Projective hyperbolicity

Def. An invariant set Λ is *projectively hyperbolic* if for every $x \in \Lambda$ there is a decomposition $T_xM = E_x^1 \oplus E_x^2$ satisfying

- 1. (invariance) $Df(x)E_x^* = E_{f(x)}^*$ for * = 1, 2
- 2. (domination) $\frac{\|Df^n(x)v_2\|}{\|v_2\|} \le C\lambda^n \frac{\|Df^n(x)v_1\|}{\|v_1\|}$ for every $v_1 \in E_x^1$, $v_2 \in E_x^2$, and $n \ge 1$,

with C > 0 and $\lambda < 1$ independent of x.

Rmk. It is always assumed that the dimensions of E_x^1 and E_x^2 are constant over the invariant set.

More generally, a decomposition into $k \geq 2$ subspaces

$$T_x M = F_x^1 \oplus \dots \oplus F_x^k$$

is called dominated if $E^1 = F^1 \oplus \cdots \oplus F^i$ dominates $E^2 = F^{i+1} \oplus \cdots \oplus F^k$ for every $1 \leq i < k$.

Basic properties:

- (transversality) If $T_{\Lambda}M = E^1 \oplus E^2$ is a dominated decomposition, the angles between E_x^1 and E_x^2 are bounded from zero.
- (uniqueness) Given the dimensions of the factors, a dominated decomposition is unique when it exists.
- (continuity) A dominated decomposition is continuous and extends uniquely to a dominated decomposition on the closure of the domain.
- (cone field) An invariant set Λ is projectively hyperbolic if and only if it admits a continuous invariant cone field.
- (extension) If Λ admits a dominated decomposition, so does any invariant set inside a small neighborhood U of Λ (with the same dimensions of the factors).
- (robustness) Given any g in a C^1 neighborhood of f, every g-invariant set contained in U has a dominated decomposition (with the same dimensions of the factors).

Partial hyperbolicity

Def. An invariant set Λ is partially hyperbolic if for every $x \in \Lambda$ there is a decomposition $T_x M = E_x^1 \oplus E_x^2$ satisfying

- 1. E^1 and E^2 are invariant
- 2. E^1 dominates E^2
- 3. either E^1 is uniformly expanding or E^2 is uniformly contracting.

In the first case we write $E^1 = E^u$ and $E^2 = E^{cs}$, in the second one $E^1 = E^{cu}$ and $E^2 = E^s$.

 \bullet (cone field) An invariant set Λ is partially hyperbolic if and only if it admits a continuous unstable or stable cone field.

unstable cone field: $f(C_x) \subset C_{f(x)}$ and there are c > 0, $\sigma > 1$ such that

$$||Df^n(x)v|| \ge c\sigma^n ||v||$$

for $v \in C_x$ and $n \ge 0$.

• (integrability) If $E^1 = E^u$ is uniformly expanding it has a unique integral foliation \mathcal{F}^u . Analogously if $E^2 = E^s$ is uniformly contracting.

Generic dynamical systems

We consider C^1 dynamical systems, $Diff^1(M)$ or $\mathcal{X}^1(M)$, endowed with the C^1 topology. The goal is to obtain a very general dynamical decomposition theorem.

Two fundamental tools:

 C^1 closing lemma (Pugh): if $f^n(x)$ accumulates on x when $n \to \infty$, there exists a C^1 small perturbation g of f for which x is periodic.

 C^1 connecting lemma (Hayashi): if $W^u(p, f)$ and $W^u(q, f)$ accumulate on some non-periodic point x, there exists a C^1 small perturbation g of f for which $W^u(p, g)$ intersects $W^s(p, g)$.

Kupka, Smale, Pugh:

Thm. There exists a residual subset \mathcal{R}_0 of $\mathrm{Diff}^1(M)$ so that for every $f \in \mathcal{R}_0$

- 1. all periodic points are hyperbolic
- 2. all their stable and unstable manifolds are transverse
- 3. periodic points are dense in the non-wandering set

Maximal transitive sets and homoclinic classes

An invariant set Λ is $transitive \Leftrightarrow$ the forward orbit of some $z \in \Lambda$ is dense in $\Lambda \Leftrightarrow$ for any open sets $A, B \subset \Lambda$ there exists $n \geq 1$ such that $f^n(A)$ intersects B.

We call it maximal if Λ is not properly contained in another transitive set.

The homoclinic class of a periodic point p of f is the closure H(p, f) of the transverse intersections between the stable manifold and the unstable manifold of the orbit of p.

The elementary pieces of a uniformly hyperbolic system are homoclinic classes, and maximal transitive sets.

In general:

- Homoclinic classes are transitive sets. Every transitive set is contained in a maximal transitive set (Zorn).
- Maximal transitive sets and homoclinic classes need not be 2-by-2 disjoint.
- There may be infinitely many disjoint maximal transitive sets and infinitely many disjoint homoclinic classes.

For a residual subset $\mathcal{R} \subset \mathcal{R}_0$ of Diff¹(M):

- (Bonatti, Díaz) Two periodic points are in the same transitive set if and only if their homoclinic classes coincide.
- (Arnaud) Any transitive set containing a periodic point p is contained in H(p, f). Hence, homoclinic classes are maximal transitive sets.

A transitive set is *saturated* if every transitive set that intersects it is contained in it.

- (Carballo, Morales, Pacifico) Homoclinic classes are saturated transitive sets. Hence, two homoclinic classes either are disjoint or they coincide.
- (Abdenur) The number of homoclinic classes is either infinite or constant in a neighborhood of f.

Ideas of the proofs of (Arnaud) and (CMP):

Homoclinic classes and closures of stable and unstable manifolds of a periodic orbit vary semi-continuously with the dynamics. Hence, there is a residual subset \mathcal{R} of points of continuity. Consider $f \in \mathcal{R}$:

1. $\overline{W^u(p,f)} \cap \overline{W^s(p,f)} = H(p,f)$.

Suppose x is in the intersection of the closures. The connecting lemma gives g arbitrarily close to f such that $x \in W^u(p,g) \cap W^s(p,g)$ (the periodic case requires a separate argument). Make the intersection transverse, then $x \in H(p,g)$. By continuity, $x \in H(p,f)$.

2. $\overline{W^u(p,f)}$ is Lyapunov stable for f.

Let V be a neighborhood of the closure. Suppose there are points arbitrarily close to some $x \in \overline{W^u(p, f)}$ whose forward orbits approach some point $z \notin V$. Using the connecting lemma, there are small perturbations g such that the closure of $W^u(p, g)$ contains z. This contradicts the continuity.

3. If K is a transitive set intersecting H(p, f) then $K \subset H(p, f)$.

Because Lyapunov stability implies that K is contained in $\overline{W^u(p,f)}$ and in $\overline{W^s(p,f)}$.

So, homoclinic classes are maximal transitive sets and saturated transitive sets for every $f \in \mathcal{R}$.

We used a refined version of Hayashi's connecting lemma, by Arnaud, Hayashi, and Wen, Xia:

Thm. Let $f: M \to M$ be a diffeomorphism, x be a non periodic point, and \mathcal{U} be a C^1 neighborhood of f.

There exists $N \geq 1$ such that for every neighborhood V of x there exists a neighborhood $W \subset V$ such that, given any points y and z that are outside

$$V_N = \bigcup_{j=0}^{N-1} f^j(V)$$

and such that W contains some forward iterate of y and some backward iterate of z, there exists $g \in \mathcal{U}$ coinciding with f outside V_N and for which z is in the forward orbit of y.

A dynamical decomposition theorem

A diffeomorphism $f \in \mathcal{R}$ is tame if it has finitely many homoclinic classes, and wild otherwise.

Thm (Abdenur). Every tame diffeomorphism admits a dynamical decomposition into finitely many transitive sets, with no cycles. Moreover, this decomposition is robust restricted to the residual subset \mathcal{R} .

More precisely, there exists

- a filtration $M_0 \subset M_1 \subset \cdots \subset M_N = M$,
- periodic points $p_i \in M_i \setminus M_{i-1}, 1 \leq i \leq N$,
- and a C^1 neighborhood \mathcal{U} of f,

such that for every $g \in \mathcal{U} \cap \mathcal{R}$ the continuation $p_i(g)$ of p_i is defined and its homoclinic class $\Lambda_i(g) = H(p_i(g), g)$ is the maximal invariant set of g in $M_i \setminus M_{i-1}$. Then

$$\Omega(g) = \Lambda_1(g) \cup \cdots \cup \Lambda_N(g).$$

Moreover, the elementary pieces $\Lambda_i(g)$ are projectively hyperbolic (hyperbolic if dim M=2).

 Λ is robustly transitive if it is the maximal f-invariant set in a neighborhood U, and the maximal g-invariant set

$$\Lambda(g) = \bigcap_{n \in \mathbb{Z}} g^n(U)$$

in U is transitive for every g in a C^1 neighborhood \mathcal{U} of f. Λ is generically transitive if the latter holds for a residual

subset of \mathcal{U} .

Mañé, Bonatti, Díaz, Pujals, Ures:

Robustly transitive \Rightarrow Projectively hyperbolic.

The arguments extend to the elementary pieces in the theorem, which are generically transitive (at least).

Wild dynamics

The first example were Newhouse's C^2 diffeomorphisms with infinitely many periodic attractors coexisting.

For dim $M \geq 3$ coexistence of periodic attractors occurs also in the C^1 setting (Bonatti, Díaz).

Moreover,

Carballo, Morales, Bonatti, Díaz:

Thm. If dim $M \geq 3$, there exist open sets $\mathcal{U} \subset \mathrm{Diff}^1(M)$ and residual subsets $\mathcal{R}_{\mathcal{U}} \subset \mathcal{U}$ such that every $f \in \mathcal{R}_{\mathcal{U}}$ has infinitely many non-trivial disjoint homoclinic classes, and also infinitely many saturated transitive sets without periodic points.

Summary of Lecture #2

• Projectively hyperbolic set Λ : for each x there is a decomposition $T_xM = E_x^1 \oplus E_x^2$ satisfying

1.
$$Df(x)E_x^1 = E_{f(x)}^1$$
 and $Df(x)E_x^2 = E_{f(x)}^2$

2.
$$\frac{\|Df^n(x)v_2\|}{\|v_2\|} \le C\lambda^n \frac{\|Df^n(x)v_1\|}{\|v_1\|}$$
 (domination)

for every $x \in \Lambda$, $v_1 \in E_x^1$, $v_2 \in E_x^2$, and $n \ge 1$, and uniform constants C > 0 and $\lambda < 1$.

- Maximal transitive sets, saturated transitive sets, and homoclinic class: candidates to elementary dynamical pieces.
- For generic C^1 diffeomorphisms, homoclinic classes are maximal transitive sets and saturated transitive sets. In particular, they are 2-by-2 disjoint.
- If the number of disjoint homoclinic classes is finite (tame dynamics), there is a dynamical decomposition into finitely many pieces, transitive and projectively hyperbolic. Moreover, there are no cycles, and the decomposition is generically robust.