Dynamics of projectively hyperbolic systems

Next, we study the dynamics of projectively hyperbolic sets and attractors. Two warnings:

- Most results are for C^2 diffeomorphisms.
- Projective hyperbolicity is a very weak property (e.g. it may coexist with homoclinic tangencies), except when all the subspaces in the decomposition have dimension 1.

Thm (Pujals, Sambarino). Let Λ be a projectively hyperbolic set of a surface diffeomorphism such that all periodic points contained in it are hyperbolic saddles. Then Λ is the union of a hyperbolic set and a finite number of smooth invariant circles supporting irrational rotations.

.

Attractors and physical measures

A transitive invariant set Λ is an attractor if the basin of attraction (topological)

$$B(\Lambda) := \{ x \in M : \omega(x) \subset \Lambda \}$$

has positive Lebesgue measure.

Topological attractor: if the basin is a neighborhood of the attractor (e.g. tame systems).

An ergodic invariant probability μ is a *physical measure*, or SRB measure, if the basin of attraction (ergodic)

$$B(\mu) := \{ x \in M : \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^{j}(x)} = \mu \}$$

has positive Lebesgue measure.

Conj (Palis). For a dense subset of $Diff^r(M)$, there are only finitely many attractors and physical measures, and Lebesgue almost every point is in the unions of their basins of attraction (topological and ergodic).

Prob. For generic diffeomorphisms, the union of the basins of all topological attractors is open and dense in M?

An existence and finiteness theorem

Thm (Alves, Bonatti, Viana). Let Λ be a projectively hyperbolic attractor of a C^2 diffeomorphism $f: M \to M$, with decomposition $T_xM = E_x^{cu} \oplus E_x^{cs}$, $x \in \Lambda$. Assume

- 1. E_z^{cu} is non-uniformly expanding and E_z^{cs} is non-uniformly contracting
- 2. z has simultaneous cu- and cs-hyperbolic times for Lebesgue almost every point $z \in B(\Lambda)$.

There are finitely many SRB measures supported in Λ , and the union of the basins contains Lebesgue almost every point in $B(\Lambda)$.

(Extend $E^{cu} \oplus E^{cs}$ continuously to the basin.)

Non-uniformly expanding:

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \log \|Df^{-1} \| E_{f^{j}(z)}^{cu} \| < -c < 0$$

Non-uniformly contracting:

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \|Df \mid E_{f^{j}(z)}^{cs}\| < -c < 0$$

Condition 2 is automatic if E^{cu} is uniformly expanding or E^{cs} is uniformly contracting.

Partially hyperbolic attractors

Let $f: M \to M$ be C^2 . Let Λ be an invariant set with dominated decomposition

$$T_x M = E_x^u \oplus E_x^c \oplus E_x^s, \quad x \in \Lambda,$$

with E^u uniformly expanding, E^s uniformly contracting, and dim $E^u > 0$.

Then there exists a unique strong-unstable foliation \mathcal{F}^u tangent to E_x^u at every point $x \in \Lambda$. Assume the leaves are entirely contained in Λ .

Foliated neighborhood at $z \in \Lambda$: homeomorphism $\phi: B \times \Sigma \to \Lambda$ onto a neighborhood of z inside Λ , with

- $B = \text{unit disk of dimension dim } E^u$, and Σ compact
- each $\phi(\cdot, \eta)$ a diffeomorphism to a strong-unstable disk.

Gibbs *u*-states

An invariant probability μ on Λ is a Gibbs u-state if every $z \in \Lambda$ has some foliated neighborhood ϕ such that μ is equivalent to a product measure

$$\mu \approx \phi_* (\text{Lebesgue} \times \nu).$$

restricted to the image of ϕ .

Thm (Pesin, Sinai). Let m_D be normalized Lebesgue measure along a disk D transverse to $E^c \oplus E^s$. Every limit measure of

$$\frac{1}{n} \sum_{j=0}^{n-1} f_*^j(m_D)$$

is a Gibbs u-state (density bounded from zero and ∞).

Thm (Bonatti, Viana). Suppose Λ is a topological attractor. For Lebesgue almost every point $x \in B(\Lambda)$, every limit measure of

$$\frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)}$$

is a Gibbs u-state (density bounded from zero and ∞).

So, SRB measures must be Gibbs u-states if they exist.

1. Let $D \subset B(\Lambda)$ be any disk transverse to $E^c \oplus E^s$. Using curvature and distortion control,

$$m_D(\{f^n(x) \in A\}) \le \operatorname{const} |A| \text{ for all } n.$$

2. Events $f^j(x) \in A$ and $f^k(x) \in A$ are "independent" if |j-k| is big, because iterates of D are expanded.

By a large deviations argument, the m_D -probability of

$$\frac{1}{n}\#\{0\leq j\leq n-1: f^j(x)\in A\}>\mathrm{const}\,|A|$$

decays exponentially with n. So, for m_D -almost every x,

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)}(A) \le \operatorname{const} |A|.$$

Mostly contracting central direction

Conversely: if μ is an ergodic Gibbs u-state such that the central direction is mostly contracting

$$\lambda^{c}(x) := \limsup_{n \to +\infty} \frac{1}{n} \log \|Df^{n} \mid E_{x}^{c}\| < 0 \quad \mu - \text{a.e.}$$

then μ is an SRB measure.

Thm (Bonatti, Viana). Let $\lambda^c(x) < 0$ on a positive Lebesgue measure subset of every strong-unstable disk. Then Λ supports finitely many SRB measures and the union of their basins contains Lebesgue almost every point in $B(\Lambda)$.

If the strong-unstable foliation \mathcal{F}^u is minimal, the SRB measure is unique.

Minimal foliation: all leaves dense in Λ .

Gibbs cu-states

Now let Λ be projectively hyperbolic with decomposition

$$T_x M = E_x^{cu} \oplus E_x^{cs}, \quad x \in \Lambda.$$

Thm (Alves, Bonatti, Viana). Assume that E^{cu} is non-uniformly expanding on a positive Lebesgue measure subset of $B(\Lambda)$. Then there exist ergodic Gibbs cu-states supported in Λ .

Non-uniformly expanding:

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \log ||Df^{-1}|| E_{f^{j}(z)}^{cu}|| < -c < 0$$

Gibbs cu-state: invariant probability measure with $\dim E^{cu}$ expanding directions (positive Lyapunov exponents) and absolutely continuous conditional measures along the corresponding unstable manifolds.

Hyperbolic times

The key tool in the proof is the following notion: n is a cu-hyperbolic time for z if

$$||Df^{-k}||E_{f^n(z)}^{cu}|| \le e^{-ck/2}$$
 for all $1 \le k \le n$.

If E^{cu} non-uniformly expanding at z then z has positive frequency of cu-hyperbolic times:

 $\#\{cu\text{-hyperbolic times } \leq n\} > \theta(c)n \quad \text{for all } n$ with $\theta(c) > 0$.

Rmk. If $w = \lim_i f^{n_i}(z_i)$ where each n_i is a hyperbolic time of z_i and $n_i \to \infty$, then w has unstable manifold of dimension dim E^{cu} and size $> \delta(c) > 0$.

To construct Gibbs cu-states one starts with any disk D transverse to E^{cs} such that E^{cu} is non-uniformly expanding on a positive Lebesgue measure set $D_0 \subset D$, and considers accumulation points of

$$\frac{1}{n}\sum_{j=0}^{n-1}f_*^j(m_D \mid \{z: j \text{ is a } cu\text{-hyperbolic time for } z\}).$$

Any ergodic Gibbs cu-state μ that has dim E^{cs} negative Lyapunov exponents is an SRB measure.

That is the case for Gibbs cu-states obtained before, if on the positive Lebesgue measure set $D_0 \subset D$

• E^{cs} is non-uniformly contracting

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \|Df \mid E_{f^{j}(z)}^{cs}\| < -c < 0$$

• there is positive frequency of simultaneous cu- and cs-hyperbolic times

n is a cs-hyperbolic time for z if

$$||Df^k | E_{f^{n-k}(z)}^{cs}|| \le e^{-ck/2}$$
 for all $1 \le k \le n$.

In this way one constructs SRB measures supported in Λ . Using the existence of stable and unstable manifolds with size $> \delta(c)$ we get that the SRB measures are finitely many.

To prove that their basins cover Lebesgue almost every point in Λ : if not, we could use the exceptional positive Lebesgue set to construct one more SRB measure.

Summary of Lecture # 3

- Definitions of attractor and physical (SRB) measure.
- Gibbs u-states of partially hyperbolic attractors with expanding subbundle. Gibbs u-states exist, and every SRB measure is an ergodic Gibbs u-state.
- Existence and finiteness of SRB measures when the central direction is mostly contracting.
- Gibbs cu-states of projectively hyperbolic attractors with non-uniformly expanding subbundle. Positive frequency of cu-hyperbolic times yields Gibbs cu-states.
- Existence and finiteness of SRB measures for projectively hyperbolic attractors non-uniformly hyperbolic and with simultaneous hyperbolic times.

