Projective hyperbolicity

Def. An invariant set A is projectively hyperbolic if for
every - € A there is a decomposition T,M = E! & E*

satistying
1. (invariance) D f(x)E} = B ) for x=1,2
Dfm Dfm
2. (domination) ID"(@)vs < C’)\”H CoLA for
2] o]

every v; € El, vy € E2, and n > 1,

with C' > 0 and A < 1 independent of .

Rmk. It is always assumed that the dimensions of E

and E? are constant over the invariant set.

More generally, a decomposition into k£ > 2 subspaces
T.M=F'!®---®FF

is called dominated if E' = F' @ --- @ F* dominates
E?2=Ftl'g...@ F* for every 1 < i < k.
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Basic properties:

o (transversality) If TAoM = E' ® E? is a dominated
decomposition, the angles between E! and E? are
bounded from zero.

e (uniqueness) Given the dimensions of the factors, a

dominated decomposition is unique when it exists.

e (continuity) A dominated decomposition is continuous
and extends uniquely to a dominated decomposition on
the closure of the domain.

e (cone field) An invariant set A is projectively hyperbolic

if and only if it admits a continuous invariant cone field.

o (extension) If A admits a dominated decomposition, so
does any invariant set inside a small neighborhood U of
A (with the same dimensions of the factors).

e (robustness) Given any g in a C! neighborhood of f,
every g-invariant set contained in U has a dominated
decomposition (with the same dimensions of the factors).
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Partial hyperbolicity

Def. An invariant set A is partially hyperbolic if for every
z € A there is a decomposition T, M = E. ® E? satisfying

1. E! and E? are invariant

2. E1 dominates E?

3. either E! is uniformly expanding or E? is uniformly

contracting.

In the first case we write E! = E* and E? = E°, in the
second one E!' = E°* and E? = E°.

e (cone field) An invariant set A is partially hyperbolic if
and only if it admits a continuous unstable or stable cone

field.

unstable cone field: f(Cy) C Cy(,) and there are ¢ > 0,
o > 1 such that

IDf™(x)v]| = co™||v|

for ve C, and n > 0.

e (integrability) If E! = E“ is uniformly expanding it has
a unique integral foliation F“. Analogously if E? = E® is

uniformly contracting.
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Generic dynamical systems

We consider C' dynamical systems, Diff* (M) or X' (M),
endowed with the C! topology. The goal is to obtain a
very general dynamical decomposition theorem.

Two fundamental tools:

C! closing lemma (Pugh): if f*(z) accumulates on x
when n — oo, there exists a C'! small perturbation g of f
for which x is periodic.

C! connecting lemma (Hayashi): if W¥(p, f) and
W*(q, f) accumulate on some non-periodic point x, there
exists a C! small perturbation g of f for which W¥(p, g)
intersects W#(p, g).

Kupka, Smale, Pugh:

Thm. There ezists a residual subset Ry of Diff' (M) so
that for every f € Rg

1. all periodic points are hyperbolic
2. all their stable and unstable manaifolds are transverse

3. periodic points are dense in the non-wandering set
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Maximal transitive sets and homoclinic classes

An invariant set A is transitive < the forward orbit of
some z € A is dense in A < for any open sets A, B C A
there exists n > 1 such that f™(A) intersects B.

We call it mazimal if A is not properly contained in

another transitive set.

The homoclinic class of a periodic point p of f is the
closure H(p, f) of the transverse intersections between
the stable manifold and the unstable manifold of the
orbit of p.

The elementary pieces of a uniformly hyperbolic system

are homoclinic classes, and maximal transitive sets.

In general:

e Homoclinic classes are transitive sets. Every transitive

set is contained in a maximal transitive set (Zorn).

e Maximal transitive sets and homoclinic classes need not
be 2-by-2 disjoint.

e There may be infinitely many disjoint maximal
transitive sets and infinitely many disjoint homoclinic

classes.
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For a residual subset R C Rg of Diff ' (M):

e (Bonatti, Diaz) Two periodic points are in the same
transitive set if and only if their homoclinic classes

coincide.

e (Arnaud) Any transitive set containing a periodic point
p is contained in H(p, f). Hence, homoclinic classes are

maximal transitive sets.

A transitive set is saturated if every transitive set that

intersects it is contained in it.

e (Carballo, Morales, Pacifico) Homoclinic classes are
saturated transitive sets. Hence, two homoclinic classes

either are disjoint or they coincide.

e (Abdenur) The number of homoclinic classes is either
infinite or constant in a neighborhood of f.

Ideas of the proofs of (Arnaud) and (CMP):

Homoclinic classes and closures of stable and unstable
manifolds of a periodic orbit vary semi-continuously with
the dynamics. Hence, there is a residual subset R of

points of continuity. Consider f € R:
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1. We(p, f)NWs(p, f) = H(p, f).

Suppose z is in the intersection of the closures. The
connecting lemma gives g arbitrarily close to f such that
x € WH(p,g) N W*(p,g) (the periodic case requires a
separate argument). Make the intersection transverse,
then x € H(p, g). By continuity, x € H(p, f).

2. Wu(p, f) is Lyapunov stable for f.

Let V be a neighborhood of the closure. Suppose there

are points arbitrarily close to some x € W¥(p, f) whose
forward orbits approach some point z ¢ V. Using the
connecting lemma, there are small perturbations g such
that the closure of W*(p, g) contains z. This contradicts

the continuity.

3. If K is a transitive set intersecting H(p, f) then
K C H(p, f).

Because Lyapunov stability implies that K is contained

in W*(p, f) and in W*(p, ).

So, homoclinic classes are maximal transitive sets and

saturated transitive sets for every f € R.
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We used a refined version of Hayashi’s connecting lemma,
by Arnaud, Hayashi, and Wen, Xia:

Thm. Let f: M — M be a diffeomorphism, x be a non
periodic point, and U be a C' neighborhood of f.

There exists N > 1 such that for every neighborhood V' of
x there exists a neighborhood W C V' such that, given any

points y and z that are outside

VN = U (V)

7=0

and such that W contains some forward iterate of y and
some backward iterate of z, there erists g € U coinciding

with f outside Vi and for which z is in the forward orbit
of y.

25



A dynamical decomposition theorem

A diffeomorphism f € R is tame if it has finitely many
homoclinic classes, and wild otherwise.

Thm (Abdenur). Every tame diffeomorphism admits a
dynamical decomposition into finitely many transitive
sets, with no cycles. Moreover, this decomposition 1s

robust restricted to the residual subset R.
More precisely, there exists

e a filtration My C M, C --- C My =M,

e periodic points p; € M; \ M;_1,1 <i< N,
e and a C'! neighborhood U of f,

such that for every g € U N'R the continuation p;(g) of p;
is defined and its homoclinic class A;(g) = H(pi(g),g) is
the maximal invariant set of g in M; \ M;_1. Then

Q(g) = A1(g) U---UAn(g).

Moreover, the elementary pieces A;(g) are projectively
hyperbolic (hyperbolic if dim M = 2).
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A is robustly transitive if it is the maximal f-invariant set

in a neighborhood U, and the maximal g-invariant set

Ag) = () g"(U)

neZ
in U is transitive for every g in a C'! neighborhood U of f.

A is generically transitive if the latter holds for a residual
subset of U.

Mané, Bonatti, Diaz, Pujals, Ures:
Robustly transitive = Projectively hyperbolic.

The arguments extend to the elementary pieces in the
theorem, which are generically transitive (at least).
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Wild dynamics

The first example were Newhouse’s C? diffeomorphisms

with infinitely many periodic attractors coexisting.

For dim M > 3 coexistence of periodic attractors occurs
also in the C! setting (Bonatti, Diaz).

Moreover,

Carballo, Morales, Bonatti, Diaz:

Thm. If dim M > 3, there exist open sets U C Diff' (M)
and residual subsets Ry C U such that every f € Ry has
infinitely many non-trivial disjoint homoclinic classes,

and also infinitely many saturated transitive sets without

periodic points.
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Summary of Lecture #2

e Projectively hyperbolic set A: for each x there is a
decomposition T, M = E. @ E? satisfying
1. Df(z)El = E}(w) and Df(z)E? = EJ%(m)
|Df"(2)vs |Df"(@)vs |

2.
[vz] ls

< CA\" (domination)

for every z € A, v1 € E, vo € E2, and n > 1, and
uniform constants C' > 0 and A\ < 1.

e Maximal transitive sets, saturated transitive sets, and
homoclinic class: candidates to elementary dynamical

pieces.

e For generic C! diffeomorphisms, homoclinic classes are
maximal transitive sets and saturated transitive sets. In

particular, they are 2-by-2 disjoint.

e If the number of disjoint homoclinic classes is finite
(tame dynamics), there is a dynamical decomposition
into finitely many pieces, transitive and projectively
hyperbolic. Moreover, there are no cycles, and the

decomposition is generically robust.
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