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1. Hyperbolic systems and beyond

Definitions. Dynamical decomposition. Dynamics near
elementary pieces. Stability.

Mechanisms of robust non-hyperbolicity: Heteroclinic
cycles. Homoclinic tangencies. Singular sets of flows.

Robustly transitive systems.
2. Partial hyperbolicity and robust transitivity

Partial and projective hyperbolicity. Transitive sets and
homoclinic classes. A decomposition theorem for tame
systems. Wild systems. A conjecture on finiteness of
attractors.

3. Statistics of projectively hyperbolic systems

SRB measures and Gibbs u-states. Existence of u-Gibbs
states. Mostly contracting central direction. Hyperbolic
times and cu-Gibbs states. A theorem of existence and

finiteness of physical measures.
4. Prevalence of non-uniform hyperbolicity

A dichotomy for generic conservative systems.
Deterministic products of matrices. Prevalence of

non-zero Lyapunov exponents.
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Definitions

We consider diffeomorphisms f : M — M and smooth
flows ft: M — M, t € R, on a compact manifold M.

An invariant set A is hyperbolic < for every = € A there
is a decomposition T, M = E} & E; satistying
1. (invariance) D f(x)E} = B for x =uand * = s
2. (contraction) ||Df™(x)ES|| < CA™ for all n > 1
3. (expansion) ||[Df " (x)EY|| < CA™ for all n > 1

with C' > 0 and A < 1 independent of z.

Rmk. For flows take T,M = E* ® EX @ E? with EX
generated by the vector field.

Def. A diffeomorphism f : M — M is uniformly
hyperbolic if

e the non-wandering set Q(f) is hyperbolic and

e periodic points are dense in Q(f).

x € Q(f) < for any neighborhood U of z there exists
n > 1 such that f™(U) intersects U.
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Dynamical decomposition

An invariant set A is transitive if it contains some dense
forward orbit {f™(z) : n > 0}.

An invariant set A is isolated if it admits a neighborhood
U such that the set of points whose orbits remain in U

for all times coincides with A.

Thm (Smale). If f: M — M is uniformly hyperbolic,

the non-wandering set splits into a finite disjoint union
Qf) =AM U---UApN

of compact invariant sets A; isolated and transitive. The
a-limit set of every orbit is contained in some A;, and

analogously for the w-limit set.
A; is a (hyperbolic) attractor if the basin of attraction
B(A)={x e M :w(x) CA;}

has positive Lebesgue measure.

Assuming D f is Holder, a piece A; is an attractor if and
only if it has a neighborhood U such that f(U) € U and

A = ﬂii":of”(U)-
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‘ Dynamics near elementary pieces

Let f : M — M be uniformly hyperbolic and A = A; be
any of the elementary pieces of the dynamics.

Thm. There exists a sub-shift of finite type o : Xy — X

and a continuous surjective map mw : X7 — A such that
fom=moo

and m 18 injective on an open dense subset.

Rmk. But the topology and the geometry of hyperbolic

elementary pieces are poorly understood when
dim M > 2.

Assume the derivative D f is Holder continuous.

Thm (Sinai, Ruelle, Bowen). Fvery attractor of f
has a unique invariant probability measure pu such that

for Lebesgue almost every point x € B(A),

n—1

1
— Z(Sfj(x) — U asn — +oo.
n =

That is, given any subset V' C M with u(0V) =0,

n(V) = fraction of time the orbit of  spends in V.
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Stability

f uniformly hyperbolic + transversality property
{ (Robbin, de Melo, Robinson, Mafié)

for every g in a C'! neighborhood there exists a
homeomorphism h, : M — M with goh, =hgo f

A'l:]_ j

1
A

()-stability

f uniformly hyperbolic + no-cycles
{ (Smale, Palis, Mané)
for every g in a C'! neighborhood there exists a

homeomorphism h, : Q(f) = Q(g) with gohy, =hgo f

Robinson, Hayashi: corresponding results for flows.
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Heterodimensional cycles

Cycles involving periodic saddles with different stable
dimensions:

>
/p2
19

Abraham, Smale, Shub, Mané:

Thm. For d > 3 there are open sets U C Diff'(T¢) such
that every f € U 1s transitive and has periodic saddles
with different stable dimensions; in particular, f is not

uniformly hyperbolic.



Singular attractors of flows

In the case of flows, heterodimensionality may arise from

equilibrium points accumulated by regular orbits:

Afraimovich, Bykov, Shilnikov, Guckenheimer, Williams:

Thm. If dim M > 3 there are open sets V C X1(M)
such that every X € V has a (transitive) attractor Ax

that contains equilibrium points and reqular orbits.

A x is not hyperbolic: the decomposition E* @ EX & E*
can not extend continuously to the equilibrium points.



Homoclinic tangencies

q E\Li/\
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Newhouse, Palis, Viana, Romero:

Thm. Let dim M > 2. Close to any f : M — M with a

homoclinic tangency of a saddle p, there are open sets
U C Diff*(M) such that:

o Fvery g € U 1s approrimated by a diffeomorphism with

a tangency associated to the continuation of p.

e If p is sectionally dissipative, there exists a residual set
R C U such that every g € R has infinitely many periodic

attractors.

A periodic point p is sectionally dissipative < the
product of any two eigenvalues has norm less than 1.
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A robustly transitive map

The following construction is due to Mané:

1. Start with a linear map fo : M — M of M = T, with
eigenvalues 01 > 3 and 02 > 1 > 07 > 0. Let

TM = E, ® E; © Ej

be the decomposition into eigenspaces and F? be the
linear foliation tangent to EZ. Let p = 0 be the fixed
point and W © V > p be small neighborhoods.

2. Consider a perturbation f of fy such that
e f preserves F2 and coincides with fy outside V

e there is a D f-invariant decomposition
TM = E'® E* 9 E°

such that E! is expanding, by a factor > 3, E° is
contracting, and E? is “in between”.

Let F! be the strong-unstable foliation, tangent to E*.
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3. f may be taken with two saddle points with different
stable dimensions inside V', for instance, via a

saddle-node bifurcation:

4. There exists L > 0 such that for any strong-unstable

segment 7 with length |v1| > L the image f(71) contains
some segment with length > L outside W.

Consequently, every strong-unstable segment contains a
point z whose forward orbit intersects W only finitely

many times.
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5. Let Z be such a point and 7, be a segment of F?
through Z. The length of f™(+v2) goes exponentially to
infinity when n — +o0:

o If | f™(~2)| is smaller than dist (V, W¢€) then f™(72) is
disjoint from V and so it is expanded by f.

e In any case most of f™(72) is outside V', assuming the
diameter of V' is much smaller than dist (V, W°¢).

6. Given non-empty open sets A, B C M thereisn > 1
such that f™(A) intersects B (= f is transitive):

Take strong-unstable segment v; C A, point Z € ~, and
segment vo through z as before. Use the fact that the
leaves of the foliation F? are dense:

For every open set B there exists K > 0 such that any
F?-segment with length > K intersects B.

7. The argument works for any perturbation g of f: The
main point is that foliation F? is stable, because it is
normally hyperbolic. This means that g has an invariant
foliation .7-"92 and there exists a homeomorphism close to
the identity that sends leaves of F? to leaves of F_. So
the leaves of .7-'5 are also dense in M.
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bonatti, Viana:

Thm. There exist opens sets U C Diff' (T?) such that
every f € U is transitive and admits neither uniformly
expanding nor uniformly contracting invariant subbundle.

The proof is a variation of Mané’s argument. It extends
to T¢ for any d > 4.

1. Start with a linear map fo : T — T* with four real
eigenvalues g1 > 09 > 1 > 03 > 04. Replace fy by an
iterate to ensure that o9 > 3, 03 < 1/3 and there are at
least two fixed points p; and py. Let

TM = E' ® E}

be the hyperbolic decomposition. Fix thin invariant cone
fields C* and C® around E§ and Ej.

2. Let W; © V; > p; be small neighborhoods, for : = 1, 2.
Consider a perturbation f of fy such that

o fis C! close to fy outside Vi U Vs

e Df preserves C* and uniformly expands area inside it,
and D f~! preserves C® and uniformly expands area in it

e Df uniformly expands C* outside V; and Df~!
uniformly expands C?® outside V5.

Invariant cone field = Invariant decomposition

TM=E&F. o



3. Take f with two more fixed points p}, p} inside V7,
besides p;, and two more fixed points p5, p} in V3,
besides po, satistying

p’ has three real contracting and one real expanding

eigenvalues

p] has two complex expanding and two real contracting

eigenvalues

similarly for p;, p5 reversing the roles of expansion and

contraction.

< > <
Py
 dim=2 -

So, the bundles E and F' are not hyperbolic, and they do

not have invariant subbundles.
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4. Taking the cone fields thin enough, there is L > 0 such
that any centre-unstable disk of radius L intersects any
centre-stable disk of radius L.

Using expansion of area (in the place of expansion of
norm ) inside C* we show that every centre-unstable disk
contains a point z whose forward orbit intersects V5
finitely many times only.

It follows, as before, that every centre-unstable disk
around z has an iterate containing a disk of radius L.

5. Given non-empty open sets A, B C M consider
centre-unstable disk D C A and centre-stable disk
D C B. By the previous step there exists n > 1 such

that f™(D°*) intersects D°®, and so f™(A) intersects B.
This proves f is transitive.
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Summary of Lecture # 1

e Hyperbolic systems admit a decomposition into finitely

many invariant and indecomposable (transitive) pieces.

e The dynamics on each elementary piece and the
statistics of orbits in the basins are well-understood.

e Hyperbolicity is the key ingredient for structural
stability of the system.

e There are open subsets of non-hyperbolic systems in
every Diff" (M?) except, possibly, for r = 1 and d = 2.

e coexistence of infinitely many periodic attractors

e robustly indecomposable sets that are not hyperbolic

(even without any invariant contracting or expanding

subbundles).

e There are two known mechanisms generating robustly
non-hyperbolic systems: homoclinic tangencies and
heterodimensional cycles. In the case of flows the latter

may arise from the presence of singularities.
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Projective hyperbolicity

Def. An invariant set A is projectively hyperbolic if for
every € A there is a decomposition T,M = E! & E*

satistying
1. (invariance) D f(x)E} = B ) for x=1,2
Dfm Dfm
2. (domination) ID"(@)vs < C’)\”H COLAY for
2] o]

every v; € El, vy € E2, and n > 1,

with C' > 0 and A < 1 independent of .

Rmk. It is always assumed that the dimensions of E

and E? are constant over the invariant set.

More generally, a decomposition into k£ > 2 subspaces
T.M=F'®---®FF

is called dominated if E' = F' @ --- @ F* dominates
E?2=Ftlg...@ F* for every 1 < i < k.
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Basic properties:

o (transversality) If TAM = E! ® E? is a dominated
decomposition, the angles between E! and E? are
bounded from zero.

e (uniqueness) Given the dimensions of the factors, a

dominated decomposition is unique when it exists.

e (continuity) A dominated decomposition is continuous
and extends uniquely to a dominated decomposition on
the closure of the domain.

e (cone field) An invariant set A is projectively hyperbolic

if and only if it admits a continuous invariant cone field.

o (extension) If A admits a dominated decomposition, so
does any invariant set inside a small neighborhood U of
A (with the same dimensions of the factors).

e (robustness) Given any g in a C! neighborhood of f,
every g-invariant set contained in U has a dominated
decomposition (with the same dimensions of the factors).
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Partial hyperbolicity

Def. An invariant set A is partially hyperbolic if for every
x € A there is a decomposition T, M = E. ® E? satisfying

1. E! and E? are invariant

2. E1 dominates E?

3. either E! is uniformly expanding or E? is uniformly
contracting.

In the first case we write E! = E* and E? = E°, in the
second one E!' = E°* and E? = E°.

e (cone field) An invariant set A is partially hyperbolic if
and only if it admits a continuous unstable or stable cone

field.

unstable cone field: f(Cy) C Cy(,) and there are ¢ > 0,
o > 1 such that

IDf™(x)v]| = co™||v]|

for ve C, and n > 0.

e (integrability) If E! = E“ is uniformly expanding it has
a unique integral foliation F%. Analogously if E? = E* is

uniformly contracting.
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Generic dynamical systems

We consider C' dynamical systems, Diff* (M) or X' (M),
endowed with the C! topology. The goal is to obtain a
very general dynamical decomposition theorem.

Two fundamental tools:

C! closing lemma (Pugh): if f*(z) accumulates on x
when n — oo, there exists a C! small perturbation g of f
for which x is periodic.

C! connecting lemma (Hayashi): if W¥(p, f) and
W*(q, f) accumulate on some non-periodic point x, there
exists a C! small perturbation g of f for which W¥(p, g)
intersects W#(p, g).

Kupka, Smale, Pugh:

Thm. There ezists a residual subset Ry of Diff' (M) so
that for every f € Rg

1. all periodic points are hyperbolic
2. all their stable and unstable manaifolds are transverse

3. periodic points are dense in the non-wandering set
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Maximal transitive sets and homoclinic classes

An invariant set A is transitive < the forward orbit of
some z € A is dense in A < for any open sets A, B C A
there exists n > 1 such that f™(A) intersects B.

We call it mazimal if A is not properly contained in

another transitive set.

The homoclinic class of a periodic point p of f is the
closure H(p, f) of the transverse intersections between

the stable manifold and the unstable manifold of the
orbit of p.

The elementary pieces of a uniformly hyperbolic system

are homoclinic classes, and maximal transitive sets.

In general:

e Homoclinic classes are transitive sets. Every transitive

set is contained in a maximal transitive set (Zorn).

e Maximal transitive sets and homoclinic classes need not
be 2-by-2 disjoint.

e There may be infinitely many disjoint maximal
transitive sets and infinitely many disjoint homoclinic

classes.
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For a residual subset R C Rg of Diff' (M):

e (Bonatti, Diaz) Two periodic points are in the same
transitive set if and only if their homoclinic classes

coincide.

e (Arnaud) Any transitive set containing a periodic point
p is contained in H(p, f). Hence, homoclinic classes are

maximal transitive sets.

A transitive set is saturated if every transitive set that

intersects it is contained in it.

e (Carballo, Morales, Pacifico) Homoclinic classes are
saturated transitive sets. Hence, two homoclinic classes

either are disjoint or they coincide.

e (Abdenur) The number of homoclinic classes is either
infinite or constant in a neighborhood of f.

Ideas of the proofs of (Arnaud) and (CMP):

Homoclinic classes and closures of stable and unstable
manifolds of a periodic orbit vary semi-continuously with
the dynamics. Hence, there is a residual subset R of

points of continuity. Consider f € R:
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1. We(p, f)NWs(p, f) = H(p, f).

Suppose z is in the intersection of the closures. The
connecting lemma gives g arbitrarily close to f such that
x € WH(p,g) N W?*(p,g) (the periodic case requires a
separate argument). Make the intersection transverse,
then x € H(p, g). By continuity, z € H(p, f).

2. Wu(p, f) is Lyapunov stable for f.

Let V be a neighborhood of the closure. Suppose there

are points arbitrarily close to some x € W4(p, f) whose
forward orbits approach some point z ¢ V. Using the
connecting lemma, there are small perturbations g such
that the closure of W*(p, g) contains z. This contradicts

the continuity.

3. If K is a transitive set intersecting H(p, f) then
K C H(p, f).

Because Lyapunov stability implies that K is contained

in W*(p, f) and in W*(p, f).

So, homoclinic classes are maximal transitive sets and

saturated transitive sets for every f € R.

24



We used a refined version of Hayashi’s connecting lemma,
by Arnaud, Hayashi, and Wen, Xia:

Thm. Let f: M — M be a diffeomorphism, x be a non
periodic point, and U be a C' neighborhood of f.

There exists N > 1 such that for every neighborhood V' of
x there exists a neighborhood W C V' such that, given any

points y and z that are outside

VN = U (V)

7=0

and such that W contains some forward iterate of y and
some backward iterate of z, there erists g € U coinciding

with f outside Vi and for which z is in the forward orbit
of y.
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A dynamical decomposition theorem

A diffeomorphism f € R is tame if it has finitely many
homoclinic classes, and wild otherwise.

Thm (Abdenur). Every tame diffeomorphism admits a
dynamaical decomposition into finitely many transitive
sets, with no cycles. Moreover, this decomposition s

robust restricted to the residual subset R.
More precisely, there exists

e a filtration My C M, C ---C My =M,

e periodic points p; € M; \ M; 1,1 <i< N,
e and a C'! neighborhood U of f,

such that for every g € U N'R the continuation p;(g) of p;
is defined and its homoclinic class A;(g) = H(pi(g),g) is
the maximal invariant set of g in M; \ M;_;. Then

Q(g) = A1(g) U---UAn(g).

Moreover, the elementary pieces A;(g) are projectively
hyperbolic (hyperbolic if dim M = 2).
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A is robustly transitive if it is the maximal f-invariant set

in a neighborhood U, and the maximal g-invariant set

Ag) = () 9"(U)

nez
in U is transitive for every g in a C'! neighborhood U of f.

A is generically transitive if the latter holds for a residual
subset of U.

Mané, Bonatti, Diaz, Pujals, Ures:
Robustly transitive = Projectively hyperbolic.

The arguments extend to the elementary pieces in the
theorem, which are generically transitive (at least).
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Wild dynamics

The first example were Newhouse’s C? diffeomorphisms

with infinitely many periodic attractors coexisting.

For dim M > 3 coexistence of periodic attractors occurs
also in the C! setting (Bonatti, Diaz).

Moreover,

Carballo, Morales, Bonatti, Diaz:

Thm. If dim M > 3, there exist open sets U C Diff' (M)
and residual subsets Ry C U such that every f € Ry has
infinitely many non-trivial disjoint homoclinic classes,

and also infinitely many saturated transitive sets without

periodic points.
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Summary of Lecture #2

e Projectively hyperbolic set A: for each x there is a
decomposition T, M = E. @ E? satisfying
1. Df(z)El = E}(m) and Df(z)E? = EJ%(m)
|Df" (x)va | |Df" (@)v1]|

2.
[vz]] ls

< CA\" (domination)

for every z € A, v1 € El, vo € E2, and n > 1, and
uniform constants C' > 0 and A\ < 1.

e Maximal transitive sets, saturated transitive sets, and
homoclinic class: candidates to elementary dynamical

pieces.

e For generic C! diffeomorphisms, homoclinic classes are
maximal transitive sets and saturated transitive sets. In

particular, they are 2-by-2 disjoint.

e If the number of disjoint homoclinic classes is finite
(tame dynamics), there is a dynamical decomposition
into finitely many pieces, transitive and projectively
hyperbolic. Moreover, there are no cycles, and the

decomposition is generically robust.
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Dynamics of projectively hyperbolic systems

Next, we study the dynamics of projectively hyperbolic

sets and attractors. Two warnings:
e Most results are for C? diffeomorphisms.

e Projective hyperbolicity is a very weak property (e.g. it
may coexist with homoclinic tangencies), except when all
the subspaces in the decomposition have dimension 1.

Thm (Pujals, Sambarino). Let A be a projectively
hyperbolic set of a surface diffeomorphism such that all
periodic points contained in it are hyperbolic saddles.
Then A is the union of a hyperbolic set and a finite
number of smooth invariant circles supporting irrational

rotations.
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‘Attractors and physical measures

A transitive invariant set A is an attractor if the basin of

attraction (topological)
B(A):={x e M :w(x) C A}

has positive Lebesgue measure.

Topological attractor: if the basin is a neighborhood of
the attractor (e.g. tame systems).

An ergodic invariant probability p is a physical measure,
or SRB measure, if the basin of attraction (ergodic)

n—00 N, 4

n—1
.1
B(p) :={x € M : lim — Z(Sfj(x) =}
7=0

has positive Lebesgue measure.

Conj (Palis). For a dense subset of Diff" (M), there are
only finitely many attractors and physical measures, and
Lebesgue almost every point is in the unions of their
basins of attraction (topological and ergodic).

Prob. For generic diffeomorphisms, the union of the

basins of all topological attractors is open and dense in

M7
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An existence and finiteness theorem

Thm (Alves, Bonatti, Viana). Let A be a projectively
hyperbolic attractor of a C? diffeomorphism f: M — M,
with decomposition T,M = ES* @ ES°, x € A. Assume

1. ES* 1s non-uniformly expanding and ES° is

non-uniformly contracting
2. z has stmultaneous cu- and cs-hyperbolic times

for Lebesgue almost every point z € B(A).

There are finitely many SRB measures supported in A,

and the union of the basins contains Lebesque almost

every point in B(A).

(Extend E°* ® E°° continuously to the basin.)

Non-uniformly expanding:
thUpn—)oonz] og || Df~ 1|E il <—c <0

Non—uniformly contractmg
lim sup,,_, o, + D e log IDfES )l <—c<0

Condition 2 is automatic if £°* is uniformly expanding

or £ is uniformly contracting.
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Partially hyperbolic attractors

Let f: M — M be C?. Let A be an invariant set with
dominated decomposition

T.M=E,®E,®FE,, z€A,
with E* uniformly expanding, £° uniformly contracting,
and dim E* > 0.

Then there exists a unique strong-unstable foliation F*
tangent to EY at every point £ € A. Assume the leaves
are entirely contained in A.

Foliated neighborhood at z € A: homeomorphism
¢ : B x X — A onto a neighborhood of z inside A, with

e B = unit disk of dimension dim £E*, and > compact

e cach ¢(-,n) a diffeomorphism to a strong-unstable disk.
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‘ (Gibbs u-states ‘

An invariant probability 1 on A is a Gibbs u-state if
every z € A has some foliated neighborhood ¢ such that
1 s equivalent to a product measure

1R O, (Lebesgue X V).
restricted to the image of ¢.

Thm (Pesin, Sinai). Let mp be normalized Lebesgue
measure along a disk D transverse to E€ ® E°. Every

limit measure of
n—1
=Y Fimp)
e
7=0
is a Gibbs u-state (density bounded from zero and o).

Thm (Bonatti, Viana). Suppose A is a topological
attractor. For Lebesque almost every point x € B(A),
every limit measure of

o208 @)
7=0

is a Gibbs u-state (density bounded from zero and oo ).

So, SRB measures must be Gibbs u-states if they exist.
34



1. Let D C B(A) be any disk transverse to E°¢ ® E°.

Using curvature and distortion control,

mp ({f"(z) € A}) < const|A| for all n.

2. Events f7(z) € A and f*(z) € A are “independent” if
|7 — k| is big, because iterates of D are expanded.

By a large deviations argument, the m p-probability of
1 .
—#{0<j<n—-1: f/(z) € A} > const |A]
n

decays exponentially with n. So, for mp-almost every x,

1
lim sup — Z 0i(z)(A) < const |A].
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Mostly contracting central direction

Conversely: if u is an ergodic Gibbs u-state such that the

central direction is mostly contracting

1
A(x) :=limsup — log | Df" | ES|| <0 @ — a.e.

n—-+oo

then 1 is an SRB measure.

Thm (Bonatti, Viana). Let A\°(x) < 0 on a positive
Lebesgue measure subset of every strong-unstable disk.
Then A supports finitely many SRB measures and the
unton of their basins contains Lebesque almost every
point in B(A).

If the strong-unstable foliation F“ is minimal, the SRB

measure 1S unique.

Minimal foliation: all leaves dense in A.

36



Gibbs cu-states

Now let A be projectively hyperbolic with decomposition
T.M = FE*® E;®, x¢€A.

Thm (Alves, Bonatti, Viana). Assume that E°" is
non-uniformly expanding on a positive Lebesque measure
subset of B(A). Then there exist ergodic Gibbs cu-states
supported in A.

Non-uniformly expanding:

lim sup — ZlogHDf 1|E il <—c<0

T — 00
=1

Gibbs cu-state: invariant probability measure with
dim E°* expanding directions (positive Lyapunov
exponents) and absolutely continuous conditional
measures along the corresponding unstable manifolds.
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Hyperbolic times

The key tool in the proof is the following notion: n is a

cu-hyperbolic time for z if

IDf* | EG oyl < e /2 foralll <k <n.

If E°* non-uniformly expanding at z then z has positive

frequency of cu-hyperbolic times:
#{cu-hyperbolic times < n} > 6(c)n for all n
with 6(c) > 0.

Rmk. If w = lim; f™(z;) where each n; is a hyperbolic
time of z; and n; — oo, then w has unstable manifold of
dimension dim E°* and size > d(c) > 0.

To construct Gibbs cu-states one starts with any disk D
transverse to £°° such that E°* is non-uniformly
expanding on a positive Lebesgue measure set Dy C D,
and considers accumulation points of

n—1

1 .
- g f7 (mD | {2z : j is a cu-hyperbolic time for z})
n

=0
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Any ergodic Gibbs cu-state p that has dim £ negative
Lyapunov exponents is an SRB measure.

That is the case for Gibbs cu-states obtained before, if on
the positive Lebesgue measure set Dy C D

e F/°° is non-uniformly contracting

lim sup — Zlog||Df|E il <—e<0

T — 00
=0

e there is positive frequency of simultaneous cu- and

cs-hyperbolic times
n is a cs-hyperbolic time for z if

IDf* | ES: | <e k2 foralll<k<n.

k()

In this way one constructs SRB measures supported in A.

Using the existence of stable and unstable manifolds with
size > d(c) we get that the SRB measures are finitely

many.

To prove that their basins cover Lebesgue almost every
point in A: if not, we could use the exceptional positive
Lebesgue set to construct one more SRB measure.
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Summary of Lecture # 3
e Definitions of attractor and physical (SRB) measure.

e Gibbs u-states of partially hyperbolic attractors with
expanding subbundle. Gibbs u-states exist, and every
SRB measure is an ergodic Gibbs u-state.

e Existence and finiteness of SRB measures when the
central direction is mostly contracting.

e Gibbs cu-states of projectively hyperbolic attractors
with non-uniformly expanding subbundle. Positive
frequency of cu-hyperbolic times yields Gibbs cu-states.

e Existence and finiteness of SRB measures for
projectively hyperbolic attractors non-uniformly
hyperbolic and with simultaneous hyperbolic times.
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Non-uniform hyperbolicity

Let f : M — M be a C" diffeomorphism, » > 1, on a
compact manifold M and p an f-invariant probability

Imeasure.

Oseledets: p-almost every point admits a splitting
T.M=E'!® ---0E", k=k),

and real numbers A1 (f,x) > -+ > A\ (f, ) such that

lim ~log|| D™ (2)uill = Mi(f, @)

n—+oo n

for every non-zero v; € E.

non-uniform hyperbolicity < all Lyapunov exponents

Ai(f, ©) non-zero p-almost everywhere

Prob. Are most systems non-uniformly hyperbolic ?

Fix 4 (e.g. Lebesgue measure) and consider

Diff (M) = {C" diffeomorphisms preserving p}.
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A dichotomy for conservative systems

Let p be Lebesgue measure and r = 1.

Thm (Bochi). If dim M = 2, there is a residual subset
R of Diﬂ"i(M) such that for every f € R

o cither \i(f,x) =0 at p-almost every x € M
e or f is Anosov (and then M = T?).

Thm (Bochi, Viana). In any dimension, there is a
residual subset R of Diffi(M) such that for f € R and
w-almost every x € M,

o cither all \;(f,x) =0 or
e the Oseledets splitting is dominated on the orbit of x

The latter implies that

e the angles between the subspaces E* are bounded from
zero over the orbit of x

e and the splitting extends continuously to the closure of
the orbit.
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Ex (Bonatti, Viana, Tahzibi). For M = T* and
1 =Lebesgue measure, there exists an open subset I/ of
Diffi(M) such that, for every f € U,

e f admits a dominated splitting T'M = E & F with
dimF =dim F = 2

e these are the only continuous invariant subbundles;
e f is transitive and, for a residual subset R, ergodic;

e F is not expanding and F' is not contracting.

Cor. There exists a residual subset S of U such that for
every f € S the Oseledets splitting of f is EX ® E? with
dim E! = dim E? = 2.

1. Take § = R N'Rgy, where R is the residual set in the
theorem. For f € S,

2. The Lyapunov exponents are not all zero, by the first
property. So, by the theorem and using ergodicity, the
Oseledets splitting extends to a dominated splitting on
the whole M.

3. Since f has no other continuous invariant subbundles,
this extension must coincide with F & F'.
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Deterministic products of matrices

Let f : M — M be a transformation on a compact metric
space M. A linear cocycle over f is a skew-product

F:MxRY 5 M xR  F(z,v) = (f(z), Alz)v)

where A : M — SL(d,R) (or GL(d,R)).
Then F™(x) = (f™(z), A" (x)v) with

AM(@) = A(f" (=) - A(f(2)) Az).

Oseledets: Let u be any f-invariant probability. For
p-almost every point there is a filtration

(2} xRY=F} > ... > FF > {0}, k=Ek(z),

and real numbers A1 (A4,z) > --- > Ag (A, z) such that

lim 2 log | A™(2)ui]| = Ai(A, 2)

n——4+oo N

for every v; € F! \ FT1. If f is invertible we even have a
splitting of {z} x R? (better than a filtration).

44



Let i be any ergodic f-invariant probability.

Thm (Bochi, Viana). There is a residual subset R of
all continuous maps M — SL(d,R) such that for A € R

o cither all \;(A,x) = 0 at p-almost every point
e or the Oseledets splitting extends to a dominated

splitting on the whole support of u.

Ex. Suppose for every 1 <1 < d there exists a periodic
point p; of f in the support of u, with period k; , such
that the eigenvalues {8% : 1 < j < d} of A%i(p;) satisfy

81 2 - 2 |Bial > 1Bi_al = 18] > 1Bial > -~ > 18]
and ¢, %, are complex conjugate (not real).

This obstructs the existence of a dominated splitting, for
any map B : M — SL(d,R) in a C° neighborhood U of
A. Therefore, all Lyapunov exponents are zero, for B in
a residual subset of U.
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‘Prevalence of non-zero exponents

Suppose f: M — M is a C! diffeomorphism with
derivative Holder continuous, and

e 1 is (non-uniformly) hyperbolic: \;(f,x) # 0 for all i

and p-almost every point;

e 11 has local product structure: for py-almost every point
x there is a product “neighborhood” V such that

pl Vo p® xp

WS

Rmk. Lebesgue measure has local product structure if it

is hyperbolic (< absolute continuity of foliations).

Same for hyperbolic invariant measures with conditional
measures along unstable manifolds absolutely continuous

with respect to Lebesgue measure.
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Let (f, #) be non-uniformly hyperbolic with local product

structure.

Thm. For any 0 < r < oo, there exists an open and
dense subset O of all C" maps A : M — SL(d,R) such
that every A € O has non-zero Lyapunov exponents at

w-almost every point. The complement of O has oo
codimension in C"(M,SL(d,R)).

00 codimension < contained in finite unions of closed

submanifolds with arbitrarily large codimension.

Suppose f : M — M is uniformly hyperbolic.

Thm. For any 0 < r < oo, there exists an open and
dense subset O of all C" maps A : M — SL(d,R), whose
complement has oo codimension, such that every A € O
has non-zero Lyapunov exponents at p-almost every
point, for every invariant measure with local product

structure.

Probably, all Lyapunov exponents have multiplicity 1.

Bonatti, Gomez-Mont, Viana: a particular case of the

second theorem, assuming a property of domination.
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An application

Consider d = 2 and f : M — M uniformly expanding.

Def. A: M — SL(2,R) is bundle-free if, for any n > 1,
there is no C™n("LP) map 4 : 2 = {Y1(z), ..., ¥, (7)}
assigning to each = € M a subset of RP! with exactly n

elements, invariant under the cocycle

A(x) ({1 (2), ., ¥ (2)}) = {U1(f(2)), .-, ¥ (f(2))}
for all x € M.

Thm. Suppose A € C", r > 0 is bundle-free and there
exists some periodic point p € M of f such that A 1s
hyperbolic over the orbit of p. Then A1(A,z) > 0 at
w-almost every point, for every f-invariant ergodic

measure with local product structure.

The condition on the existence of some periodic point
over which the cocycle is hyperbolic, is mild (open and
dense subset whose complement has co codimension).
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Ex. Let f: S! — S! be expanding, u be the absolutely
continuous invariant measure, and A : St — SL(2,R) be
of the form

A(zx) = Ra(m)AO
e Ag is some hyperbolic matrix,
o o: S — St is a continuous function with «(0) = 0,
® R, () is the rotation of angle ().

Assume that 2deg(«) is not a multiple of deg(f) — 1.

Cor. There exists a C° neighbourhood U of A such that
1. M(B,u) =0 for B in a residual subset R NU;
2. M(B,u) >0 forall BeEUNCT, any r > 0.

First, let Uy be the isotopy class of A in the space of
continuous maps from M to SL(2,R).

Claim: Given B € Uy there is no B-invariant continuous

map
i M 3w (@), (@)

assigning a constant number 1 > 1 of elements of RP! to
each point x € M.
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The proof of the claim is by contradiction. Suppose there

exists such a map. The graph
G = {(z,¢i(z)) € S' xRP' : z € S* and 1 < i < n}

represents an element (7, () of the fundamental group
m1(S1 x RP') = Z @ Z (if it is connected, otherwise

consider connected components).

Because B is isotopic to A, the image of G must represent
(ndeg(f),¢ +2deg(a)) € m1(S* x RPY).

The factor 2 comes from the fact that S! is the 2-fold
covering of RP!.

By the invariance of

¢ + 2deg(a) = deg(f)C

which contradicts the hypothesis that deg(f) — 1 does
not divide 2 deg(«).
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Now we can prove the Corollary:

1. By Bochi there is a residual subset R of continuous
cocycles which either are uniformly hyperbolic or have
both Lyapunov exponents equal to zero.

The claim rules out the first case, for all B € R NU.
Hence, B has both Lyapunov exponents equal to zero

almost everywhere.

2. The claim implies that every B € Uy N C", r > 0 is
bundle-free. Condition «(0) = 0 ensures that p =0 is a
hyperbolic fixed point, for B in a neighborhood U C Uj.

Using the theorem, A\;(B,u) >0 forall BeUNC.
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Summary of Lecture # 4

e A dichotomy for generic conservative diffeomorphisms:
projective hyperbolicity or no hyperbolicity at all (every
Lyapunov exponent equal to zero), at Lebesgue almost

every orbit.

e This extends to generic continuous linear cocycles over

any transformation.

e The conclusion is radically different for C" cocycles,

r > 0, over a non-uniformly hyperbolic transformation
with local product structure: the overwhelming majority
of C" cocycles have non-zero Lyapunov exponents.
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