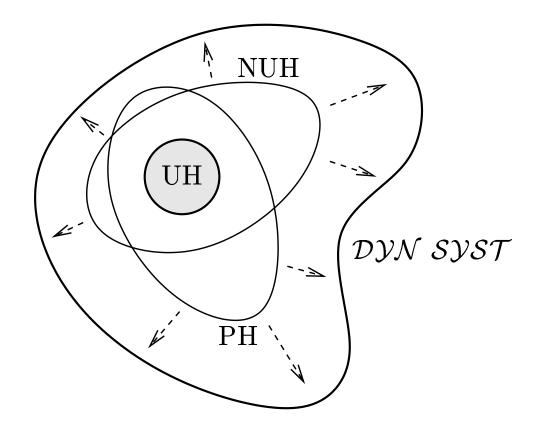
Dynamics: beyond

uniform hyperbolicity

Marcelo Viana IMPA, Rio de Janeiro

Collège de France, March 2002



Uniform Hyperbolicity: uniform expansion and contraction in complementary directions

Non-Uniform Hyperbolicity: expansion and contraction (not uniform) at almost every point

Partial and Projective Hyperbolicity: some directions neutral, with uniform bounds (everywhere)

Dynamics beyond uniform hyperbolicity: a geometric and probabilistic approach, Bonatti, Díaz, Viana

www.impa.br/~viana/outgoing/dbuh.ps

1. Hyperbolic systems and beyond

Definitions. Dynamical decomposition. Dynamics near elementary pieces. Stability.

Mechanisms of robust non-hyperbolicity: Heteroclinic cycles. Homoclinic tangencies. Singular sets of flows. Robustly transitive systems.

2. Partial hyperbolicity and robust transitivity

Partial and projective hyperbolicity. Transitive sets and homoclinic classes. A decomposition theorem for tame systems. Wild systems. A conjecture on finiteness of attractors.

3. Statistics of projectively hyperbolic systems

SRB measures and Gibbs u-states. Existence of u-Gibbs states. Mostly contracting central direction. Hyperbolic times and cu-Gibbs states. A theorem of existence and finiteness of physical measures.

4. Prevalence of non-uniform hyperbolicity

A dichotomy for generic conservative systems.

Deterministic products of matrices. Prevalence of non-zero Lyapunov exponents.

Definitions

We consider diffeomorphisms $f: M \to M$ and smooth flows $f^t: M \to M$, $t \in \mathbb{R}$, on a compact manifold M.

An invariant set Λ is $hyperbolic \Leftrightarrow$ for every $x \in \Lambda$ there is a decomposition $T_xM = E^u_x \oplus E^s_x$ satisfying

- 1. (invariance) $Df(x)E_x^* = E_{f(x)}^*$ for * = u and * = s
- 2. (contraction) $||Df^n(x)E_x^s|| \le C\lambda^n$ for all $n \ge 1$
- 3. (expansion) $||Df^{-n}(x)E_x^u|| \le C\lambda^n$ for all $n \ge 1$ with C > 0 and $\lambda < 1$ independent of x.

Rmk. For flows take $T_xM = E_x^u \oplus E_x^X \oplus E_x^s$ with E^X generated by the vector field.

Def. A diffeomorphism $f: M \to M$ is uniformly hyperbolic if

- the non-wandering set $\Omega(f)$ is hyperbolic and
- periodic points are dense in $\Omega(f)$.

 $x \in \Omega(f) \Leftrightarrow \text{for any neighborhood } U \text{ of } z \text{ there exists}$ $n \geq 1 \text{ such that } f^n(U) \text{ intersects } U.$

Dynamical decomposition

An invariant set Λ is *transitive* if it contains some dense forward orbit $\{f^n(z): n \geq 0\}$.

An invariant set Λ is *isolated* if it admits a neighborhood U such that the set of points whose orbits remain in U for all times coincides with Λ .

Thm (Smale). If $f: M \to M$ is uniformly hyperbolic, the non-wandering set splits into a finite disjoint union

$$\Omega(f) = \Lambda_1 \cup \cdots \cup \Lambda_N$$

of compact invariant sets Λ_i isolated and transitive. The α -limit set of every orbit is contained in some Λ_i , and analogously for the ω -limit set.

 Λ_i is a (hyperbolic) attractor if the basin of attraction

$$B(\Lambda) = \{ x \in M : \omega(x) \subset \Lambda_i \}$$

has positive Lebesgue measure.

Assuming Df is Hölder, a piece Λ_i is an attractor if and only if it has a neighborhood U such that $f(U) \subseteq U$ and

$$\Lambda_i = \bigcap_{n=0}^{\infty} f^n(U).$$

Dynamics near elementary pieces

Let $f: M \to M$ be uniformly hyperbolic and $\Lambda = \Lambda_i$ be any of the elementary pieces of the dynamics.

Thm. There exists a sub-shift of finite type $\sigma: \Sigma_T \to \Sigma_T$ and a continuous surjective map $\pi: \Sigma_T \to \Lambda$ such that

$$f \circ \pi = \pi \circ \sigma$$

and π is injective on an open dense subset.

Rmk. But the topology and the geometry of hyperbolic elementary pieces are poorly understood when $\dim M > 2$.

Assume the derivative Df is Hölder continuous.

Thm (Sinai, Ruelle, Bowen). Every attractor of f has a unique invariant probability measure μ such that for Lebesgue almost every point $x \in B(\Lambda)$,

$$\frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)} \to \mu \quad as \ n \to +\infty.$$

That is, given any subset $V \subset M$ with $\mu(\partial V) = 0$,

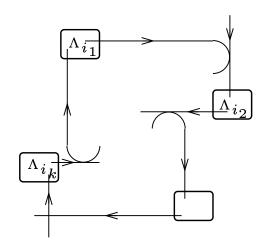
 $\mu(V)$ = fraction of time the orbit of x spends in V.

Stability

f uniformly hyperbolic + transversality property

1 (Robbin, de Melo, Robinson, Mañé)

for every g in a C^1 neighborhood there exists a homeomorphism $h_g:M\to M$ with $g\circ h_g=h_g\circ f$



Ω -stability

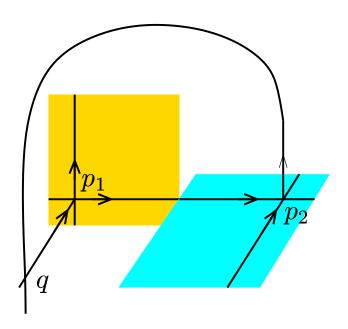
f uniformly hyperbolic + no-cycles \updownarrow (Smale, Palis, Mañé)

for every g in a C^1 neighborhood there exists a homeomorphism $h_g: \Omega(f) \to \Omega(g)$ with $g \circ h_g = h_g \circ f$

Robinson, Hayashi: corresponding results for flows.

Heterodimensional cycles

Cycles involving periodic saddles with different stable dimensions:

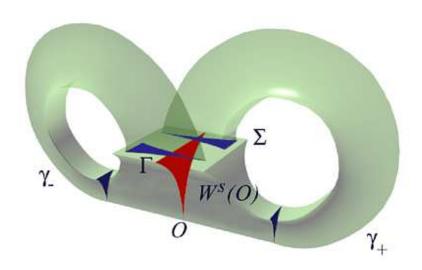


Abraham, Smale, Shub, Mañé:

Thm. For $d \geq 3$ there are open sets $\mathcal{U} \subset \operatorname{Diff}^1(\mathbb{T}^d)$ such that every $f \in \mathcal{U}$ is transitive and has periodic saddles with different stable dimensions; in particular, f is not uniformly hyperbolic.

Singular attractors of flows

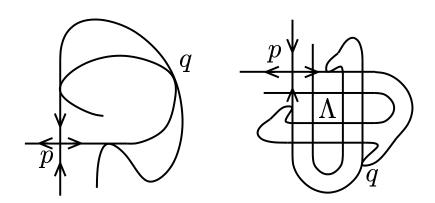
In the case of flows, heterodimensionality may arise from equilibrium points accumulated by regular orbits:



Afraimovich, Bykov, Shilnikov, Guckenheimer, Williams: **Thm.** If dim $M \geq 3$ there are open sets $\mathcal{V} \subset \mathcal{X}^1(M)$ such that every $X \in \mathcal{V}$ has a (transitive) attractor Λ_X that contains equilibrium points and regular orbits.

 Λ_X is not hyperbolic: the decomposition $E^u \oplus E^X \oplus E^s$ can not extend continuously to the equilibrium points.

Homoclinic tangencies



Newhouse, Palis, Viana, Romero:

Thm. Let dim $M \geq 2$. Close to any $f: M \to M$ with a homoclinic tangency of a saddle p, there are open sets $\mathcal{U} \subset \mathrm{Diff}^2(M)$ such that:

- Every $g \in \mathcal{U}$ is approximated by a diffeomorphism with a tangency associated to the continuation of p.
- If p is sectionally dissipative, there exists a residual set $\mathcal{R} \subset \mathcal{U}$ such that every $g \in \mathcal{R}$ has infinitely many periodic attractors.

A periodic point p is sectionally dissipative \Leftrightarrow the product of any two eigenvalues has norm less than 1.

A robustly transitive map

The following construction is due to Mañé:

1. Start with a linear map $f_0: M \to M$ of $M = \mathbb{T}^3$, with eigenvalues $\sigma_1 > 3$ and $\sigma_2 > 1 > \sigma_1 > 0$. Let

$$TM = E_0^1 \oplus E_0^2 \oplus E_0^3$$

be the decomposition into eigenspaces and \mathcal{F}^2 be the linear foliation tangent to E_0^2 . Let p=0 be the fixed point and $W \ni V \ni p$ be small neighborhoods.

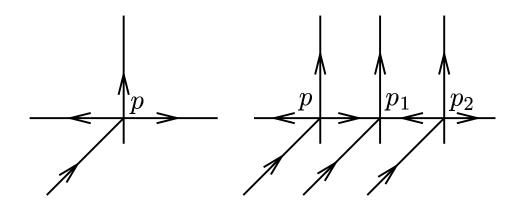
- 2. Consider a perturbation f of f_0 such that
- f preserves \mathcal{F}^2 and coincides with f_0 outside V
- \bullet there is a Df-invariant decomposition

$$TM = E^1 \oplus E^2 \oplus E^3$$

such that E^1 is expanding, by a factor > 3, E^3 is contracting, and E^2 is "in between".

Let \mathcal{F}^1 be the strong-unstable foliation, tangent to E^1 .

3. f may be taken with two saddle points with different stable dimensions inside V, for instance, via a saddle-node bifurcation:



4. There exists L > 0 such that for any strong-unstable segment γ_1 with length $|\gamma_1| > L$ the image $f(\gamma_1)$ contains some segment with length > L outside W.

Consequently, every strong-unstable segment contains a point \bar{z} whose forward orbit intersects W only finitely many times.

- 5. Let \bar{z} be such a point and γ_2 be a segment of \mathcal{F}^2 through \bar{z} . The length of $f^n(\gamma_2)$ goes exponentially to infinity when $n \to +\infty$:
- If $|f^n(\gamma_2)|$ is smaller than dist (V, W^c) then $f^n(\gamma_2)$ is disjoint from V and so it is expanded by f.
- In any case most of $f^n(\gamma_2)$ is outside V, assuming the diameter of V is much smaller than dist (V, W^c) .
- 6. Given non-empty open sets $A, B \subset M$ there is $n \geq 1$ such that $f^n(A)$ intersects $B \iff f$ is transitive):

Take strong-unstable segment $\gamma_1 \subset A$, point $\bar{z} \in \gamma_1$, and segment γ_2 through \bar{z} as before. Use the fact that the leaves of the foliation \mathcal{F}^2 are dense:

For every open set B there exists K > 0 such that any \mathcal{F}^2 -segment with length > K intersects B.

7. The argument works for any perturbation g of f: The main point is that foliation \mathcal{F}^2 is stable, because it is normally hyperbolic. This means that g has an invariant foliation \mathcal{F}_g^2 and there exists a homeomorphism close to the identity that sends leaves of \mathcal{F}^2 to leaves of \mathcal{F}_g^2 . So the leaves of \mathcal{F}_g^2 are also dense in M.

Bonatti, Viana:

Thm. There exist opens sets $\mathcal{U} \subset \operatorname{Diff}^1(\mathbb{T}^4)$ such that every $f \in \mathcal{U}$ is transitive and admits neither uniformly expanding nor uniformly contracting invariant subbundle.

The proof is a variation of Mañé's argument. It extends to \mathbb{T}^d for any $d \geq 4$.

1. Start with a linear map $f_0: \mathbb{T}^4 \to \mathbb{T}^4$ with four real eigenvalues $\sigma_1 > \sigma_2 > 1 > \sigma_3 > \sigma_4$. Replace f_0 by an iterate to ensure that $\sigma_2 > 3$, $\sigma_3 < 1/3$ and there are at least two fixed points p_1 and p_2 . Let

$$TM = E_0^u \oplus E_0^s$$

be the hyperbolic decomposition. Fix thin invariant cone fields \mathcal{C}^u and \mathcal{C}^s around E_0^u and E_0^s .

- 2. Let $W_i \ni V_i \ni p_i$ be small neighborhoods, for i = 1, 2. Consider a perturbation f of f_0 such that
- f is C^1 close to f_0 outside $V_1 \cup V_2$
- Df preserves C^u and uniformly expands area inside it, and Df^{-1} preserves C^s and uniformly expands area in it
- Df uniformly expands C^u outside V_1 and Df^{-1} uniformly expands C^s outside V_2 .

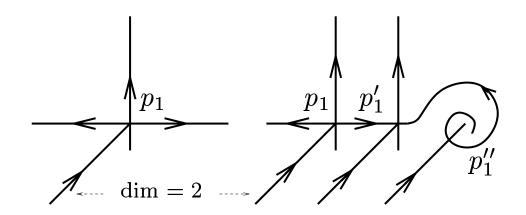
Invariant cone field \Rightarrow Invariant decomposition $TM = E \oplus F$.

3. Take f with two more fixed points p'_1 , p''_1 inside V_1 , besides p_1 , and two more fixed points p'_2 , p''_2 in V_2 , besides p_2 , satisfying

 p'_1 has three real contracting and one real expanding eigenvalues

 p_1'' has two complex expanding and two real contracting eigenvalues

similarly for p'_2 , p''_2 reversing the roles of expansion and contraction.



So, the bundles E and F are not hyperbolic, and they do not have invariant subbundles.

4. Taking the cone fields thin enough, there is L > 0 such that any centre-unstable disk of radius L intersects any centre-stable disk of radius L.

Using expansion of area (in the place of expansion of norm) inside C^u we show that every centre-unstable disk contains a point \bar{z} whose forward orbit intersects V_2 finitely many times only.

It follows, as before, that every centre-unstable disk around \bar{z} has an iterate containing a disk of radius L.

5. Given non-empty open sets $A, B \subset M$ consider centre-unstable disk $D^{cu} \subset A$ and centre-stable disk $D^{cs} \subset B$. By the previous step there exists $n \geq 1$ such that $f^n(D^{cu})$ intersects D^{cs} , and so $f^n(A)$ intersects B. This proves f is transitive.

Summary of Lecture # 1

- Hyperbolic systems admit a decomposition into finitely many invariant and indecomposable (transitive) pieces.
- The dynamics on each elementary piece and the statistics of orbits in the basins are well-understood.
- Hyperbolicity is the key ingredient for structural stability of the system.
- There are open subsets of non-hyperbolic systems in every Diff^r (M^d) except, possibly, for r=1 and d=2.
 - coexistence of infinitely many periodic attractors
- robustly indecomposable sets that are not hyperbolic (even without any invariant contracting or expanding subbundles).
- There are two known mechanisms generating robustly non-hyperbolic systems: homoclinic tangencies and heterodimensional cycles. In the case of flows the latter may arise from the presence of singularities.