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Abstract. Center foliations of partially hyperbolic diffeomorphisms may ex-
hibit pathological behavior from a measure-theoretical viewpoint: quite often,
the disintegration of the ambient volume measure along the center leaves con-
sists of atomic measures. We add to this theory by constructing stable ex-
amples for which the disintegration is singular without being atomic. In the
context of diffeomorphisms with mostly contracting center direction, for which

upper leafwise absolute continuity is known to hold, we provide examples where
the center foliation is not lower leafwise absolutely continuous.
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1. Introduction

As is the case for many other developments in Dynamics over the last half cen-
tury, the subject of this paper goes back to the work of Dmitry Viktorovich Anosov.

Anosov’s remarkable proof [1] that the geodesic flow on any manifold with neg-
ative curvature is ergodic introduced two major ingredients in Dynamics. The first
one was the observation that those geodesic flows are hyperbolic, which implies that
they carry certain invariant – stable and unstable – foliations. The second one
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is the proof that those foliations, while not being smooth, are still regular enough
(absolute continuity) that a version of the Hopf ergodicity argument can be applied.

Here we consider maps exhibiting a weaker (partial) form of hyperbolicity and
we want to study the properties of the invariant center foliations. Before stating
our results in precise terms, let us briefly outline how this field has evolved.

1.1. Partial hyperbolicity. Recall that a diffeomorphism f : M → M on a
compact manifold is called an Anosov diffeomorphism (or globally hyperbolic) if
there exists a decomposition TM = Es ⊕ Eu of the tangent bundle TM into two
continuous sub-bundles x 7→ Es

x and x 7→ Eu
x such that

• both Es and Eu are invariant under the derivative Df and
• Df | Es is a uniform contraction and Df | Eu is a uniform expansion.

Such systems form an open (possibly, empty) subset of the space of Cr diffeomor-
phisms of M , for any r ≥ 1.

A distinctive feature of Anosov diffeomorphisms is that they admit invariant fo-
liations Fs and Fu that are tangent to the sub-bundles Es and Eu at every point.
Consequently, the leaves of Fs are contracted by the forward iterates, whereas the
leaves of Fu are contracted by backward iterates of f . The leaves are smooth im-
mersed sub-manifolds but, in general, these foliations are not differentiable, that
is, they can not be “straightened” by means of C1 local charts. However, after
Anosov, Sinai [1, 2], we know that they do have a crucial differentiability prop-
erty, called absolute continuity: assuming the derivative Df is Hölder continuous,
the holonomy maps of both Fs and Fu map zero Lebesgue measure sets to zero
Lebesgue sets. Indeed, this fact lies at the heart of Anosov’s proof that the geodesic
flow on manifolds with negative curvature is ergodic.

By the early 1970’s, Brin, Pesin [8] were proposing to extend the class of Anosov
diffeomorphisms to what they called partially hyperbolic diffeomorphisms. A similar
proposal was made by Pugh, Shub [37] independently and at about the same time.
By partially hyperbolic, we mean in this paper1 that there exists a decomposition
TM = Ess⊕Ec⊕Euu of the tangent bundle TM into three continuous sub-bundles
x 7→ Ess

x and x 7→ Ec
x and x 7→ Euu

x such that

(i) all three sub-bundles Ess and Ec and Euu are invariant under the derivative
Df and

(ii) Df | Ess is a uniform contraction, Df | Euu is a uniform expansion and
(iii) Df | Ec lies in between them: for some choice of a Riemannian metric on

M (see Gourmelon [16]), one has

‖Df(x)vs‖

‖Df(x)vc‖
≤

1

2
and

‖Df(x)vc‖

‖Df(x)vu‖
≤

1

2

for any unit vectors vs ∈ Ess and vc ∈ Ec and vu ∈ Euu and any x ∈ M
(we say that Ec dominates Ess and Euu dominates Ec, respectively.)

Again, partially hyperbolic diffeomorphisms form an open subset of the space of
Cr diffeomorphisms of M , for any r ≥ 1. The class of manifolds for which this set
is non-empty is far from being completely understood.

1.2. Stable and unstable foliations. Part of what was said before about Anosov
diffeomorphisms extends to this class. Namely, the strong-stable sub-bundle Ess and
the strong-unstable sub-bundle Euu are still uniquely integrable, that is, there are
unique foliations Fss and Fuu whose leaves are smooth immersed sub-manifolds of
M tangent to Ess and Euu, respectively, at every point. Moreover, these so-called
strong-stable foliation and strong-unstable foliation are still absolutely continuous.

1Brin, Pesin used a stronger definition that is sometimes called absolute partial hyperbolicity.
See Hirsch, Pugh, Shub [24, pages 3–5].
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This fact plays a key role in the ergodic and geometric theory of such systems (see
Pugh, Shub [38] and Burns, Wilkinson [9], for example).

1.3. Center foliations: existence and (non-)absolute continuity. The sit-
uation for the center sub-bundle Ec is a lot more complicated. To begin with,
Ec need not be integrable, that is, there may be no foliation with smooth leaves
tangent to Ec at every point. The first example was probably due to Smale [43],
see Wilkinson [48] and Pesin [33]; other constructions, with interesting additional
features, were proposed by Hammerlindl [17] and Hertz, Hertz, Ures [21]. This
later paper also shows that even when the center sub-bundle is integrable it may
fail to be uniquely integrable, that is, curves tangent to Ec may not be contained
in a unique leaf of the integral foliation (center foliation).

Notwithstanding, there are also many robust examples of partially hyperbolic
diffeomorphisms with uniquely integrable center sub-bundle. The simplest con-
struction goes as follows. Start with a hyperbolic torus automorphism A : T3 → T

3

(a similar construction can be carried out in any dimension) with eigenvalues

(1) λ1 < 1 < λ2 < λ3

and corresponding eigenspaces E1, E2, E3. A is an Anosov diffeomorphism, of
course, and then so is any diffeomorphism f in a C1 neighborhood. However, A
may also be viewed as a partially hyperbolic diffeomorphism with invariant sub-
bundles Ess

x = E1 and Ec
x = E2 and Euu

x = E3. Then every f in a C1 neighborhood
is also partially hyperbolic. It follows from general results in [24] that the center
(or “weakly expanding”) bundle Ec of f is uniquely integrable in this case. Ac-
tually, a result of Potrie [36] implies that the center sub-bundle is integrable for
every partially hyperbolic diffeomorphism in the isotopy class of A. Moreover, if
one assumes the (stronger) absolute form of partial hyperbolicity that we alluded
to before, it follows from Brin, Burago, Ivanov [7] that the center sub-bundle is
uniquely integrable for any partially hyperbolic diffeomorphism of T3.

Thus, the question naturally arises whether such center foliations are still ab-
solutely continuous. In fact, this question was first raised by A. Katok in the
1980’s, especially for Anosov diffeomorphisms in T

3 as introduced in the previ-
ous paragraph. Katok also obtained the first example of a center foliation (for a
non-invertible map) which is not absolutely continuous. Indeed, this foliation (see
Milnor [32]) is such that some full volume subset intersects each leaf in not more
than one point.

Shub, Wilkinson [42] constructed partially hyperbolic, stably ergodic (with re-
spect to volume) diffeomorphisms whose center leaves are circles and whose center
Lyapunov exponent is non-zero, and they observed that for such maps the center
foliation can not be absolutely continuous. Indeed, in a related setting, Ruelle,
Wilkinson [40] observed that the center foliation has atomic disintegration: the
Rokhlin conditional measures of the volume measure along the leaves are sup-
ported on finitely many orbits. That is the case also in Katok’s construction, as
observed before, but it should be noted that in Katok’s example the center Lya-
punov exponent vanishes. An extension of these results to diffeomorphisms with
higher-dimensional compact center leaves was due to Hirayama, Pesin [22].

As a matter of fact, for a large class of partially hyperbolic, volume-preserving
diffeomorphisms with one-dimensional center leaves one has a sharp dichotomy
atomic disintegration vs. Lebesgue disintegration: the conditional measures of the
volume measure along center leaves are either purely atomic or equivalent to the
Lebesgue measure; in this latter case, we also speak of leafwise absolute continuity.
This was observed by Avila, Viana, Wilkinson, in two main situations:
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• maps fixing their center leaves, including perturbations of time-one maps
of hyperbolic flows [4];

• maps with circle center leaves [3], including perturbations of certain skew-
products, of the type considered in [40, 42].

Moreover, the second alternative is often very rigid: for example, for perturbations
of the time-one map of a hyperbolic flow, it implies that the perturbation is itself
the time-one map of a smooth flow.

1.4. Statement of main results. Partially hyperbolic diffeomorphisms that are
isotopic to Anosov diffeomorphisms have center leaves that are neither compact
nor fixed under the map. The measure-theoretical properties of such center folia-
tions have also been studied by several authors, especially the intermediate folia-
tions of Anosov diffeomorphisms which we mentioned before. Saghin, Xia [41] and
Gogolev [15] exhibited conditions under which those intermediate foliations can not
be absolutely continuous. Moreover, Varão [45] gave examples where the disinte-
gration is neither atomic nor Lebesgue, thus proving that the dichotomy mentioned
in the previous paragraph breaks down for such intermediate foliations of Anosov
maps. On the other hand, Ponce, Tahzibi, Varão [35] prove that atomic disintegra-
tion occurs stably in the isotopy class of certain Anosov automorphisms A of the
3-torus.

The rigidity phenomenon of [4, 3] also does not extend to the non-volume-
preserving setting. Indeed, in [47] we exhibited stable examples of absolute conti-
nuity simultaneously for all invariant foliations (center as well as center-stable and
center-unstable foliations, tangent to Ess ⊕ Ec and Ec ⊕ Euu, respectively).

Our main result in this paper is a criterion for the disintegration of any ergodic
measure µ (not just the volume measure) to have uncountable support along center
leaves. By this, we mean that for some choice of a foliation box (in the sense of
[4, Section 3]) for the center foliation, the supports of the conditional measures
of µ along local center leaves are uncountable sets. The criterion applies to par-
tially hyperbolic diffeomorphisms of the 3-torus in the isotopy class D(A) of an
automorphism A as in (1):

Theorem A. Let µ be an ergodic invariant probability measure of f ∈ D(A) with
hµ(f) > logλ3. Then every full µ-measure set Z ⊂ M intersects almost every
center leaf on an uncountable subset. Moreover, the center Lyapunov exponent
along the center direction is non-negative, and even strictly positive if f is C2.

By “almost every center leaf” we always mean “every leaf through every point
in some full measure subset”. By definition, a probability measure has atomic dis-
integration along a foliation if there exists a full measure set that intersects almost
every leaf on a countable subset (see Appendix A for a more detailed discussion
of this notion). Thus the first conclusion in the theorem means precisely that the
disintegration of µ along the center foliation is not atomic.

Let us also point out that the bound logλ3 in Theorem A is sharp. Indeed, Ponce,
Tahzibi [34] constructed an open set of volume preserving deformations f of a linear
Anosov map A in T

3 for which the volume measure has atomic disintegration; one
can easily find diffeomorphisms in this open set for which the entropy with respect
to the volume measure is equal to logλ3.

As an application of Theorem A, we obtain stable examples of partially hy-
perbolic, volume-preserving diffeomorphisms for which the disintegration of the
Lebesgue measure along center leaves is neither Lebesgue nor atomic:

Corollary B. Let f ∈ D(A) be a volume-preserving, partially hyperbolic C2 diffeo-
morphism with hvol(f) > logλ3 and whose integrated center Lyapunov exponent is
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greater than logλ2. Then there exists a neighborhood U ⊂ D(A) of f in the space of
volume-preserving C2 diffeomorphisms such that for every g ∈ U the volume mea-
sure is ergodic and its disintegration along the center foliation (restricted to any
foliation box) is neither atomic nor Lebesgue.

It follows that for g ∈ U every full volume set intersects almost every center leaf
on an uncountable subset. A related result was obtained by Varão [45], however, his
construction is more restrictive (it applies only to certain Anosov diffeomorphisms
close to the linear automorphism A) and, in particular, it is not known to be stable.

More precise versions of Theorem A and Corollary B will be presented later.
We also provide examples of yet another kind of measure-theoretical behavior of
invariant foliations: for maps of the type constructed by Kan [26], we show that the
disintegration of Lebesgue along center leaves may be absolutely continuous but not
equivalent to Lebesgue measure. The precise statement is given in Theorem 4.1.

Acknowledgements. We are grateful to the anonymous referee for a careful re-
vision of the manuscript.

2. Dimension theory for the center foliaton

In this section, we prove the following theorem:

Theorem 2.1. Let µ be any ergodic invariant measure of the linear automorphism
A. If hµ(A) > logλ3, then every full µ-measure subset Z intersects almost every
center leaf in an uncountable set.

The proof of Theorem 2.1, which will be given at the end of Section 2.3, is
based on the notion of partial entropy of an ergodic probability measure along an
expanding foliation, that we describe in Section 2.1.

We prove that if the partial entropy is positive then the invariant measure satisfies
the conclusion of the theorem. The other half of the argument is to prove that the
partial entropy is indeed positive under the assumptions of Theorem 2.1. This is
based on an inequality for partial entropies that is stated in Proposition 2.8 and
which is inspired by results of Ledrappier, Young [31].

We also get that if the partial entropy is zero then the foliation constitutes a
measurable partition, in the sense of Rokhlin [39], and the conditional measures
are Dirac masses. This seems to be known already, at least for extreme (strong-
unstable) laminations, check Ledrappier, Xie [29, Remark 1].

The construction of Ponce, Tahzibi that we mentioned before also shows that the
bound logλ3 is sharp in Theorem 2.1. Indeed, by a result of Franks [14] (see also
Section 3) the diffeomorphisms in the open set constructed in [34] are semiconjugate
to A. Using this semiconjugacy, one finds an ergodic invariant measure µ of A whose
disintegration is atomic and whose entropy is equal to log λ3.

2.1. Entropy along an expanding foliation. Let f : M → M be a diffeomor-
phism. We say that a foliation F is expanding if it is invariant and the derivativeDf
restricted to the tangent bundle of F is uniformly expanding. It is a classical fact
(check [23]) that if f admits an invariant dominated splitting TM = Ecs ⊕ Euu

such that Df | Euu is uniformly expanding, then Euu is uniquely integrable; in
this case, the integral foliation Fuu is an example of expanding foliation. In gen-
eral, given an expanding foliation, its tangent bundle may not correspond to the
strongest expansion and an invariant transverse sub-bundle need not exist either.

Let F be an expanding foliation, µ be an invariant probability measure, and ξ
be a measurable partition of M with respect to µ. We say that ξ is µ-subordinate
to the foliation F if for µ-almost every x, we have

(A) ξ(x) ⊂ F(x) and ξ(x) has uniformly small diameter inside F(x);
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(B) ξ(x) contains an open neighborhood of x inside the leaf F(x);
(C) ξ is an increasing partition, meaning that fξ ≺ ξ.

Remark 2.2. Ledrappier, Strelcyn [27] proved that the Pesin unstable lamination
admits some µ-subordinate measurable partition. The same is true for the strong-
unstable foliation Fuu of any partially hyperbolic diffeomorphism. In fact, their
construction extends easily to any expanding invariant foliation F (including the
center foliations of the maps we consider here), as we are going to sketch (see
also [50, Lemma 3.2]). Start by choosing a finite partition A with arbitrarily small
diameter such that its elements have small boundary, in the following sense: there
exists c smaller than and close to 1

(2)
∑

k≥1

∑

A∈A

µ(Bck(∂A)) < ∞.

Let AF be a refinement of A whose elements are the intersections of elements of A
with local plaques of F . Then the partition

∞
∨

i=0

f i(AF )

is µ-subordinate to F .

In all that follows, it is assumed that µ-subordinate partitions are constructed
in this way. Indeed, this construction yields the following additional property that
will be useful later:

(D) for any y ∈ F(x) there exists n ≥ 1 such that f−n(y) ∈ ξ(f−n(x)).

Let us explain this, since it is not explicitly stated in the previous papers. Property
(B) ensures that there exists a measurable function x 7→ r(x) > 0 such that ξ(x)
contains the ball of radius r(x) around x inside the leaf F(x). By recurrence, the
pre-orbit f−n(x) of µ-almost point returns infinitely often to any region where r(·)
is bounded from zero. On the other hand, the distance from f−n(y) to f−n(x) goes
to zero as n → ∞. Thus property (D) follows.

We also need some terminology from [39, § 5]. Given measurable partitions η1
and η2, let Hµ(η1 | η2) denote the mean conditional entropy of η1 given η2. The
entropy of f with respect to a measurable partition η is defined by hµ(f, η) =
Hµ(η | fη+) where η+ =

∨∞
i=0 f

iη. Thus hµ(f, η) = Hµ(η | fη) whenever η is an
increasing measurable partition.

The following result is contained in Lemma 3.1.2 of Ledrappier, Young [30]:

Lemma 2.3. Given any expanding foliation F , we have hµ(f, ξ1) = hµ(f, ξ2) for
any measurable partitions ξ1 and ξ2 that are µ-subordinate to F .

This allows us to define the partial µ-entropy hµ(f,F) of an expanding foliation
F to be hµ(f, ξ) for any µ-subordinate partition. Our next goal is to prove that
the nature of the conditional probabilities of µ along the leaves of the foliation F
is directly related to whether the entropy is zero or strictly positive. That is the
content of Propositions 2.5 and 2.7 below. Beforehand, we must introduce a few
important ingredients.

Let ξ be any measurable partition µ-subordinate to F . Let {µx : x ∈ M} be
the disintegration of µ with respect to ξ. By definition, µx(ξ(x)) = 1 for µ-almost
every x. Keep in mind that Hµ(ξ | fξ) = Hµ(f

−1ξ | ξ), because µ is f -invariant.
Moreover, the definition gives that

(3) Hµ(f
−1ξ | ξ) =

∫

g dµ, where g(x) = − logµx

(

(f−1ξ)(x)
)

.
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Let dF (·, ·) denote the distance along F -leaves. Given any x ∈ M , n ≥ 0 and
ε > 0, let

BF (x, n, ε) = {y ∈ F(x) : dF (f
i(x), f i(y)) < ε for 0 ≤ i < n}.

Then define

hµ(x, ε, ξ) = lim inf
n→∞

−
1

n
log µx(BF (x, n, ε))

hµ(x, ε, ξ) = lim sup
n→∞

−
1

n
log µx(BF (x, n, ε)).

The following statement is contained in Ledrappier-Young [31, §§(9.2)-(9.3)]:

Proposition 2.4. At µ-almost every x,

lim
ε→0

hµ(x, ε, ξ) = lim
ε→0

hµ(x, ε, ξ) = Hµ(ξ|fξ).

Proof. The proof that limε→0 hµ(x, ε, ξ) ≥ Hµ(ξ | fξ) is identical to [31, § (9.2)]
and so we omit it. To prove that

lim
ε→0

hµ(x, ε, ξ) ≤ Hµ(ξ | fξ),

we could invoke [31, § (9.3)]. However, since we take F to be (uniformly) expanding,
it is possible to give a much shorter argument, as follows.

Property (A) above implies that for any ε > 0 there is kε(x) ≥ 1 such that

diamF (f
−mξ(x)) < ε for any m ≥ kε(x).

This ensures that, for every x, n ≥ 1 and m ≥ kε(x),

(

n+m
∨

j=0

f−jξ
)

(x) ⊂ BF (x, n, ε).

Then

h(x, ε, ξ) = lim sup
n→∞

−
1

n
logµx(BF (x, n, ε))

≤ lim sup
n→∞

−
1

n
logµx

(

(

n+kε(x)
∨

j=0

f−jξ)(x)
)

= lim sup
n→∞

1

n

n+kε(x)−1
∑

j=0

g(f j(x)).

By ergodicity, and the Birkhoff theorem, this means that

h(x, ε, ξ) ≤

∫

g dµ = Hµ(f
−1ξ | ξ).

This proves the claim. �

2.2. Partial entropy and disintegration. We are ready to prove that vanishing
partial entropy corresponds to an atomic disintegration:

Proposition 2.5. The following conditions are equivalent:

(a) hµ(f,F) = 0;
(b) there is a full µ-measure subset that intersects each leaf on exactly one

point;
(c) there is a full µ-measure subset that intersects each leaf on a countable

subset.
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Proof. Let ξ be any partition µ-subordinate to F .
To prove that (c) implies (a), let Γ be a full µ-measure subset whose intersection

with every leaf is countable. Replacing Γ by a suitable full µ-measure subset, we
may assume that the conclusion of Proposition 2.4 holds, µx is well defined and
µx(Γ ∩ ξ(x)) = 1 for any point x ∈ Γ. The latter implies that µx is an atomic
measure, because Γ ∩ ξ(x) is taken to be countable. Take any y ∈ Γ ∩ ξ(x) such
that µx({y}) > 0. Since µx = µy, because ξ(x) = ξ(y), one gets that

µy(BF (y, n, ε)) ≥ µy({y}) > 0 for any ε > 0 and n ≥ 1.

In view of Proposition 2.4, this implies that hµ(f,F) = H(ξ | fξ) = 0.
It remains to prove that (a) implies (b). By the relation (3), the assumption

H(f−1ξ | ξ) = hµ(f, ξ) = 0 implies that g(x) = 0 for µ-almost every x. In other
words, µx(f

−1ξ(x)) = 1 for a full µ-measure subset A1 of values of x. Replacing f
by fn and using the relation (Rokhlin [39, §7.2])

Hµ(f
−nξ|ξ) = nHµ(f

−1ξ|ξ)

we conclude that for any n ≥ 1 there exists a full µ-measure set An such that
µx(f

−nξ(x)) = 1 for every x ∈ An. Now, our assumptions ensure that the diameter
of f−nξ(x) decreases uniformly to 0. Thus, for a full µ-measure set A∞ = ∩n≥1An

of values of x, the measure µx is supported on the point x itself: µx = δx. In
particular, A∞ ∩ ξ(x) = {x} for every x ∈ A∞.

Finally, consider the full µ-measure invariant set A = ∩n≥0f
nA∞. Using prop-

erty (D) above, we get from the previous paragraph that A∩F(x) = {x} for every
x ∈ A. �

Remark 2.6. It follows from Proposition 2.5 that if hµ(f,F) = 0 then the leaves of
F define a measurable partition of M , with respect to µ. Let us also observe that
hµ(f) = 0 implies hµ(f,F) = 0 for every expanding foliation F . Thus, for example,
if f : M → M is Anosov then its unstable (or stable) leaves form a measurable
partition with respect to any invariant measure with zero entropy.

It is well-known that such measures fill-in a generic subset of the space of all
invariant probability measures µ. One way to see this is to recall that µ 7→ hµ(f)
is upper semi-continuous (because f is expansive) and every invariant measure is
approximated by measures supported on periodic orbits (by the Anosov closing
lemma). These two observations imply that {µ : hµ(f) < 1/k} is open and dense,
for any k ≥ 1, and the claim follows immediately.

Proposition 2.7. Let {µx : x ∈ M} be the disintegration of µ with respect to any
measurable partition ξ µ-subordinate to F . The following conditions are equivalent:

(a) hµ(f,F) > 0;
(b) for µ-almost every point x, the measure µx is continuous, that is, it has no

atoms.

Moreover, any of these conditions implies that any full µ-measure subset Z inter-
sects almost every leaf of F on an uncountable set.

Proof. The fact that (b) implies (a) is a direct consequence of Proposition 2.5, so
let us prove that (a) implies (b). By Proposition 2.4, there is a full µ-measure
subset A of values of x for which the conditional measure µx is well defined and

lim inf
n→∞

−
1

n
logµx

(

BF(x, n, ε)) > 0.

Clearly, the latter implies that µx({x}) = 0 for x ∈ A. Since µy(A) = 1 for µ-almost
every y and µx = µy whenever ξ(x) = ξ(y), this proves that µy is continuous for
µ-almost every y, as claimed.
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Given any full µ-measure subset Z, let Z1 be the subset of points x ∈ Z such
that µx is a continuous measure. Condition (b) ensures that Z1 has full µ-measure.
Then, by the definition of a disintegration, µx(Z1) = 1 for every x in some full
µ-measure set Z2 ⊂ Z1. Since µx is continuous and µx(ξ(x)) = 1, this implies that
Z1 ∩ ξ(x) is uncountable for every x ∈ Z2. In particular, Z ∩ F(x) is uncountable
for every x ∈ Z2. �

2.3. Main proposition. Now we focus on the case when the dynamics is partially
hyperbolic. More precisely, take f : M → M be a C1 diffeomorphism admitting an
invariant decomposition TM = Ec ⊕Ewu ⊕Euu into three continuous sub-bundles
such that

(i) dimEwu = dimEuu = 1 and
(ii) both Df | Ewu and Df | Euu are uniform expansions and
(iii) Ewu dominates Ec and Euu dominates Ewu.

It is a classical fact (see Hirsch, Pugh, Shub [24]) that the sub-bundles Euu and
Eu = Ewu ⊕ Euu are uniquely integrable: there exist unique foliations Fuu and
Fu, respectively, whose leaves are C1 and tangent to these sub-bundles at every
point. Property (ii) implies that these foliations are expanding. Moreover, Fuu

sub-foliates Fu. We also assume:

(iv) there exists some invariant weak-unstable foliation Fwu with C1 leaves that
are tangent to Ewu at every point.

Again, such a foliation is necessarily expanding. Moreover, it sub-foliates Fu.
We say that Fwu is uniformly Lipschitz on leaves of Fu if there exists K > 0

such that the Fwu-holonomy map between any two segments transverse to Fwu

within distance 1 from each other inside any leaf of Fu is K-Lipschitz. The main
technical result in this paper is:

Proposition 2.8. Suppose that Fwu is uniformly Lipschitz on leaves of Fu. Then,

(4) hµ(f,F
u)− hµ(f,F

wu) ≤ τuu,

where τuu is the largest Lyapunov exponent of f with respect to µ (corresponding
to the the invariant sub-bundle Euu).

Ledrappier and Young have a similar statement ([31, Theorem C’]) where the
roles of Fuu and Fwu are exchanged and the diffeomorphism is assumed to be C2

(C1+ǫ suffices, by Barreira, Pesin, Schmeling [5]). In their setting, the lamination
Fuu is automatically Lipschitz inside Fu. That is not true, in general, for Fwu.

While we were writing this paper, François Ledrappier pointed out to us that a
similar result was obtained by Jian-Sheng Xie [49, equation (2.26)] in the context of
linear toral automorphisms. His result would be sufficient for our purposes, but our
methods extend to non-linear maps, and so they should be useful in more generality.

The arguments that follow are essentially borrowed from [31]. They can be
adapted to yield a version of Proposition 2.8 where the sub-bundle Ewu is assumed
to be non-uniformly hyperbolic, and to admit a tangent lamination Fwu satisfying a
Lipschitz condition. We do not state it explicitly because it will not be necessary for
our purposes. The following observation shows that, at least in this non-uniformly
hyperbolic setting, the Lipschitz condition can not be omitted:

Remark 2.9. Shub and Wilkinson [42] dealt with C2 volume-preserving perturba-
tions of a skew-product map

g × id : T2 × S1 → T
2 × S1,

where g is a linear Anosov map on the 2-dimensional torus. The perturbation f is
a partially hyperbolic, volume-preserving diffeomorphism with an invariant circle
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bundle and whose center Lyapunov exponent τc is positive. The entropy formula
(for partial entropy) gives that hµ(f,F

u) is equal to the sum τuu + τwu of the two
positive Lyapunov exponents. On the other hand, Ruelle-Wilkinson [40] showed
that every center leaf contains finitely many µ-generic points. Thus, hµ(f,F

wu) = 0
and so (4) fails in this case.

The proof of Proposition 2.8 is given in Subsection 2.5. It is clear that the
weak-unstable foliation of a linear Anosov diffeomorphisms is well defined and uni-
formly Lipschitz inside leaves of the unstable foliation Fu. Thus Theorem 2.1 is an
immediate corollary of Proposition 2.7 and Proposition 2.8.

2.4. Auxiliary lemmas. In the section we quote several lemmas from [31] that
will be used in the proof of Proposition 2.8.

Lemma 2.10 ([31], Lemma 4.1.3). Let (X, ν) be a Lebesgue space, π : X → R
n

be a measurable map, and {νt : t ∈ R
n} be a disintegration of ν with respect to the

partition {π−1(t) : t ∈ R
n}. Let α be a countable partition of X with Hν(α) < ∞.

Define

g(x) =
∑

A∈α

χA(x)g
A(π(x)),

g∗(x) =
∑

A∈α

χA(x)g
A
∗ (π(x)) and

gδ(x) =
∑

A∈α

χA(x)g
A
δ (π(x))

where gA(t) = νt(A) for each A ∈ α and t ∈ R
n,

gAδ (t) =
1

(π∗ν)(Bδ(t))

∫

Bδ(t)

gA d(π∗ν) and gA∗ (t) = inf
δ>0

gAδ (t).

Then gδ → g almost everywhere on X and
∫

− log g∗dν ≤ Hν(α) + log c+ 1

where c = c(n) is the constant that comes from Besicovitch covering lemma.

Lemma 2.11 ([31], Lemma 4.1.4). Let ω be a finite Borel measure on R
n. Then

lim sup
ε→0

logω(Bε(x))

log ε
≤ n.

2.5. Proof of Proposition 2.8. We are going to prove that, given any β > 0,

(5) τuu + β ≥ (1 − β)[hµ(f,F
u)− hµ(f,F

wu)− 2β].

Proposition 2.8 follows by making β go to zero. Let β > 0 be fixed from now on.
The first step is to construct two suitable µ-subordinate partitions, ξu and ξwu, for
foliations Fu and Fwu, respectively.

Let A be a finite partition with arbitrarily small diameter and whose elements
have small boundary in the sense of (2). Denote by Au and Awu the refinements
of A defined by

Au(x) = Fu
loc(x) ∩ A(x) and Awu(x) = Fwu

loc (x) ∩A(x).

Arguing as in Remark 2.2, we see that

ξu =
∨

n≥0

fnAu and ξwu =
∨

n≥0

fn(Awu)

are measurable partitions µ-subordinate to Fu and Fwu respectively.
The next lemma states that ξwu refines ξu and the quotient ξu/ξwu is preserved

by the dynamics:
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Lemma 2.12. Take the diameter of A to be sufficiently small. Then for µ-almost
every x, y ∈ M with y ∈ ξu(x),

(a) ξu(x) ∩ Fwu
loc (y) = ξwu(y) and

(b) f(ξwu(f−1(y))) ∩ ξu(x) = ξwu(y).

Proof. The relation ⊃ in (a) is clear from the definitions. To prove the converse,
let y, z ∈ ξu(x) be such that z ∈ Fwu

loc (y). By the definition of ξu, the backward
iterates f−n(y) and f−n(z) belong to the same element of Au and consequently to
the same element of A. By property (D) applied to the partition ξwu, we have that
f−n(z) ∈ ξwu(f−n(y)) for every large n. In particular, f−n(y) and f−n(z) belong to
the same element of Awu for every large n. Choose any such n. Since A is assumed
to have small diameter, Awu(y−n) = Awu(z−n) also has small diameter inside
the corresponding Fwu-leaf. Then, by continuity, f(Awu(f−n(y))) is contained in
Fwu

loc (f
−n+1(y)). This proves that

f−n+1(z) ∈ Fwu
loc (f

−n+1(y)) ∩ A(f−n+1(y)) = Awu(f−n+1(y)).

By (backwards) induction, this proves that f−n(y) and f−n(z) belong to the same
element of Awu for every n. Thus ξwu(y) = ξwu(z), as we wanted to prove. The
proof of part (a) is complete.

From ξwu(f−1(y)) ⊂ Fwu
loc (f

−1(y)) we immediately get that f(ξwu(f−1(y))) ⊂
Fwu

loc (y). Combining this with part (a), we find that

f(ξwu(f−1(y))) ∩ ξu(x) ⊂ ξwu(y).

This proves the relation ⊂ in part (b) of the lemma. To prove the converse, observe
that ξwu(y) ⊂ ξu(x), by definition, and f(ξwu(f−1(y))) ⊃ ξwu(y) because the
partition ξwu is increasing. �

It follows that one may identify each quotient ξu(x)/ξwu with a subset of the
local strong-unstable leaf Fuu(x). Indeed, define

πwu
x : ξu(x) → Fuu

loc(x), πwu
x (y) = the unique point in Fwu

loc (y) ∩ Fuu
loc(x).

It is clear that this map is constant on every element of ξwu, and part (a) of
Lemma 2.12 ensures that it is injective. Thus it induces an injective map from
ξu(x)/ξwu to Fuu

loc(x). Using this latter map, we may transport the Riemannian
distance on Fuu

loc(x) to a distance dx on the quotient space ξu(x)/ξwu.
In what follows, we define yet another distance on ξu(x)/ξwu which we are going

to denote as d̃ and which has the advantage of being independent of x. For this, we
need a kind of Pesin block construction, which is contained in the next proposition.

Proposition 2.13. For any ε > 0, there is a positive measure subset Λε such that,
for any x ∈ Λε and any n > 0,

1

n
log ‖Dfn | Euu

x ‖ ≤ τuu + ε.

The arguments are very classical, except for the fact that here the diffeomorphism
is only assumed to be C1, so we just outline the proof of the proposition. A similar
construction appeared in [51]. Define

Λε = {x :
1

n
log ‖Dfn | Euu

x ‖ ≤ τuu + ε for every n > 0}.

Then Λε is a compact set, possibly empty. To prove that µ(Λε) > 0 it suffices to
show that the forward orbit Orb+(x) of µ-almost every x intersects Λε.

By the theorem of Oseledets, for µ-almost every x there exists n(x) ≥ 1 such
that

1

n
log ‖Dfn | Euu

x ‖ ≤ τuu +
ε

2
for every n ≥ n(x).
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We also need the following variation of the Pliss lemma (see [6, Lemma 11.5]):

Lemma 2.14. Given K > 0 and τ < τ̄ and any sequence {an}
∞
n=1 such that

‖an‖ < K for every n ≥ 1 and

lim sup
n→∞

1

n

n
∑

j=1

aj < τ,

there exists n0 > 0 such that

1

m

m
∑

j=1

an0+j < τ̄ for any m ∈ N.

Take K = supx∈M{‖Df(x)‖}, τ = τuu + ε/2 and τ̄ = τuu + ε, and define
an = ‖Df | Euu

fn(x)‖ for n ≥ 1. From Lemma 2.14 we get that there is n(x) > 0

such that
1

m
log ‖Dfm | Euu

fn(x)(x)‖ ≤ τuu + ε for any m ≥ 1.

Thus fn(x)(x) ∈ Λε, which implies the claim that Orb+(x) intersects Λε. This
completes our outline of the proof of Proposition 2.13.

From now on, let Λ = Λβ/3. Fix r0 > 0 such that for any x, y ∈ M

(6) d(x, y) < r0 implies ‖ logDf | Euu
x − logDf | Euu

y ‖ ≤ β/3.

Assume that the diameter of A is smaller than r0. Then the same is true for Au

and Awu, and so ξu and ξwu also have diameter less than r0.
Fix x0 ∈ supp(µ | Λ), that is, such that every neighborhood of x intersects Λ on

a positive measure subset. Let D ∋ x be a small codimension-1 disk transverse to
Fwu. Let (x1, x2, . . . , xd−1) be local smooth coordinates on D such that the x1-axis
is close to the direction of Euu. Let B be the union of the local Fwu-leaves through
points of D and π̃, from B to the x1-axis to be the composition of the projection
B → D along Fwu-leaves with the projection to the x1-axis associated with the
chosen coordinates.

Remark 2.15. The projections along the local coordinates are smooth maps, of
course. Recall that Fu is 2-dimensional and is sub-foliated by Fuu and by Fuu.
Since we assume that the weak-unstable foliation Fwu is uniformly Lipschitz inside
each leaf of Fu, we get that π̃ is uniformly bi-Lipschitz restricted to each leaf of
Fuu inside B. Let K̃ be a uniform Lipschitz constant.

It is no restriction to suppose that B2r0(x0) ⊂ B. Define Λ0 = Λ ∩Br0(x0). By
further reducing r0 > 0 if necessary, we may assume that

(7) e−β(τuu+β)K̃4µ(Λ0) < 1.

We can extend the projection π̃ from the domain B to the union of ξu(x) over
all x ∈ ∪n≥0f

n(Λ0), as follows. Given such an x, let n be the smallest nonnegative
integer such that f−n(x) ∈ Λ0. Since ξu is increasing and has small diameter,
f−n(y) ∈ ξu(f−n(x)) ⊂ Br0(Λ0) ⊂ B for any y ∈ ξu(x). Just define

π̃(y) = π̃(f−n(y)).

Keep in mind that ∪n≥0f
n(Λ0) has full µ-measure, by ergodicity. Now we are

ready to introduce the announced transverse distance d̃: for x ∈ ∪n≥0f
n(Λ0), and

y1, y2 ∈ ξu(x), define

(8) d̃(y1, y2) = |π̃(y1)− π̃(y2)|.

By Lemma 2.12(a), this function d̃(·, ·) induces a distance on the quotient space
ξu(x)/ξwu which is independent of x.



MEASURE-THEORETICAL PROPERTIES OF CENTER FOLIATIONS 13

Let {µu
x : x ∈ M} and {µwu

x : x ∈ M} be the disintegrations of µ with respect
to the partitions ξu and ξwu, respectively. For µ-almost every x, consider the disk
BT

ρ (x) = {y ∈ ξu(x) : d̃(x, y) < ρ}. We are going to prove that

(9) (τuu + β) lim sup
ρ→0

log µu
x(B

T
ρ (x))

log ρ
≥ (1− β)[hµ(f, ξ

u)− hµ(f, ξ
wu)− 2β].

Our definitions are such that µu
x(B

T
ρ (x)) coincides with the (projection) measure

of an Euclidean ball of radius ρ in the x1-axis. Since the latter is 1-dimensional, the
lim sup on the left-hand side is smaller than or equal to 1 (compare Lemma 2.11).
Recalling also the definition of partial entropy, we immediately conclude that (9)
implies (5). Thus we have reduced the proof of Proposition 2.8 to proving (9).

The rest of the argument is based on Lemma 2.10. Define g, g∗, gδ : M → R by

g(y) = µwu
y ((f−1ξu)(y)) and g∗(y) = inf

δ>0
gδ(y) with

gδ(y) =
1

µu
y (B

T
δ (y))

∫

BT
δ
(y)

g(z) dµu
y(z) =

µu
y((f

−1ξu)(y) ∩BT
δ (y))

µu
y(B

T
δ (y))

(the last identity is a consequence of the definition of disintegration). It follows
from Lemma 2.10 that

(10) gδ → g at µ-almost everywhere and

∫

− log g∗dµ < ∞.

To see this, just fix x, substitute (ξu(x), µu
x) for (X, ν), let π̃ be the projection

from ξu(x) to the x1-axis introduced previously, and take α = f−1ξu|ξu(x); finally,
integrate with respect to µ.

By Poincaré recurrence, for µ-almost every x ∈ Λ0 one can find times 0 = n0 <
n1 < · · · < nj < · · · < n such that fnj (x) ∈ Λ0 for any j ≥ 0. For each 0 ≤ k < n,
take j ≥ 0 largest such that nj ≤ k and then define

a(x, n, k) = BT
δ(x,n,k)(f

kx) with δ(x, n, k) = e−(n−nj)(τ
uu+β)K̃2j.

Note that δ(x, n, k) = δ(x, n, nj) for every k ∈ {nj, . . . , nj+1−1}. This will be used
for proving the following invariance property:

Lemma 2.16. a(x, n, k) ∩ (f−1ξu)(fk(x)) ⊂ f−1(a(x, n, k + 1)) for every x ∈ Λ0.

Proof. Suppose first that k 6= nj+1 − 1. Note that a(x, n, k) consists of elements
ξwu(y) of the weak-unstable partition and, of course, the same is true for a(x, n, k+
1). For each one of them, Lemma 2.12(b) ensures that

f(ξwu(y)) ∩ ξu(fk+1(x)) = ξwu(f(y))

for any y ∈ a(x, n, k)∩(f−1ξu)(fk(x)). The definition (8) ensures that d̃(y, fk(x)) =

d̃(f(y), fk+1(x)). Besides, as observed before, the transverse diameters δ(x, n, k)
and δ(x, n, k + 1) are the same in the present case. In this way we get that

f(a(x, n, k)) ∩ ξu(fk+1(x)) = a(x, n, k + 1),

as we wanted to prove.
From now on, suppose that k = nj+1− 1. While the transverse diameters are no

longer necessary the same for k and k + 1, all we have to do is that it is still true
that

(11) d̃(f(y), fk+1(x)) ≤ δ(x, n, k + 1)

for any y ∈ a(x, n, k) ∩ (f−1ξu)(fk(x)). By definition,

d̃(y, fk(x)) ≤ e−(n−nj)(τ
uu+β)K̃2j.
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According to Remark 2.15, this implies that

dfnj (x)(f
nj−nj+1+1(y), fnj (x)) ≤ K̃2j+1e−(n−nj)(τ

uu+β).

Since fnj (x) ∈ Λ0 ⊂ Λβ/3 and diam(ξu) < r0, Proposition 2.13 together with our
choice of r0 ensure that

dfnj+1 (x)(f(y), f
nj+1(x)) ≤ K̃2j+1e−(n−nj+1)(τ

uu+β).

Using Remark 2.15 once again, it follows that

d̃(f(y), fnj+1(x)) ≤ K̃2j+2e−(n−nj+1)(τ
uu+β).

This means that f(y) ∈ a(x, n, k + 1), as we wanted to prove. �

Now let us estimate the measure µu
x(a(x, n, 0)) for x ∈ Λ0. Clearly,

(12)
µu
x(a(x, n, 0))

µu
fn(x)(a(x, n, p(n)))

=

p(n)−1
∏

k=0

µu
fk(x)(a(x, n, k))

µu
f(k+1)x

(a(x, n, k + 1))
,

where p(n) = [n(1− β)]. For each 0 ≤ k ≤ p(n)− 1 and µ-almost every x ∈ Λ0,

µu
fk(x)(a(x, n, k))

µu
f(k+1)(x)

(a(x, n, k + 1))
= µu

fk(x)(a(x, n, k))
µu
fk(x)(f

−1(ξu(f (k+1)(x))))

µu
fk(x)

(f−1(a(x, n, k + 1)))

(use the essential uniqueness of the disintegration together with the fact that ξu is
an increasing partition). By Lemma 2.16, the right-hand side is bounded above by

µu
fk(x)(a(x, n, k))

µu
fk(x)

(f−1ξu(fk(x)) ∩ a(x, n, k))
µu
fk(x)(f

−1ξu(fk(x))).

The quotient on the left-hand side is precisely 1/gδ(x,n,k)(f
k(x)). Write the last

factor as e−I(fk(x)), where I(z) = − logµu
z (f

−1ξu(z)). Replacing these expressions
in (12), we get that

logµu
x(B

T
e−n(τuu+β)(x)) = log µu

x(a(x, n, 0)) ≤ log
µu
x(a(x, n, 0))

µu
fn(x)(a(x, n, p))

≤ −

p(n)−1
∑

k=0

log gδ(x,n,k)(f
k(x)) −

p(n)−1
∑

k=0

I(fk(x)).

Consequently,

(τuu + β) lim sup
ρ→0

logµu
x(B

T (x, ρ))

log ρ
≥ (τuu + β) lim inf

n→∞

logµu
x(B

T
e−n(τuu+β)(x))

log e−n(τuu+β)

≥ lim inf
n→∞

[ 1

n

p(n)−1
∑

k=0

log gδ(x,n,k)(f
k(x)) +

1

n

p(n)−1
∑

i=0

I(fk(x))
]

.

By the Birkhoff ergodic theorem and the definition of conditional entropy

lim
p→∞

1

p

p
∑

i=0

I(fk(x))) =

∫

I dµ = Hµ(f
−1ξu | ξu).

Therefore, using also the definition of partial entropy of an expanding foliation,

(13) lim
n→∞

1

n

p(n)
∑

i=0

I(fk(x))) = (1− β)hµ(f,F
u).
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We are left to prove that

(14) lim sup
n→∞

−
1

n

p(n)
∑

k=0

log gδ(x,n,k)(f
kx) ≤ (1− β)(hµ(f,F

wu) + 2β).

By (10), we may find a measurable function x 7→ δ(x) such that

− log gδ(x) ≤ − log g(x) + β for every δ < δ(x)

and a constant δ0 > 0 such that
∫

{x:δ(x)≤δ0}

− log g∗(x) dµ(x) < β.

By ergodicity, for µ-almost all x we have #{0 ≤ i < n : f i(x) ∈ Λ0} ≤ 2nµ(Λ0)
for every large n. In particular, we always have j ≤ 2nµ(Λ0). Moreover, nj ≤ k ≤
p(n) implies that n− nj ≥ βn. Therefore,

δ(x, n, k) = e−(n−nj)(τ
uu+β)K̃2j ≤ e−βn(τuu+β)K̃4nµ(Λ0)

for every 0 ≤ k ≤ p(n). By (7), this implies that δ(x, n, k) → 0 uniformly in
0 ≤ k ≤ p(n) when n → ∞. In particular, δ(x, n, k) < δ0 for every k ≤ p(n) if n is
sufficiently large.

Going back to (14), note that

p(n)
∑

k=0

− log gδ(x,n,k)(f
kx)

≤
∑

k:δ(fk(x))>δ0

− log g(fk(x)) + β +
∑

k:δ(fk(x))≤δ0

− log g∗(f
k(x))

and, by the Birkhoff ergodic theorem, this leads to

lim sup
n

−
1

n

p(n)
∑

k=0

log gδ(x,n,k)(f
kx)

≤ (1 − β)
[

∫

− log g dµ+ β +

∫

{x:δ(x)≤δ0}

− log g∗dµ
]

≤ (1 − β)
[

∫

− log g dµ+ 2β
]

.

To conclude, note that g(x) = µwu
x (f−1ξwu(x)) and so

∫

− log g dµ = Hµ(f
−1ξwu | ξwu) = hµ(f,F

wu).

This completes the proof of (9) and thus of Proposition 2.8.

3. Semiconjugacy to the linear model

Let f : T3 → T
3 be a C1 diffeomorphism in the isotopy class D(A) of a linear

automorphism A as described in the previous section. By Potrie [36], such a dif-
feomorphism is dynamically coherent : there exist invariant foliations Fcs and Fcu

tangent to the center-stable and center-unstable sub-bundles, respectively. Inter-
secting their leaves, one obtains an invariant center foliation tangent to Ec.

By Franks [14], there exists a continuous surjective map φ : T
3 → T

3 that
semiconjugates f to A, that is, such that φ ◦ f = A ◦φ. Moreover, by construction,
φ lifts to a map φ̃ : R3 → R

3 that is at bounded distance from the identity: there
exists C > 0 such that

(15) ‖φ̃(x̃)− x̃‖ ≤ C for every x̃ ∈ R
3.
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3.1. Geometry of the center foliation.

Proposition 3.1. For all z ∈ T
3, the pre-image φ−1(z) is a compact connected

subset of some center leaf of f (that is, either a point or an arc) with uniformly
bounded length.

This was proven by Ures [44, Proposition 3.1], assuming absolute partial hyper-
bolicity, and by Fisher, Potrie, Sambarino [13], in the present context. We outline
the arguments, to highlight where the uniform bound comes from.

Sketch of proof of Proposition 3.1: Let f̃ and Ã be the lifts of f and A, respectively,
to the universal coverR3 of T3. The center foliations Fc

f and Fc
A also lift to foliations

F̃c
f and F̃c

A in R
3 and these are center foliations for f̃ and Ã, respectively. We need

the following facts:

(i) φ̃(x̃) = φ̃(ỹ) if and only if there existsK > 0 such that ‖f̃n(x̃)−f̃n(ỹ)‖ < K
for all n ∈ Z. In fact, K may be chosen independent of x̃ and ỹ.

(ii) There exists a homeomorphism h : T3 → T
3 which maps each center leaf L

of f to a center leaf of A so that h(f(L)) = A(h(L)) for every L. We say
that h is a leaf conjugacy between f and A.

(iii) The leaves of F̃c
f are quasi-isometric in R

3: there exists Q > 1 such that

dc(x, y) ≤ Q‖x − y‖ + Q for every x, y in the same center leaf, where dc
denotes the distance inside the leaf.

Fact (i) is a direct consequence of the construction of φ in Franks [14], which is
based on the shadowing lemma for the linear automorphism A. Fact (ii) was proven
in Hammerlindl, Potrie [19, Corollary 1.5]. See Hammerlindl [18, Proposition 2.16]
for a proof of fact (iii) in the absolute partially hyperbolic case and Hammerlindl,
Potrie [19, Section 3] for an explanation on how to extend the conclusion to the
present context.

The map h in (ii) lifts to a homeomorphism h̃ : R3 → R
3 which is a leaf conjugacy

between f̃ and Ã. From a general property of lift maps, we get that

d(h̃(x̃n), h̃(ỹn)) → ∞ ⇒ d(x̃n, ỹn) → ∞.

It is clear that given any distinct F̃c
A-leaves F1 and F2 the distance between Ãn(F1)

and Ãn(F2) goes to infinity when n → +∞ or n → −∞ or both. In view of the

previous observation, the same is true for f̃ : given any distinct F̃c
f -leaves L1 and

L2 the distance between f̃n(L1) and f̃n(L2) goes to infinity when n → +∞ or
n → −∞ or both. So, by fact (ii) above, every pre-image φ−1(z) is contained in a

single F̃c
f -leaf.

On the other hand, the quasi-isometry property (iii) implies that if two points

x̃ and ỹ are such that ‖f̃n(x̃)− f̃n(ỹ)‖, n ∈ Z is bounded then, denoting by [x̃, ỹ]c
the center segment between the two points, the length of f̃n([x̃, ỹ]c), n ∈ Z is also
bounded. That implies that the whole segment is contained in the same pre-image
φ−1(z). �

Proposition 3.2. The image under φ : T3 → T
3 of any center leaf of f is contained

in some center leaf of A.

Proof. We claim that the image of any center-stable leaf of f is contained in a leaf of
the center-stable foliation of A; note that the center-stable leaves of A are just the
translates of the center-stable subspace Ecs. Analogously, one gets that the image
of any center-unstable leaf of f is contained in a translate of the center-unstable
subspace Ecu. Taking intersections, we get that the image of every center leaf of f
is contained in a center leaf of A, as stated. So, we have reduced the proof of the
proposition to proving this claim.
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Let Fcs
f be the center-stable foliation of f and F̃cs

f be its leaf to the universal

cover R
3. By Potrie [36] (Theorem 5.3 and Proposition A.2), there exists R > 0

such that every leaf of F̃cs
f is contained in the R-neighborhood of some translate

x̃+ Ecs of the plane Ecs inside R
3. Then, since ‖φ̃− id ‖ ≤ C, the image of every

leaf of F̃cs
f under φ̃ is contained in the R+ C-neighborhood of x̃+ Ecs.

Since F̃cs
f is invariant under f̃ and φ̃ semi-conjugates f̃ to Ã, the family of images

φ̃(F̃cs
f (ỹ)), ỹ ∈ R

3 is invariant under Ã. The family of translates of ỹ+Ecs, ỹ ∈ R
3

is also invariant under Ã, of course. Moreover, Ã is expanding in the direction
transverse to Ecs. Thus, the only way the conclusion of the previous paragraph
may occur is if every image φ̃(F̃cs

f (ỹ)) is contained in φ̃(ỹ) + Ecs.
Projecting this conclusion down to the torus, we get our claim. �

Corollary 3.3. The pre-image under φ : T3 → T
3 of any center leaf of A consists

of a unique center leaf of f .

Proof. LetFc
A(y) be any center-leaf of A. Proposition 3.2 implies that its pre-image

is a union of center leaves and Proposition 3.1 implies that the images of these
center leaves are pairwise disjoint. So, by connectivity, it suffices to prove that if
the image of a center leaf Fc

f (x) is contained in Fc
A(y) then this image is an open

subset of Fc
A(y). For that, it suffices to observe that the map φ : Fc

f(x) → Fc
A(y)

is monotone, which is an immediate consequence of Proposition 3.1. �

Corollary 3.4. Y = {y ∈ T
3 : φ−1(y) consists of a single point} is a Borel set and

the restriction φ : φ−1(Y ) → Y is a homeomorphism with respect to the relative
topologies. In particular, the inverse φ−1 is a measurable map.

Proof. We already know that φ−1(y) is always a center leaf segment. Since φ is
continuous, the length of this segment is an upper semi-continuous (hence measur-
able) function of y. In particular, the set Y of points where the length is equal to
zero is measurable, as claimed in the first part of the corollary.

It is clear that the restriction φ : φ−1(Y ) → Y is a continuous bijection. So, to
prove the second part of the corollary it suffices to check that it is also a closed
map. By definition, every closed subset of φ−1(Y ) may be written as K ∩ φ−1(Y )
for some compact subset of T3. Observe that φ

(

K ∩ φ−1(Y )
)

= φ(K)∩ Y and this

is a closed subset of Y , because φ(K) is a compact subset of T3. This proves that
f is indeed a closed map. �

3.2. Diffeomorphisms derived from Anosov. Let φ∗ denote the push-forward
map induced by φ in the space of probability measures. We have the following
general result:

Proposition 3.5. Consider continuous maps g : M → M and h : N → N in
compact spaces and suppose there exists a continuous surjective map p : M → N
such that p ◦ g = h ◦ p. Then:

(a) The push-forward p∗ maps the space of g-invariant (respectively, g-ergodic)
probability measures onto the space of h-invariant (respectively, h-ergodic)
probability measures.

(b) If ν is an h-invariant probability measure in N such that #φ−1(y) = 1 for
ν-almost every y ∈ N then there exists a unique probability measure µ in
M such that φ∗µ = ν. This measure µ is g-invariant and it is g-ergodic if
and only if ν is h-ergodic.

Proof. It is easy to see from the relation p ◦ g = h ◦ p that the push-forward of any
g-invariant probability measure µ is an h-invariant probability measure. To prove
surjectivity, we need the following consequences of the fact that p is continuous:
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(1) y 7→ p−1(y) is a map from N to the space K(M) of compact subsets of M ;
(2) this map is upper semicontinuous, with respect to the Hausdorff topology

on K(M).

In particular, y 7→ p−1(y) is measurable with respect to the Borel σ-algebras of N
and K(M). Then, [10, Theorem III.30] asserts that p admits a measurable section,
that is, a measurable map σ : N → M such that σ(y) ∈ p−1(y) for every y ∈ N or,
equivalently, p ◦ σ = id.

Given any h-invariant probability measure ν, let ω = σ∗ν. Then ω is a probabil-
ity measure onM , not necessarily invariant, such that p∗ω = ν. Since p◦g = h◦p, it
follows that every iterate f j

∗ω also projects down to ν. Let µ0 be any accumulation
point of the sequence

1

n

n−1
∑

j=0

gj∗ω.

It is well known that ω is g-invariant and, since the map p∗ is continuous, it follows
from the previous observations that p∗ω = ν. This proves surjectivity in the space
of invariant measures.

It is clear that p∗µ is h-ergodic whenever µ is g-ergodic. Conversely, let ν be
any h-ergodic probability measure. By the previous paragraph, there exists some
g-invariant probability measure µ such that p∗µ = ν. Let µ =

∫

µP dP be the
ergodic decomposition of µ (see [46, Chapter 5]). Since p∗ is a continuous linear
operator,

(16) ν = p∗µ =

∫

(p∗µP ) dP.

By the previous observation, p∗µP is h-ergodic for almost every P . Thus, by
uniqueness, (16) must be the ergodic decomposition of ν. As we take ν to be
ergodic, this implies that p∗µP = ν for almost every P . That proves surjectivity in
the space of ergodic measures.

Now suppose that the set Z = {y ∈ N : #φ−1(y) = 1} has full measure for ν. Let
µ be any probability measure with φ∗µ = ν. Then, in particular, µ(φ−1(Z)) = 1.
Observe also that σ ◦ φ(x) = x for every x ∈ φ−1(Z). Then

µ = σ∗φ∗µ = σ∗ν = ω.

This proves that µ is unique. By the surjectivity statements in the previous para-
graph, µ must be g-invariant and it must be g-ergodic if ν is h-ergodic. �

Theorem 3.6. The map φ∗ preserves the entropy and it is a bijection restricted to
the subsets of invariant ergodic probability measures with entropy larger than logλ3.

Ures [44] proved a version of this result for measures of maximal entropy.

Proof. Let µ be any invariant probability measure. Clearly, hφ∗µ(A) ≤ hµ(f). On
the other hand, the Ledrappier-Walters formula [28] implies that

hµ(f) ≤ hφ∗(µ)(A) + max
z∈T3

h(f, φ−1(z)),

where h(f,K) denotes the topological entropy of f on a compact set K ⊂ T
3. See

Viana, Oliveira [46, Section 10.1.2], for instance. In our case, K = φ−1(z) is a one-
dimensional segment whose images have bounded length. Hence, the topological
entropy is zero and so we get that hµ(f) ≤ hφ∗(µ)(A). This proves that φ preserves
the entropy.

Now, in view of Proposition 3.5, we only have to show that if ν is an A-ergodic
probability measure with hν(A) > logλ3 then φ−1(y) consists of a single point for ν-
almost every y ∈ T

3. Suppose otherwise. Then, using the first part of Corollary 3.4,
there exists a positive measure set W ⊂ T

3 such that φ−1(y) is a non-trivial arc of
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a center leaf of f . By ergodicity, we may suppose that W has full measure. Let L
be any center leaf of A. By Corollary 3.3, the pre-image φ−1(W ∩L) is a subset of a
unique center leaf of f . Moreover, it is the union of the non-trivial arcs φ−1(y) with
y ∈ W ∩L. Since these arcs are pairwise disjoint, there can only be countably many
of them. Thus, W ∩ L is countable. Then, we may use Theorem 2.1 to conclude
that hν(A) ≤ log λ3, which contradicts the hypothesis. �

Theorem 3.7. If µ is an ergodic measure of f with negative center exponent, then
hµ(f) ≤ logλ3 and there exists a full µ-measure subset which intersects almost
every center leaf on a single point.

Proof. Let us start with the following lemma:

Lemma 3.8. There exists Kf > 0 depending only on f such that for any compact
center segment I there exists NI ≥ 1 such the length of f−n(I) is bounded by Kf

for every n ≥ NI.

Proof. Let φ : T3 → T
3 be the semi-conjugacy introduced previously. Then φ(I) is

a segment inside a center leaf of A, and the same is true for the iterates:

φ(f−n(I)) = A−n(φ(I)) for every n ≥ 1.

Since A−1 contracts the center direction, because λ2 > 1, the length of A−n(φ(I))

goes to zero as n → +∞. As observed before, the map φ̃ is at bounded distance
from the identity. It follows that the distance between the endpoints of f−n(I) in
T
3 is uniformly bounded when n is large. Since the center leaves of f are quasi-

isometric (property (iii) above), it follows that the length of the center segments
f−n(I) is uniformly bounded when n is large, as claimed. �

Let Γµ be the set of points x ∈ T
3 for which the center Lyapunov exponent is

well defined and coincides with the center Lyapunov exponent λc(µ) of the ergodic
measure µ. Thus,

lim
1

n
log |Df−n | Ec

f (x)| = −λc(µ) for every x ∈ Γµ.

By ergodicity, Γµ is a full µ-measure subset of the torus.

Lemma 3.9. There exists δµ > 0 such that for any x ∈ Γµ and any neighborhood
U of x inside the center leaf of f that contains x, one has

lim inf
1

n

n−1
∑

i=0

length(f−i(U)) ≥ δµ.

A similar result was proven in Lemma 3.8 in our previous paper [47]. The present
statement is analogous, and even easier, because here we take the center direction
to be one-dimensional.

Corollary 3.10. There exists Nµ ≥ 1 such that #(Γµ ∩ L) ≤ Nµ for every center
leaf L of f .

Proof. Take Nµ = 3Kf/δµ. Suppose that #(Γµ ∩ L) > Nµ for some center leaf L.
Fix pairwise disjoint neighborhoods around each of these points, and let I ⊂ L be a
compact segment containing these neighborhoods. From Lemma 3.9 , we get that

1

n

n−1
∑

i=0

length(f−i(I)) > Nµ
δµ
2

> Kf

for every large n, which contradicts Lemma 3.8. �
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We are left to prove that, up to replacing Γµ by some full measure invariant
subset, we may take Nµ = 1. This can be seen as follows. Fix an orientation of the
leaves of f once and for all (it is clear that the center foliation of A is orientable
and then we may use the semi-conjugacy φ to define an orientation of the center
leaves of f). Let Γmin be the subset of Γ formed by the first points of Γµ on each
center leaf, with respect to the chose orientation. It is clear that Γmin is invariant
under f , because Γµ is. We claim that Γmin is a measurable set. Let us assume
this fact for a while. If Γmin has positive measure then, by ergodicity, it has full
measure. Since Γmin intersects every leaf in at most one point, this proves that we
may indeed take Nµ = 1. If Γmin has zero measure, just replace Γµ with Γµ \ Γmin

and start all over again. Notice that this Nµ is replaced with Nµ − 1 and so this
argument must stop in less than Nµ steps.

It remains to check that Γmin is indeed a measurable set. We need

Lemma 3.11. There exists R > 0 such that the diameter of Γµ ∩ L inside every
center leaf L is less than R.

Proof. By Proposition 3.5(a), the projection φ∗µ is an ergodic measure for A. Keep
in mind that, by Corollary 3.3, φ maps center leaves to center leaves, in an one-to-
one fashion. Thus, φ(Γµ) is a full measure that intersects each center leaf of A at
finitely many points. By Proposition 2.5, it follows that the intersection consists of
a single point. In other words, the intersection Γµ ∩ L with each center leaf L is
contained in φ−1(z) for some z ∈ φ(L). Then the conclusion of the lemma follows
directly from Proposition 3.1. �

Given r > 0 and any disk D transverse to the center foliation, let D(r) denote
the union of the center segments of radius r around the points of D. Consider a
finite family {Di : i = 1, . . . , l} of (small) disks transverse to the center foliation,
such that

(i) each Di(R+ 2) is homeomorphic to the product Di × [−R− 2, R+ 2];
(ii) the sets Di(1), i = 1, . . . , l cover M .

For each i = 1, . . . , l, denote by Γmin(i) the set formed by the first point of Γ in
the center leaf through each point in Γ ∩Di(1). Notice that

Γmin(i) ⊂ Di(R + 2) and Γmin = ∪iΓmin(i)

as a consequence of Lemma 3.11. Thus we only have to check that, up to replacing
Γµ by some invariant full measure subset, each Γmin(i) is a measurable set. The
latter can be seen as follows.

Let i be fixed. IdentifyDi(R+2) withDi×[−R−2, R+2] through the homeomor-
phism in condition (i) above. Let E ⊂ Di be the vertical projection of Γ ∩Di(1).
Theorem III.23 in [10] ensures that E is a measurable subset of Di. Moreover,
Γmin(i) is the graph of a function σ : E → [−R−2, R+2]. Our goal is to prove that
this function is measurable. If Γµ is compact then the function σ is lower semi-
continuous and thus measurable. In general, by Lusin, we may find an increasing
sequence of compact sets Γk ⊂ Γµ such that their union Γ′(i) has full measure in
Γµ ∩Di(1). By the previous observation, the function σk : Ek → [−R − 2, R + 2]
associated with each Γk is measurable. The function σ′ : E′ → [−R − 2, R + 2]
associated with Γ′(i) is given by

E′ = ∪kEk and σ′(z) = inf
k
σk(z).

Thus, σ′ is a measurable function as well. To get the claim, just replace Γµ with
the invariant subset obtained by removing the orbits through all zero measure sets
Γµ ∩Di(1) \ Γ

′(i).
This completes the proof of Theorem 3.7. �
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Remark 3.12. In the context of Theorem 3.7, the map φ∗ is not injective at µ:
there is at least one more ergodic measure ν such that φ∗µ = φ∗ν. This can be seen
as follows. The assumption that the center Lyapunov exponent of µ is negative
implies that φ−1(z) is a non-trivial segment for φ∗µ-typical points z. Let x be an
endpoint of φ−1(z), for any such z, and ν be any accumulation point of the time
average over the orbit of x. Then φ∗ν = φ∗µ, because z is taken to be φ∗µ typical.
Moreover, the center Lyapunov exponent of ν can not be negative, for otherwise
there would a neighborhood of x inside φ−1(z), which would contradict the choice
of x.

3.3. Proof of Theorem A. By Theorem 3.6, the measure ν = φ∗µ is ergodic and
has the same entropy as µ. In particular, hν(A) > logλ3. Let Z ⊂ M be any full
µ-measure set and Z ′ = Z∩φ−1(Y ), where Y is the as in Corollary 3.4. Then φ(Z ′)
is a measurable subset of T3. Moreover, φ(Z ′) has full ν-measure, because Y has
full ν-measure (this is contained in the second part of the proof of Theorem 3.6)
and so Z ′ has full µ-measure. Thus, by Theorem 2.1, φ(Z ′) intersects almost every
center leaf of A on an uncountable subset. By Corollary 3.3, the pre-image of every
center of A is a center leaf of f . It follows that Z ′ intersects almost every center
leaf on an uncountable subset. Then the same holds for Z, of course.

We have seen in Theorem 3.7 that if the center Lyapunov exponent is negative
then some full measure subset intersects almost every center leaf in a single point. In
view of the previous paragraph, this ensures that in the present situation the center
exponent is non-negative. We are left to show that the center Lyapunov exponent
is actually positive when f is a C2 diffeomorphism. This could be deduced from the
refinement of the Ruelle inequality in [25, Theorem 3.3.], as discussed by Ures [44].
Alternatively, we argue by contradiction, as follows.

Assume that the center exponent of f is non-positive. Then the strong-unstable
leaf Fuu coincides with the Pesin unstable manifold at µ-almost every point. Define
the exponential volume growth rate of any disk D contained in some strong-unstable
leaf of f to be

(17) G(D) = lim inf
n→∞

1

n
log

vol(fn(D))

vol(D)
.

It was shown by Cogswell [11] that hµ(f) ≤ G(D) whenever f is C2 and D is a
neighborhood of a µ-typical point x ∈ M inside its Pesin unstable manifold.

Clearly, if the center Lyapunov exponents are non-positive then the Pesin un-
stable manifold coincides with the strong-unstable leaf through the point. So, to
complete the proof of Theorem A it suffices to show that G(D) ≤ logλ3 for any
segment D inside some strong-unstable leaf. This can be seen as follows. Let x̃1

and x̃2 be the endpoints of some lift D̃ of the segment D to the universal cover. By
(15),

‖f̃n(x̃1)− f̃n(x̃2)‖ ≤ 2C + ‖An(φ̃(x̃1))−An(φ̃(x̃2))‖ = 2C + λn
3 ‖φ̃(x̃1)− φ̃(x̃2)‖.

It has been show by Potrie [36, Corollary 7.7] that in the present setting the lift
of the unstable foliation to the universal is quasi-isometric: the distance between
any two points along a leaf is bounded by some affine function of the distance of
the two points in the ambient space. Thus, in particular, there exists a uniform
constant Q > 0 such that

|f̃n(D̃)| ≤ Q+Q‖f̃n(x̃1)− f̃n(x̃2)‖ ≤ Q(2C + 1) +Qλn
3‖φ̃(x̃1)− φ̃(x̃2)‖.

Replacing this estimate in the definition of G(D) we get that G(D) ≤ logλ3, as
claimed.

The proof of Theorem A is complete.
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3.4. Proof of Corollary B. By Hammerlindl, Ures [20, Theorem 7.2], every C2

volume-preserving partially hyperbolic diffeomorphism g ∈ D(A) whose integrated
center Lyapunov exponent λc(g) is different from zero is ergodic. Thus, since the
map g 7→ λc(g) is continuous, every volume-preserving g in a neighborhood of f is
ergodic. We begin by claiming that the disintegration of volume along the center
foliation of such a g cannot be atomic.

Indeed, suppose that the disintegration is atomic. Let B1, . . . ,Bk be a finite cover
of M by foliation charts such that the conditional probabilities of each vol | Bi are
purely atomic for almost every plaque. Equivalently (Appendix A), every Bi admits
a full measure subset Zi whose intersection with every plaque is countable. Then
Z = Z1 ∪ · · · ∪Zk is a full measure subset of M that intersects every center leaf on
a countable set. This contradicts Theorem A.

Now we prove that conditional probabilities of vol along center leaves cannot
be absolutely continuous respect to Lebesgue measure. Let Γ be the set of points
x ∈ M such that

lim
n

1

n
log ‖Dgn | Ec

f (x)‖ = λc(g),

By ergodicity and the Birkhoff theorem, Γ has full volume. Fix ε < (λc(g) −
logλ2)/2. Then, there exists a measurable function n(x) : Γ → N such that

‖Dgn | Ec
g(x)‖ ≥ eεnλn

2 for any x ∈ Γ and n ≥ n(x).

Take n0 ≥ 1 sufficiently large, such that the set Γ0 = {x ∈ Γ : n(x) ≤ n0} has
positive volume. Assuming, by contradiction, that the disintegration of the volume
measure along the center foliation is absolutely continuous, we get that there exists
some center plaque L such that Γ0 ∩ L has positive Lebesgue measure. By the
definition of Γ,

|gn(L)| ≥ volgn(L)(g
n(Γ0)) ≥ eεnλn

2 volL(Γ0) for any n ≥ n0,

which implies that G(L) ≥ logλ2 + ε. Thus, to reach a contradiction, it suffices to
show that G(L) ≤ logλ2.

For proving this latter claim, we use a variation of an argument in the proof of
Theorem A. Let x̃1 and x̃2 be the endpoints of some lift L̃ of the segment L to the
universal cover. By Proposition 3.2, φ̃(x̃1) and φ̃(x̃2) belong to the same center leaf
of A. Then,

‖φ̃(g̃n(x̃1))− φ̃(g̃n(x̃2))‖ = ‖An(φ̃(x̃1))−An(φ̃(x̃1))‖ = λn
2‖φ̃(x̃1)− φ̃(x̃2)‖

for every n ≥ 1. Since φ̃ is uniformly close to the identity, by (15), it follows that

‖g̃n(x̃1)− g̃n(x̃2)‖ ≤ λn
2‖φ̃(x̃1)− φ̃(x̃2)‖+ 2C.

Then, using the quasi-isometry property of the center foliation (recall (iii) in the
proof of Proposition 3.1),

|g̃n(L)| ≤ Q‖g̃n(x̃1)− g̃n(x̃2)‖+Q ≤ Qλn
2 ‖φ̃(x̃1)− φ̃(x̃2)‖+Q(2C + 1),

where Q is a uniform constant. Replacing this in (17) we get that G(L) ≤ logλ2,
as claimed.

4. Upper absolute continuity

We have seen previously that the disintegration of Lebesgue measure along center
leaves may be singular without being atomic. This adds to the previously known
types of behaviour for the center foliation: Lebesgue disintegration (i.e. leafwise
absolute continuity) and atomic disintegration.

In this section we want to refine our understanding of the non-singular case. Let
vol denote the Lebesgue measure in the ambient manifold and volL be the Lebesgue
measure restricted to some submanifold L. Following [3, 4], we say that a foliation
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F is upper leafwise absolutely continuous if volL(Y ) = 0 for every leaf L through
a full Lebesgue measure subset of points z ∈ M implies vol(Y ) = 0. Similarly,
F is lower leafwise absolutely continuous if for every zero vol-measure set Y ⊂ M
and vol-almost every z ∈ M , the leaf L through z meets Y in a zero volL-measure
set. Thus, the foliation is upper leafwise absolutely continuous if the conditional
measure of vol along a typical leaf L is absolutely continuous with respect to volL
and it is lower leafwise absolutely continuous if volL is absolutely continuous with
the respect to the conditional measure of vol along a typical leaf L. So, Lebesgue
disintegration (leafwise absolute continuity) is the same as both upper and lower
leafwise absolute continuity.

Pesin theory may be used to show that upper leafwise absolute continuity is
actually quite common (see [47, Proposition 6.2] for a precise statement). Here
we describe fairly robust examples whose center foliations are upper but not lower
leafwise absolutely continuous.

We start from a construction due to Kan [26]. Let f0 : S1 × [0, 1] → S1 × [0, 1]
be a C2 map of the cylinder of the form f0(θ, t) = (3θ, hθ(t)) with

(1) hθ(i) = i for every i ∈ {0, 1} and every θ ∈ S1;
(2) |h′

θ(t)| ≤ c < 3 for some c and every θ ∈ S1;
(3)

∫

log |h′
θ(i)| dθ < 0 for i ∈ {0, 1};

(4) |h′
0(0)| < 1 and |h′

1/2(1)| < 1 and h0(t) < t < h1/2(t) for t ∈ (0, 1).

The first condition means that f0 preserves the two boundary components of
the cylinder S1 × [0, 1]. The second one ensures that f0 is a partially hyperbolic
endomorphism of the cylinder, with the vertical segments as center leaves. The
restriction of f0 to each boundary component S1 × {i} is uniformly expanding
and preserves the Lebesgue measure mi on the boundary component. The third
condition means that, for either boundary component, the transverse Lyapunov
exponent is negative. Finally, the fourth condition means that 0 is an attractor for
h0 and 1 is an attractor for h1/2 and their basins contain the interval (0, 1).

Let K be a small neighborhood of f0 inside the space of C2 maps of the cylinder
preserving both boundary components. Every f ∈ K is partially hyperbolic, with
almost vertical center foliation Fc

f , and admits absolutely continuous ergodic invari-
ant measuresmi,f on the boundary components. These measures vary continuously
with the map and so their center Lyapunov exponents

∫

log |Df | Ec
f (θ, i)| dmi,f (θ) ≈

∫

log |h′
θ(i)| dθ

(Ec
f denotes the center bundle, tangent to Fc

f ) are still negative. This ensures that

both m0,f and m1,f are physical measures for f . As observed by Kan [26], the
basins B(mi,f ) are intermingled - they are both dense - and their union has full
measure in the ambient cylinder. Denote by p0(f) and p1(f) the continuations of
the fixed saddle-points (0, 0) and (1/2, 1), respectively.

Theorem 4.1. For any f ∈ K such that ∂θf(p0) 6= ∂θf(p1), the center foliation is
upper leafwise absolutely continuous but not lower leafwise absolutely continuous.

Proof. Let πf be the holonomy map of the center foliation of f from the bottom
boundary component S1 × {0} to the top boundary component S1 × {1}. Then
πf is a homeomorphism and the fact that the center foliation is invariant means
that it conjugates the restrictions of f to the two boundary components. It is well-
known that a conjugacy between two C2 expanding maps is either C1 or completely
singular. The assumption ∂θf(p0) 6= ∂θf(p1) prevents the former possibility, since
πf maps p0,f to p1,f . Thus, πf is completely singular and so the measures m1,f

and m∗
1,f = (πf )∗m0,f are mutually singular. Similarly, the measures m0,f and
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m∗
0,f = (πf )∗m1,f are mutually singular. In other words, for i = 0, 1 there exists a

full mi,f -measure subset Λi,f of S1×{i} such that the sets of center leaves through
Λ0,f and Λ1,f are disjoint.

We claim that all four invariant measures mi,f and m∗
i,f , i = 0, 1 have negative

center exponents, assuming f is close enough to f0. This can be seen as follows.
First of all, that is true for f = f0 and in this case, mi,f = m∗

i,f = Lebesgue measure

along S1 ×{i}. Then, observe that f 7→ mi,f is continuous (because the absolutely
continuous invariant measure of a C2 expanding map depends continuously on the
map) and πf also depends continuously on f (note that f = f0 the holonomy map
is just (θ, 0) 7→ (θ, 1)). Thus, all these measures vary continuously with f . Since
the center bundle is one-dimensional, so do their center Lyapunov exponents. Our
claim follows.

We also need the following fact:

Lemma 4.2. Up to Lebesgue measure zero, for i = 0, 1, the basin of mi,f coincides
with the union of the Pesin stable manifolds of the points in Λi,f , which is contained
in the union W c(Λi,f ) of the center leaves through the points of Λi,f .

This follows from a standard density point argument, see for instance [6, Proposi-
tion 11.1]. Similar statements appeared also in our previous papers [12, Lemma 4.6]
and [47, Proposition 6.9], in somewhat different situations.

Denote Yf = W c(Λ0,f ) \B(m0,f )∪W c(Λ1,f) \B(m1,f ). On the one hand, since
the union of the basins B(mi,f ), i = 0, 1 has full Lebesgue measure (Kan [26]),
the set Yf has zero Lebesgue measure in S1 × [0, 1] and Lebesgue almost every
center leaf is contained in W c(Λ0,f ) ∪W c(Λ1,f ). On the other hand, Yf contains
the Pesin stable manifold of m∗

i,f -almost every point, for i = 0, 1. In particular,
the intersection of Yf with Lebesgue almost every center leaf contains a non-trivial
segment and, thus, has positive Lebesgue measure inside the center leaf. This
proves that the center foliation is not lower leafwise absolutely continuous. On the
other hand, by Proposition 6.2 in our previous paper [47], the center foliation is
upper leafwise absolutely continuous. �

Appendix A. Atomic disintegration

Denote by Dk the closed unit disk in R
k. Let F be a foliation of dimension

k ≥ 1 of some manifold M of dimension d > k. By this we mean that every point
of M is contained in the interior of some foliation box, that is, some image B of a
topological embedding

Φ : Dd−k ×Dk → M

such that every plaque Px = Φ({x} ×Dk) is contained in a leaf of F . We say that
F has Cr leaves if every

Φ(x, ·) : Dk → M, y 7→ Φ(x, y)

is a Cr embedding depending continuously on x in the Cr topology.
Let B be a foliation box, identified with the product Dd−k × Dk through the

corresponding homeomorphism B. By Rokhlin’s disintegration theorem (see [46,
Theorem 5.1.11]) there exists a probability measure ν̂ on Dd−k and a family of
probability measures {νx : x ∈ Dd−k} such that

(18) ν(E) =

∫

Dd−k

νx
(

{y ∈ Dk : (x, y) ∈ E}
)

dν̂(x)

for every measurable set E ⊂ B. In fact, ν̂ is just the projection of ν on the first
coordinate and the family {νx : x ∈ Dd−k} is essentially uniquely determined.
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We say that ν has atomic disintegration along F if for every foliation box B
and ν-almost every x ∈ B the conditional measure νx gives full weight to some
countable set (equivalently, νx is a countable linear combination of Dirac masses).

Lemma A.1. ν has atomic disintegration if and only if for every foliation box
B there exists a full ν-measure set Z ⊂ B whose intersection with ν̂-almost every
plaque Px is countable (possibly finite).

Proof. Suppose that there exists some full ν-measure set Z ⊂ B whose intersection
with ν̂-almost every plaque Px is countable. By (18), it follows that νx(Z ∩Px) = 1
(and so νx is a purely atomic measure) for ν̂-almost every x. The converse is also
true: if νx is purely atomic for ν̂-almost every x then one may find a full measure
subset Z of B that intersects every plaque on a countable subset. This can be
deduced from the claim in Rokhlin [39, § 1.10] but, for the reader’s convenience,
we provide a quick direct explanation.

The idea is quite simple: we take Z = ∪x{x}× Y (x) where each {x}× Y (x) is a
countable full νx-measure subset of the plaque Px. The main point is to check that
Z is a measurable set (up to measure zero). Once that is done, (18) immediately
gives that Z has full ν-measure. To prove measurability, start by fixing some
countable basis V for the topology of B. It is also part of Rokhlin’s theorem that
the map x 7→ νx(V ) is measurable (up to measure zero) for any measurable set
V ⊂ B. Thus, given any ε > 0, one may find a compact set Kε ⊂ Dd−k such that
ν̂(Kε) > 1− ε and x 7→ νx(V ) is continuous on Kε, for every V ∈ V . In particular,
x 7→ νx is continuous with respect to the weak∗ topology for x ∈ Kε.

It is no restriction to suppose that νx is purely atomic for every x ∈ Kε, and we
do so. Let ε > 0 be fixed. It is clear that, given any δ > 0, the set

Γδ(x) = {y ∈ Dk : νx({y}) ≥ δ}

is finite, and hence compact. Moreover, the properties of Kε ensure that the func-
tion x 7→ Γ(x, δ) is upper semi-continuous on x ∈ Kε. In other words,

Λ(ε, δ) = {(x, y) : x ∈ Kε and y ∈ Γδ(x)}

is a closed subset of B. Since νx is purely atomic for every x ∈ Kε, the union
Λ(ε) = ∪nΛ(ε, 1/n) is a (measurable) full measure subset of Kε ×Dk contained in
Z. Then, ∪mΛ(1/m) is a (measurable) full measure subset of B contained in Z.
This proves that Z is measurable up to measure zero, as claimed. �

Notice that the statement of the lemma concerns the intersection of Z with
plaques of the foliation, not entire leaves. In the special case of foliations of di-
mension k = 1 one can do a bit better. Indeed, consider any finite cover of the
ambient manifold by foliation boxes. Since 1-dimensional manifolds have only two
ends, every leaf can intersect these foliation boxes at most countably many times,
that is, every leaf is covered by countably many plaques. Thus for k = 1 the con-
dition in Lemma A.1 may be reformulated equivalently as follows: there exists a
full ν-measure set Z ⊂ B such that Z ∩Fx is countable for ν̂-almost every x. This
conclusion extends to large k under the additional condition that every leaf has
countably many ends.
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