Keane condition then f is minimal.

For the proof, we begin by noting that the first return map of f to some interval
J ⊂ Iα is again an interval exchange transformation:

Lemma 4.2. Given any subinterval J = [a, b) of some Iα, there exists a partition
{Jj : 1 ≤ j ≤ k} of J and integers n1, . . . , nk ≥ 1, where k ≤ d+ 2, such that

(1) f i(Jj) ∩ J = ∅ for all 0 < i < nj and 1 ≤ j ≤ k;
(2) each fnj | Jj is a translation from Jj to some subinterval of J ;
(3) those subintervals fnj (Jj), 1 ≤ j ≤ k are pairwise disjoint.

Proof. Let A be the union of the boundary {a, b} of J with the set of endpoints of
all the intervals Iγ , γ ∈ A, the endpoints of I excluded. Note that #A ≤ d + 1.
Let B ⊂ J be the set of points z ∈ J for which there exists some m ≥ 1 such
that f i(z) /∈ J for all 0 < i < m and fm(z) ∈ A. The map B ∋ z 7→ fm(z) ∈ A
is injective, because f is injective and there are no iterates in J prior to time m.
Consequently, #B ≤ #A. Consider the partition of J determined by the points of
B. This partition has at most d+2 elements. By the Poincaré recurrence theorem,
for each element Jj = [aj , bj) there exists nj ≥ 1 such that fnj (Jj) intersects J .
Take nj smallest. From the definition of B it follows that the restriction fnj | Jj

is a translation and its image is contained in J . Finally, the fnj (Jj), 1 ≤ j ≤ k
are pairwise disjoint because f is injective and the nj are the first return times to
J . �

In fact, the statement is true for any interval J ⊂ I. See [21, § 3].

Corollary 4.3. Under the assumptions of Lemma 4.2, the union Ĵ of all forward
iterates of J is a finite union of intervals and a fully invariant set: f(Ĵ) = Ĵ .
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Proof. The first claim follows directly from the first part of Lemma 4.2:

Ĵ =

∞
⋃

n=0

fn(J) =

k
⋃

j=1

nj−1
⋃

i=0

f i(Jj).

Moreover, parts 2 and 3 of Lemma 4.2, together with the observation

k
∑

j=1

|fnj (Jj)| =
k
∑

j=1

|Jj | = |J |

(we use | · | to represent length), give that J coincides with ∪k
j=1f

nj(Jj). This

implies that Ĵ is fully invariant. �

Lemma 4.4. If (π, λ) satisfies the Keane condition then f has no periodic points.

Proof. Suppose there exists m ≥ 1 and x ∈ I such that fm(x) = x. Define βj ,
0 ≤ j ≤ m by the condition f j(x) ∈ Iβj

. Let J be the set of all points y ∈ I such

that f j(y) ∈ Iβj
for all 0 ≤ j < m. Then J is an interval and fm restricted to it

is a translation. Since fm(x) = x, we actually have fm | J = id. In particular,
fm(∂J) = ∂J . The definition of J implies that there are 1 ≤ k ≤ m and β ∈ A
such that fk(∂J) = ∂Iβ . Then fm(∂Iβ) = ∂Iβ . If π0(β) > 1, this contradicts the
Keane condition. If π0(β) = 1 then there exists α ∈ A such that f(∂Iα) = 0 = ∂Iβ .
Note that α 6= β, and so ∂Iα > 0, because π is irreducible. Hence, fm(∂Iα) = ∂Iα
contradicts the Keane condition. These contradictions prove that there is no such
periodic point x. �

Proof of Proposition 4.1. Suppose there exists x ∈ I such that {fn(x) : n ≥ 0}
is not dense in I. Then we may choose a subinterval J = [a, b) of some Iα that

avoids the closure of the orbit. Let Ĵ be the union of all forward iterates of J . By
Corollary 4.3, this is a finite union of intervals, fully invariant under f . We claim

that Ĵ can not be of the form [0, b̂). The proof is by contradiction. Let B be the

subset of α ∈ A such that Iα is contained in Ĵ . Then π0(B) = {1, . . . , k} for some

k. Since Ĵ is invariant, we also have π1(B) = {1, . . . , k}. Hence,

(15) π−1
0 ({1, . . . , k}) = B = π−1

1 ({1, . . . , k}).

It is clear that k < d, because Ĵ avoids the closure of the orbit of x, and so it can
not be the whole I. If k = 0 then Ĵ would be contained in Iα, where π0(α) = 1; by
invariance, it would also be contained in f(Iα), implying that π1(α) = 1; this would
contradict irreducibility (which is a consequence of the Keane condition). Thus, k
must be positive. Then (15) contradicts irreducibility, and this contradiction proves
our claim.

As a consequence, there exists some connected component [â, b̂) of Ĵ with â > 0.
If fn(â) 6= ∂Iβ for every n ≥ 0 and β ∈ A, then (by continuity of f and invariance

of Ĵ) every fn(â), n ≥ 0 would be on the boundary of some connected component

of Ĵ . As there are finitely many components, f would have a periodic point, which
is forbidden by Lemma 4.4. Similarly, if fn(â) 6= f(∂Iα) for every n ≤ 0 and α ∈ A,
then every fn(â), n ≤ 0 would be on the boundary of some connected component

of Ĵ . Just as before, this would imply the existence of some periodic point , which
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is forbidden by Lemma 4.4. This proves that there are n1 ≤ 0 ≤ n2 and α, β ∈ A
such that

(16) fn1(â) = f(∂Iα) and fn2(â) = ∂Iβ .

If ∂Iβ > 0, this contradicts the Keane condition (take m = n2 − n1 + 1). If
∂Iβ = 0 then n2 > 0, because we have taken â > 0. Moreover, ∂Iβ = f(∂Iγ),
where π1(γ) = 1. This means that (16) remains valid if one replaces β by γ and
n2 by n2 − 1. As γ 6= β, by irreducibility, we have ∂Iγ > 0 and this leads to a
contradiction just as in the previous case. �

A

A

B

B

C

C

D

D

Figure 4.

Remark 4.5. The Keane condition is not necessary for minimality. Consider the
interval exchange transformation f illustrated in Figure 4, where λA = λC , λB =
λD, and λA/λB = λC/λD is irrational. Then f does not satisfy the Keane condition,
yet it is minimal.

Unique ergodicity. A transformation is called uniquely ergodic if it admits exactly
one invariant probability (which is necessarily ergodic). See Mañé [15]. Then the
transformation is minimal restricted to the support of this probability. Observe that
interval exchange transformations always preserve the Lebesgue measure. Thus, in
this context, unique ergodicity means that every invariant measure is a multiple of
the Lebesgue measure.

Keane [9] conjectured that every minimal interval exchange transformation is
uniquely ergodic, and checked that this is true for d = 2, 3. However, Keynes,
Newton [13] gave an example with d = 5 and two ergodic invariant probabilities.
In turn, they conjectured that rational independence should suffice for unique er-
godicity. Again, a counterexample was given by Keane [10], with d = 4 and two
ergodic invariant probabilities. He then went on to make the following

Conjecture 4.6. Almost every interval exchange transformation is uniquely ergodic.

This statement was proved in the early eighties, independently, by Masur [17]
and Veech [22]. That unique ergodicity holds for a (Baire) residual subset had been
proved by Keane, Rauzy [11].

5. Dynamics of the induction map

This section contains a number of useful facts on the dynamics of the induction
algorithm in the space of interval exchange transformations. The presentation
follows Section 4.3 of Yoccoz [24].

Let (π, λ) be such that the iterates (πn, λn) = R̂n(π, λ) are defined for all n ≥ 0.
For instance, this is the case if (π, λ) satisfies the Keane condition. For each n ≥ 0,
let εn ∈ {0, 1} be the type and αn, βn ∈ A be, respectively, the winner and the
loser of (πn, λn). In other words, αn and βn are the two rightmost symbols in the
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two lines of πn, with λαn > λβn . In yet another equivalent formulation, πεn(αn) =
d = π1−εn(βn).

It is clear that the sequence (εn)n takes both values 0 and 1 infinitely many
times. Indeed, suppose the type εn was eventually constant. Then αn would also
be eventually constant, and so would λn

α for all α 6= αn. On the other hand,

λn+1
αn+1 = λn+1

αn = λn
αn − λn

βn

for all large n. Since the λn
βn are bounded from zero, the λn

αn would be eventually
negative, which is a contradiction.

Proposition 5.1. Both sequences (αn)n and (βn)n take every value α ∈ A infin-
itely many times.

Proof. Given any symbol α ∈ A, consider any maximal time interval [p, q) such
that αn = α for every n ∈ [p, q). At the end of this interval the type must change:

εq = 1 − εq−1 and πq
1−εq (α) = d.

In other words, α = βq. This shows that we only have to prove the statement for
the sequence (αn)n.

Let B be the subset of symbols β ∈ A that occur only finitely many times in the
sequence (αn)n. Up to replacing (π, λ) by some iterate, we may suppose that those
symbols do not occur at all in (αn)n. Then λn

β = λβ for all β ∈ B and n ≥ 0. Since

λn+1
αn+1 = λn

αn − λn
βn ,

this implies that every β ∈ B occurs only finitely many times in the sequence (βn).
Once more, up to replacing the initial point by an iterate, we may suppose they do
not occur at all in (βn). It follows that, for every β ∈ B, the sequences

πn
0 (β) and πn

1 (β), n ≥ 0,

are non-decreasing. So, replacing (π, λ) by an iterate one more time, if necessary,
we may suppose that these sequences are constant. We claim that

(17) πε(β) < πε(α) for every α ∈ A \ B, β ∈ B, and ε = 0, 1.

Indeed, suppose there were α, β, and ε such that πε(α) < πε(β). Then, since the
sequence πn

ε (β) in non-decreasing, so must be the sequence πn
ε (α). In particular,

πn
ε (α) < d for all n ≥ 0. Now, since α /∈ B, this implies that πn

1−ε(α) = d and
εn = 1 − ε, for some value of n.

(

· · · α · · · β · · · γ
· · · · · · · · · · · · · · · α

)

R̂−→
(

· · · α γ · · · β · · ·
· · · · · · · · · · · · · · · α

)

Then πn+1
ε (β) = πn

ε (β) + 1, contradicting the previous conclusion that πn
ε (β) is

constant. This contradiction proves our claim. Finally, (17) implies that

π0(B) = {1, . . . , k} = π1(B)

for some k < d. Since π is assumed to be irreducible, we must have k = 0, that is,
B is the empty set. This proves the statement for the sequence (αn)n and, hence,
completes the proof of the proposition. �

Corollary 5.2. The length of the domain In of the transformation R̂n(f) goes to
zero when n goes to ∞.
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Proof. Since the sequences λn
α are non-increasing, for all α ∈ A, it suffices to show

that they all converge to zero. Suppose there was β ∈ A and c > 0 such that λn
β ≥ c

for every n ≥ 0. For any value of n such that βn = β, we have

λn+1
αn = λn

αn − λn
βn ≤ λn

αn − c.

By Proposition 5.1, this occurs infinitely many times. As the alphabet A is finite,
it follows that there exists some α ∈ A such that

λn+1
α ≤ λn

α − c.

for infinitely many values of n. This contradicts the fact that λn
α > 0. �

Corollary 5.3. For each m ≥ 0 there exists n ≥ 1 such that

Θ∗n
πm, λm > 0 (all the entries of the matrix are positive).

Proof. Given α, β ∈ A, m ≥ 0, n ≥ 1, we represent by Θ∗(α, β,m, n) the entry on
row α and column β of the matrix of Θ∗n

πm,λm . By definition (9)-(10),

(18) Θ∗(α, β,m, 1) = 1 if either α = β or (α, β) = (αm, βm),

and Θ∗(α, β,m, 1) = 0 in all other cases. Observe also that every Θ∗(α, β,m, n) is
non-decreasing on n:

(19)
Θ∗(α, β,m, n+ 1) =

∑

γ

Θ∗(α, γ,m, n)Θ∗(γ, β,m+ n, 1)

≥ Θ∗(α, β,m, n)Θ∗(β, β,m+ n, 1) ≥ Θ∗(α, β,m, n).

Let α be fixed. We are going to construct an enumeration γ1, γ2, . . . , γd of A and
integers n1, n2, . . . , nd such that

(20) Θ∗(α, γi,m, n) > 0 for every n > ni and i = 1, 2, . . . , d.

It is clear that this implies the corollary, as β must be one of the γi.
For i = 1 just take γ1 = α and n1 = 0. The relations (18) and (19) immediately

imply (20). Next, use Proposition 5.1 to find m2 > m such that the winner αm2

coincides with γ1. Let γ2 = βm2 be the loser. Note that γ2 6= γ1, by irreducibility.
Moreover, (18) gives that Θ∗(γ1, γ2,m2, 1) = 1, and this implies Θ∗(γ1, γ2,m, n) > 0
for every n > m2 −m. This gives (20) for i = 2, with n2 = m2 −m. If d = 2 then
there is nothing left to prove, so assume d > 2. Using Proposition 5.1 twice, one
finds p2 > m2 such that the winner αp2 is neither γ1 nor γ2, and m3 > p2 such that
the winner αm3 = γj for either j = 1 or j = 2. Consider the smallest such m3, and
let γ3 = βm3 be the loser. Notice that γ3 = αm3−1 and so it is neither γ1 nor γ2.
Moreover, (18) gives that Θ∗(γj , γ3,m3, 1) = 1 and this implies

Θ∗(γ1, γ3,m, n) ≥ Θ∗(γ1, γj ,m,m3 −m)Θ∗(γj , γ3,m3, n−m3 +m) > 0

for n > m3 −m. Notice that m3 −m > m2 −m = n2. This proves (20) for i = 3
with n3 = m3 −m.

The general step of the enumeration is analogous. Assume we have constructed
γ1, . . . , γk ∈ A, all distinct, and integers n1, n2, . . . , nk such that (20) holds for
1 ≤ i ≤ k. Assuming k < d, we may use Proposition 5.1 twice to find pk > mk such
that the winner αnk is not an element of {γ1, . . . , γk} and mk+1 > pk such that the
winner αmk+1 = γj for some j ∈ {1, . . . , k}. Choose the smallest such mk+1 and let
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γk+1 = βmk+1 be the loser. Then γk+1 = αmk+1−1 and so it is not an element of
{γ1, . . . , γk}. The relation (18) gives Θ∗(γj , γk+1,mk+1, 1) = 1, and then

Θ∗(γ1, γk+1,m, n) ≥ Θ∗(γ1, γj ,m,mk+1 −m)Θ∗(γj , γk+1,mk+1, n−mk+1 +m)

is strictly positive for all n > nk+1 = mk+1 − m. This completes our recurrence
construction and, thus, finishes the proof of the corollary. �

At this point we can prove that (π, λ) can be iterated indefinitely (if and) only
if it satisfies the Keane condition:

Corollary 5.4. If (πn, λn) = R̂n(π, λ) is defined for all n ≥ 0 then (π, λ) satisfies
the Keane condition.

∂f(Iα)

∂Iβ

fn(In
α)

In
β

Figure 5.

Proof. Suppose that, for some α, β ∈ A, and m ≥ 1,

(21) fm−1(∂f(Iα)) = ∂Iβ .

Choose m minimum. In particular, by Remark 3.1, we have ∂f(Iα) > 0. The

definition of fn = R̂n(f) gives

∂f(Iα) = ∂fn(In
α ), and ∂Iβ = ∂In

β

for every n such that ∂f(Iα) and ∂Iβ are in the domain In of fn. Take n maximum
such that both points are in In (Corollary 5.2). Since fn is the first return map of
f to In (Remark 2.1), the hypothesis (21) implies that

(22) fk
n(∂f(Iα)) = ∂Iβ for some k ≤ m− 1.

Moreover, either Iβ or fn(In
α ) (or both) is a rightmost partition interval for fn.

If ∂f(Iα) = ∂Iβ then fn(In
α ) = In

β , that is, the two rightmost intervals of fn

have the same length. See Figure 5. Hence, fn+1 = R̂n+1(f) is not defined, which
contradicts the hypothesis. This proves the statement in this case.

∂f(Iα)

∂Iβ∂In
α

fn(In
α)

fn(In
α)In

α

fn+1(In+1
α )

Figure 6.

Now suppose fn has type 0, that is, ∂Iβ < ∂f(Iα). By definition,

fn+1(∂I
n+1
α ) = f2

n(∂In
α) = fn(∂f(Iα)) and ∂In+1

β = ∂In
β = ∂Iβ .
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See Figure 6. Comparing with (22) we get

fk−1
n (∂fn+1(I

n+1
α )) = fk

n(∂Iα) = ∂Iβ = ∂In+1
β .

Since both points are in In+1 and fn+1 is the return map of fn to In+1, this may
be rewritten as

(23) f l−1
n+1(∂fn+1(I

n+1
α )) = ∂In+1

β for some l ≤ k < m.

∂f(Iα)

∂Iβ

∂fn(In
β ) In

β

In
β

fn(In
β )

In+1
β

Figure 7.

Now suppose fn has type 1, that is, ∂Iβ > ∂f(Iα). By definition,

∂fn+1(I
n+1
α ) = ∂fn(In

α) = ∂f(Iα) and ∂In+1
β = f−1

n (∂In
β ) = f−1

n (∂Iβ).

See Figure 7. Comparing with (22) we get

fk−1
n (∂fn+1(I

n+1
α )) = fk−1

n (∂f(Iα)) = f−1
n (∂Iβ) = ∂In+1

β .

Since fn+1 is the return map of fn to In+1, this may be rewritten as

(24) f l−1
n+1(∂I

n+1
α ) = ∂In+1

β for some l ≤ k < m.

In both subcases, we have shown that (21) implies a similar relation, either (23)
or (24), where f is replaced by some induced map fn+1, and m ≥ 2 is replaced by
a smaller l. Iterating this procedure, we must eventually reach the case m = 1,
which was treated previously. �

6. Rauzy classes

Given pairs π and π′, we say that π′ is a successor of π if there exist λ, λ′ ∈ RA
+

such that R̂(π, λ) = (π′, λ′). Any pair π has exactly two successors, corresponding
to types 0 and 1. Similarly, each π′ is the successor of exactly two pairs π, obtained
by reversing the relations (4) and (6). Notice that π is irreducible if and only if π′

is irreducible. Thus, this relation defines a partial order in the set of irreducible
pairs, which we may represent as a directed graph G. We call Rauzy classes the
connected components of this graph.

Lemma 6.1. If π and π′ are in the same Rauzy class then there exists an oriented
path in G starting at π and ending at π′.

Proof. Let A(π) be the set of all pairs π′ that can be attained through an oriented
path starting at π. As we have just seen, each vertex of the graph G has exactly two
outgoing and two incoming edges. By definition, every edge starting from a vertex
of A(π) must end at some vertex of A(π). By a counting argument, it follows that
every edge ending at a vertex of A(π) starts at some vertex of A(π). This means
that A(π) is a connected component of G, and so it coincides with the whole Rauzy
class C(π). �
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A result of Kontsevich, Zorich [14] yields a complete classification of the Rauzy
classes. Here, let us calculate all Rauzy classes for the first few values of d. The
results are summarized in the table at the end of this section.

For d = 2 there are two possibilities for the monodromy invariant, but only one
is irreducible: (2, 1). The Rauzy graph reduces to

0 �

„

A B
B A

«

	 1.

For d = 3 there are six possibilities for the monodromy invariant, but only three
are irreducible: (2, 3, 1), (3, 1, 2), (3, 2, 1). They are all represented in the Rauzy
class

0 �

„

A C B
C B A

« ←
1
→

„

A B C
C B A

« ←
0
→

„

A B C
C A B

«

	 1.

So, there exists a unique Rauzy class for d = 3.
For d = 4 there are 24 possibilities for the monodromy invariant, 13 of which are

irreducible:

(4, 3, 2, 1), (4, 1, 3, 2), (3, 1, 4, 2), (4, 2, 1, 3), (2, 4, 3, 1),

(3, 2, 4, 1), (2, 4, 1, 3), (4, 2, 3, 1), (4, 1, 2, 3), (4, 3, 1, 2),

(3, 4, 1, 2), (2, 3, 4, 1), (3, 4, 2, 1)

The following Rauzy class accounts for the first seven values:

1 � 	 0
„

A D B C
D C A B

« „

A B D C
D A C B

«

↑ 0 ↓ ↑ 1 ↓
„

A D B C
D C B A

«

1տ 0ր

„

A B C D
D A C B

«

1 ↓

„

A B C D
D C B A

«

0 ↓
„

A C D B
D C B A

«

1ր 0տ

„

A B C D
D B A C

«

0 � 	 1

The other six values of the monodromy invariant occur in the Rauzy class:



ERGODIC THEORY OF INTERVAL EXCHANGE MAPS 19

0 � 	 1
„

A D B C
D B C A

«

1տ 0ր

„

A B C D
D A B C

«

1 ↓

„

A B C D
D B C A

«

0 ↓
„

A C D B
D B C A

«

1ր 0տ

„

A B C D
D C A B

«

↑ 0 ↓ ↑ 1 ↓
„

A C D B
D B A C

« „

A B D C
D C A B

«

↑ 1 ↓ ↑ 0 ↓
„

A C B D
D B A C

«

0ց 1ւ

„

A B D C
D C B A

«

0 ↑

„

A C B D
D C B A

«

1 ↑
„

A C B D
D A C B

«

0ւ 1ց

„

A D C B
D C B A

«

1 � 	 0

So, there are exactly two Rauzy classes for d = 4.
All these graphs are symmetric with respect to the vertical axis: this symmetry

corresponds to the canonical involution, that is, to interchanging the roles of π0

and π1. The last graph has an additional central symmetry: pairs that are opposite
relative to the center have the same monodromy invariant, and so they correspond
to essentially the same interval exchange transformation. Identifying such pairs,
one obtains the corresponding reduced Rauzy class :

0 � 	 1
(2, 3, 4, 1) (4, 1, 2, 3)

1 տ 0 ր
1 ↓ (4, 2, 3, 1) 0 ↓

1 ր 0 տ
(3, 4, 2, 1) (4, 3, 1, 2)

ց 0 տ ւ 1 ր
(3, 4, 1, 2)

The Rauzy classes for d ≤ 5 are listed below:

d representative # vertices (full class) # vertices (reduced)

2 (2,1) 1 1
3 (3,2,1) 3 3
4 (4,3,2,1) 7 7
4 (4,2,3,1) 12 6
5 (5,4,3,2,1) 15 15
5 (5,3,2,4,1) 11
5 (5,4,2,3,1) 35
5 (5,2,3,4,1) 10

Standard pairs. A pair π = (π0, π1) is called standard if the last symbol in each line
coincides with the first symbol in the other line. In other words, the monodromy
invariant satisfies

π1 ◦ π−1
0 (1) = d and π1 ◦ π−1

0 (d) = 1.

Inspection of the examples of Rauzy classes in Section 6 shows that they all contain
some standard pair. This turns out to be a general fact:
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Proposition 6.2. Every Rauzy class contains some standard pair.

Notice that the Rauzy-Veech operator leaves the first symbols αε
1 = π−1

ε (1),
ε ∈ {0, 1} in both top and bottom lines unchanged throughout the entire Rauzy
class C(π). The proof of Proposition 6.2 is based on the auxiliary lemma that we
state below. The lemma can be easily deduced from Proposition 5.1, but we also
give a short direct proof.

Lemma 6.3. Given any ε ∈ {0, 1} and any β ∈ A such that πε(β) 6= 1, there exists
some pair π′ in the Rauzy class C(π) such that π′

ε(β) = d, that is, β is the last
symbol in the line ε of π′.

Proof. For each ε ∈ {0, 1} let Aε be the subset of all β ∈ A such that π′
ε(β) < d for

every π′ in the Rauzy class. In view of the previous remarks, αε
1 ∈ Aε. Let κ(ε) be

the rightmost position ever attained by these symbols, that is, the maximum value
of π′

ε(β) over all π′ in C(π) and β ∈ Aε. By definition, κ(ε) < d. Our goal is to
prove that κ(ε) = 1, and so Aε = {αε

1}, for both ε ∈ {0, 1}.
Fix any βε ∈ Aε for which the maximum is attained. Then π′

ε(βε) = κ(ε) for
every π′ in C(π). That is because symbols γ with πε(γ) < d can only move to the
right under the Rauzy-Veech iteration and, were that to happen, it would contradict
the assumption that κ(ε) is maximum. Recall also Lemma 6.1. The same argument
shows that all the symbols to the left of βε are also constant on the Rauzy class:

(25) (π′
ε)

−1(i) = π−1
ε (i) for all 1 ≤ i ≤ κ(ε).

In particular, no symbol to the left of βε on the line ε can ever reach the last
position in the line 1 − ε:

(26) πε(α) < κ(ε) ⇒ π′
1−ε(α) < d ⇒ π′

1−ε(α) ≤ κ(1 − ε),

for any pair π′ in C(π). Let us write

π′ =

(

α0
1 · · · α0

κ(0) · · · · · · α0
d

α1
1 · · · · · · α1

κ(1) · · · α1
d

)

, αε
i = (π′

ε)
−1(i).

In view of (25), the relation (26) implies

(27) {αε
1, · · · , αε

κ(ε)−1} ⊂ {α1−ε
1 , · · · , α1−ε

κ(1−ε)} for ε ∈ {0, 1}.
In particular, κ(ε) − 1 ≤ κ(1 − ε) ≤ κ(ε) + 1. There are four possibilities:

(1) κ(0) = κ(1) + 1: then the case ε = 0 of (27) implies {α0
1, · · · , α0

κ(1)} =

{α1
1, · · · , α1

κ(1)}, and this contradicts the assumption of irreducibility.

(2) κ(0) = κ(1) − 1: this is analogous to the first case, using the case ε = 1 in
(27) instead.

(3) κ(0) = κ(1) and {α0
1, · · · , α0

κ(0)−1} = {α1
1, · · · , α1

κ(1)−1}: this also contra-

dicts irreducibility, unless κ(0) = κ(1) = 1.
(4) κ(0) = κ(1) and there exists 1 ≤ i < κ(0) such that α0

i = α1
κ(1): together

with the case ε = 1 of (27), this gives

{α1
1, · · · , α1

κ(1)−1, α
1
κ(1)} = {α0

1, · · · , α0
κ(0)}

and this implies that the two sets coincide (hence, there exists 1 ≤ j < κ(1)
such that α1

j = α0
κ(0)). Once more, this contradicts irreducibility.

This completes the proof of the lemma. �
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Now we can give the proof of Proposition 6.2:

Proof. As observed before, the first symbols αε
1 in both lines remain unchanged

under Rauzy-Veech iteration. By irreducibility, they are necessarily distinct. So,
using Lemma 6.3, we may find a pair π′ in C(π) such that π′

0(α
1
1) = d, that is, the

last symbol in the top line coincides with the first one in the bottom line. Now,
iterating π′ under type 0 Rauzy-Veech map, we keep the top line unchanged, while
rotating all the symbols in the bottom line to the right of α1

1. So, we eventually
reach a pair π′′ which satisfies π′′

1 (α0
1) = d, in addition to π′′

0 (α1
1) = d. Then π′′ is

standard. �

7. Rauzy-Veech renormalization

We are especially interested in a variation of the induction algorithm where one
scales the domains of all interval exchange transformations to length 1.

Let π and π′ be irreducible pairs such that π′ is the type ε successor of π, for
ε ∈ {0, 1}. For each λ ∈ RA

+ satisfying

(28) λα(ε) > λα(1−ε)

we have

R̂(π, λ) = (π′, λ′) with λ′α =

{

λα if α 6= α(ε)
λα(ε) − λα(1−ε) if α = α(ε).

The map λ 7→ λ′ thus defined is a bijection from the set of length vectors satisfying
(28) to the whole RA

+: the inverse is given by

λα =

{

λ′α if α 6= α(ε)
λ′α(ε) + λ′α(1−ε) if α = α(ε).

Take the interval I to have unit length, that is,
∑

α∈A λα = 1. The induction

R̂(f) is defined on a shorter interval, with length 1−λα(1−ε), but after appropriate
rescaling we may see it as a map R(f) on a unit interval. This means we are now
considering

(29) R : (π, λ) 7→ (π′, λ′′), where λ′′ =
λ′

1 − λα(1−ε)
,

that we refer to as the Rauzy-Veech renormalization map. Let ΛA be the set of all
length vectors λ ∈ RA

+ with
∑

α∈A λα = 1, and let

Λπ,ε = {λ ∈ ΛA : λα(ε) > λα(1−ε)} for ε ∈ {0, 1}.
The previous observations mean that (π, λ) 7→ (π′, λ′′) maps {π}×Λπ,ε bijectively
onto {π′} × ΛA. Figure 8 illustrates the case d = 3:

For each Rauzy class C we have a map R : (π, λ) 7→ (π′, λ′′) from C × ΛA to
itself 4, with the following Markov property: R sends each {π} × Λπ,ε bijectively
onto {π′} × ΛA, where π′ is the type ε successor of π. Note that

(30) λ′′ =
Θ−1∗(λ)

1 − λα(1−ε)

and the operator Θ depends only on π and the type ε, that is, it is constant on
each {π} × Λπ,ε.

4More precisely, this map is defined on the full Lebesgue measure subset of length vectors λ
that satisfy the Keane condition.
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R

R

ΛAΛπ,ε Λπ̃,1−ε

{π} {π̃} {π′}

Figure 8.

Example 7.1. For d = 2 there is only one pair, π =

(

A B
B A

)

. We have

ΛA = {(λA, λB) : λA > 0, λB > 0, and λA + λB = 1} ∼ (0, 1),

where ∼ refers to the bijective correspondence (λA, λB) 7→ x = λA. Under this
correspondence, Λπ,0 ∼ (0, 1/2) and Λπ,1 ∼ (1/2, 1), and the Rauzy-Veech renor-
malization (π, λ) 7→ (π, λ′′) is given by (see Figure 9)

r(x) =

{

x/(1 − x) for x ∈ (0, 1/2)
2 − 1/x for x ∈ (1/2, 1).

Observe that r has a tangency of order 1 with the identity at x = 0 and x = 1.

0 11/2

Figure 9.

The following fundamental result was proved independently by Masur [17] and
Veech [22]. A proof will be given in last part of this paper. Let dπ denote the
counting measure in the set of pairs π, and Leb be the Lebesgue measure (of
dimension d− 1) in the simplex ΛA.

Theorem 7.2. For each Rauzy class C, the Rauzy-Veech renormalization map
R : C×ΛA → C×ΛA admits an invariant measure ν which is absolutely continuous
with respect to dπ × Leb. This measure ν is unique, up to product by a scalar,
and ergodic. Moreover, its density with respect to Lebesgue measure is given by a
homogeneous rational function of degree −d and bounded away from zero.
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8. Zorich transformations

In general, the measures ν in Theorem 7.2 have infinite mass. For instance, it is
well-known that for maps with neutral fixed points such as the one in Example 7.1,
absolutely continuous invariant measures are necessarily infinite. Zorich [25] intro-
duced an accelerated version of the Rauzy-Veech algorithm for which there exists a
(unique) invariant probability absolutely continuous with respect to Lebesgue mea-
sure on each simplex ΛA. This is defined as follows.

Let C be a Rauzy class, π = (π0, π1) be a vertex of C, and λ ∈ RA
+ satisfy the

Keane condition. Let ε ∈ {0, 1} be the type of (π, λ) and, for each j ≥ 1, let ε(j)

be the type of the iterate (π(j), λ(j)) = R̂j(π, λ). Then define n = n(π, λ) ≥ 1 to
be smallest such that ε(j) 6= ε. The Zorich induction map is defined by

Ẑ(π, λ) = (π(n), λ(n)) = R̂n(π, λ).

RR

Λπ,1−ε

{π} {π′} {π′′}

Figure 10.

We also consider the Zorich renormalization map

Z : C × ΛA → C × ΛA, Z(π, λ) = Rn(π, λ).

This map admits a Markov partition, into countably many domains. Indeed, for
each π in the Rauzy class and ε ∈ {0, 1}, let

Λ∗
π,ε,n = {λ ∈ Λπ,ε : ε(1) = · · · = ε(n−1) = ε 6= ε(n)}.

Then Z maps every {π} × Λ∗
π,ε,n bijectively onto {π(n)} × Λπ,1−ε. Moreover, by

(30),

λ(n) = cnΘ−n∗(λ)

where cn > 0 and Θ−n∗ depend only on π, ε, n, that is, they are constant on each
{π} × Λ∗

π,ε,n.

Example 8.1. For d = 2 (recall Example 7.1), the Zorich transformation Z is de-
scribed by the map z(x) = rn(x) where n = n(x) ≥ 1 is the smallest integer such
that

rn(x) ∈ (1/2, 1), if x ∈ (0, 1/2) or rn(x) ∈ (0, 1/2), if x ∈ (1/2, 1).

See Figure 11. This map is Markov and uniformly expanding (the latter is specific
to d = 2). It is well-known that such maps admit absolutely continuous invariant
probabilities.

We shall also prove the following result, where the main novelty is that the
invariant measure µ is finite:
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0 11/2

Figure 11.

Theorem 8.2. For each Rauzy class C, the Zorich renormalization map Z :
C × ΛA → C × ΛA admits an invariant probability measure µ which is absolutely
continuous with respect to dπ × Leb. This probability µ is unique and ergodic.
Moreover, its density with respect to Lebesgue measure is given by a homogeneous
rational function of degree −d and bounded away from zero.

9. Continued fractions

The classical continued fraction algorithm associates to each irrational number
x0 ∈ (0, 1) the sequences

nk =

[

1

xk−1

]

and xk =
1

xk−1
− nk ,

where [·] denotes the integer part. Observe that

x0 =
1

n1 + x1
=

1

n1 + 1
n2+x2

=
1

n1 + 1
n2+ 1

n3+x3

= · · ·

The algorithm may also be written as

xk = Gk(x0) and nk =

[

1

xk−1

]

where G is the Gauss map (see Figure 12)

G : (0, 1) → [0, 1], G(x) =
1

x
−
[

1

x

]

The Gauss map is very much equivalent to the Zorich transformation for d =
2 (and so the cases d > 2 of the Zorich transformation may be seen as higher
dimensional generalizations of the classical continued fraction expansion). To see
this, consider the bijection

φ : (λA, λB) 7→ y =
λA

λB

from ΛA to (0,∞). Moreover, let P be the bijection of ΛA defined by P : (λA, λB) 7→
(λB, λA). Consider (λA, λB) in Λπ,0, that is, such that λA < λB . Then y =
φ(λA, λB) ∈ (0, 1). By definition,

Ẑ ◦ P (λA, λB) = Ẑ(λB, λA) = (λB − nλA, λA)



ERGODIC THEORY OF INTERVAL EXCHANGE MAPS 25

...

0 1

1

1/21/31/4

Figure 12.

where n is the integer part of λB/λA. In terms of the variable y, this corresponds
to

y 7→ 1

y
− n = G(y).

In other words, we have just shown that φ conjugates Z ◦ P , restricted to Λπ,0, to
the Gauss map G. Consequently, φ conjugates (Z ◦ P )n, restricted to Λπ,0, to Gn,
for every n ≥ 1. Observe that P 2 = id and Z commutes 5 with P . Hence, we have
shown that Z2k | Λπ,0 is conjugate to G2k, and Z2k−1 ◦ P | Λπ,0 is conjugate to
G2k−1, for every k ≥ 1.

10. Symplectic form

It is clear from (3) that the operator Ωπ : RA → RA is anti-symmetric, that is,

(31) Ω∗
π = −Ωπ

where Ω∗
π is the adjoint operator, relative to the Euclidean metric · on RA. Thus,

ω̃π : R
A × R

A → R, ω̃π(u, v) = u · Ωπ(v)

defines an alternate bilinear form on Rd. In general, this bilinear form is degenerate:
indeed, if v ∈ kerΩπ then ω̃π(u, v) = 0 for every u ∈ RA. On the other hand, there
is always a naturally associated non-degenerate bilinear form ωπ on the subspace
Hπ = Ωπ(RA), defined by

(32) ωπ : Hπ ×Hπ → R, ωπ(Ωπ(u),Ωπ(v)) = u · Ωπ(v)

Lemma 10.1. The previous relation defines a symplectic form, that is, a non-
degenerate alternate bilinear form ωπ on Hπ.

Proof. The relation (31) implies that the orthogonal complementH⊥
π coincides with

kerΩπ. Suppose Ωπ(u) = Ωπ(u′). Then u− u′ ∈ kerΩπ and so

u · Ωπ(v) = u′ · Ωπ(v)

for every v ∈ RA. This shows that ωπ is well-defined. It is clear that it is bilinear.
The fact tat ωπ is alternate is an immediate consequence of (31):

ωπ(Ωπ(v),Ωπ(u)) = v · Ωπ(u) = u · Ω∗
π(v) = −ωπ(Ωπ(u),Ωπ(v)).

Finally, it is also easy to see that ωπ is non-degenerate:

ωπ(Ωπ(u),Ωπ(v)) = 0 ∀v ⇔ u · Ωπ(v) = 0 ∀v ⇔ u ∈ H⊥
π

5In other words, P conjugates the restriction of Z to Λπ,0 to the restriction of Z to Λπ,1.
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and, since we are taking u ∈ Hπ, this can only happen if u vanishes. �

Lemma 10.2. If (π′, λ′) = R̂(π, λ) then Θ Ωπ Θ∗ = Ωπ′ , where Θ = Θπ,λ. In
particular, the operator Θ induces a symplectic isomorphism from Hπ onto Hπ′ ,
relative to the symplectic forms in the two spaces.

Proof. Let λ′ ∈ RA be given by λ = Θ∗(λ′); compare (11). Then define w = Ωπ(λ)
and w′ = Ωπ′(λ′); compare (2). We have seen in (8) that w′ = Θ(w). That is,

Ωπ′(λ′) = Θ ΩπΘ∗(λ′)

for all λ′ ∈ RA. This proves the first claim. Next, the relation Θ Ωπ Θ∗ = Ωπ′

together with the fact that Θ and Θ∗ are invertible imply that u ∈ Hπ if and only
if Θ(u) is in Hπ′ . Moreover, the operator Θ : Hπ → Hπ′ is symplectic:

ωπ′(ΘΩπ(u),ΘΩπ(v)) = ωπ′(Ωπ′Θ−1∗(u),ΘΩπ(v))

= Θ−1∗(u) · ΘΩπ(v) = u · Ωπ(v) = ωπ(Ωπ(u),Ωπ(v)),

for any vectors u, v ∈ RA. �

Remark 10.3. Lemma 10.1 implies that the space Hπ has even dimension: we write
dimHπ = 2g. Since Θ is always an isomorphism from Hπ to H ′

π, it follows that
the dimension is constant on the whole Rauzy class. We shall later interpret g as
the genus of an orientable surface canonically associated to the Rauzy class.

11. Translation surfaces

An Abelian differential α is a holomorphic complex 1-form on a Riemann surface.
We assume the Riemann surface is compact, and α is not identically zero. Then
it has a finite number of zeroes, that we call singularities. In local coordinates,
αz = ϕ(z) dz for some ϕ(z) ∈ C that depends holomorphically on the point z.
Near any non-singular point p, one can always find so-called adapted coordinates ζ
relative to which the Abelian differential takes the form αζ = dζ: it suffices to take

(33) ζ =

∫ z

p

ϕ(ξ) dξ

If p is a singularity, with multiplicity m ≥ 1 say, then one considers instead

(34) ζ = (m+ 1)
(

∫ z

p

ϕ(ξ) dξ
)1/(m+1)

:

in these coordinates αζ = ζm dζ. Notice that all changes of adapted coordinates
near a regular point are given by translations: if ζ and ζ′ are adapted coordinates
then dζ′ = dζ, and so ζ′ = ζ + const . We say that the adapted coordinates form a
translation atlas, and call the resulting structure a translation surface. Coordinate
changes near singularities are slightly more subtle. If ζ′ is a non-singular adapted
coordinate and ζ is a singular one, then dζ′ = ζmdζ or, in other words, (m +
1)ζ′ = ζm+1 + const . Figure 13 illustrates this relation between the two types of
coordinates.

The translation atlas defines a flat (zero curvature) Riemannian metric on the
surface minus the singularities, transported from the complex plane through the
adapted charts. The form of (34) gives that the zeroes of the Abelian differential
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ζζ′

Figure 13.

are conical singularities: in appropriate polar coordinates (ρ, θ), ρ > 0, θ ∈ [0, 2π)
centered at the singularity, the Riemannian metric is given by

(35) ds2 = dρ2 + (cρdθ)2, where c = m+ 1.

In addition, the translation atlas defines a parallel unit vector field on the comple-
ment of the singularities, namely, the pull-back of the vertical vector field under
the local charts.

Conversely, a flat metric with finitely many singularities, of conical type, together
with a parallel unit vector field X , completely determine a translation structure.
Indeed, the neighborhood of any regular point p is isometric to an open subset
of C. Choose the isometry so that it sends the vector Xp to the vertical vector
(0, 1). Then the isometry is uniquely determined, and sends X to the constant
vector field (0, 1). In particular, these isometries coincide in the intersection of
their domains, and so they define a Riemann surface atlas on the complement of
the singularities. Moreover, they transport the canonical Abelian differential dz
from C to the surface.
Construction of translation surfaces. Let us describe a simple construction of trans-
lation surfaces. In fact, this construction is general: every translation surface can
be obtained in the way we are going to describe.

Consider a polygon in R2 having an even number 2d ≥ 4 of sides

s1, . . . , sd, s
′
1, . . . , s

′
d

such that si and s′i are parallel (non-adjacent) and have the same length, for every
i = 1, . . . , d. See Figure 14 for an example with d = 4. Identifying si with s′i by

s1

s2
s3

s4

s′1

s′2
s′3

s′4

Figure 14.
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translation, for each i = 1, . . . , d, we obtain a translation surface M : the singu-
larities correspond to the points obtained by identification of the vertices of the
polygon; the Abelian differential and the flat metric are inherited from R2 = C,
and the vertical vector field X = (0, 1) is parallel.

Let a1, . . . , aκ, κ = κ(π) be the singularities. The angle of a singularity ai is
the topological index around zero

angle (ai) = 2π ind(β, 0) =
1

i

∫ 1

0

β̇(t)

β(t)
dt

of the curve β(t) = αγ(t)(γ̇(t)), where γ : [0, 1] → M is any small simple closed
curve around ai. It is clear that

(36) angle (ai) = 2π(mi + 1)

where mi denotes the order of the zero of α at ai. We call the singularity removable
if the angle is exactly 2π, that is, if ai is actually not a zero of α.

Let the translation surface be constructed from a planar polygon with 2d sides,
as described above. Then the sum of all angles at the singularities coincides with
the sum of the internal angles of the 2d-gon, that is

(37)

κ
∑

i=1

angle (ai) = 2π(d− 1).

Using (36) we deduce that

(38)

κ
∑

i=1

mi = d− κ− 1.

The angles are also related to the genus g(M) and the Euler characteristic
X (M) = 2 − 2g(M) of the surface M . To this end, consider a decomposition
into 4d triangles as described in Figure 15: a central point is linked to the vertices
of the polygon and to the midpoint of every side.

1

2

d

Figure 15.

Recall that the sides of the polygon are identified pairwise. So, this decompo-
sition has 6d edges, 2d of them corresponding to segments inside the sides of the
polygon. Moreover, there are d+κ+1 vertices: the central one, plus d vertices com-
ing from the midpoints of the polygon sides, and κ more sitting at the singularities.
Therefore,

(39) 2 − 2g(M) = X (M) = κ+ 1 − d.
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From (37) and (39), we obtain a kind of Gauss-Bonnet theorem for these flat sur-
faces:

(40)

κ
∑

i=1

[

2π − angle (ai)
]

= −2π

κ
∑

i=1

mi = 2π(κ+ 1 − d) = 2πX (M).

In fact this is the only restriction imposed on the orders of the singularities by
the topology of the surface: given any g ≥ 1 and integers mi ≥ 0, i = 1, . . . , κ
with

∑κ
i=1mi = 2g − 2, there exists some translation surface with κ singularities

of orders m1, . . . , mκ.

12. Suspending interval exchange maps

Let π be an irreducible pair and λ ∈ RA
+ be a length vector. We denote by T+

π

the subset of vectors τ = (τα)α∈A ∈ RA such that

(41)
∑

π0(α)≤k

τα > 0 and
∑

π1(α)≤k

τα < 0

for all 1 ≤ k ≤ d − 1. Clearly, T+
π is a convex cone. We say that τ has type 0 if

the total sum
∑

α∈A τα is positive and type 1 if the total sum is negative. Define

ζα = (λα, τα) ∈ R2 for each α ∈ A. Then consider the closed curve Γ = Γ(π, λ, τ)
on R2 formed by concatenation of

ζα0
1
, ζα0

2
, . . . , ζα0

d
,−ζα1

d
,−ζα1

d−1
, . . . ,−ζα1

1

with starting point at the origin. Condition (41) means that the endpoints of all
ζα0

1
+ · · ·+ ζα0

k
are on the upper half plane, and the endpoints of all ζα1

1
+ · · ·+ ζα1

k

are in the lower half plane, for every 1 ≤ k ≤ d− 1. See Figure 16.

ζA

ζA

ζB

ζB

ζC

ζC

ζD

ζD

Figure 16.

Assume, for the time being, that this closed curve Γ is simple. Then it defines
a planar polygon with 2d sides organized in pairs of parallel segments with the
same length, as considered in the previous section. The suspension surface M =
M(π, λ, τ) is the translation surface obtained by identification of the sides in each
of the pairs. Let I ⊂ M be the horizontal segment of length

∑

α∈A λα with the
origin as left endpoint, that is,

(42) I =
[

0,
∑

α∈A

λα

)

× {0}.
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The interval exchange transformation f defined by (π, λ) corresponds to the first
return map to I of the vertical flow on M . To see this, for each α ∈ A, let

Iα =
[

∑

π0(β)<π0(α)

λβ ,
∑

π0(β)≤π0(α)

λβ

)

× {0}

Consider the vertical segment starting from (x, 0) ∈ Iα and moving upwards. It
hits the side represented by ζα at some point (x, z). This is identified with the
point (x′, z′) in the side represented by −ζα, given by

(43)

x′ = x−
∑

π0(β)<π0(α)

λβ +
∑

π1(β)<π1(α)

λβ = x+ wα

z′ = z −
∑

π0(β)<π0(α)

τβ +
∑

π1(β)<π1(α)

τβ = z − hα

(hα > 0 is defined by the last equality). Continuing upwards from (x′, z′) we hit
I back at the point (x′, 0). This shows that the return map does coincide with
f(x) = x+ wα on each Iα.

A

A

B

B C

CC

C
A1

A1

B1

B1

B2

B2

Figure 17.

In some fairly exceptional situations, such as in Figure 17, the closed curve Γ
may have self-intersections. It is easy to extend the definition of the suspension
surface to this case: just consider the simple polygon obtained by removing the
self-intersections in the way described in the figure, and then take the translation
surfaceM obtained by identification of parallel sides of this polygon. The horizontal
segment I may still be viewed as a cross-section to the vertical flow on M , and the
corresponding first return map coincides with the interval exchange transformation
f .

We are going to focus our presentation on the case when Γ is simple and, in
general, let the reader to adapt the arguments to the case when there are self-
intersections. In some sense, the non-simple case can be avoided altogether:

Remark 12.1. The curve Γ(π, λ, τ) can have self-intersections only if either
∑

α∈A

τα > 0 and λα(0) < λα(1), i.e. τ has type 0 and (π, λ) has type 1,

as is the case in Figure 17, or
∑

α∈A

τα < 0 and λα(0) > λα(1), i.e. τ has type 1 and (π, λ) has type 0.

In other words, if (π, λ) and τ and have the same type then the curve Γ(π, λ, τ)
is necessarily simple. Using this observation, we shall see in Remark 18.3 that
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by Rauzy-Veech induction one eventually finds data (πn, λn, τn) that represents
the same translation surface and for which the curve Γ(πn, λn, τn) has no self-
intersections.

13. Some translation surfaces

We shall see later that the type (genus and singularities) of the translation sur-
face M = M(π, λ, τ) depends only on the Rauzy class of π. Here we consider a
representative of each Rauzy class with d ≤ 5, and we exhibit the corresponding
translation surface for generic vectors λ and τ . The conclusions are summarized in
the table near the end of this section.

ζA

ζA

ζB

ζB

a

a

a

a

Figure 18.

For d = 2 and π =

(

A B
B A

)

, corresponding to monodromy invariant p =

(2, 1), the four vertices are identified to a single point a, and angle (a) = 2π. Using
(40) we conclude that M is the torus, (and the singularity is removable). See
Figure 18.

ζA

ζA

ζB

ζB

ζC

ζC

b

b

b

a

a

a

Figure 19.

For d = 3 and π =

(

A B C
C B A

)

, corresponding to p = (3, 2, 1), the six vertices

are identified to two different points, with angle (a) = angle (b) = 2π. Thus, M is
the torus, and both singularities are removable. See Figure 19.
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Figure 20.

For d = 4 and π =

(

A B C D
D C B A

)

, corresponding to p = (4, 3, 2, 1), the

eight vertices are identified to a single point, with angle (a) = 6π. Thus, M has
genus 2 (bitorus). See Figure 20.

For d = 4 and π =

(

A B C D
D B C A

)

, hence p = (4, 2, 3, 1), the vertices are

identified to three different points, with angle (a) = angle (b) = angle (c) = 2π. M
is the torus, and all singularities are removable. See Figure 21.
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ζB

ζB

ζC

ζC

ζD

ζD
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b

b

a

a

a
c

c

Figure 21.

For d = 5 and π =

(

A B C D E
E D C B A

)

, hence p = (5, 4, 3, 2, 1), the ten

vertices are identified to two different points, a and b, with angle (a) = angle (b) =
4π. Thus, M is the bitorus (g = 2).

For d = 5 and π =

(

A B C D E
E C B D A

)

, hence p = (5, 3, 2, 4, 1), the vertices

are identified to two different points, a and b, with angle (a) = 2π and angle (b) =
6π. M is, again, the bitorus.

For d = 5 and π =

(

A B C D E
E D B C A

)

, hence p = (5, 4, 2, 3, 1), the vertices

are identified to two different points, a and b, with angle (a) = 6π and angle (b) =
2π. M is, once more, the bitorus.
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For d = 5 and π =

(

A B C D E
E B C D A

)

, hence p = (5, 2, 3, 4, 1), the vertices

are identified to four different points, with angle (a) = angle (b) = angle (c) =
angle (d) = 2π. M is the torus and all singularities are removable.

Summarizing, we have:

d representative # vertices angles orders genus X

2 (2,1) 1 2π 0 1 0
3 (3,2,1) 3 2π, 2π 0, 0 1 0
4 (4,3,2,1) 7 6π 2 2 -2
4 (4,2,3,1) 8 2π, 2π, 2π 0, 0, 0 1 0
5 (5,4,3,2,1) 15 4π, 4π 1, 1 2 -2
5 (5,3,2,4,1) 11 6π, 2π 2, 0 2 -2
5 (5,4,2,3,1) 35 6π, 2π 2, 0 2 -2
5 (5,2,3,4,1) 10 2π, 2π, 2π, 2π 0, 0, 0, 0 1 0

Remark 13.1. Starting from d = 5, different Rauzy classes may give rise to trans-
lation surfaces with the same number and orders of singularities.

14. Computing the suspension surface

Let us explain how the number κ and the orders mi of the singularities may be
computed from π, in general. Consider the set of all pairs (α, S) with α ∈ A and
S ∈ {L,R}. We think of (α,L) and (α,R) as representing, respectively, the origin
(left endpoint) and the end (right endpoint) of the sides of the polygon labelled
by α. Then, under the identifications that define the suspension surface, one must
identify

(44) (α,R) ∼ (β, L) if π0(α) + 1 = π0(β)

(45) (α,R) ∼ (β, L) if π1(α) + 1 = π1(β)

and also

(46) (α,L) ∼ (β, L) if π0(α) = 1 = π1(β)

(47) (α,R) ∼ (β,R) if π0(α) = d = π1(β).

Extend ∼ to an equivalence relation in the set of pairs (α, S). Then the number κ
of singularities is, precisely, the number of equivalence classes for this relation.

Figure 22 describes a specific case with d = 7:

π =

(

A B C D E F G
G F E D C B A

)

.

There are two equivalence classes:

(A,L) ∼ (B,R) ∼ (C,L) ∼ (D,R) ∼ (E,L) ∼ (F,R) ∼ (G,L) ∼ (A,L)

and

(A,R) ∼ (B,L) ∼ (C,R) ∼ (D,L) ∼ (E,R) ∼ (F,L) ∼ (G,R) ∼ (A,R)

It is also easy to guess what the angles of these singularities are. For instance,
consider the singularity a associated to the first equivalence class (the other one
is analogous). The angle corresponds to the sum of the internal angles of the
polygon at the 9 vertices that are identified to a. This sum is readily computed
by noting that the arcs describing these internal angles cut the vertical direction
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Figure 22.

exactly 6 times: one for each vertex, except for the exceptional (A,L) = (G,L).
See Figure 22. Thus, angle (a) = 6π and the singularity has order 2.

The general rule can be formulated as follows. Let us call irregular pairs to

(π−1
0 (1), L), (π−1

1 (1), L), (π−1
0 (d), R), (π−1

1 (d), R).

All other pairs are called regular. Then there is an even number 2k of regular pairs
in each equivalence class (one half above the horizontal axis and the other half
below), and the angle of the corresponding singularity is equal to 2kπ.

This calculation remains valid when the curve Γ(π, λ, τ) has self-intersections.
Let us explain this in the case when τ has type 0, the other one being symmetric.
Then (π, λ) has type 1, according to Remark 12.1. Begin by writing

π =

(

· · · · · · · · · A · · · B C1 · · · Cs

· · · B · · · · · · · · · · · · · · · · · · A

)

,

where A = α(1) and B is the leftmost symbol on the top row such that the side ζB
contains some self-intersection. Recall that the suspension surface is defined from
the simple polygon obtained by removing self-intersections in the way described in
Figure 17. Combinatorially, this polygon corresponds to the permutation pair

π̃ =

(

· · · · · · · · · · · · A1 B2 C1 · · · Cs · · · B1

· · · B1 B2 · · · · · · · · · · · · · · · · · · · · · A1

)

,

and so the number and orders of the singularities are determined by the equivalence
classes of π̃, according to the calculation described above. Our claim is that the
same is true for the original permutation pair π. This can be seen as follows. Going
from π to π̃ one replaces A, B by the symbols A1, B1, B2. Consider the map φ
defined by

φ(A,L) = (A1, L), φ(A,R) = (A1, R), φ(B,L) = (B1, L), φ(B,R) = (B2, R),

and φ(α, S) = (α, S) for any other (α, S). This projects down to a map ψ from
the set of equivalence classes of π to the set of equivalence classes of π̃ (for the
corresponding equivalence relations∼). Moreover, ψ is injective and leaves invariant
the number of regular pairs in each class. The map ψ is not surjective: the image
avoids, exactly, the equivalence class

(B1, R) ∼ (A1, R) ∼ (B2, L)

of π̃. However, this equivalence class contains exactly two regular pairs, and so it
corresponds to a removable singularity. For consistency, we do remove this singu-
larity from the structure of the suspension surface M . Thus, the number and order
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of the singularities of M can be obtained from the equivalence classes of π, as we
claimed.

A

A

D

D

F

F

B

B

E

E

G

G

C

C

0

3
6

1

4

72

5

Figure 23.

Permutation σ. For computations, it is useful to introduce the following alterna-
tive terminology. Let us label the pairs (α, S) by integer numbers in the range
{0, 1, . . . , d} as follows:

(α,L) ↔ π0(α) − 1 and (α,R) ↔ π0(α).

See Figure 23. Notice that this labelling incorporates (44). The remaining identi-
fications can be expressed in terms of the monodromy invariant p:

j ∼ k if p(j) + 1 = p(k + 1), j /∈ {0, p−1(d)},
corresponding to (45), and 0 ∼ p−1(1) − 1, corresponding to (46), and p−1(d) ∼ d,
corresponding to (47). Moreover, these relations may be condensed into

(48) j ∼ σ(j) for every 0 ≤ j ≤ d,

where σ : {0, 1, . . . , d} → {0, 1, . . . , d} is the transformation defined by

(49) σ(j) =







p−1(1) − 1 if j = 0
d if p(j) = d
p−1
(

p(j) + 1
)

− 1 otherwise.

It is clear from the construction that σ is a bijection of {0, 1, . . . , d}, but that
can also be checked directly, as follows. Extend p to a bijection P of the set
{0, 1, . . . , d, d+ 1}, simply, by defining P (0) = 0 and P (d + 1) = d+ 1. Then (49)
becomes

(50) σ(j) = P−1(P (j) + 1) − 1 for all 0 ≤ j ≤ d.

This implies that σ is injective, because P is, and it is also clear that σ takes values
in {0, 1, . . . , d}. Thus, it is a bijection, as claimed.

In view of (48), the orbits of σ are in 1–to–1 correspondence to the equivalence
classes of ∼. Therefore, the number κ of singularities coincides with the number
of distinct orbits of σ. The rule for calculating the angles also translates easily to
this terminology. Let us call 1, 2, . . . , d− 1 regular, and 0 and d irregular vertices.
Then the angle of each singularity ai is given by

(51) angle (ai) = 2diπ

where 2di is the number of regular vertices in the corresponding orbit of σ.
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Remark 14.1. We have shown that κ and the ai are determined by σ and, hence, by
the monodromy invariant p. In particular, they are independent of λ and τ . This
can be understood geometrically by noting that these integer invariants are locally
constant on the parameters λ and τ and the domains RA

+ and T+
π are connected,

since they are convex cones.

Remark 14.2. Under the canonical involution (π0, π1) 7→ (π1, π0), the monodromy
invariant is replaced by its inverse. Thus, the permutation σ is replaced by

(52) σ̃(j) = P (P−1(j) + 1) − 1 for all 0 ≤ j ≤ d.

This is not quite the same as σ−1(j) = P−1(P (j+1)− 1), but the two transforma-
tions are conjugate:

σ̃ ◦ P (j) = P (j + 1) − 1 = P ◦ σ−1(j).

Thus, σ̃ and σ have the same number of orbits and, since the conjugacy preserves
the set of regular vertices, corresponding orbits have the same number of regular
vertices. This shows that the number and orders of the singularities are preserved
by the canonical involution.

Proposition 14.3. The number and the orders of the singularities are constant on
each Rauzy class and, consequently, so is the genus.

Proof. It suffices to prove that the number and the orders of the singularities cor-
responding to (π, λ) and (π′, λ′) = R̂(π, λ) always coincide. To this end, let p and
p′ be the monodromy invariants of (π, λ) and (π′, λ′), respectively, and σ and σ′ be
the corresponding permutations of {0, 1, . . . , d} given by (49)–(50). Suppose first
that (π, λ) has type 0. Then

p′(j) =







p(j) if p(j) ≤ p(d)
p(j) + 1 if p(d) < p(j) < d
p(d) + 1 if p(j) = d

or, equivalently,

(p′)−1(j) =







p−1(j) if j ≤ p(d)
p−1(d) if j = p(d) + 1
p−1(j − 1) if p(d) + 1 < j ≤ d

(we suppose p(d) 6= d− 1, for otherwise p′ = p and so σ′ = σ). This gives

σ′(j) =















p−1(d) − 1 if j = d
d if p(j) = d− 1
σ(d) if p(j) = d
σ(j) in all other cases.

This means that after Rauzy-Veech induction we have

(53) p−1(d− 1)
σ′

−→ d
σ′

−→ p−1(d) − 1 and p−1(d)
σ′

−→ σ(d)

whereas, beforehand,

(54) p−1(d− 1)
σ−→ p−1(d) − 1 and p−1(d)

σ−→ d
σ−→ σ(d).

In other words, replacing σ by σ′ means that d is displaced from the orbit of p−1(d)
to the orbit of p−1(d − 1) and p−1(d) − 1, but the orbit structure is otherwise
unchanged. Consequently, the two permutations have the same number of orbits,
and corresponding orbits have the same number of regular vertices. It follows that
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the number and orders of the singularities remain the same. Now suppose (π, λ)
has type 1. Let π̃ and π̃′ be obtained from π and π′ by canonical involution.
Then (π̃, λ) has type zero, and (π̃′, λ′) = R̂(π̃, λ). So, by the previous paragraph,
the number and orders of the singularities are the same for (π̃, λ) and for (π̃′, λ′).
By Remark 14.2, the same is true about (π, λ) and (π̃, λ), and about (π′, λ′) and
(π̃′, λ′). Thus, the number and orders of the singularities for (π, λ) and (π′, λ) are
also the same, as claimed. �

Example 14.4. Figure 24 illustrates the orbit displacement in the proof of the
proposition. One has 1 → 3 and 4 → 7 → 1 before inducing, and 1 → 7 →

1

1

1

1

3

3

4 4

7

7
AA

A A

C

CC

C
E

E

E

E

G
G

G

G

BB

B B

D

D

D

D

F

F
F

F

Figure 24.

3 and 4 → 1 afterwards. In this example all the points concerned belong to the
same orbit.

In Section 18, we shall extend the Rauzy-Veech induction R̂(π, λ) = (π′, λ′) to an

operator R̂(π, λ, τ) = (π′, λ′, τ ′) in the space of translation surfaces, in such a way
that the data (π, λ, τ) and (π′, λ′, τ ′) always define the same translation surface.
As the number of orders of the singularities depend only on the combinatorial data,
by Remark 14.1, that will provide an alternative proof of Proposition 14.3.

15. Zippered rectangles

We are going to describe a useful alternative construction of the suspension of
an interval exchange transformation, due to Veech [22]. Given an irreducible pair
π and a vector τ ∈ RA, define h ∈ RA by

(55) hα = −
∑

π1(β)<π1(α)

τβ +
∑

π0(β)<π0(α)

τβ = −Ωπ(τ)α.

Observe that if τ ∈ T+
π , that is, if it satisfies (41) then

∑

π0(β)<π0(α)

τβ > 0 >
∑

π1(β)<π1(α)

τβ ,

and so hα > 0, for all α ∈ A. We shall consider the convex cones inside the subspace
Hπ = Wπ = Ωπ(RA) defined by

(56) W+
π = Ωπ(RA

+) and H+
π = −Ωπ(T+

π ).
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Suppose τ ∈ T+
π . For each α ∈ A, consider the rectangles of width λα and height

hα defined by (see Figure 25)

R0
α =





∑

π0(β)<π0(α)

λβ ,
∑

π0(β)≤π0(α)

λβ



× [0, hα]

R1
α =





∑

π1(β)<π1(α)

λβ ,
∑

π1(β)≤π1(α)

λβ



× [−hα, 0]

and consider also the vertical segments

S0
α =







∑

π0(β)≤π0(α)

λβ







×



0,
∑

π0(β)≤π0(α)

τβ





S1
α =







∑

π1(β)≤π1(α)

λβ







×





∑

π1(β)≤π1(α)

τβ , 0



 .

That is, Sε
α joins the horizontal axis to the endpoint of the vector

∑

πε(β)≤πε(α)

ζβ =
∑

πε(β)≤πε(α)

(λβ , τβ).

Notice that

S0
α(0) = S1

α(1) =







∑

β∈A

λβ







×



0,
∑

β∈A

τβ



 .

Figure 25 describes two situations where this last segment is above and below the
horizontal axis, respectively, depending on the type of τ .

R0
A

R0
A

R0
B

R0
B

R0
C

R0
C

R0
D R0

D

R1
A

R1
A

R1
B

R1
B

R1
C

R1
C

R1
D R1

D

S̃

S̃

Sε
α(ε)

Sε
α(ε)

Figure 25.
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The suspension surface M = M(π, λ, τ, h) is the quotient of the union
⋃

α∈A

⋃

ε=0,1

Rε
α ∪ Sε

α

of these objects by certain identifications, that we are going to describe. First, we
identify each R0

α to R1
α through the translation

(x, z) 7→ (x+ wα, z − hα),

that maps one to the other. Note that this is just the same map we used before
to identify the two sides of the polygon corresponding to the vector ζα = (λα, τα):
recall (43).

We may think of the segments Sε
α as “zipping” adjacent rectangles together up

to a certain height. Observe that, in most cases, Sε
α is shorter than the heights of

both adjacent rectangles (compare Figure 25):

Lemma 15.1. For any ε ∈ {0, 1} and α ∈ A,

(1) (−1)ε
∑

πε(β)≤πε(α)

τβ < hα except, possibly, if π1−ε(α) = d.

(2) (−1)ε
∑

πε(β)≤πε(α)

τβ < hγ , where γ ∈ A is defined by πε(γ) = πε(α) + 1 and

we suppose πε(α) < d.

Proof. For ε = 0 the relations (41) and (55) give

(57) hα −
∑

π0(β)≤π0(α)

τβ = −
∑

π1(β)≤π1(α)

τβ > 0

except, possibly, if π1(α) = d, that is, α = α(1). This takes care of the rectangle to
the left of S0

α. The one to the right (when it exists) is handled similarly: Let γ ∈ A
be such that π0(γ) = π0(α) + 1. Then

hγ −
∑

π0(β)≤π0(α)

τβ = −
∑

π1(β)<π1(γ)

τβ > 0.

The case ε = 1 is analogous. �

On the other hand, the calculation in (57) also shows that for α = α(1) the
length of S0

α may exceed the height of R0
α: this happens if the sum of all τβ is

positive. In that case, let

S̃ =







∑

π0(β)≤π0(α)

λβ







×



hα,
∑

π0(β)≤π0(α)

τβ



 ,

that is, S̃ is the subsegment of length
∑

β∈A τβ at the top of S0
α. Dually, if the sum

of all τβ is negative then, for α = α(0), the length of S1
α exceeds the height of R1

α.
In this case, define

S̃ =







∑

π0(β)≤π0(α)

λβ







×





∑

π1(β)≤π1(α)

τβ ,−hα



 ,

instead. That is, S̃ is the subsegment of length −∑β∈A τβ at the bottom of S1
α. In

either case, we identify S̃ with the vertical segment S0
α(0) = S1

α(1), by translation.

This completes the definition of the suspension surface.
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This construction is equivalent to the one in Section 12, in the sense that they
give rise to suspension surfaces that are isometric, by an isometry that preserves the
vertical direction. This is clear from the previous observations, at least when the
closed curve Γ(π, λ, τ) is simple; we leave it to the reader to check that it remains
true when there are self-intersections.

There is a natural notion of area of a zippered rectangle (π, λ, τ, h), namely

(58) area (π, λ, τ, h) = λ · h =
∑

α∈A

λα hα.

Sometimes we write area (π, λ, τ) to mean area (π, λ, τ, h) with h = −Ωπ(τ).

16. Genus and dimension

We have seen in Remark 10.3 that the vector space Hπ = Ωπ(RA) has even
dimension. We can now interpret this dimension in terms of the genus of the
suspension surface:

Proposition 16.1. The dimension of Hπ coincides with 2g(M), where g(M) is
the genus of the suspension surface M .

Proof. Rename the intervals Iα so that the permutation pair π becomes normalized
to A = {1, . . . , d}, π0 = id and, thus, π1 = p = monodromy invariant. Write the
translation vector as w = Ωπ(λ), that is

wj =
∑

p(i)<p(j)

λi −
∑

i<j

λi for each 1 ≤ j ≤ d.

It is convenient to extend the definition to j = 0 and j = d+1, simply, by replacing
p by its extension P in (50). Since P (0) = 0 and P (d + 1) = d + 1, by definition,
this just means we take w0 = wd+1 = 0. Define aj =

∑

i≤j λi for 1 ≤ j ≤ d, and
a0 = 0.

Lemma 16.2. We have wσ(j)+1 − wj = aj − aσ(j) for every 0 ≤ j ≤ d.

Proof. As we have see in (50), σ(j) = P−1(P (j) + 1) − 1, and so

wσ(j)+1 =
∑

P (i)<P (σ(j)+1)

λi −
∑

i<σ(j)+1

λi =
∑

P (i)≤P (j)

λi −
∑

i≤σ(j)

λi.

It follows that

wσ(j)+1 − wj = λj −
∑

i≤σ(j)

λi +
∑

i<j

λi =
∑

i≤j

λi −
∑

i≤σ(j)

λi = aj − aσ(j)

as claimed. �

Recall that the number of orbits of σ is equal to the number κ of singularities.

Lemma 16.3. A vector λ is in kerΩπ if and only if the (d+1)-dimensional vector
(0, a1, . . . , ad) is constant on the orbits of σ. Hence, dimkerΩπ = κ− 1.

Proof. The only if part is a direct consequence of Lemma 16.2: if w = 0 then
aσ(j) − aj = 0 for every 0 ≤ j ≤ d. To prove the converse, let λ be such that
(0, a1, . . . , ad) is constant on orbits of σ. Then, by Lemma 16.2,

wP−1(P (j)+1) = wσ(j)+1 = wj for all 0 ≤ j ≤ d.
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Writing P (j) = i, this relation becomes

wP−1(i+1) = wP−1(i) for all 0 ≤ i ≤ d.

It follows that wP−1(i) is constant on {0, 1, . . . , d+1} and, since it vanishes for i = 0,
it follows that it must vanish for every 1 ≤ i ≤ d. Consequently, w = (w1, . . . , wd)
vanishes, and this means that λ ∈ kerΩπ. This proves the first part of the lemma.

To prove the second one, consider the linear isomorphism

(59) ψ : R
d → R

d, (λ1, . . . , λd) 7→ (a1, . . . , ad), aj =

j
∑

i=1

λi.

Let Kπ be the subspace of all (a1, . . . , ad) ∈ Rd such that (0, a1, . . . , ad) is constant
on the orbits of σ. The dimension of Kπ is κ − 1, because the value of aj on the
orbit of 0 is predetermined by a0 = 0. The previous paragraph shows that

kerΩπ = ψ−1(Kπ).

Consequently, the dimension of the kernel is κ− 1, as claimed. �

Using Lemma 16.3 and the relation (39), we find

dimΩπ(RA) = d− dimkerΩπ = d− κ+ 1 = 2g(M).

This proves Proposition 16.1. �

It is possible to give an explicit description of kerΩπ and Hπ, as follows. For
each orbit O of σ not containing zero, and for each 1 ≤ j ≤ d, define

(60) λ(O)j = XO(j) −XO(j − 1) =







1 if j ∈ O but j − 1 /∈ O
−1 if j /∈ O but j − 1 ∈ O
0 in all other cases.

Lemma 16.4. Define a(O) = ψ(λ(O)), that is, a(O)j =
∑

i≤j λ(O)i. Then

a(O)j = XO(j) =

{

1 if j ∈ O
0 if j /∈ O.

Proof. For j = 1 this follows from a simple calculation: a(O)1 = 1 if 1 ∈ O (and
0 /∈ O) and a(O)1 = 0 if 1 /∈ O (and 0 /∈ O). The proof proceeds by induction: if
a(O)j−1 = XO(j − 1) then

a(O)j = a(O)j−1 + λ(O)j = XO(j − 1) + XO(j) −XO(j − 1) = XO(j).

The argument is complete. �

Clearly, the a(O) form a basis of the subspace Kπ of vectors (a1, . . . , ad) such
that (0, a1, . . . , ad) is constant on orbits of σ. It follows that

{λ(O) : O is an orbit of σ not containing 0}
is a basis of kerΩπ. Moreover, since Ωπ is anti-symmetric, the range Hπ is just
the orthogonal complement of the kernel. In other words, w ∈ Hπ if and only if
w · λ(O) = 0 for every orbit O of σ not containing zero.
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17. Hyperelliptic Rauzy classes

Let d ≥ 2 be fixed. We call hyperelliptic the Rauzy class which contains the pair,

π =

(

A1 A2 · · · · · · Ad

Ad · · · · · · A2 A1

)

that is, which corresponds to the monodromy invariant p = (d, d − 1, · · · , 2, 1)
defined by p(i) = d+ 1 − i for all i.

Lemma 17.1.

(1) If d is even then the number of singularities κ(π) = 1, the singularity has
order d − 2 and the surface M has genus g(M) = d/2. Moreover, the
operator Ωπ : RA → RA is an isomorphism.

(2) If d is odd then there are κ(π) = 2 singularities, and they both have order
(d − 3)/2. The surface M has genus g(M) = (d − 1)/2. Moreover, the
kernel of Ωπ has dimension 1.

Proof. Observe that p−1(i) = p(i) = d+ 1 − i for all 1 ≤ i ≤ d. From (49) we find
that the permutation σ is given by

σ(j) =







d− 1 for j = 0
d for j = 1
j − 2 in all other cases.

That is, σ is the right rotation by two units

σ = (d− 1, d, 0, 1, . . . , d− 2).

If d is even, then this rotation has a unique orbit in {0, 1, . . . , d}. It follows that
κ = 1 and, by (37) the singularity has angle (2d−2)π, that is, order d−2. Moreover,
(39) gives g(M) = d/2. If d is odd then the rotation has exactly two orbits:

0 → d− 1 → d− 3 → · · · → 2 → 0 and d→ d− 2 → d− 4 → · · · → 1 → d.

Each one involves (d−1)/2 regular elements (that is, different from 0 and d). Using
(51) we get that they both have angle (ai) = (d−1)π, and so their order is (d−3)/2.
Moreover, (39) gives g(M) = (d− 1)/2.

The statement about Ωπ is now an immediate consequence of Proposition 16.1,
but it may also be proved directly. To this end, let us normalize the permutation
pair π (rename the intervals) so that A = {1, . . . , d}, π0 = id and, thus, π1 =
monodromy invariant p. Then Ωπ(λ) = w is given by

wj =
∑

π1(i)<π1(j)

λi −
∑

π0(i)<π0(j)

λi =
∑

i>j

λi −
∑

i<j

λi.

This gives wj −wj+1 = λj + λj+1 for j = 1, . . . , d− 1, and also wd +w1 = λd − λ1.
Suppose λ is in the kernel, that is, w = 0. Then the λj must be alternately
symmetric, and the first and the last one must coincide: λ1 = λd. If d is even
this can only happen for λ = 0: thus, Ωπ is an isomorphism. If d is odd, it means
that λ = (x,−x, x,−x, · · · ,−x) for some real number x. It is easy to check that
vectors of this form are, indeed, in the kernel. This proves that the kernel of Ωπ

has dimension 1 in this case. �

The relation (39) shows that d and κ always have opposite parities. So, the
situation described in Lemma 17.1 corresponds to the smallest possible number of
singularities.
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18. Invertible Rauzy-Veech induction

We are going to define a counterpart R̂ : (π, λ, τ) 7→ (π′, λ′, τ ′) of the Rauzy-

Veech induction R̂ : (π, λ) 7→ (π′, λ′) at the level of suspension data (π, λ, τ).

Recall that R̂ corresponds to replacing the original interval exchange map by its
first return to a conveniently chosen subinterval of the domain. Similarly, this map
R̂ we are introducing corresponds to replacing the horizontal cross-section in (42)
by a shorter one. The Poincaré return map of the vertical flow to this new cross-
section is precisely the interval exchange map described by (π′, λ′), and we want
to rewrite the ambient surface as a suspension over this map: the coordinate τ ′

is chosen with this purpose in mind. Thus, the data (π, λ, τ) and (π′, λ′, τ ′) are
really different presentations of the same translation surface. We shall check that
the transformation R̂ is invertible almost everywhere and has a Markov property.
Later, we shall see that it is a realization of the inverse limit (natural extension) of

R̂.
Let Ĥ = Ĥ(C) = {(π, λ, τ) : π ∈ C, λ ∈ RA

+, τ ∈ T+
π }. The transformation R̂ is

defined on Ĥ by R̂(π, λ, τ) = (π′, λ′, τ ′), where (π′, λ′) = R̂(π, λ) and

τ ′α =

{

τα α 6= α(ε)
τα(ε) − τα(1−ε) α = α(ε)

ε = type of (π, λ).

In other words (compare (11) for the definition of λ′),

(61) τ ′ = Θ−1∗(τ).
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Figure 26.

Figures 26 and 27 provide a geometric interpretation of this Rauzy-Veech induc-
tion, in terms of the polygon defining the suspension surface: one cuts from the
polygon the triangle determined by the sides ζα(0) and −ζα(1) and pastes it back,
adjacently to the other side labelled by α(ε), where ε= type of (π, λ). Observe
that the surface itself remains unchanged or, rather, the translation surfaces de-
termined by (π, λ, τ) and (π′, λ′, τ ′) are equivalent, in the sense that there exists
an isometry between the two that preserves the vertical direction. We leave it to
the reader to check how this geometric interpretation extends to the case when
the closed curve γ(π, λ, τ) has self-intersections. An equivalent formulation of the
Rauzy-Veech induction in terms of zippered rectangles will be given in Section 19.

Recall that we defined the type of τ to be 0 if the sum of τα over all α ∈ A is
positive and 1 if the sum is negative. Figures 26 and 27 immediately suggest that

(62) (π, λ) has type ε ⇒ τ ′ has type 1 − ε.
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Figure 27.

This observation is also contained in the next, more precise, lemma. See also
Figure 28, that describes the action of R̂ on both variables λ and τ .

T+
π T+

π′

RA
+RA

+

R̂

(π, λ) has type ε

τ ′ has type 1− ε

Figure 28.

Lemma 18.1. The linear transformation Θ−1∗ sends T+
π injectively inside T+

π′ and,

denoting ε= type of (π, λ), the image coincides with the set of τ ′ ∈ T+
π′ whose type

is 1 − ε.

Proof. Suppose ε = 0, as the other case is analogous. We begin by checking that
the image of Θ−1∗ is contained in T+

π′ , that is, τ ′ satisfies (41) if τ does. Firstly,
π′

0 = π0 and τ ′α = τα for every α 6= α(0) imply

(63)
∑

π′
0(α)≤k

τ ′α =
∑

π0(α)≤k

τα > 0

for every k < d. Now let l = π1(α(0)) be the position of α(0) in the bottom line of
π. Recall that π′

1 and π1 coincide to the left of l. So, just as before,

(64)
∑

π′
1(α)≤k

τ ′α =
∑

π1(α)≤k

τα < 0

for every k < l. The case k = l is more interesting: using τ ′α(0) = τα(0) − τα(1)

∑

π′
1(α)≤l

τ ′α =
∑

π1(α)≤l

τα − τα(1).

To prove that this is less than zero, rewrite the right hand side as (recall the
definition (55) of h)

−hα(0) +
∑

π0(α)≤l

τα − τα(1) = −hα(0) +
∑

α∈A

τα − τα(1) = −hα(0) +
∑

π1(α)<π1(α(1))

τα.
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Both terms in the last expression are negative, because the entries of h are positive
and τ satisfies (41). This deals with the case k = l. Next, for k = l+ 1, we use the
fact that π′

1(α(1)) = l+ 1 to obtain

(65)
∑

π′
1(α)≤l+1

τ ′α =
∑

π1(α)≤l

τα < 0.

More generally, for l < k ≤ d we have

(66)
∑

π′
1(α)≤k

τ ′α =
∑

π1(α)≤k−1

τα < 0.

This proves that the image of T+
π is indeed contained in T+

π′ . Moreover, the case
k = d gives that every τ ′ in the image has type 1,

(67)
∑

α∈A

τ ′α < 0,

as claimed. To complete the proof we only have to check that if τ ′ ∈ T+
π′ satisfies

(67) then τ = Θ∗(τ ′) is in T+
π . This is easily seen from the relations (63)-(66). The

hypothesis (67) is needed only when k = d− 1. �

Recall that the Rauzy-Veech induction R̂ : (π, λ) 7→ (π′, λ′) for interval exchange
transformations is 2-to-1 on its domain, the two pre-images corresponding to the
two possible values of the type ε. For each ε ∈ {0, 1}, let us denote

R
A
π,ε = {λ ∈ R

A
+ : (π, λ) has type ε} and T ε

π = {τ ∈ T+
π : τ has type ε}

From the previous lemma we obtain

Corollary 18.2. The transformation R̂ : Ĥ → Ĥ is an (almost everywhere) in-
vertible Markov map, and it preserves the natural area:

(1) R̂
(

{π} × RA
π,ε × T+

π

)

= {π′} × RA
+ × T 1−ε

π′ for every π and ε;

(2) every (π′, λ′, τ ′) such that
∑

α∈A τ
′
α 6= 0 has exactly one preimage for R̂;

(3) if R̂(π, λ, τ) = (π′, λ′, τ ′) then area (π, λ, τ) = area (π′, λ′, τ ′).

Proof. The first claim is contained in Lemma 18.1. The second one follows from
the injectivity in that lemma, together with the observation that the sets {π′} ×
RA

+ × T 1−ε
π′ are pairwise disjoint. Finally, Lemma 10.2 and the relations (11) and

(68) give

−λ′ · Ωπ′(τ ′) = λ′ · h′ = Θ−1∗(λ) · Θ(h) = λ · h = −λ · Ωπ(τ).

and this proves the third claim. �

Remark 18.3. Let ε be the type of (π, λ). If τ also has type ε then the curve
Γ(π, λ, τ) is simple, according to Remark 18.3. Otherwise, let n ≥ 1 be minimum
such that the type of (πn, λn) is 1 − ε. By (62), the type of τn is also 1 − ε. It
follows that the curve Γ(πn, λn, τn) has no self-intersections. Recall that (π, λ, τ)
and (πn, λn, τn) represent the same translation surface, up to an isometry that
preserves the vertical direction.
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19. Induction for zippered rectangles

The definition of the induction operator R̂ is, perhaps, more intuitive in the
language of zippered rectangles. Indeed, as explained previously, the idea behind
the definition is to rewrite the translation surface as a suspension of the Poincaré
return map of the vertical flow to a shorter cross-section. In terms of zippered
rectangles this is achieved by an especially simple geometric procedure, described in
Figure 29: one removes a rightmost subrectangle from the rectangle corresponding
to the symbol α(ε) and pastes it back on top of the rectangle corresponding to the
symbol α(1 − ε). The precise definition goes as follows.
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Figure 29.

Let H̃ = H̃(C) be the set of (π, λ, τ, h) such that π ∈ C, λ ∈ RA
+, τ ∈ T+

π , and

h = −Ωπ(τ) ∈ H+
π . Then define R̂(π, λ, τ, h) = (π′, λ′, τ ′, h′), where

h′α =

{

hα α 6= α(1 − ε)
hα(1−ε) + hα(ε) α = α(1 − ε).

Compare Figure 29. Equivalently (recall (8)),

(68) h′ = Θ(h).

Let us relate this to the definition R̂(π, λ, τ) = (π′, λ′, τ ′) with τ ′ = Θ−1∗(τ) that
was given in the previous section.

By Lemma 10.2, we have Θ Ωπ Θ∗ = Ωπ′ . Since Θ is an isomorphism, this gives
that τ ∈ kerΩπ if and only if τ ′ ∈ kerΩπ′ . In other words,

{kerΩπ : π ∈ C}
defines an invariant subbundle for τ 7→ τ ′ = Θ−1∗(τ). As we have seen before, Hπ

is the orthogonal complement of the kernel, because Ωπ is anti-symmetric. Hence

{Hπ : π ∈ C}
is an invariant subbundle for the adjoint cocycle Θ. The map defined by (68) is
just the restriction of the adjoint to this invariant subbundle.

The relation Θ Ωπ Θ∗ = Ωπ′ also says that there is a conjugacy

RA/ kerΩπ
Θ−1∗

−→ RA/ kerΩπ′

Ωπ ↓ ↓ Ωπ′

Hπ
Θ−→ Hπ′ .
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20. Teichmüller flow

Let C be any Rauzy class. We defined Ĥ = Ĥ(C) to be the set of all (π, λ, τ)

such that π ∈ C, λ ∈ RA
+ , and τ ∈ T+

π . The Teichmüller flow on Ĥ is the natural
action T = (T t)t∈R of the diagonal subgroup

(

et 0
0 e−t

)

, t ∈ R

defined by

(69) T t : Ĥ → Ĥ, (π, λ, τ) 7→ (π, etλ, e−tτ)

This is well defined because both RA
+ and T+

π are invariant under product by positive
scalars. It is clear that the Teichmüller flow commutes with the Rauzy-Veech
induction map R̂ and preserves the natural area (58). For each λ ∈ R

A
+, define the

total length |λ| =
∑

α∈A λα. Given any c > 0, the affine subset

Hc = {(π, λ, τ) ∈ Ĥ : |λ| = c} (we denote H = H1)

is a global cross-section for the Teichmüller flow T : each trajectory intersects Hc

exactly once. In particular, the map

(70) Ψ : H× R → Ĥ, Ψ(π, λ, τ, s) = T s(π, λ, τ) = (π, esλ, esτ)

is a diffeomorphism onto Ĥ. In these new coordinates, the Teichmüller flow is
described, simply, by

(71) T t : H× R → H× R, (π, λ, τ, s) 7→ (π, λ, τ, s+ t).

For each (π, λ, τ) ∈ Ĥ, define the Rauzy renormalization time 6

(72) tR = tR(π, λ) = − log
(

1 − λα(1−ε)

|λ|
)

, ε = type of (π, λ).

Notice that if (π′, λ′) = R̂(π, λ) then |λ′| = e−tR |λ|. This means that the transfor-
mation

(73) R = R̂ ◦ T tR : (π, λ, τ) 7→ R̂
(

π, etRλ, e−tRτ
)

maps each cross-section Hc back to itself. We call the restriction R : H → H to
H = H1 the invertible Rauzy-Veech renormalization map. Observe that for any
(π, λ, τ) ∈ H we have R(π, λ, τ) = (π′, λ′′, τ ′′) where

(π′, λ′, τ ′) = R̂(π, λ, τ), λ′′ = λ′/(1 − λα(1−ε)), τ ′′ = τ ′(1 − λα(1−ε)).

In particular, R is a lift of the map R(π, λ) = (π′, λ′′) introduced in Section 7.
From Corollary 18.2 one obtains

Corollary 20.1. The transformation R : H → H is an (almost everywhere) in-
vertible Markov map, and it preserves the natural area.

We call pre-stratum Ŝ = Ŝ(C) associated to C the quotient of the fundamental

domain {(π, λ, τ) ∈ Ĥ : 0 ≤ log |λ| ≤ tR(π, λ)} by the equivalence relation

(74) T tR(π,λ)(π, λ, τ) ∼ R(π, λ, τ) for all (π, λ, τ) ∈ H.
See Figure 30. Equivalently, the pre-stratum may be seem as the quotient of the
whole Ĥ by the equivalence relation generated by T tR(π, λ, τ) ∼ R(π, λ, τ). We

6The renormalization time depends only on π and λ/|λ|.
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λ

τ

|λ| = 1 |λ| = etR

x = (π, λ, τ)

T tR (x)

R(x)

Figure 30.

denote by S the (injective) image of H under the quotient map. Observe that the
dimension of the pre-stratum is given by

(75) dim Ŝ(C) = 2d = 4g + 2κ− 2.

Since R commutes with T t, the latter induces a flow T = (T t)t∈R on the pre-
stratum, that we also call Teichmüller flow. The invertible Rauzy-Veech renor-
malization is naturally identified with the Poincaré return map of this flow to the
cross-section S ⊂ Ŝ. Notice that the Teichmüller flow preserves the natural volume
measure on Ŝ, inherited from Ĥ. We shall see that this volume is finite, if one
restricts to {area (π, λ, τ) ≤ 1}.
Invertible Zorich maps. We also use accelerated versions of R̂ and R, that we call
invertible Zorich induction and invertible Zorich renormalization, respectively, de-
fined by

(76) Ẑ(π, λ, τ) = R̂n(π, λ, τ) and Z(π, λ, τ) = Rn(π, λ, τ),

where n = n(π, λ) ≥ 1 is the first time the type of (πn, λn) = R̂n(π, λ) differs from

the type of (π, λ). See Section 8. The domain of Ẑ is a subset Ẑ∗ of Ĥ that we
describe in the sequel. Begin by recalling (62):

• if (π, λ) has type 0, that is, λα(0) > λα(1) then τ ′ has type 1, that is,
∑

α∈A τ
′
α < 0;

• if (π, λ) has type 1, that is, λα(0) < λα(1) then τ ′ has type 0, that is,
∑

α∈A τ
′
α > 0.

Define Ẑ∗ = Ẑ0 ∪ Ẑ1 where, for each ε ∈ {0, 1},
Ẑε = {(π, λ, τ) ∈ Ĥ : (π, λ) has type ε and τ has type ε}.

Then n = n(π, λ) is just the first positive iterate for which R̂n(π, λ, τ) hits Ẑ∗.

Thus, we consider Ẑ defined on the domain Ẑ∗. The previous observations mean
that Ẑ : Ẑ∗ → Ẑ∗ is the first return map of R̂ to the domain Ẑ∗. It follows that Ẑ
is invertible: the inverse is the first return map to Ẑ∗ of the map R̂−1.

Analogously, we consider Z : Z∗ → Z∗ where Z∗ is the set of (π, λ, τ) ∈ Ẑ∗ such
that |λ| = 1. Then Z is the first return map of R to Z∗.

21. Volume measure

For translation surfaces. Let C be a Rauzy class. The space Ĥ = Ĥ(C) has a
natural volume measure m̂ = dπ dλ dτ , where dπ is the counting measure on C,
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and dλ and dτ are the restrictions to RA
+ and T+

π , respectively, of the Lebesgue

measure on RA. Clearly, m̂ is invariant under the Teichmüller flow

T t : (π, λ, τ) 7→ (π, etλ, e−tτ).

Let us consider the coordinate change H × R → Ĥ, (π, λ, τ, s) 7→ (π, esλ, esτ)
introduced in (71). Observe that

dλ = es(d−1)d1λ e
sds = esdd1λds,

where d1λ denotes the Lebesgue measure induced on ΛA = {λ ∈ R
A
+ : |λ| = 1}

by the Riemannian metric of RA. See Figure 31. Thus, m̂ = esd dπ d1λdτ ds. We
denote m = dπ d1λdτ , and view it as a measure on H = H(C).

d1λ es(d−1)d1λ

esds
ΛA

Figure 31.

Lemma 21.1. The measure m̂ is invariant under the Rauzy-Veech maps R̂ and
R. Moreover, m is invariant under the restriction R : H → H.

Proof. Recall that R̂(π, λ, τ) = (π′, λ′, τ ′) where λ = Θ∗
π,λ(λ′) and τ = Θ∗

π,λ(τ ′).

Since R̂ is injective and
detΘ∗

π,λ = detΘπ,λ = 1,

it follows that R̂ preserves m̂ = dπ dλ dτ , as claimed. Now, in view of the definition
(73), to prove that m̂ is preserved by R we only have to show that it is preserved
by

(π, λ, τ) 7→ T tR(π,λ)(π, λ, τ).

Using the coordinates (π, λ, τ, s) introduced previously, this corresponds to showing
that the measure esd d1λdτ ds is invariant under the map

Φ : (λ, τ, s) 7→ (λ, e−tR(π,λ)τ, s+ tR(π, λ)).

The Jacobian matrix of Φ has the form

DΦ =





Id−1 0 0
∗ e−tRId 0
∗ 0 1





(Ij denotes the j-dimensional identity matrix) and so its determinant is e−tRd.
Hence,

e(s+tR)d d1λdτ ds | detDΦ| = esd d1λdτ ds,

which means that Φ does preserve esd d1λdτ ds.
Finally, R preserves every Hc = {(π, λ, τ, s) ∈ Ĥ : es = c} and the measure m̂ =

esd dπ d1λdτ ds disintegrates to conditional measures cddπ d1λdτ on each Hc. So,
the previous conclusion that R preserves m̂means that it preserves these conditional
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measures for almost every c. From the definition (73) we get that λ 7→ cλ conjugates
the restrictions of R to H and to Hc, respectively. Consequently, R | Hc preserves
cddπ d1λdτ if and only if the renormalization map R : H → H preserves m =
dπ d1λdτ . It follows that R : H → H does preserve m, as claimed. �

Given any c > 0, we denote by m̂c the restriction of m̂ to the region {(π, λ, τ) ∈
Ĥ : area (λ, τ) ≤ c}. Since this region is invariant under R̂, R, and T , so are all
these measures m̂c. Similarly, we denote by mc the restriction of m to the region
{(π, λ, τ) ∈ H : area (λ, τ) ≤ c}. Then every mc is invariant under the restriction
of Rauzy-Veech renormalization R.

Recall that the pre-stratum Ŝ = Ŝ(C) is the quotient of the space Ĥ by the
equivalence relation generated by

T tR(π,λ)(π, λ, τ) = (π, etR(π,λ)λ, e−tR(π,λ)τ) ∼ R(π, λ, τ).

Since the Teichmüller flow commutes with R, it projects down to a flow on Ŝ, that
we also denote by T . The (injective) image S ⊂ Ŝ of H under the quotient map is a
global cross-section to this flow. Moreover, the restriction of m̂ to the fundamental
domain

{(π, λ, τ) ∈ Ĥ : 0 ≤ log |λ| ≤ tR(π, λ)}
defines a volume measure on Ŝ, that we also denote by m̂. It is easy to check that
m̂ is invariant under the Teichmüller flow T t on the pre-stratum Ŝ. Finally, since
area is invariant under the equivalence relation above, it is well defined in the pre-
stratum. Sometimes, we denote by m̂c the restriction of m̂ to the subset of elements
of the pre-stratum with area (π, λ, τ) ≤ c. All these measures are invariant under

the Teichmüller flow on Ŝ.
For interval exchange maps. Let P : Ĥ → C × RA

+ be the canonical projection
P (π, λ, τ) = (π, λ). Then let ν̂ = P∗(m̂1) be the measure obtained by projecting
m̂1 down to C × RA

+:

ν̂(E) = m̂1

(

P−1(E)
)

= m̂
(

{(π, λ, τ) : (π, λ) ∈ E and area (λ, τ) ≤ 1}
)

.

Let R̂ and R be the Rauzy-Veech transformations at the level of interval exchange
maps, introduced in Sections 2 and 7. Likewise, let T t be the projected Teichmüller
flow T t(π, λ) = (π, etλ). Since

P ◦ T t = T t ◦ P and P ◦ R̂ = R̂ ◦ P and P ◦ R = R ◦ P,
the measure ν̂ is invariant under R̂, R, and T . Moreover, let ν = P∗(m1) be the
measure obtained by projecting m1 down to C × ΛA:

ν(E) = m1

(

P−1(E)
)

= m
(

{(π, λ, τ) : (π, λ) ∈ E and area (λ, τ) ≤ 1}
)

.

Then ν is invariant under Rauzy-Veech renormalization R : C × ΛA → C × ΛA.
Let Ŝ be the quotient of C×RA

+ by the equivalence relation generated on C×RA
+

by T tR(π,λ)(π, λ) ∼ R(π, λ). We represent by S the (injective) image of C × ΛA

under this quotient map. The flow T t induces a semi-flow T t : Ŝ → Ŝ, t > 0 which
admits S as a global cross-section and whose first return map to this cross-section
is the Rauzy-Veech renormalization R : C × ΛA → C × ΛA.

The projection P : Ĥ → C × RA
+ induces a projection P : Ŝ → Ŝ such that

P ◦T t = T t◦P . The absolutely continuous measure ν̂ restricted to the fundamental
domain

{(π, λ) ∈ C × R
A
+ : 0 ≤ log |λ| ≤ tR(π, λ)}
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induces an absolutely continuous measure on Ŝ, that we also denote as ν̂. It may
also be obtained as ν̂ = P∗(m̂) where m̂ denotes the volume measure on Ŝ intro-
duced previously. It follows from P ◦ T t = T t ◦ P that ν̂ is invariant under the
semi-flow T t.

0

1

1/2
log 2

Figure 32.

Example 21.2. For d = 2, the domain RA
+ may be identified with R×(0, 1), through

(λA, λB) 7→ (log |λ|, λA).

Note that the simplex ΛA is identified with the interval (0, 1), via (λA, λB) 7→ x =
λA. Then d1λ corresponds to the measure dx, and the Rauzy renormalization time
is

(77) tR(x) =

{

− log(1 − x) if x < 1/2
− logx if x > 1/2.

Ŝ is the quotient of the domain {(s, x) : 0 ≤ s ≤ tR(x)} by an identification of the
boundary segment on the left with each of the two boundary curves on the right.
See Figure 32. The semi-flow T t is horizontal, pointing to the right, and its return
map to {0} × (0, 1) is the renormalization map R as presented in Example 7.1.

The pre-stratum Ŝ = Ŝ × T+
π , where T+

π is the set of pairs (τA, τB) such that
τA > 0 > τB.

Invariant densities. Since P is a submersion, the measure ν̂ is absolutely continuous
with respect to dλ (or, more precisely, dπ × dλ), with density

dν̂

dλ
(π, λ) = vol ({τ ∈ T+

π : area (λ, τ) ≤ 1}) for (π, λ) ∈ C × R
A
+ ,

where vol (·) represents d-dimensional volume in T+
π . Analogously, ν is absolutely

continuous with respect to d1λ (or, more precisely, dπ × d1λ), with density

dν

d1λ
(π, λ) = vol ({τ ∈ T+

π : area (λ, τ) ≤ 1}) for (π, λ) ∈ C × ΛA.

The right hand side in these expressions may be calculated as follows (an explicit
example will be worked out in Section 22).

The polyhedral cone T+
π may be written, up to a codimension 1 subset, as a

finite union of simplicial cones T 1, . . . , T k, that is, subsets of RA of the form

T i = {
∑

β∈A

cβτ
i,β : cβ > 0 for each β ∈ A},
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for some basis (τ i,β)β∈A of RA. We always assume that this basis has been chosen
with volume 1, that is, it is the image of some orthonormal basis by a linear operator
with determinant 1. The volume of each domain

{τ ∈ T i : area (λ, τ) ≤ 1} = {τ ∈ T i : −λ · Ωπ(τ) ≤ 1}
may be calculated using the following elementary fact:

Lemma 21.3. Let T ⊂ RA be a simplicial cone, (τβ)β∈A be a volume 1 basis of
generators of T , and L : RA → RA be a linear operator. Then, for any λ satisfying
λ · L(τβ) > 0 for all β ∈ A, we have

vol ({τ ∈ T : λ · L(τ) ≤ 1}) =
1

d!

∏

β∈A

1

λ · L(τβ)
.

Proof. Let M : RA → RA be a linear operator mapping the canonical basis (eβ)β∈A

of RA to the basis (τβ)β∈A. Then let T̃ = M−1(T ) and L̃ = LM . Then

(78) vol ({τ ∈ T : λ · L(τ) ≤ 1}) = vol ({v ∈ T̃ : λ · L̃(v) ≤ 1}).
Since T is a simplicial cone, T̃ is the cone of vectors v =

∑

β∈A cβe
β with entries

cβ > 0 relative to the orthonormal basis. Then the set on the right hand side of
(78) is the simplex with vertices at the origin and at each one of the points

eβ

λ · L̃(eβ)
=

eβ

λ · L(τβ)
, β ∈ A.

Therefore,

vol ({v ∈ T̃ : λ · L̃(v) ≤ 1}) =
∏

β∈A

1

λ · L(τβ)
vol (ΣA)

where ΣA is the canonical d-dimensional simplex, with vertices at the origin and
at each of the points eβ, β ∈ A. The latter has volume 1/d!, and so the proof is
complete. �

Applying this lemma to each T = T i with L = −Ωπ, we obtain

Proposition 21.4. The density of ν̂ relative to Lebesgue measure is

dν̂

dλ
(π, λ) = vol ({τ ∈ T+

π : area (λ, τ) ≤ 1}) =
1

d!

k
∑

i=1

∏

β∈A

1

λ · hi,β

where hi,β = −Ωπ(τ i,β). Moreover, the same formula holds for dν/d1λ. In par-
ticular, all these densities are homogeneous rational functions with degree −d and
bounded away from zero.

Example 21.5. Let d = 2 and π =

(

A B
B A

)

. The conditions (41) defining T+
π

reduce to τA > 0 > τB . The operator Ωπ is given by

Ωπ(τA, τB) = (τB,−τA)

and area (λ, τ) = λBτA − λAτB. The operator Θ is given by

Θ =

(

1 0
1 1

)

if type = 0 and Θ =

(

1 1
0 1

)

if type = 1

Figure 33 illustrates the action of the Rauzy transformation R̂ on the space of
translation surfaces.
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λA < λB

type 0

λB < λA

type 1

τA + τB < 0

τA + τB > 0

Figure 33.

The measure m̂ = dλdτ on Ĥ = {(λ, τ) : λA > 0, λB > 0, τA > 0 > τB}
projects down to a measure ν̂ on RA

+ which is absolutely continuous with respect
to Lebesgue measure dλ, with density

dν̂

dλ
(λ) = vol ({τ ∈ T+

π : area (λ, τ) ≤ 1})

= vol ({τ ∈ R
A : τA > 0 > τB and λBτA − λAτB ≤ 1}),

that is,

(79)
dν̂

dλ
(λ) =

1

2λAλB
.

The same expression holds for dν/d1λ, restricted to ΛA. Notice that the measure ν
is infinite. Indeed, identifying ΛA with (0, 1) and d1λ with dx, through (λA, λB) 7→
x = λA,

ν(ΛA) =

∫

ΛA

1

2λAλB
d1λ =

∫ 1

0

1

2x(1 − x)
dx = ∞.

However, the measure ν is finite on Ŝ. Indeed (recall Example 21.2)

ν̂(Ŝ) =

∫ 1

0

∫ tR(x)

0

1

2 esx es(1 − x)
e2s dx ds =

∫ 1

0

tR(x)
1

2x(1 − x)
dx.

Using the expression (77), this becomes

ν̂(Ŝ) = 2

∫ 1/2

0

− log(1 − x)
1

2x(1 − x)
dx ≤ 2

∫ 1/2

0

− log(1 − x)
1

x
dx <∞.

This may be restated, equivalently, as m̂(Ŝ1) < ∞. These conclusions are typical
for all d ≥ 2, as we shall see.

22. Hyperelliptic pairs

We are going to compute an explicit expression for the density in the case when

(80) π1 ◦ π−1
0 (j) = d− j + 1 for j = 1, . . . , d.

Denote

(81) bεα =
∑

πε(β)≤πε(α)

τβ for each α ∈ A and ε ∈ {0, 1}.

Note that
∑

α∈A τα = bεα(ε) for ε = 0, 1. The cone T+
π is defined by

(82) b0α > 0 for α 6= α(0) and b1α < 0 for α 6= α(1),
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which is just a reformulation of (41). Let T 0
π and T 1

π be the subsets of T+
π defined

by

(83) τ ∈ T 0
π ⇔

∑

α∈A

τα > 0 and τ ∈ T 1
π ⇔

∑

α∈A

τα < 0.

Clearly, T+
π = T 0

π ∪ T 1
π , up to a codimension 1 subset.

Given α ∈ A and ε ∈ {0, 1}, denote by α−
ε the symbol to the left and by α+

ε the
symbol to the right of α in line ε. That is,

(84)
α−

ε = π−1
ε (πε(α) − 1) if πε(α) > 1

α+
ε = π−1

ε (πε(α) + 1) if πε(α) < d.

Lemma 22.1. T ε
π is a simplicial cone for every ε ∈ {0, 1}.

Proof. We treat the case ε = 0, the other one being entirely analogous. For nota-
tional simplicity, let bα = b0α for every α ∈ A. Note that, because of (80),

b0α + b1α =
∑

β∈A

τβ + τα.

Equivalently,

b0
α−

0

+ b1α =
∑

β∈A

τβ = b0α + b1
α−

1

(the first equality is for α 6= α(1), the second one for α 6= α(0)). In particular,

b1α =
∑

β∈A

τβ − b0
α−

0

= b0α(0) − b0
α−

0

= bα(0) − bα−

0
.

Notice that when α varies in A \ {α(1)} the symbol α−
0 varies in A \ {α(0)}:

(

α(1) · · · α−
0 α · · · α(0)

α(0) · · · · · · · · · · · · α(1)

)

.

Then (82) becomes

bα > 0 for α 6= α(0) and bα(0) − bβ < 0 for β 6= α(0),

and (83) gives that the cone T 0
π is described by

(85) bα > 0 for all α ∈ A and 0 < bα(0) < min
β 6=α(0)

bβ .

Now it is easy to exhibit a basis of generators: take bα = (bαβ)β∈A with

(86)
bαβ =

{

1 if β = α
0 otherwise

if α 6= α(0)

bαβ = 1 for every β ∈ A if α = α(0).

A vector b = (bβ)β∈A satisfies (85) if and only if it can be written in the form
b =

∑

α∈A cαb
α with cα > 0 for all α ∈ A. It follows that T 0

π is a simplicial cone
admitting the basis τα = (τα

β )β∈A given by τα
β = bαβ − bα

β−

0

, that is,

(87)

τα
β =







1 if β = α
−1 if β = α+

0

0 in all other cases
if α 6= α(0)

τα
β =

{

1 if π0(β) = 1
0 otherwise

if α = α(0).
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This completes the proof. �

Let hα = −Ωπ(τα), where (τα)α∈A is the basis of T 0
π we found in (87), that is,

hα
β =

{

1 if β = α or β = α+
0

0 otherwise
if α 6= α(0)

hα
β =

{

0 if π0(β) = 1 or β = α(1)
1 otherwise

if α = α(0).

It is clear that the basis (bα)α∈A defined by (86) has volume 1. Since the map

b 7→ τ, τβ = bβ − bβ−

0

has determinant 1, it follows that (τα)α∈A also has volume 1. So, by Lemma 21.3,
the contribution of the cone T 0

π to the density is

1

d!

∏

α∈A

1

λ · hα
=

1

d!

∏

α6=α(0)

(

1

λα + λα+
0

)

· 1
∑

β 6=α(1) λβ
.

There is a completely symmetric calculation for T 1
π . In this way, we get the following

formula for the density in this case:

Proposition 22.2. If π satisfies (80) then the invariant density is

dν̂

dλ
(π, λ) =

∑

ε=0,1

1

d!

∏

α6=α(ε)

(

1

λα + λα+
ε

)

· 1
∑

β 6=α(1−ε) λβ

and dν/d1λ is given by the same expression, restricted to C × ΛA.

Example 22.3. Let d = 5 and A = {A,B,C,D,E}. Then

π =

(

A B C D E
E D C B A

)

.

The cone T 0
π is described by

b0A > 0, b0B > 0, b0C > 0, b0D > 0, b0E > 0,

b1E < 0, b1D < 0, b1C < 0, b1B < 0,

that is,
bA > 0, bB > 0, bC > 0, bD > 0, bE > 0,

bE − bD < 0, bE − bC < 0, bE − bB < 0, bE − bA < 0,

or, equivalently,

bA > 0, bB > 0, bC > 0, bD > 0, 0 < bE < min{bA, bB, bC , bD}.
As a basis take

bA = (1, 0, 0, 0, 0), bB = (0, 1, 0, 0, 0), bC = (0, 0, 1, 0, 0),

bD = (0, 0, 0, 1, 0), bE = (1, 1, 1, 1, 1)

or, equivalently,

τA = (1,−1, 0, 0, 0), τB = (0, 1,−1, 0, 0), τC = (0, 0, 1,−1, 0),

τD = (0, 0, 0, 1,−1), τE = (1, 0, 0, 0, 0).

We may write any τ = (τA, τB, τC , τD, τE) ∈ T 0
π as

τ = (bA − bE)τA + (bB − bE)τB + (bC − bE)τC + (bD − bE)τB + bEτ
E
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where the coefficients are all positive. Moreover,

hA = (1, 1, 0, 0, 0), hB = (0, 1, 1, 0, 0), hC = (0, 0, 1, 1, 0),

hD = (0, 0, 0, 1, 1), hE = (0, 1, 1, 1, 1).

Hence, the contribution of T 0
π to the density is

1

5!

1

λA + λB

1

λB + λC

1

λC + λD

1

λD + λE

1

λB + λC + λD + λE
.

The cone T 1
π contributes

1

5!

1

λE + λD

1

λD + λC

1

λC + λB

1

λB + λA

1

λA + λB + λC + λD
,

and so the total density is (recall that |λ| =
∑

α∈A λα)

1

5!

1

(λA + λB)(λB + λC)(λC + λD)(λD + λE)

(

1

|λ| − λA
+

1

|λ| − λE

)

.

23. Combinatorial statement

We want to prove that the intersection of every pre-stratum with the set of
(π, λ, τ) such that area (π, λ, τ) ≤ 1 has finite volume. The crucial step is

Proposition 23.1. Let (τβ)β∈A be a basis of RA contained in the closure of T δ
π

for some δ ∈ {0, 1}, and let hβ = −Ωπ(τβ) for β ∈ A. Given any non-empty proper
subset B of A, we have

#
{

β ∈ A : hβ
α = 0 for all α ∈ B

}

+ #B ≤ d,

and the inequality is strict unless B contains α(1 − δ) but not α(δ).

Proof. We suppose δ = 0, as the other case is analogous. Let h = −Ωπ(τ) for some
τ in the closure of T 0

π . By (43) and (81),

(88) hα = b0α − b1α = b0
α−

0
− b1

α−

1
.

The symbol α−
ε is not defined when πε(α) = 1, but (88) remains valid in that case,

as long as one interprets bε
α−

ε
to be zero. By the definition of T 0

π ⊂ T+
π in (41) and

(83), and the assumption that τ is in the closure of T 0
π ,

(89) b0α ≥ 0 for all α ∈ A and b1α ≤ 0 for all α ∈ A \ {α(1)}.
Therefore, given any α 6= α(1),

(90) hα = 0 ⇒ b0α = b1α = 0 = b0
α−

0
= b1

α−

1
.

A part of (90) remains valid even when α = α(1):

(91) hα = 0 ⇒ b0
α−

0

= b1
α−

1

= 0,

because α−
1 6= α(1). Finally, adding the relations

hα(0) = b0α(0) − b1α(0) and hα(1) = b0α(1) − b1α(1),

and recalling that b0α(0) =
∑

β∈A τα = b1α(1), we get that

(92) hα = 0 for both α ∈ {α(0), α(1)} ⇒ b0α(1) = b1α(0) = 0.

Now let B be a non-empty proper subset of A, and assume hα = 0 for all α ∈ B.
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Case 1: B does not contain α(1). Define

(93) Bε = B ∪ {α−
ε : α ∈ B} for ε ∈ {0, 1}.

Then (90) gives that

(94) bεβ = 0 for all β ∈ Bε and ε ∈ {0, 1}.
We claim that there exists ε ∈ {0, 1} such that

(95) #Bε > #B.
Indeed, it follows from the definition (93) that B is contained in Bε. Moreover, the
two sets coincide only if α−

ε ∈ B for every α ∈ B or, in other words, if

(96) B = π−1
ε ({1, . . . , k}) for some 1 ≤ k ≤ d.

Note that k < d, because B is a proper subset of A. So, since π is irreducible, (96)
can not hold simultaneously for both ε = 0 and ε = 1. Hence, there exists ε such
that Bε 6= B. This proves the claim. Now fix any such ε. Since the map τ 7→ bε is
injective, and the (τβ)β∈A are linearly independent, (94) and (95) give

#{β ∈ A : hβ
α = 0 for all α ∈ B} ≤ d− #Bε < d− #B.

Case 2: B contains α(1) but not α(0). Let B1 = B \ {α(1)} ∪ {α−
1 : α ∈ B}. The

relations (90) and (91) imply that

b1β = 0 for all β ∈ B1.

Let k ≥ π1(α(0)) be maximum such that β̄ = π−1
1 (k) is not in B. The assumption

that B contains α(1) but not α(0) ensures that k is well defined and less than d.
Then β̄ = α−

1 for some α ∈ B, and so β̄ ∈ B1. This shows that

B1 ⊃ B \ {α(1)} ∪ {β̄},
and so #B1 ≥ #B. Hence, just as before,

#{β ∈ A : hβ
α = 0 for all α ∈ B} ≤ d− #B1 ≤ d− #B.

Case 3: B contains both α(0) and α(1). Define B0 = B ∪ {α−
0 : α ∈ B}. By (90),

(91), (92),
b0β = 0 for all β ∈ B0.

It is easy to check that B0 contains B strictly. Indeed, the two sets can coincide
only if α−

0 ∈ B for every α ∈ B, that is, if B = π−1
0 ({1, . . . , k} for some k. Since B

contains α(0) = π−1
0 (d), this would imply B = A, contradicting the hypothesis. It

follows, just as in the first case, that

#{β ∈ A : hβ
α = 0 for all α ∈ B} ≤ d− #B0 < d− #B.

The proof of Proposition 23.1 is complete. �

Remark 23.2. The inequality in Proposition 23.1 is not always strict. Indeed, let
τA, . . . , τE be the generators of T 0

π in Example 22.3, and let B = {A}. Then B
contains A = α(1) but not E = α(0). Note also that

{β : hβ
A = 0} = {B,C,D,E}

has exactly 4 = d− #B elements. Thus, the equality holds in this case. In fact, if
the inequality were strict in all cases, then arguments as in the next section would
imply that the measure ν is finite. However, the latter is usually not true, as we
have already seen in Example 21.5.
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24. Finite volume

Let C be a Rauzy class and Ŝ = Ŝ(C) be the corresponding pre-stratum. Define

the normalized pre-stratum to be the subset Ŝ1 = Ŝ1(C) of all (π, λ, τ) ∈ Ŝ such
that area (λ, τ) ≤ 1.

Theorem 24.1. For every Rauzy class C, the normalized pre-stratum Ŝ1 has finite
volume: m̂(Ŝ1) <∞.

Proof. Recall that Ŝ1 is obtained from the subset of all (π, λ, τ) ∈ Ĥ such that
area (λ, τ) ≤ 1 and

(97)
∑

α6=α(1−ε)

λα ≤ 1 ≤
∑

α∈A

λα

by identifying (π, λ, τ) with R̂(π, λ, τ) when
∑

α6=α(1−ε) λα = 1. Thus,

(98) vol (Ŝ1) =
∑

π∈C

∫

ρ(π, λ) dλ,

where ρ(π, λ) is the d-dimensional volume of {τ ∈ T+
π : area (λ, τ) ≤ 1}, and

the integral is over the set of λ ∈ RA
+ satisfying (97). Let T i, i = 1, . . . , k be a

decomposition of T+
π (up to a codimension 1 subset) into simplicial cones. Then,

by Proposition 21.4,

(99) ρ(π, λ) =
1

d!

k
∑

i=1

∏

β∈A

1

λ · hi,β

where hi,β = −Ωπ(τ i,β) and (τ i,β)β∈A is a basis of generators of T i. We may
assume that each T i is contained either in T 0

π or in T 1
π , and we do so in what

follows. Let us consider (compare (71) also)

(100) ΛA × R ∋ (λ, s) 7→ esλ ∈ R
A
+.

Recall that dλ = esdd1λds, where d1λ denotes the (d − 1)-dimensional volume
induced on the simplex ΛA by the Riemannian metric of RA. Notice that, given
(λ, s) ∈ ΛA × R, the vector esλ satisfies (97) if and only if 0 ≤ s ≤ tR(π, λ), where
tR is the Rauzy renormalization time defined in (72). Recall also that λ 7→ ρ(π, λ)
is homogeneous of degree −d. Thus, after change of variables, (98) becomes

vol (Ŝ1) =
∑

π∈C

∫

ΛA

∫ tR(π,λ)

0

ρ(π, esλ)esd ds d1λ =
∑

π∈C

∫

ΛA

ρ(π, λ)tR(π, λ) d1λ.

Using (99) and the definition of tR(π, λ), this gives

(101) vol (Ŝ1) =
1

d!

∑

π∈C

k
∑

i=1

∫

ΛA

− log
(

1 − λα(1−ε)

)

∏

β∈A

1

λ · hi,β
d1λ,

where ε is the type of (π, λ). Therefore, to prove the theorem we only have to show
that the integral is finite, for every fixed π ∈ C and i = 1, . . . , k.

For simplicity, we write hβ = hi,β in what follows. Also, we assume T i is
contained in T 0

π ; the other case is analogous. This implies the corresponding basis
of generators (τ i,β)β∈A is contained in the closure of T 0

π .
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Let N denote the set of integer vectors n = (nα)α∈A such that nα ≥ 0 for all
α ∈ A, and the nα are not all zero. For each n ∈ N , define

(102) Λ(n) = {λ ∈ ΛA : 2−nα ≤ λαd < 2−nα+1 for every α ∈ A},
except that for nα = 0 the second inequality is omitted.

Lemma 24.2. There exists c1 > 0 depending only on the dimension d such that

vold−1 Λ(n) ≤ c12
−

P

A
nα

for all n ∈ N . Moreover, the family Λ(n), n ∈ N covers ΛA.

Proof. If
∑

α∈A λα = 1 then λβ ≥ 1/d for some β ∈ A, and so λ belongs to some
Λ(n) with nβ = 0. This shows that these sets Λ(n) do cover ΛA. To prove the
volume estimate, fix n and β ∈ A such that nβ = 0. When λ varies in Λ(n), the
(d−1)-dimensional vector (λα)α6=β varies in some subset S(n) of the product space
∏

α6=β [0, 2−nα+1]. The (d − 1)-dimensional volume of S(n) is bounded above by

2d−12−
P

α∈A
nα . Then, since Λ(n) is a graph over S(n),

vold−1 Λ(n) ≤
√
d vold−1 S(n) ≤ c12

−
P

α∈A
nα ,

where c1 =
√
d 2d−1. The proof is complete. �

It is clear that λα(1−ε) < 1/2, and so

− log
(

1 − λα(1−ε)

)

≤ 2λα(1−ε) = 2 min{λα(0), λα(1)}.
Therefore, for each fixed π and i, the integral in (101) is bounded above by

(103)
∑

n∈N

∫

Λ(n)

2 min{λα(0), λα(1)}
∏

β∈A

1

λ · hβ
d1λ.

For each β ∈ A, let A(β) be the subset of α ∈ A such that hβ
α > 0. Let c2 > 0 be

the minimum of the non-zero hβ
α, over all α and β. Then

(104) λ · hβ =
∑

A(β)

hβ
αλα ≥

∑

A(β)

c2d
−12−nα ≥ c2d

−12−minA(β) nα

for every λ ∈ Λ(n) and β ∈ A. Using Lemma 24.2 we deduce that

(105)

∫

Λ(n)

2 min{λα(0),λα(1)}
∏

β∈A

1

λ · hβ
d1λ

≤ K 2−maxε nα(ε)+
P

β minA(β) nα−
P

α nα ,

where the constant K = (2c1)(d/c2)
d. Using Proposition 23.1, we obtain

Lemma 24.3.

max
ε∈{0,1}

nα(ε) −
∑

β∈A

min
α∈A(β)

nα +
∑

α∈A

nα ≥ max
α∈A

nα.

Proof. Let 0 = n0 < n1 < · · · be the different values taken by nα, and Bi, i ≥ 0 be
the set of values of α ∈ A such that nα ≥ ni. On the one hand,

(106)
∑

α∈A

nα =
∑

i≥1

ni
(

#Bi − #Bi+1
)

=
∑

i≥1

#Bi(ni − ni−1).
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On the other hand, minA(β) nα ≥ ni if and only if A(β) ⊂ Bi. Consequently,

(107)

∑

β∈A

min
A(β)

nα =
∑

i≥1

ni
(

#{β : A(β) ⊂ Bi} − #{β : A(β) ⊂ Bi+1}
)

=
∑

i≥1

#{β : A(β) ⊂ Bi}(ni − ni−1).

Observe that A(β) ⊂ Bi if and only if hβ
α = 0 for all α ∈ A \ Bi. So, by Proposi-

tion 23.1 (with B = A \ Bi),

(108) #{β : A(β) ⊂ Bi} < #Bi

except, possibly, if Bi contains α(0) but not α(1). On the one hand, if (108) does
hold then

(109) #Bi(ni − ni−1) − #{β : A(β) ⊂ Bi}(ni − ni−1) ≥ (ni − ni−1).

On the other hand, if Bi contains α(0) but not α(1) then nα(1) < ni ≤ nα(0). Let
i1 be the smallest and i2 be the largest value of i for which this happens. Then

#Bi − #{β : A(β) ⊂ Bi} ≥ 0 for i1 ≤ i ≤ i2(110)

and max{nα(0), nα(1)} = nα(0) ≥ ni2 − ni1−1 =

i2
∑

i=i1

(ni − ni−1).

Putting (109) and (110) together, we find that

max
ε∈{0,1}

nα(ε) −
∑

β∈A

min
A(β)

nα +
∑

α∈A

nα ≥
k
∑

i≥1

(ni − ni−1) = max
α∈A

nα.

This proves the lemma. �

Replacing the conclusion of the lemma in (105) we obtain, for every ∈ N ,

(111)

∫

Λ(n)

2 min{λα(0), λα(1)}
∏

β∈A

1

λ · hβ
d1λ ≤ K2−maxA nα .

For each m ≥ 0 there are at most (m + 1)d choices of n ∈ N with maxA nα = m.
So, (111) implies that the integral in (101) is bounded above by

∞
∑

m=0

K(m+ 1)d2−m <∞

for every π ∈ C and every 1 ≤ i ≤ k. The proof of Theorem 24.1 is complete. �

25. Recurrence and inducing

Given a measurable map f : M → M and a measure µ on M , we call (f, µ)
recurrent if for any positive measure set E ⊂ M and µ-almost every x ∈ E there
exists n ≥ 1 such that fn(x) ∈ E. The classical Poincaré recurrence theorem asserts
that if µ is invariant and finite then (f, µ) is recurrent. Similar observations hold
for flows as well.

Lemma 25.1. The Teichmüller flow T t : Ŝ → Ŝ and semi-flow T t : Ŝ → Ŝ are
recurrent, for the corresponding invariant measures m̂ and ν̂. The Rauzy-Veech
renormalization maps R : H → H and R : C × ΛA → C × ΛA are also recurrent,
for the corresponding invariant measures m and ν.
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Proof. Since m̂ is a finite measure, by Theorem 24.1, the claim that (T t, m̂) is
recurrent is a direct consequence of the Poincaré recurrence theorem. The claim
for (T t, ν̂) follows immediately, because ν̂ = P∗(m̂) and T t ◦P = P ◦ T t: given any

positive measure set D ⊂ Ŝ, the fact that m̂-almost every point of P−1(D) returns
to P−1(D) under T t implies that ν̂-almost every point of D returns to D under T t.
Similarly, the statement for (R,m) follows immediately from the fact that (T t, m̂)
is recurrent, R is the return map of T t to the cross-section S, and a subset of the
cross-section as positive m-measure if and only the set of flow orbits has positive
m̂-measure. For the same reasons, the fact that (T t, ν̂) is recurrent implies that
(R, ν) is recurrent. �

If (f, µ) is recurrent then, given any positive measure D ⊂ M there is a first-
return map fD : D → D of f to D, defined by

fD(x) = fn(x), n = min{k ≥ 1 : fk(x) ∈ D}
at almost every point x ∈ D. We call fD the map induced by f on D.

Lemma 25.2. The induced map fD preserves the restriction of µ to D.

Proof. Suppose first that f is invertible. Then, given any measurable set E ⊂ D,
the pre-image f−1

D (E) is the disjoint union of all f−k(Ek), k ≥ 1 where Ek is the
set of points x ∈ E such that f−k(x) ∈ D but f−j(x) /∈ D for 0 < j < k. Since
these Ek are pairwise disjoint, we get

µ(f−1
D (E)) =

∑

k≥1

µ(f−k(Ek)) =
∑

k≥1

µ(Ek) = µ(E).

To treat the general, possibly non-invertible, case, consider the natural extension
(f̃ , µ̃) of the system (f, µ). This is defined by

f̃ : M̃ → M̃, f̃(. . . , xn, . . . , x0) = (. . . , xn, . . . , x0, f(x0))

where M̃ is the space of all sequences (xn)n on M such that f(xn) = xn−1 for all

n ≥ 1. Moreover, µ̃ is the unique f̃ -invariant measure such that π∗(µ̃) = µ, where

π : M̃ →M is the projection (xn)n 7→ x0. Clearly, π ◦ f̃ = f ◦ π. Moreover,

π ◦ f̃D̃ = fD ◦ π

where f̃D̃ denotes the map induced by f̃ on D̃ = π−1(D). Then, using the previous
paragraph,

µ(f−1
D (E)) = µ̃(π−1(f−1

D (E)) = µ̃(f̃−1

D̃
(π−1(E))) = µ̃(π−1(E)) = µ(E).

This completes the proof. �

Remark 25.3. It is clear that if f is ergodic for µ then fD is ergodic for the restricted
measure µ | D. Indeed, given any E ⊂ D, let F = ∪∞

n=0Fn, where F0 = E and

Fn = {x ∈M : fn(x) ∈ E but fk(x) /∈ E for al 0 ≤ j < n} for n ≥ 1.

If E is fD-invariant then F is f -invariant. Suppose µ(E) > 0. Then µ(F ) > 0 and
so, by hypothesis, µ(F ) = 1. Consequently, µ(E) = µ(F ∩D) = µ(D). This shows
that fD is ergodic if f is. We are going to prove a partial converse to this fact.
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We say that (f, µ) is a Markov system if the measure µ is f -invariant and there
exists a countable partition (Mj)j of a full measure subset of M , such that each Mj

is mapped bijectively to a full measure subset of M . Such systems always admit a
Jacobian. Indeed, let µj be the measure defined on each Mj by µj(E) = µ(f(E)).
Since µ is invariant, µ ≤ µj and, in particular, µ is absolutely continuous with
respect to µj . The set where the Radon-Nikodym derivative vanishes has zero
µ-measure:

µ
(

{x :
dµ

dµj
(x) = 0}

)

=

∫

{x: dµ
dµj

(x)=0}

dµ

dµj
dµj = 0.

Hence, Jµf(x) = (dµ/dµj)
−1(x) is well-defined at µ-almost every point in each Mj,

and it is a Jacobian of f relative to µ:
∫

E

Jµf dµ =

∫

E

(

dµ

dµj

)−1

dµ =

∫

E

dµj = µj(E) = µ(f(E))

for every measurable set E ⊂Mj and every j ≥ 1.

Lemma 25.4. Assume (f, µ) is a Markov system. If the map induced by f on
some of the Markov domains Mj is ergodic for the restriction of µ to Mj, then
(f, µ) itself is ergodic.

Proof. Let F ⊂ M be f -invariant. Then E = F ∩ Mj is fMj
-invariant and so,

either µ(E) = 0 or µ(Mj \ E) = 0. In the first case, the existence of a Jacobian
implies that µ(f(E)) = 0. Notice that f(E) = F , up to a zero measure set, because
f : Mj → M is essentially surjective and F is an invariant set. It follows that
µ(F ) = 0. In the second case, a similar argument shows that µ(M \ F ) = 0. This
proves that f is ergodic. �

We are going to apply these observations to the Rauzy-Veech renormalization
map R, and the R-invariant measure ν constructed in Section 21. Recall that R
maps each {π} × Λπ,ε bijectively to {π′} × ΛA, where π′ is the type ε successor of
π and

Λπ,ε = {λ ∈ ΛA : (π, λ) has type ε}.
For each n ≥ 1 and ε = (ε0, . . . , εn−1) ∈ {0, 1}n, define

(112) Λπ,n,ε = {λ ∈ ΛA : Rk(π, λ) has type εk for k = 0, 1, . . . , n− 1}.
Then Rn maps every Λπ,n,ε bijectively to πn×ΛA. As a consequence of (11), Λπ,n,ε

is the image of ΛA under the projectivization of Θn∗, where Θn∗ = Θn∗
π,λ for any

(π, λ) ∈ Λπ,n,ε. By Corollary 5.3, one may find N ≥ 1 and ε = (ε0, . . . , εN−1) such
that Λ∗ = Λπ,N,ε is relatively compact in Λ. Let N and Λ∗ be fixed from now on,

and denote by R∗ : Λ∗ → Λ∗ the map induced by RN on Λ∗. For x in a full measure
subset of Λ∗, let k ≥ 1 be the smallest positive integer such that RkN (x) ∈ Λ∗.
Then the set Λπ,(k+1)N,θ that contains x satisfies

RkN (Λπ,(k+1)N,θ) = Λ∗.

In particular, R∗ = RkN on the set Λπ,(k+1)N,θ. This proves that
(

R∗, (ν | Λ∗)
)

is
a Markov system.

Proposition 25.5. The Markov system
(

R∗, (ν | Λ∗)
)

is ergodic.
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The proof of this proposition appears in Section 27. It uses the notion of projec-
tive metric, that we recall in Section 26. This notion will be useful again later. Also
in Section 27, we deduce from the proposition that the renormalization maps R and
R, and the Teichmüller flow T t are ergodic, relative to their invariant measures ν,
ν̂, and m̂.

26. Projective metrics

Birkhoff [5] introduced the notion of projective metric associated to a general
convex cone C in any vector space. Here we only need the case C = RA

+.
Given any u, v ∈ C, define

(113) a(u, v) = inf{ vα

uα
: α ∈ A} and b(u, v) = sup{ vβ

uβ
: β ∈ A}.

Notice that

(114) v − tu ∈ C ⇔ t < a(u, v) and su− v ∈ C ⇔ s > b(u, v).

We call projective metric associated to C = R
A
+ the function dp(· , ·) defined by

(115) dp(u, v) = log
b(u, v)

a(u, v)
= log sup{uα

vα

vβ

uβ
: α, β ∈ A}

for each u, v ∈ C. This terminology is justified by the next lemma, which says that
dp(· , ·) induces a distance in the projective quotient of C. The lemma is an easy
consequence of the definition (115).

Lemma 26.1. For all u, v, w ∈ C,

(a) dp(u, v) = dp(v, u)
(b) dp(u, v) + dp(v, w) ≥ dp(u,w)
(c) dp(u, v) ≥ 0
(d) dp(u, v) = 0 if and only if there exists t > 0 such that u = tv.

Let G : RA → RA be a linear operator such that G(C) ⊂ C or, equivalently, such
that all the entries Gα,β of the matrix of G are non-negative. Then

t < a(u, v) ⇔ v − t u ∈ C ⇒ G(v) − tG(u) ∈ C ⇔ t < a(G(u), G(v)).

This means that a(u, v) ≤ a(G(u), G(v)) and a similar argument proves that
b(u, v) ≥ b(G(u), G(v)). Therefore,

(116) dp(G(u), G(v)) ≤ dp(u, v) for all u, v ∈ C.

It follows from Lemma 26.1 that, restricted to the simplex ΛA, the function dp

is a genuine metric. We call g : ΛA → ΛA a projective map if there exists a linear
isomorphism G : RA → RA such that G(RA

+) ⊂ RA
+ and

(117) g(λ) =
G(λ)

∑

α∈AG(λ)α
=

G(λ)
∑

α,β∈AGα,βλβ
.

We say g is the projectivization of G. The relation (116) means that projective
maps never expand the projective metric on the simplex.

A set K ⊂ ΛA is relatively compact in ΛA if and only if the coordinates of its
points are all larger than some positive constant. So, it follows directly from the
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definition (115) that if K is relatively compact in ΛA then it has finite diameter
relative to the projective metric:

sup
x,y∈K

dp(x, y) <∞.

We shall see in Proposition 26.3 that if the entries of G are strictly positive or,
equivalently, if the image of g is relatively compact in ΛA, then the inequality in
(116) is strict. Thus, in that case the maps G and g are uniform contractions
relative to the projective metrics in R

A
+ and ΛA, respectively.

Lemma 26.2. Let g : ΛA → ΛA be a projective map and Dg be its derivative.
Then log | detDg| is (d+ 1)-Lipschitz continuous for the projective distance.

Proof. We use the following observation: if a functional h(λ) =
∑

β hβλβ has non-

negative coefficients, hβ ≥ 0, then log h(λ) is 1-Lipschitz relative to the projective
distance. Indeed,

log h(σ) − log h(λ) = log

∑

β hβσβ
∑

β hβλβ
≤ log sup

β

σβ

λβ
= log b(λ, σ).

Recall the definition (113). Since
∑

β λβ = 1 =
∑

β σβ , we also have a(λ, σ) ≤ 1.

It follows that log b(λ, σ) ≤ dp(λ, σ). This justifies our observation.
Now let g be the projectivization of some linear isomorphism G. We begin by

expressing Dg in terms of G. Let Λ̇A represent the hyperplane tangent to the
simplex ΛA. From (117) we find

Dg(λ)λ̇ =
G(λ̇)

s(λ)
− G(λ)

s(λ)

∑

αG(λ̇)α

s(λ)
, s(λ) =

∑

α,β

Gα,βλβ .

This may be rewritten as Dg(λ) = Pλ ◦ s(λ)−1 ◦G, where G : Λ̇A → G(Λ̇A), we use

s(λ)−1 to mean division by the scalar s(λ) on the vector hyperplane G(Λ̇A), and

Pλ : G(Λ̇A) → Λ̇A is the projection along the direction of G(λ). Consequently,

log detDg(λ) = log detPλ − (d− 1) log s(λ) + log detG

We are going to show that each of the three terms on the right hand side is Lipschitz
relative to the projective metric. Indeed, log detG is constant. By the observation
in the first paragraph, log s(λ) is 1-Lipschitz. Finally,

log detPλ = log(n0 ·G(λ)) − log(n1 ·G(λ))

where n0 and n1 are unit vectors orthogonal to the hyperplanes Λ̇A and G(Λ̇A),
respectively. Both ni have non-negative coefficients: on the one hand, n0 is collinear
to (1, . . . , 1); on the other, n1 is collinear to G∗(1, . . . , 1), and the adjoint operator
G∗ has non-negative coefficients since G does. Using the observation in the first
paragraph once more, it follows that each log(ni · G(λ)) is a 1-Lipschitz function.
Altogether, log detDg(λ) is (d + 1)-Lipschitz relative to the projective metric, as
claimed. �

For proving Proposition 25.5, this is all we need to know about projective metrics.
In the remainder of the present section we prove a few other properties that will
be useful at latter occasions.
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Proposition 26.3. For any δ > 0 there is θ < 1 such that, if δ < Gα,β < δ−1 for
all α, β ∈ A, then

dp(G(u), G(v)) ≤ θ dp(u, v) for all u, v ∈ C.

Proof. Given any z, w ∈ C, one can always find some c = c(z, w) > 0 such that

(118) a(G(z), G(w)) > cδ2 and b(G(z), G(w)) < cδ−2.

Indeed, the hypothesis δ ≤ Gα,β ≤ δ−1 implies that

a(G(z), G(w)) = inf
α

∑

β Gα,β wβ
∑

β Gα,β zβ
> δ2

∑

β wβ
∑

β zβ
.

Just take c(z, w) to be the last factor on the right hand side, and observe that the
same kind of argument also gives b(G(z), G(w)) < δ−2c(z, w).

Now let u, v ∈ C and, for each n ≥ 1, consider arbitrary 0 < tn < a(u, v) and
b(u, v) < sn <∞. In other words,

v − tn u ∈ C and sn u− v ∈ C.

Taking z = v − tnu and w = sn u− v in (118), we find cn > 0 such that

G(sn u− v) − cnδ
2G(v − tnu) ∈ C and cnδ

−2G(v − tnu) −G(sn u− v) ∈ C.

Write Tn = cnδ
2 and Sn = cnδ

−2. The previous relations may be rewritten as

(sn + tnTn)G(u) − (1 + Tn)G(v) ∈ C and (1 + Sn)G(v) − (sn + tnSn)G(u) ∈ C,

and, by (114), this is the same as

b(G(u), G(v)) <
sn + tnTn

1 + Tn
and a(G(u), G(v)) >

sn + tnSn

1 + Sn
.

Combining these two inequalities we see that dp(G(u), G(v)) can not exceed

log

(

sn + tnTn

1 + Tn
· 1 + Sn

sn + tnSn

)

= log

(

sn/tn + Tn

1 + Tn
· 1 + Sn

sn/tn + Sn

)

.

The last term can be rewritten as

log

(

sn

tn
+ Tn

)

− log(1 + Tn) − log

(

sn

tn
+ Sn

)

+ log(1 + Sn) =

=

∫ log(sn/tn)

0

(

ex dx

ex + Tn
− ex dx

ex + Sn

)

,

and this is not larger than

sup
x>0

ex(Sn − Tn)

(ex + Tn)(ex + Sn)
log

(

sn

tn

)

.

Now we use the following elementary fact:

sup
y>0

y(Sn − Tn)

(y + Tn)(y + Sn)
=

1 − (Tn/Sn)1/2

1 + (Tn/Sn)1/2

(the supremum is attained at y = (SnTn)1/2). Noting that Tn/Sn = δ4, we conclude
that

dp(G(u), G(v)) ≤ 1 − δ2

1 + δ2
log

(

sn

tn

)

.

Making sn → a(u, v) and tn → b(u, v), the last factor converges to dp(u, v), and we
obtain the conclusion of the proposition with θ = (1 − δ2)/(1 + δ2). �
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Thus, if g : ΛA → ΛA is a projective map such that g(ΛA) is relatively compact
in ΛA or, in other words, such that it is the projectivization of a linear isomorphism
G with strictly positive coefficients, then g is a uniform contraction relative to the
projective metric. We also note that this metric is complete:

Proposition 26.4. Any dp-Cauchy sequence (λn)n is dp-convergent. Moreover,
the normalization (λn/|λn|)n is norm-convergent.

Proof. Let (λn)n be a dp-Cauchy sequence in C: given any ε > 0, there exists
N ≥ 1 such that dp(λm, λn) ≤ ε for all m,n ≥ N . Up to dropping a finite number
of terms, we may suppose that dp(λm, λn) ≤ 1 for all m,n ≥ 1. Then,

(119)
1

e
≤
λm

α λ
n
β

λn
αλ

m
β

≤ e for all α, β ∈ A and m,n ≥ 1.

As a consequence, writing R = e sup{λ1
α/λ

1
β : α, β ∈ A} we get

(120)
1

R
≤ λn

α

λn
β

≤ R for all α, β ∈ A and n ≥ 1.

It is no restriction to suppose that |λn| = 1 for all n ≥ 1. Then

(121) inf
α∈A

λn
α ≤ 1 ≤ sup

β∈A
λn

β and inf
α∈A

λn
α

λm
α

≤ 1 ≤ sup
β∈A

λn
β

λm
β

for all m,n ≥ 1. The first part of (121) together with (120) imply

(122)
1

R
≤ λn

α ≤ R for all α ∈ A and n ≥ 1.

The second part of (121) together with dp(λm, λn) ≤ ε give

(123) e−ε ≤ inf
α∈A

λn
α

λm
α

≤ 1 ≤ sup
β∈A

λn
β

λm
β

≤ eε

for all m,n ≥ N . It follows that

sup
α∈A

|λm
α − λn

α| ≤ sup
α∈A

λm · sup
α∈A

∣

∣

∣

∣

λn
α

λm
α

− 1

∣

∣

∣

∣

≤ R(eε − 1).

This shows that (λn)n is a Cauchy sequence with respect to the usual norm in R
A.

It follows that the sequence converges to some λ ∈ RA. Passing to the limit in
(122) we find that R−1 ≤ λα ≤ R for all α ∈ A and, in particular, λ ∈ C. Passing
to the limit in (123), we get

e−ε ≤ inf
α∈A

λn
α

λα
≤ 1 ≤ sup

β∈A

λn
β

λβ
≤ eε

for all n ≥ N . This means that a(λ, λn) ≥ e−ε and b(λ, λn) ≤ eε, and so dp(λ, λn) ≤
2ε for all n ≥ N . Therefore, (λn)n is dp-convergent to λ. �

27. Ergodicity

Applying the conclusions in the first half of the previous section to the inverse
branches of the map R∗ : Λ∗ → Λ∗ introduced in Section 25, we can give the
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ΛAΛA

Λ∗Λ∗

Rk
∗

Λπ,(k+1)N,θ

Figure 34.

Proof of Proposition 25.5. The domain Λ∗ has finite diameter D∗ > 0 for the
projective metric dp, because it is relatively compact in ΛA. By Lemma 26.2,
log | detR−k

∗ | is (d+1)-Lipschitz continuous relative to dp, for every inverse branch
R−k

∗ : Λ∗ → Λπ,(k+1)N,θ of any iterate Rk
∗ of the map R∗. Consequently,

(124) log
| detR−k

∗ |(x)
| detR−k

∗ |(y)
≤ (d+ 1)D∗

for any x, y ∈ Λ∗ and every inverse branch. Now let E ⊂ ΛA be any R∗-invariant
set with ν(E) > 0. Then E has positive Lebesgue measure as well. Then, for any
δ > 0 there exists k ≥ 1 such that

d1λ(Λπ,(k+1)N,θ \ E) < δd1λ(Λπ,(k+1)N,θ).

Taking the images under Rk
∗ and using (124), we find that

d1λ(ΛA \ E) < δe(d+1)D∗d1λ(ΛA).

Since δ is arbitrary, we conclude that E has full Lebesgue measure in ΛA. It follows
that it also has full ν measure in ΛA. This proves ergodicity. �

Remark 27.1. Each inverse branch R−k
∗ : Λ∗ → Λπ,(k+1)N,θ is the projectivization

of a linear map ΘkN∗, and so it extends to a bijection from the whole simplex ΛA to
the set Λπ,kN,τ that contains Λπ,(k+1)N,θ. Notice that Λπ,kN,τ is contained in Λ∗,
which is relatively compact in ΛA. Using Proposition 26.3, we get that all these
inverse branches contract the projective metric, with contraction rate uniformly
bounded from 1. Thus, R∗ : Λ∗ → Λ∗ is a uniformly expanding map. Although we
do not use this fact, it could be combined with Lemma 26.2 to give an alternative
proof that R∗ and R admit invariant measures absolutely continuous with respect
to Lebesgue measure.

Corollary 27.2. The Rauzy-Veech renormalization map R is ergodic relative to the
invariant measure ν. Moreover, every R-invariant measure absolutely continuous
with respect to Lebesgue measure coincides with a multiple of ν.

Proof. We have seen in Proposition 25.5 that the map R∗ induced by RN is ergodic
relative to the restriction of ν to Λ∗. Using Lemma 25.4, we conclude that (RN , ν)
is ergodic. This implies that (R, ν) is ergodic. The uniqueness statement is a
consequence of ergodicity and the fact that ν is actually equivalent to Lebesgue
measure. �

Together with Proposition 21.4, Corollary 27.2 completes the proof of Theo-
rem 7.2. From the previous arguments we also get
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Corollary 27.3. The invertible Rauzy-renormalization map R is ergodic, for the
invariant measure m, and the Teichmüller flow T is ergodic, for the invariant
measure m̂, restricted to the subset {(π, λ, τ) : area (λ, τ) = 1}.

28. Space of invariant measures

Having finished the proof of Theorem 7.2, we are now going to use it to give a
positive solution to Conjecture 4.6. This is done in the next theorem, which is due
to Masur [17] and Veech [22]. The proof occupies Sections 28 and 29.

Theorem 28.1. Almost every interval exchange transformation is uniquely ergodic.

Let f : I → I be an interval exchange transformation, defined by data (π, λ).
Throughout, we assume that (π, λ) satisfies the Keane condition (14). Then f is
minimal and the renormalization Rn(π, λ) is defined for all n ≥ 1.

Let M(π, λ) denote the cone of f -invariant (positive) measures. Since f is min-
imal, every µ ∈ M(π, f) is non-atomic and positive on open intervals. Define

φµ : I → [0, µ(I)), φµ(x) = µ
(

[0, x)
)

.

Then φ is continuous and injective, and so it is a homeomorphism. Define λ(µ) =
(λα(µ))α∈A by

λα(µ) = µ(Iα) for all α ∈ A,
where (Iα)α∈A is the partition of I defined by (π, λ). Notice that

|λ(µ)| =
∑

α∈A

λα(µ) =
∑

α∈A

µ(Iα) = µ(I).

Now define fµ : [0, µ(I)) → [0, µ(I)) by fµ = φµ ◦ f ◦ φ−1
µ .

Lemma 28.2. fµ is the interval exchange transformation defined by (π, λ(µ)).

Proof. For every α ∈ A, define

Iα(µ) =
[

∑

π0(β)<π0(α)

λβ(µ),
∑

π0(β)≤π0(α)

λα(µ)
)

.

If s ∈ Iα(µ) then φ−1
µ (s) ∈ Iα and, by the definition of φµ,

µ
[

∂Iα, φ
−1
µ (s)

)

= s− ∂Iα(µ) = s−
∑

π0(β)<π0(α)

λβ(µ).

Then f(φ−1
µ (s)) ∈ f(Iα) and, since µ is f -invariant,

µ
[

∂f(Iα), f(φ−1
µ (s))

)

= s−
∑

π0(β)<π0(α)

λβ(µ).

Observe that µ
[

0, ∂f(Iα)
)

=
∑

π1(β)<π1(α) µ(Iα) =
∑

π1(β)<π1(α) λα(µ). It follows

that

fµ(s) = φµ(f(Iα), f(φ−1
µ (s))) = s−

∑

π0(β)<π0(α)

λβ(µ) +
∑

π1(β)<π1(α)

λβ(µ)

for all s ∈ Iα(µ). This proves that fµ is an interval exchange transformation, with
translation vector w(µ) = (wα(µ))α∈A given by

wα(µ) =
∑

π1(β)<π1(α)

λβ(µ) −
∑

π0(β)<π0(α)

λβ(µ),

and so the claim follows. �
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Proposition 28.3. The map µ 7→ λ(µ) is a linear isomorphism from M(π, λ) to
the cone

∞
⋂

n=1

Θn∗
π,λ(RA

+).

The proof of this proposition occupies the remainder of this section. The first
step is

Lemma 28.4. The map µ 7→ λ(µ) is linear and injective.

Proof. Linearity is clear from the definition. To prove injectivity, observe that
φµ(0) = 0 and so

fn
µ (0) = φµ(fn(0)) = µ

[

0, fn(0)
)

.

This relation shows that, for a dense subset of values of x, the value of µ([0, x)) is
determined by fµ and, hence (Lemma 28.2), by (π, λ(µ)). As the measure µ has
no atoms, it follows that it is completely determined by λ(µ), which proves the
claim. �

Let us denote by C(π, λ) the image of M(π, λ) under the map µ 7→ λ(µ). Now,
to prove Proposition 28.3 we only have to show that

(125) C(π, λ) =

∞
⋂

n=1

Θn∗
π,λ(RA

+).

Lemma 28.5. An interval exchange transformation g : J → J is topologically
conjugate to f if and only if there exists µ ∈ M(π, λ) such that g = fµ.

Proof. The only if part is obvious: If g = fµ then, by definition, it is conjugate to
f by φµ. Conversely, suppose g = φ ◦ f ◦ φ−1 for some homeomorphism φ : I → J .
Let m be Lebesgue measure on J and µ = φ−1

∗ m. Since m is invariant under g, the
measure µ is invariant under f . Moreover,

µ
(

[0, x)
)

= m
(

φ([0, x))
)

= m
(

[0, φ(x))
)

= φ(x)

for every x ∈ I. In other words, φµ = φ and so g = fµ. �

Remark 28.6. Suppose g is defined by data (π̃, λ̃). The previous lemma means that
it is also defined by (π, λ(µ)). In general, the two pairs of data need not coincide.
For instance, we have seen in Example 1.3 that

π =

(

A B C
B C A

)

and λ = (λA, λB, λC)

define the same transformation as

π̃ =

(

A D
D A

)

and λ̃ = (λA, λB + λC).

Another mechanism for non-uniqueness is that the linear map Ωπ is usually not
injective, and the transformation depends only on the translation vector w = Ωπ(λ).

Lemma 28.7. Let (π′, λ′) = R̂(λ, π) and I ′ be the domain of definition of the

interval exchange transformation f ′ = R̂(f) defined by (π′, λ′). The map ρ : µ 7→
µ′ = µ | I ′ is a linear isomorphism from M(π, λ) to M(π′, λ′).
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Proof. It is clear that the map ρ is linear. We start by checking that it takes
values in M(π′, λ′), that is, that µ′ = µ | I ′ is an f ′-invariant measure if µ is
f -invariant. Indeed, we may write any measurable set E ⊂ I ′ as a disjoint union
E1 ∪ E2, where E1 is the intersection of E with f−1(I ′), and E2 = E \ E1. Then
f ′(E) = f(E1) ∪ f2(E2), and this union is also disjoint. Consequently,

µ′(f ′(E)) = µ(f(E1)) + µ(f2(E2)) = µ(E1) + µ(E2) = µ′(E)

Observe also that if E is a measurable subset of I \ I ′ then f(E) ⊂ I ′ and then

(126) µ(E) = µ(f(E)) = µ′(f(E)).

This implies that µ′ determines µ uniquely, and so the map ρ is injective. Finally,
given any µ′ ∈ M(π′, λ′), we may use (126) to extend it to a measure µ on the
whole I, and this measure is f -invariant. Thus, ρ is also surjective. �

Corollary 28.8. If (π′, λ′) = R̂(π, λ) then

C(π, λ) = Θ∗
π,λ(C(π′, λ′)).

Proof. Let (π, λ) have type ε ∈ {0, 1}. Recall that Iα = I ′α for α 6= α(ε), and
Iα(0) = I ′α(0) ∪ f(I ′α(1)) when ε = 0, and Iα(1) = I ′α(1) ∪ f−1(I ′α(0)) when ε = 1. Let

µ ∈ M(π, λ) and µ′ ∈ M(π′, λ′) be as in Lemma 28.7. Then, in both cases,

µ(Iα) = µ′(I ′α) for all α 6= α(ε) and µ(Iα(ε)) = µ′(I ′α(ε)) + µ′(I ′α(1−ε)).

Equivalently,

λα(µ) = λα(µ′) for all α 6= α(ε) and λα(ε)(µ) = λα(ε)(µ
′) + λα(1−ε)(µ

′).

In other words, λ(µ) = Θ∗
π,λ(λ(µ′)). This proves the statement. �

Denote (πn, λn) = R̂n(π, λ) for each n ≥ 1. Since every C(πn, λn) is a subset of
RA

+, Corollary 28.8 implies that

C(π, λ) = Θn∗
π,λ(C(πn, λn)) ⊂ Θn∗

π,λ(RA
+) for all n ≥ 1.

This proves the direct inclusion in (125). The main point in proving the converse
is the lemma that we state next.

Remark 28.9. Notice that λ ∈ C(π, λ), since it is the image of the Lebesgue measure
under the map µ 7→ λ(µ). Thus, we always have λ ∈ Θn∗

π,λ(RA
+) for all n ≥ 1.

Lemma 28.10. Every λ̃ ∈ ⋂∞
n=1 Θn∗

π,λ(RA
+) satisfies the Keane condition.

Proof. Consider the line segment [0, 1] ∋ s 7→ λs connecting λ0 = λ to λ1 = λ̃ in
RA. Since every Θn∗

π,λ(RA
+) is a convex set, the whole segment is contained in the

intersection:

(127) λs ∈ Θn∗
π,λ(RA

+) for all n ≥ 1 and s ∈ [0, 1].

For n = 1 this gives that λ′s = Θ−1∗
π,λ (λs) ∈ RA

+ for every s ∈ [0, 1]. By connect-

edness, this implies that (π, λs) has the same type as (π, λ) for every s ∈ [0, 1].

Consequently, Θ−1∗
π,λs

= Θ−1∗
π,λ and R̂(π, λs) = (π′, λ′s) for every s ∈ [0, 1]. Arguing

by induction, we get that R̂n(π, λs) has the same type as (πn, λn) = R̂n(π, λ) and

R̂n(π, λs) = (πn, λn
s ) with λn

s = Θ−n∗
π,λs

(λs) = Θ−n∗
π,λ (λs).

In particular, R̂n(π, λs) is defined for every n ≥ 1. By Corollary 5.4, it follows that
λs satisfies the Keane condition, for all s ∈ [0, 1]. �
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Lemma 28.11. Let f̃ be the interval exchange transformation defined by (π, λ̃),

for some λ̃ ∈ ⋂∞
n=1 Θn∗

π,λ(RA
+). Then f̃ is topologically conjugate to f .

Proof. Consider the line segment [0, 1] ∋ s 7→ λs connecting λ0 = λ to λ1 = λ̃, and
let fs be the interval exchange transformation defined by each (π, λs). By Proposi-
tion 4.1, the orbit of 0 under each transformation fs is dense in the corresponding
domain Is. We claim that, for any r, s ∈ [0, 1] and m,n ≥ 1

(128) fm
r (0) < fn

r (0) ⇔ fm
s (0) < fn

s (0).

Indeed, suppose there were m,n, r, s such that fm
r (0) < fn

r (0) and yet fm
s (0) ≥

fn
s (0). Since the iterates vary continuously with the parameter, we may always

assume that fm
s (0) = fn

s (0). Then the fs-orbit of zero would be finite. However,
by Lemma 28.10 and Proposition 4.1, the map fs is minimal, and so every orbit
must be infinite. This contradiction proves (128).

Now define φ(fn(0)) = f̃n(0) for each n ≥ 1. By (128), this map φ is monotone

increasing. Since both orbits of 0, for f and f̃ , are dense, it extends continuously
to a homeomorphism φ : I → Ĩ. Notice that φ(f(x)) = f̃(φ(x)) for every x in the
f -orbit of zero and, consequently, for every x ∈ I. This shows that φ is a topological
conjugacy between f and f̃ . �

Lemma 28.12. The conjugacy φ : I → Ĩ in Lemma 28.11 satisfies φ(Iα) = Ĩα for
all α ∈ A.

Proof. Let (Is,α)α∈A be the partition associated to (π, λs), where [0, 1] ∋ s 7→ λs

is the line segment connecting λ0 = λ to λ1 = λ̃. We also write Iα = I0,α and

Ĩα = I1,α. We begin by noting that, for each n ≥ 1,

(129) fn(0) ∈ Iα ⇔ Ĩα.

Indeed, otherwise there would exist s ∈ [0, 1] and β ∈ A with π0(β) > 1 such
that fn

s (0) = ∂Iβ(s). That would imply that (π, λs) does not satisfy the Keane
condition, contradicting Lemma 28.10.

By minimality, {fn(0) : n ∈ N} ∩ Iα is a dense subset of Iα and {f̃n(0) : n ∈
N} ∩ Ĩα is a dense subset of Ĩα, for each α ∈ A. The conclusion of the previous
paragraph means that φ maps the former set to the latter. By continuity, it follows
that φ(Iα) = Ĩα, as claimed. �

Finally, consider any λ̃ ∈ ⋂∞
n=1 Θn∗

π,λ(RA
+). By Lemma 28.11, the transformations

f and f̃ are conjugated by a homeomorphism φ : I → Ĩ. Let µ = φ−1
∗ m be the

pull-back of Lebesgue measure under the map φ. Then µ is an f -invariant measure,
that is, µ ∈ M(π, λ). Lemma 28.12 implies that λ̃α = µ(Iα) = λα(µ), for every

α ∈ A. This shows that λ̃ = λ(µ) ∈ C(π, λ). The proof of Proposition 28.3 is
complete.

29. Unique ergodicity

Lemma 29.1. C(π, λ) is a (closed) simplicial cone with dimension at most d− 1.

Proof. Since RA
+ is a simplicial cone, the same is true for each Θn∗

π,λ(RA
+). In order

to show that their intersection is a closed simplicial cone, let (τn,β)β∈A be a basis
of generators of Θn∗

π,λ(RA
+) such that every τn,β has norm 1. Taking a subsequence,

we may suppose every τn,β converges to some τβ when n → ∞. We claim that
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(τβ)β∈A generates C(π, λ). Indeed, from C(π, λ) ⊂ Θn∗
π,λ(RA

+) we have that every

v ∈ C(π, λ) may be written as v =
∑

β an,βτ
n,β with an,β > 0 for every n, β. By

Corollary 5.3, there exists N ≥ 1 such that all the coefficients of Θn∗
π,λ are positive.

Using also that the sequence Θn∗
π,λ(RA

+) is non-increasing, we conclude that there
exists δ > 0 such that

uα ≥ δ‖u‖ for every u ∈ Θn∗
π,λ(RA

+) and n ≥ N.

Then ‖v‖ ≥ vα =
∑

β an,βτ
n,β
α ≥ an,βδ for every α. This proves that the coefficients

an,β are uniformly bounded. Then, taking a subsequence, we may assume that every
an,β converges to some aβ ≥ 0 when n goes to infinity. It follows that v =

∑

β aβτ
β ,

which proves the claim. Finally, if the dimension of C(π, λ) were d then the cone
would have nonempty interior. Then it would contain rationally dependent vectors,
and that would contradict Lemma 28.10. �

Corollary 29.2. An interval exchange transformation defined by an alphabet with
d symbols has at most d− 1 invariant ergodic probabilities.

Proof. This is a direct consequence of Lemma 29.1 and the fact that the ergodic
measures are the extremal elements of the cone of invariant measures. �

As an immediate consequence of Proposition 28.3, we get that an interval ex-
change transformation defined by (π, λ) is uniquely ergodic if and only if the cone
⋂∞

n=1 Θn∗
π,λ(RA

+) reduces to a half line. We are going to show that this is the case
for almost all cases:

Proof of Theorem 28.1. Fix π∗ ∈ C, N ≥ 1, and ε ∈ {0, 1}N such that the set Λ∗ =
Λπ∗,N,ε, as defined in (112), is relatively compact in ΛA. By Proposition 26.3, there
exists θ < 1 such that any projective map g : ΛA → Λ∗ contracts the projective
metric by θ, at least. Since (R, ν) is ergodic, by Corollary 27.2, for almost every,
(π, λ) ∈ C × ΛA there are infinitely many times 0 < n1 < · · · < nj < · · · such that
(πj , λj) = Rnj (π, λ) is in {π∗}×Λ∗ and nj+1 − nj ≥ N , for all j, and n1 ≥ N . We
are going to show that the interval exchange transformation defined by any such
(π, λ) is uniquely ergodic. Begin by noticing that, for any n ≥ 1,

Θn∗
π,λ = Θ

(n−ns)∗
πs,λs

· · ·Θ(nj+1−nj)∗
πj ,λj

· · ·Θn1∗
π,λ

where s ≥ 1 is largest such that ns < n. Since (πj , λj) ∈ {π∗}×Λ∗ and nj+1−nj ≥

ΛAΛA

Λ∗ Θ
(nj+1−nj)∗
πj,λj

Figure 35.

N , the set Λπj,nj+1−nj ,θj
that contains λj is a subset of Λ∗. See Figure 35. This

means that ΛA is sent inside Λ∗ by the projectivization of

Θ
(nj+1−nj)∗
πj ,λj

: R
A
+ → R

A
+ .
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Thus, the latter contracts the projective metric by θ < 1, for all 1 ≤ j ≤ s − 1.
Since we also assume n1 ≥ N , the set Λπ,n1,θ that contains λ is also a subset of Λ∗.

Consequently, it has finite projective diameter. Using also that the map Θ
(n−ns)∗
πs,λs

does not expand the projective metric, by (116), we conclude that

diamΘn∗
π,λ(RA

+) ≤ θs−1 diamΛ∗

for all n ≥ 1, where diam stands for projective diameter. As goes to infinity, the
right hand side goes to zero. This means that the intersection of all Θn∗

π,λ(RA
+) is

reduced to a half line, as claimed. �

Remark 29.3. Given (π, λ) and n ≥ 1, the set Λπ,n,ε that contains λ is the image
of ΛA under the projectivization of Θn∗

π,λ. Thus, the conclusion means that the

intersection ∩∞
n=1Λπ,n,ε reduces to a single point, for almost every (π, λ). According

to Remark 28.9, this point must coincide with λ.

30. Zorich measure

Here we prove Theorem 8.2. Recall that the invertible Zorich renormalization
Z : Z∗ → Z∗ was defined in Section 20 as the first return map of the Rauzy-Veech
renormalization R : H → H to the domain Z∗ = Z0 ∪ Z1, where

Z0 = {(π, λ, τ) ∈ H : λα(0) > λα(1) and
∑

α∈A

τα > 0}

and
Z1 = {(π, λ, τ) ∈ H : λα(0) < λα(1) and

∑

α∈A

τα < 0}.

It follows from the definition (and Lemma 25.2) that Z preserves the restriction of
the measure m to Z∗. Moreover, Z preserves the restriction of m to the domain
{area (λ, τ) ≤ c} ∩ Z∗, for any c > 0. In this regard, observe that Z preserves the
area (58), since R does.

Also by construction, P ◦Z = Z ◦P , where P : H → C×ΛA denotes the canon-
ical projection and Z is the Zorich renormalization map introduced in Section 8.
Therefore, Z preserves the measure

µ = P∗

(

m | Z∗ ∩ {area (λ, τ) ≤ 1}
)

.

Arguing in just the same way as in Section 21, we see that the measure µ is abso-
lutely continuous with respect to Lebesgue measure, with density

(130)
dµ

d1λ
(π, λ) = vol ({τ ∈ T ε

π : area (λ, τ) ≤ 1}) =
1

d!

k
∑

i=1

∏

β∈A

1

λ · hi,β
,

where ε is the type of (π, λ). Here the notations are as before:

T 0
π = {τ ∈ T+

π :
∑

α∈A

τα > 0} and T 1
π = {τ ∈ T+

π :
∑

α∈A

τα < 0},

T 1, . . . , T k are pairwise disjoint simplicial cones covering the polyhedral cone T ε
π

up to a positive codimension subset, (τ i,β)β∈A is a basis of generators of each T i,
and hi,β = −Ωπ(τ i,β) for each i and β.

The relation (130) shows that the density of the absolutely continuous Z-invariant
measure µ is given by a rational function with degree −d and bounded from zero.
The next step is to show that this measure µ is finite.
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Example 30.1. Let us give an explicit expression for the density of µ when π is the
pair defined in (80). We consider first the case when (π, λ) ∈ C × ΛA has type 0.
We have seen in Section 22 that T 0

π is a simplicial cone, and admits τα = (τα
β )β∈A

defined by

τα
β =







1 if β = α
−1 if β = α+

0

0 in all other cases
if α 6= α(0)

τα
β =

{

1 if π0(β) = 1
0 otherwise

if α = α(0).

as a volume 1 basis of generators. Then hα = −Ωπ(τα) is given by

hα
β =

{

1 if β = α or β = α+
0

0 otherwise
if α 6= α(0)

hα
β =

{

0 if π0(β) = 1 or β = α(1)
1 otherwise

if α = α(0).

It follows that

dµ

d1λ
(π, λ) =

1

d!

∏

α6=α(0)

(

1

λα + λα+
0

)

· 1
∑

β 6=α(1) λβ
.

The case when (π, λ) has type 1 is analogous, and one gets

dµ

d1λ
(π, λ) =

1

d!

∏

α6=α(1)

(

1

λα + λα+
1

)

· 1
∑

β 6=α(0) λβ
.

In particular, for d = 2 this gives

dµ

d1λ
(λ) =

{

1/(2λB) if λA < λB

1/(2λA) if λB < λA.

Notice that the density is bounded on ΛA, and so the measure µ is finite. While
boundedness is specific to the case d = 2, finiteness holds in general, as we are
going to see.

Proposition 30.2. The measure µ(C × ΛA) is finite.

Proof. Given π ∈ C, let Λε be the subset of λ ∈ RA
+ such that λα(ε) > λα(1−ε).

Then

µ(C × ΛA) =
∑

π∈C

∑

ε=0,1

∫

Λε

vol ({τ ∈ T ε
π : area (λ, τ) ≤ 1}) d1λ.

Using (130) we deduce that

(131) µ(C × ΛA) =
∑

π∈C

∑

ε=0,1

∫

Λε

k
∑

i=1

∏

β∈A

1

λ · hi,β
d1λ.

To prove the proposition we only have to show that the integral is finite, for every
fixed π ∈ C, ε ∈ {0, 1}, and i = 1, . . . , k. Let us consider ε = 0; the case ε = 1
is analogous. Then the basis of generators (τ i,β)β∈A is contained in the closure of
T 0

π . For simplicity, we write hβ = hi,β in what follows.
Let N denote the set of integer vectors n = (nα)α∈A such that nα ≥ 0 for all

α ∈ A, and the nα are not all zero. As in (102), define

Λ(n) = {λ ∈ ΛA : 2−nα ≤ λαd < 2−nα+1 for every α ∈ A},
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except that for nα = 0 the second inequality is omitted. By Lemma 24.2, the Λ(n)
cover ΛA and satisfy

(132) c12
−

P

A
nα ≤ vold−1 Λ(n) ≤ c−1

1 2−
P

A
nα

for some c1 > 0. In what follows we consider nα(0) ≤ nα(1), for the corresponding
Λ(n) suffice to cover Λ0 = {λα(0) > λα(1)}. For each β ∈ A, let A(β) be the subset

of α ∈ A such that hβ
α > 0. Let c2 > 0 be the minimum of the non-zero hβ

α, over
all α and β. Then

(133) λ · hβ =
∑

A(β)

hβ
αλα ≥

∑

A(β)

c2d
−12−nα ≥ c2d

−12−minA(β) nα

for every β ∈ A. Using (132) we deduce that

(134)

∫

Λ(n)

∏

β∈A

1

λ · hβ
d1λ ≤ K 2

P

β∈A
minA(β) nα−

P

α∈A
nα ,

where the constant K = (2/c1)(d/c2)
d.

Lemma 30.3. Assuming nα(0) ≤ nα(1), we have

−
∑

β∈A

min
α∈A(β)

nα +
∑

α∈A

nα ≥ max
α∈A

nα.

Proof. Let 0 = n0 < n1 < · · · be the different values taken by nα, and Bi, i ≥ 0 be
the set of values of α ∈ A such that nα ≥ ni. On the one hand,

(135)
∑

α∈A

nα =
∑

i≥1

ni

(

#Bi − #Bi+1
)

=
∑

i≥1

#Bi(ni − ni−1).

On the other hand, minA(β) nα ≥ ni if and only if A(β) ⊂ Bi. Consequently,

(136)

∑

β∈A

min
A(β)

nα =
∑

i≥1

ni

(

#{β : A(β) ⊂ Bi} − #{β : A(β) ⊂ Bi+1}
)

=
∑

i≥1

#{β : A(β) ⊂ Bi}(ni − ni−1).

Observe that A(β) ⊂ Bi if and only if hβ
α = 0 for all α ∈ A \ Bi. Observe also

that the assumption nα(0) ≤ nα(1) means that if α(1) ∈ Bi then α(0) ∈ Bi. Using

Proposition 23.1 (with B = A \ Bi), we obtain

(137) #{β : A(β) ⊂ Bi} < #Bi.

Putting (135)-(137) together, we find that

−
∑

β∈A

min
A(β)

nα +
∑

α∈A

nα ≥
k
∑

i≥1

(ni − ni−1) = max
α∈A

nα.

This proves the lemma. �

Replacing the conclusion of the lemma in (134) we obtain, for every n ∈ N ,

(138)

∫

Λ(n)

∏

β∈A

1

λ · hβ
d1λ ≤ K2−maxA nα .
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For each m ≥ 0 there are at most (m+ 1)d vectors n ∈ N with maxA nα = m. So,
(138) implies that the integral in (131) is bounded above by

∞
∑

m=0

K(m+ 1)d2−m <∞

for every π ∈ C and 1 ≤ i ≤ k. The proof of Proposition 30.2 is complete. �

To finish the proof of Theorem 8.2 we only have to observe that the system
(Z, µ) is ergodic. This can be shown in the same way we proved, in Corollary 27.2,
that (R, ν) is ergodic. We just outline the arguments. As noted before, (Z, µ)
is a Markov system. Since µ is invariant and finite, (Z, µ) is a recurrent system.
Consider any relatively compact subsimplex {π} × Λ∗ which is mapped to a whole
{π0} × ΛA by some iterate ZN . The map induced by Z on Λ∗ has a bounded
distortion property as in Lemma 26.2. For the same reason as in Proposition 25.5,
that implies the induced map is ergodic relative to µ restricted to Λ∗. It follows,
using Lemma 25.4, that Z itself is ergodic relative to µ. This proves the claim.
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