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Abstract

We consider partially hyperbolic diffeomorphisms preserving a splitting
of the tangent bundle into a strong-unstable subbundle E** (uniformly
expanding) and a subbundle E¢, dominated by E“*.

We prove that if the central direction E° is mostly contracting for the
diffeomorphism (negative Lyapunov exponents), then the ergodic Gibbs
u-states are the Sinai-Ruelle-Bowen measures, there are finitely many of
them, and their basins cover a full measure subset. If the strong-unstable
leaves are dense, there is a unique Sinai-Ruelle-Bowen measure.

We describe some applications of these results, and we also introduce
a construction of robustly transitive diffeomorphisms in dimension larger
than three, having no uniformly hyperbolic (neither contracting nor ex-
panding) invariant subbundles.

1 Introduction

Uniformly hyperbolic systems [Sm] may present very rich and complicated dy-
namical features: even a small modification of the initial condition often leads to
rather different behaviour of the orbit over long periods of time. This means that
the position of individual points after a large number of iterations is essentially
unpredictable. Because of this, such systems are sometimes considered “chaotic”.

Nevertheless, hyperbolic systems have very well-defined statistical properties.
[Si], [Ru], [BoRu] showed that time-averages of any continuous function along
almost every orbit converge to a limit as time goes to infinity. More precisely, if
f: M — M is a hyperbolic diffeomorphism (similar results hold for flows) then
there exist finitely many f-invariant probability measures p1, ..., ur such that
for any continuous function ¢ : M — R and for Lebesgue almost every point
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for some i. We call basin of u; the set B(u;) of points z € M for which (1)
holds. More generally, an invariant probability measure of a general diffeomor-
phism is called an SRB (for Sinai-Ruelle-Bowen) measure if its basin B(u) has
positive Lebesgue measure. For hyperbolic diffeomorphisms f, the properties of
the systems (f, ;) are now well-understood. In particular, they are exponentially
mixing (exponential decay of correlation functions) [Bow], and stochastically sta-
ble [Ki], [Yo].

One would like to have such a satisfactory understanding of the dynamics
for very general systems. On the other hand, several robust models that do
not fit in the hyperbolic theory have been described since the sixties: Lorenz-
like attractors [Lo], [ABS], [GuWi], Hénon-like attractors [He], [BeCa], partially
hyperbolic diffeomorphisms [AbSm], [Sh1], [Mal], [BoDi]. An important goal in
Dynamics in recent years has been to enlarge the framework of hyperbolicity,
in order to encompass such models in a global theory of “chaotic” dynamical
systems.

A program towards such a global theory has been proposed a few years ago by
J. Palis, see [Pa]. At its core is his conjecture that every dynamical system can
be approximated by another having only finitely many attractors, all of which
have good statistical properties (SRB measures, statistical stability).

The ergodic properties of these systems have been studied to some extent: see

g- [Sp], [CoTr], [Pe2], [Sa] for the Lorenz-like attractors, and [BeCa], [BeYol],
[BeYo2], [BeVil], [BeVi2] for the Hénon-like attractors. Partially hyperbolic sys-
tems are a rather large class and exhibit a very broad spectrum of dynamical
behaviour. See for instance the example in [Ka] of partially hyperbolic diffeo-
morphisms with intertwined basins of attraction. Despite substantial progress,
e.g. by [Al], [BrPe], [Car], [PeSi], [GPS], [Yo], their ergodic properties are still
far from being completely understood.

In particular, it is not known in which generality such systems admit SRB
measures, and this problem is a main motivation for the present work. We obtain
results of existence and finitude of SRB measures, that we state in more detail
below. These may be thought of as a positive step in Palis’ program mentioned
above.

1.1 Partially hyperbolic diffeomorphisms

Let M be a compact riemannian manifold and f be a C! diffeomorphism on
M. Here we call f partially hyperbolic if there exists a continuous D f-invariant
splitting

TM = E"* @ E¢ (2)
of the tangent bundle of M, such that

I(DFIE™) 7! <1 and |IDFIE|||(DFIE™) ]| < 1



In other words, Df|E"* is uniformly expanding and dominates Df|E° : Df
expands any vector in E° less than it expands any vector in E**. (The usual
definition of partial hyperbolicity is equivalent to either f or f~! satisfying this
condition.) More generally, we consider diffeomorphisms with partially hyperbolic
attractors, that is, compact subsets A of M such that

A=) 1)

n>0

for some open neighbourhood U of A with closure f(U) C U, and there exists a
splitting TA M = E"* @ E° of the restriction of the tangent bundle to A, with
the same properties as before.

Partially hyperbolic systems were used by [Shl] to give the first examples
of diffeomorphisms (in the 4-torus 7'*) which are robustly transitive and, yet,
are not globally hyperbolic (Anosov). One calls a diffeomorphism f C' robustly
transitive if any diffeomorphism g in a C' neighbourhood of f has orbits dense
in the ambient manifold. Likewise, we say that f has a C' robustly transitive
attractor A if for any diffeomorphism g C! close to f the maximal invariant set

Alg) = () 9™(U)

n>0

contains dense orbits. A different construction, that also produces partially hy-
perbolic maps, enabled [Mal] to reduce the minimal dimension of these examples:
there are C! robustly transitive diffeomorphisms in 7 which are not Anosov.
All these examples have a strong form of partial hyperbolicity: there exists a
continuous splitting into three nontrivial (positive dimension) subbundles

TMZEuu@EC@ESS

where E*® is uniformly contracting. On the other hand, an important restriction
is that the central subbundle E¢ was always 1-dimensional. This was removed
by [BoDi], who constructed the first examples of C* robustly transitive partially
hyperbolic (three nontrivial subbundles) diffeomorphisms with arbitrary central
dimension.

More recently, [DPU] showed that partial hyperbolicity is, in fact, intimately
related to robust transitiveness, at least in dimension three: a C! robustly tran-
sitive diffeomorphism of a 3-manifold must be partially hyperbolic. On the
other hand, [Bon] gives examples of C' robustly transitive diffeomorphisms in
3-dimensional manifolds such that E°° is trivial.

Here we produce further examples of this kind, and we also show that the
results of [DPU] do not extend directly to higher dimensions: we obtain in T, cf.
Theorem C, the first examples of robustly transitive diffeomorphisms that do not
admit any invariant hyperbolic subbundles. On the other hand, these maps do
have a weaker hyperbolicity property, namely they admit a dominated splitting.



In fact, [BDP] announce that this is always the case for a robustly transitive
diffeomorphism, in any dimension.

Another result that concerns us directly, is the construction by [PeSi] of Gibbs
u-states for partially hyperbolic attractors of diffeomorphisms. By Gibbs u-states
we mean here invariant probability measures whose conditional measures [Ro]
along the leaves of the strong-unstable foliation F** (the unique foliation tangent
to the subbundle E**) are absolutely continuous with respect to the correspond-
ing Lebesgue measure.

[Car] used their construction to exhibit SRB measures for partially hyperbolic
attractors of diffeomorphisms derived from Anosov diffeomorphisms through bi-
furcation of a periodic orbit. The present work is partially motivated by this
paper, whose results we generalize.

1.2 Statement of main results

Our first main result states that if the central direction is mostly contracting for
the diffeomorphism, then ergodic Gibbs u-states are SRB measures, and there are
finitely many of them. Let us state this in a precise form. We take f : M — M
to be a C? diffeomorphism satisfying conditions (H1), (H2) below.

(H1) f has an attractor (not necessarily transitive), that is, a compact set
A C M which is invariant under f and is the maximal invariant set

A=) O
n>0

in some open neighbourhood U of A with closure f(U) C U.

For instance, we may take A to be the whole manifold M. In general, we call
basin of A the set
B() = 1.
n>0
of points whose future orbits accumulate on A.

(H2) There is a continuous decomposition TAM = E"* @ E° of the tangent
bundle to M over A and there exists A < 1 satisfying

(i) the decomposition is invariant under D f;
(i) (DS | B2)~1| < A and |Df | EZII[(Df | B2~ < Afor all 2 € A,

The subbundles E** and E°¢ in (H2) are necessarily Holder continuous, and
the strong-unstable subbundle E** is uniquely integrable, see [BrPe, §2]. We
denote by F“* the integral foliation, defined over the compact set A. Its leaves



are C? immersed submanifolds of M, with uniformly bounded curvature, see
[Sh2, p 79], and they admit the following dynamical characterization:

F ) =F"(y) & d(f (@), "(y) < X"d(z,y) for every n > 1.

Given any point z € A, we denote
1
S (2) =limsup — log || D f"|E;||.
n—+oo N

In other words, A{ is the largest Lyapunov exponent of f along the central
direction, wherever this is defined. By Oseledets theorem, see [Ma2, IV.10],
Lyapunov exponents are defined almost everywhere, with respect to any invariant
measure.

Then we state

Theorem A. Suppose that the diffeomorphism f satisfies (H1), (H2), and

(H3) for every disk D"* contained in a leaf of F** we have XS (z) < 0 for a
positive Lebesgque measure subset of points x € DV

Then f has finitely many ergodic Gibbs u-states py,...,u;. They are SRB mea-
sures for f, and the union of their basins B(u;) is a full Lebesgue measure subset
of the basin B(A) of A.

We also prove the following statement of uniqueness of SRB measures.
Theorem B. Suppose that the diffeomorphism f satisfies (H1), (H2), and
(H4) all the leaves of the foliation F** are dense in A;

(H5) there exists a disk D" contained in some leaf of F** such that A (z) <0
for a positive Lebesgue measure subset of points x € D¥*.

Then f has a unique Gibbs u-state u, and it is ergodic. The support of p coincides
with A. Moreover, the basin B(u) is a full Lebesgue measure subset of B(A), in
particular, p is the unique SRB measure of f in B(A).

Theorems A is proved in Sections 2 through 4. In Section 5, we explain
how the arguments can be adapted to give Theorem B. (H1), (H2) are standing
hypotheses throughout these sections, except if otherwise stated.

In Section 6 we describe a few examples related to these theorems. First
of all, we revisit the construction of [Car]. Next, by modifying a beautiful con-
struction of [Mal], we obtain the examples of robustly transitive diffeomorphisms
without uniformly contracting subbundle E*® we mentioned before. These diffeo-
morphisms satisfy (H4), and the central subbundle E° is mostly contracting in
the sense of (H3) (which is stronger than (H5) ), so Theorem B applies to them.

By further modifying our construction, we are able to give the first examples
of robustly transitive diffeomorphisms, in four dimensions, having no invariant
hyperbolic subbundle.



Theorem C. There exists an open subset U of Diff* (T*) such that any f € U
is transitive and admits a continuous invariant dominated splitting into two 2-
dimensional subbundles

TM = E“ @ E®, |DfIEC|[(DfIE™)T <A<

such that D f|E°® is uniformly volume contracting but not uniformly contracting,
Df|E" is uniformly volume expanding but not uniformly expanding, and neither
of them admits an invariant subbundle. Moreover, U contains an open subset of
the space of C' volume preserving diffeomorphisms.

A natural problem is to study the properties of SRB measures as we construct
in Theorems A and B. We mention two very important recent developments.
[Cas] introduces a method of ‘backward inducing’ and applies it to prove expo-
nential decay of correlations and the central limit theorem (in the Banach space
of Holder functions) for a class of attractors including those in [Car]. Exponen-
tial decay and the central limit theorem are also obtained by [Do], through a
different approach, for another large class of partially hyperbolic systems with
mostly contracting central direction (‘average contraction property’).

Another question raised by our results concerns what happens when the cen-
tral subbundle is mostly expanding (in this case it is natural to consider a splitting
E* @ E° instead). This is the subject of an ongoing project, whose results will
appear in [ABV]. At present, the general answer is less complete than what
we obtain here for the contracting case, but SRB measures can already be con-
structed in fair generality, specially when E° is 1-dimensional.

The examples of persistently transitive diffeomorphisms without uniformly
hyperbolic subbundles given by our Theorem C present a new challenge. We
expect ideas from [ABV] to be useful, specially when E°® is mostly contracting
and E° is mostly expanding.

2 Pesin theory and Gibbs u-states

The following proposition asserts that points z with A (z) < 0 have a stable
manifold, in the sense of Pesin’s theory, transverse to the strong-unstable leaf
passing through z.

We call wu-disk the image of any embedding into a strong-unstable leaf of
a euclidean disk with the same dimension as the leaf. The uu-ball of radius r
around a point z is the set of points in the strong-unstable leaf of z, and whose
distance to z, with respect to the riemannian metric induced on the leaf, is at
most 7.

Proposition 2.1. Let A5 (z) < 0 for every point = in a positive Lebesgue mea-
sure subset Ay of some uu-disk D**. Then



1. For every point x € Ao there exists a C* embedded disk W (z) tangent to
E¢ at z, and such that the diameter of f*(W? .(x)) converges exponentially
fast to zero as n — +o0.

2. The C* disk W}, (z) depends in a measurable way on the point z, and the
“foliation” {W} .(x) : x € Ao} is absolutely continuous.

The proposition follows from standard arguments in Pesin’s theory, see [Pel],
[PuSh]. We just recall the terminology.

Given ¢ > 0 we denote D"*(¢) the tubular neighbourhood of radius € > 0
around D", defined as the image under the exponential map of M of all the
vectors of norm less than € > 0 in the orthogonal complement of EX", for all
z € D¥. If ¢ > 0 is small enough then D¥%(¢) is diffeomorphic to a cylinder,
and it comes equipped with a canonical projection m onto D**, which is a C!
map. We say that a C! disk v crosses D*“(¢) if it is contained in D**(¢) and 7
induces a diffeomorphism of v onto D%*.

Absolute continuity means that there exists a sequence (K,), of compact
subsets of Ay with Leb(Ag\K,) converging to zero as n — oo, and there exist
maps

K,>z - W, ()

associating to every point z in K,, an embedded C' disk W¥(z) and satisfying:

(a) W .(z) depends continuously on the point z in K,. In particular, there

exists a uniform lower bound for the size of W} .(x) in K,; in more precise
terms, there exists §, > 0 such that the preimage of W} (x) under the
exponential exp, of M at z contains the graph of a C' map defined from

the §,, neighbourhood of 0 in ES to E¥*.

(b) given any 0 < ¢ < §,/2 and any C' disk ~y crossing the tubular neighbour-
hood D“*(g) the holonomy map

p: U (vﬂWﬁ,C(w)) - K,

TEK,

defined by projection along the leaves of the foliation {W} (z) : z € K,}
is absolutely continuous

Leb(p,(A)) = / Jp, d(Leb) for every Borel subset A
A

with jacobian Jp, bounded away from zero and infinity by constants that
depend only on the compact set K, and the minimum angle between v and
the local stable manifolds W} ().

Corollary 2.2. Let Ay be as in Proposition 2.1. Then there exist € > 0 and
1 > 0 such any wu-disk y that crosses the tubular neighbourhood D**(g) intersects
the union of all W (x),x € Ao in a subset whose Lebesgue measure is larger than
nLeb(v).



Proof. This follows easily from Proposition 2.1. Fix n > 1 such that K, has
positive Lebesgue measure, and then fix 0 < £ < §,/2. By continuity of the
strong-unstable subbundle E“* and of the local stable manifolds through points
of K, the angle between any uu-disk and those local stable manifolds is uniformly
bounded away from zero (up to reducing € > 0, if necessary). The conclusion
follows. [l

Next we prove some simple facts about Gibbs u-states. By such we mean
invariant probability measures whose disintegration along the leaves of the strong-
unstable foliation yields measures which are absolutely continuous with respect
to Lebesgue measure on the leaves. More precisely, we use the following property
which is part of the definition proposed by [PeSi].

Let £ be the strong-unstable leaf through an arbitrary point z € A. Given r >
0and W a C! (open) disk centered at z and transverse to £, denote II(z, W, r) the
union of all (open) uu-balls v(z,r) of radius r centered in the points z € WNA. By
definition, the restriction of u to this foliated box II(z, W,r) has a disintegration
(t2) zewna with respect to the foliation {v(z,r) : z € W N A}, such that every
p is absolutely continuous with respect to Lebesgue measure m.,; ) on y(z,r).
Moreover,

d/"z (y) = p(y7 z) dm’y(z,r)
for some positive function p which is bounded away from zero and infinity, in
terms only of r and W. We shall denote fi the quotient measure induced by
in the space of leaves y(z,r). This quotient space can be canonically identified
with the intersection of A with the disk W, and we do so.

Theorem 4 of [PeSi] implies that partially hyperbolic attractors always sup-
port Gibbs u-states:

Lemma 2.3 (PeSi). Let o be an arbitrary uu-disk and m, be the normalized re-
striction of Lebesgue measure in o. Then any accumulation point of the averaged
push-forwards limn =1 Zy;ol fi(ms) is a Gibbs u-state.

The following lemma will be useful in Section 5.

Lemma 2.4. The support of any Gibbs u-state . of f on A is saturated by F**,
that is, it consists of entire leaves of F**.

Proof. Suppose otherwise, that is, there is some strong-unstable leaf £ that in-
tersects A = supp p and is not entirely inside A. Take x a point in the boundary
of AN L inside £ (recall that £ is an immersed submanifold of M, at this point
we endow it with the metric induced by the immersion). Fix any r and W and
consider the corresponding foliated box II(z, W,r). Our choice of z ensures that
there exists yo € y(z,r)NA, and then there exists some small open neighbourhood
V of yo in A, contained in II(z, W, r) and such that u(V) = 0. Now

(V) = / 1 (V 0y () di(z) = / ( /V ) dmv(z,my)) dji(2).



Recall that fi is the quotient measure of p in the space of leaves v(z,r). Since p
is strictly positive, the fact that u(V) = 0 must come from some neighbourhood
of £ in AN W having zero ji-measure. More precisely,

(W) =0, where Wo={z€ ANW :V N~(z,r) # 0}

As a consequence, the neighbourhood II(z, Wy, r) of = in A has zero u-measure,
which contradicts the fact that = is in the support of u. O

The following remark explains the relation between Gibbs u-states and SRB
measures when the central direction is mostly contracting.

Remark 2.5. Let u be an ergodic Gibbs u-state and D** be a uu-disk contained
in the support of u. Suppose there exists a positive Lebesgue measure subset
Ao C D" such that XS (z) < 0 for every z € Ag. Then p is an SRB measure.
Indeed, cf. Corollary 2.2, the union of the local stable manifolds W} .(z) through
points of € Ag intersects any uu-disk close enough to D¥* in a positive Lebesgue
measure subset. Since p is an ergodic Gibbs u-state, we may take such a disk
so that a full Lebesgue measure subset is contained in the basin of x. Then,
by absolute continuity, local stable manifolds W} (x) passing through points of
B(u) form a positive Lebesgue measure subset of M which, clearly, is contained
in the basin of p.

2.1 Accessibility classes and consequences of (H3)

In this subsection we assume (H3) in addition to (H1), (H2).
Let R be the set of regular points of f, defined as the set of all points z € A
satisfying the following pair of conditions:

1. given any continuous function ¢ : M — R, both limits (Birkhoff averages)

n

m 2 p(f(@) and  m L3 o(7@)

n——+o0o N, 4 —00

exist, and coincide;

2. the largest Lyapunov exponent of f at x along the central direction is well-
defined and negative:

.1 . 1 _
lim —log|Df"ES| = nllf_noo = log [|(Df™E5)~ || < 0.

n—-+oo N
A strong-unstable leaf is regular if Lebesgue almost every point in it is regular.
We denote S the set of all regular points contained in regular leaves. By Propo-
sition 2.1, every point z € S has a local stable manifold W} _.(z) tangent to Ej

at x.
In what follows we take u to be a Gibbs u-state, and suppose that (H3) holds.



Lemma 2.6. The set S has full p-measure, for any Gibbs u-state p.

Proof. For any foliated box II(xz, W, r), let (). be the disintegration of u along
strong-unstable plaques y(z,r), and [i be the quotient measure. According to the
ergodic theorem, condition (1) holds for a full y-measure subset of A. Oseledets
theorem ensures that the limits in (2) exist and are equal p-almost everywhere.
So, except for the inequality in (2), all the conditions in the definition of regular
point are true for p,-almost every point in y(z,r), and ji-almost every z. Now
let z be such that the largest central Lyapunov exponent is well-defined for p.-
almost every point in y(z,r). Condition (H3) implies that AS < 0 on a positive
[-measure subset. Since the lim,_,_, in (2) is constant over v(z,r) (because
this is contained in an unstable manifold), it follows the largest central Lyapunov
exponent has to be negative u,-almost everywhere in v(z,r). So the set of regular
points has full g-measure on the box, in fact, fi-almost every ~(z,r) intersects
R in a full p,-measure subset. The lemma follows by considering a (finite or
countable) covering of A by foliated boxes. O

Now we say that z,z € S belong in a same accessibility class if there are n > 1
and points £ = yo,¥1,---,Yn = 2 all in S and such that for every ¢ = 1,...,n at
least on of the points y;,1;—1 belongs either in the local stable manifold W}, or
in the strong-unstable leaf F** of the other:

either y; € Wi (yio1) UF"(yic1) or yi1 € Wi (yi) U F*"(ys).

Clearly, this defines an equivalence relation. Moreover, if two points belong in
a same equivalence class then they have the same Birkhoff averages, for every
continuous function ¢.

Lemma 2.7. Accessibility classes are open subsets of S.

Proof. For any given z € S and <y be a small neighbourhood of z in F*¥(z).
Let € > 0 be as given by Corollary 2.2. Given any point y € S close enough to
z, the strong-unstable leaf of y contains a segment <y, that crosses the tubular
neighbourhood ~y(g). Then ~, intersects the union of local stable manifolds of
points in < in a positive Lebesgue measure subset A,. In fact, almost every
point in A, is in the local stable manifold of a point in S N+, since S has full
Lebesgue measure in «y, and the stable foliation is absolutely continuous. Since S
also has full Lebesgue measure in ,, we conclude that a full Lebesgue measure
subset of A, consists of points in S. By construction such points are in the
same accessibility class as x and as y. This proves that every y € S in an open
neighbourhood of x belongs in a same accessibility class as x. O

Corollary 2.8. The ergodic components of a Gibbs u-state p are normalized
restrictions of u to accessibility classes, and so they are also Gibbs u-states.
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Proof. Since accessibility classes are open in S there are at most countably many
of them. Then, the classes which have zero measure cover only a zero measure
subset of S, and so they can be discarded. Recall also that S has full y-measure.
Since Birkhoff averages are constant on accessibility classes, for any class A with
#(A) > 0 the probability pa given by pa(B) = u(A N B)/u(A) is ergodic. So
the ergodic components of y are precisely these normalized restrictions p4, and
so they are absolutely continuous along strong-unstable leaves. O

Lemma 2.9. Under condition (H3), there are finitely many accessibility classes,
and so f has only finitely many ergodic Gibbs u-states. Moreover, their supports
are disjoint.

Proof. Let C,, n > 1 be accessibility classes. Choose 7, a ball with radius
uniformly bounded from below in a regular strong-unstable leaf, such that SN+,
is nonempty and contained in C,,. Taking a subsequence, we may suppose that
~Yn converges to some wu-disk D**. By (H3) and Proposition 2.1 there exists
a positive Lebesgue measure subset Ay of D** such that each point z in A
has a Pesin local stable manifold. Moreover, restricting Ag if necessary, we may
suppose that W} .(z) contains a ball of uniform radius § around z (the distance
from 2 to the boundary of W} (x) is larger than J), for every z in Ag. Then
these local stable manifolds intersect ~,, in a positive Lebesgue measure subset,
for every large values of n. This implies that the points of SN+, are in a same
accessibility class for every large n. So there are only finitely many distinct classes
Cn- The second part of the lemma is now an easy consequence of Corollary 2.8.
These arguments also prove that the supports of different ergodic Gibbs u-states
are disjoint. O

Cf. Remark 2.5, under (H3) every ergodic Gibbs u-state is an SRB mea-
sure. Therefore, to prove Theorem A it is enough to show that the basins of
these ergodic Gibbs u-states cover a full Lebesgue measure subset of the basin of
attraction. This will be given by Proposition 4.2.

We note that in the present section, as well as in the next one, we do not
need the full strength of the definition of attractor in (H1).

Remark 2.10. For the construction of Gibbs u-states by [PeSi] it is sufficient
that A be a compact f-invariant set, and that there exist a strong-unstable
foliation (uniformly contracted by negative iterates) whose leaves are contained
in A and whose tangent bundle is Holder continuous, cf. [PeSi, p. 421]. These
assumptions, weaker than (H1)+(H2), together with (H3), are also sufficient for
all our results in the present Sections 2 (and in Section 3). So, they suffice to
ensure that there exist only finitely many Gibbs u-states, and they are SRB
measures. That is, A is a measure-theoretical attractor, even if it may not be a
topological attractor. This is precisely the case in the examples of [Ka].
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3 Distortion bounds

In this section we prove certain bounds on the distortion of iterates of f restricted
to strong-unstable leaves or, more generally, to submanifolds tangent to a strong-
unstable cone field C*** in a neighbourhood of the attractor. First, a few words
of explanation.

We adopt the following conventions. A continuous cone field C' = (C,) defined
on a subset V' C M is called centre-unstable if it is forward invariant:

Df(z)-C, C Cf(m) for every z € V N fﬁl(V)-

We call it strong-unstable if it is strictly invariant, D f(z) - C, is contained in
interior(C(,)) U{0}, and every vector in it is uniformly expanded: there is o > 1
so that

IDf(z)-v|| > o||v|| for every v € Cp and z € V N f1(V).

Finally, a continuous cone field is centre-stable, respectively, strong-stable for f
if it is centre-unstable, respectively, strong-unstable for f=1.

Hypothesis (H2) implies the existence of a strong-unstable cone field C**
defined on a neighbourhood V' C U of A. For points in € A we may take C¥**
to consist of the tangent vectors whose angle to the direction of E** is less than
some small constant £ > 0. This defines a continuous cone field on A which is
sent strictly inside itself by D f, and whose vectors are uniformly expanded by
Df. Then it suffices to consider an arbitrary continuous extension of this cone
field to a small neighbourhood V' of the attractor, which we also denote C**. By
(H1), V may be taken invariant under f in the sense that f(V) C V. We say
that a disk v C V is tangent to C** if the tangent space to vy at every point z is
contained in C*™.

For a point z € A we denote (J**f)(z) the absolute value of the determinant
of Df|E¥ : E¥* — E}‘E‘z), and call it the strong-unstable jacobian of f at x.
Lemma 3.1. Given L > 0 there exists Ly > 0 such that, given any C? disk
v C V tangent to the strong-unstable cone field with curvature less than L, then
every positive iterate fi(y) has curvature bounded by L.

Proof. We start with some preliminary remarks. Clearly, the content of the claim
does not depend on the choice of a smooth riemannian metric in the neighbour-
hood V' of A. For convenience, we consider a metric in which the central bundle
and the strong-unstable bundle be nearly orthogonal. More precisely, we choose
the metric in such a way that, for some uniform constant \; < 1,

(i) [|Df - v|| > A7 H|v|| for every v in a strong-unstable cone;

i) (|IDf - w||/l|wl]) < AL(|Df - v||/||v]]) for every v in the strong-unstable cone
and w orthogonal to v.

12



Strictly speaking, this requires that the width of the strong-unstable cone field
be small enough, but this can always be achieved by replacing V and C** by
iterates fV(V) and Df - Cv%, for fixed large N.

For the sake of clearness we treat first the case when E¥* has dimension 1.
Let o; be the parametrization by arc-length of f7(v), 7 > 1. Then the curvature
of fi(y) may be written

k() = 90Ty
llo5l
Given two vectors u, v in a d-dimensional euclidean space, we use det(u,v) to
denote the (d—2)-linear form associating to each (wy, ..., w,—_2) the determinant
of (u,v,wy,...,w,_2). Note that det(u,v) depends bilinearly on u and v. Now,
6,41 = f(o;) is a parametrization of f/*'(v) and

éj+1 =Df- o and éj+1 =Df- g; + D2f . (O'J,O'J)
Hence, by bilinearity,

B fi+1 |det(Df -65,Df -8;)|  |det(Df -65,D*f - (6,65)|
S 7] R 1DF-5,TF

Since ||6;]] = 1, and vectors in the strong-unstable cone are expanded by Df,
the second term is bounded by

1D £

—— < |ID*f].
IDf -5l

Similarly, the first term is bounded by

Df-5; ) |
M < Al551 = A k(7 (7))

In this inequality we use properties (i) and (ii) of the riemannian metric, together
with the remark that &; is orthogonal to ¢;. Altogether, we get that

k(1) S A R(F (1) + 1D £

for every j. By recurrence, we find that

ID* £l
-2

ID*f]]
12

k(f™ (7)) < AT"k(7) + <AL+

for every n > 1, and this completes the proof with Ly = L + || D?f]|/(1 — \2).
The general case dim E** > 1 follows from the same arguments, as follows L

Given a point p; € fi11(y) and a tangent vector v; to fiT1(y) at p1, let p and v

IWe are grateful to H. Rosenberg for pointing out this argument to us.
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be their preimages under f and D f(p), respectively. Choose a curve o C f7(v)
tangent to v at p, and whose second derivative is orthogonal at p to the disk
f7(7). By recurrence, we may suppose that the curvature of o at p is bounded
by some large constant L;. Then the same calculation as before shows that
the curvature of o1 = f(o) at p; is also bounded by L, if this has been fixed
sufficiently large. The same remains all the more true for the component of the
curvature normal to the f/*1(v). This means that the second fundamental form
of fi+1(v) is uniformly bounded. As a consequence, the curvature of the fi11(y)
is uniformly bounded over all j > 0. O

Remark 3.2. It also follows that

||D2f||
-’

k(f"(7) <

for every sufficiently large n > 1.

Lemma 3.3. Given L > 0 there exists K > 0 such that given any C? disky CV
tangent to the strong-unstable cone field and with curvature less than L, and given
any n > 1 such that diam(f™(v)) < 2L, then

1 (LM
S =%

for every pair of points x,y € vy, where J, f(z) = |det Df|T.~| is the jacobian of
f along ~.

Proof. By Lemma 3.1 the curvature the iterates f7(y), j > 1, of «y is uniformly
bounded. So the jacobian Jy;(,y is C-Lipschitz continuous for some uniform

constant C' > 0. On the other hand, the fact that f is uniformly expanding along
any direction contained in C** implies that

d(f9(z), f(y)) < A" 9d(f™(x), f*(y)) < A" I2L

for every z,y as in the statement, and every j = 0,1,...,n. Using the relation
(I @) 5 - -
log -—— | < log(J*“* f)(f?(z)) — log(J** f)(f’ (y
T () j;)l (J“ ) (2)) (T HF W)
we get that
(Juufn .’L' n—1
lo cd(fi( C(A\"72L).
&) y) Z (e 2::
Hence, it suffices to take K = exp(} o, C(A*2L)). O
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4 Proof of Theorem A

To prove Theorem A we only have to show that Lebesgue almost every point in
the basin of A is in the basin of some ergodic Gibbs u-state.

Lemma 4.1. Every wu-disk 0 C A has a positive Lebesgue measure subset of
points which are in the basin of some ergodic Gibbs u-state.

Proof. By Lemma 2.3 every accumulation point of the sequence of averaged push-
forwards of Lebesgue measure supported on o is a Gibbs u-state. Let u, be any
accumulation point and pg be an ergodic component of pu, By Corollary 2.8, ug
is also a Gibbs u-state. Let o¢ be a uu-disk in the support of o and such that
Lebesgue almost every point of gq is in the basin of ug. Then o¢ is accumulated
by disks contained in the iterates f™(c). By (H3) and Proposition 2.1, a positive
Lebesgue measure subset of points in o¢ have a local stable manifold. Then for
every large n, f™(o) has a positive Lebesgue measure subset of points which are
in local stable manifolds of points of o¢ and, consequently, are in the basin of .
Then the same is true with o in the place of (o), which proves our claim. O

Proposition 4.2. The union of the basins of all the ergodic Gibbs u-states is a
full Lebesgue measure subset of the basin of attraction.

Proof. (assuming dim E** = 1) Let 1, ...,un be the ergodic Gibbs u-states of
f. Suppose Z = B(A)\ B(p1)U- - -UB(un) had positive Lebesgue measure. Since
the set Z is invariant, Z NV would have positive measure for any neighbourhood
V of A. Take V such that the strong-unstable cone field C** is defined on it.
Let o be a Lebesgue density point of Z NV, and fix some C' foliation of a
neighbourhood of it, tangent to the strong-unstable bundle E“* at the point zg.
The leaves of such a foliation are tangent to the cone field C**, as long as the
neighbourhood is small enough. Moreover, the intersection of Z NV with some
leaf v must have positive Lebesgue measure inside . Then, let x be a point of
density of yNZNV C v\ (B(u1)U---UB(un)) inside . For each large n, let v,
be the neighbourhood of radius L around f™(z) inside f™(vy). Then f~"(v,) form
a decreasing sequence of neighbourhoods of . Since we suppose that v is one-
dimensional, we may conclude that the relative measure of B(u1) U---U B(un)
in f~"(~,) goes to zero as n — oo. Using the bounded distortion Lemma 3.3, the
same remains true with -, in the place of f~"(v,). By Ascoli-Arzela, there exists
a subsequence v, converging to some uwu-segment y,. Lemma 4.1 tells us that
7Yoo has a positive Lebesgue measure subset S; of points in B{u)U--- U B(uy).
Moreover, there is a positive Lebesgue measure subset Ss C S; of points having
local stable manifolds with size bounded from below. By Corollary 2.2, the union
of these local stable manifolds cuts 7,, large n, in a fixed proportion, and this
gives a contradiction. O

The difficulty in extending the proof to higher-dimensional strong-unstable
bundle lies in the construction of disks 7, intersecting the union of the basins
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of the Gibbs u-states in a set with small relative measure. Note that if we take
~n a ball of fixed radius around f"(z) as we did before, then f "(v,) need not
be a ball, and so we can not use the density point property. Forward iterates
f™(on) of balls g,, around = are no good either: if we take these f™(o,) with
bounded diameter, as required by the distortion lemma, they may not contain
a sufficiently large ball, as needed in Corollary 2.2. This difficulty is handled in
Lemma 4.3.

Lemma 4.3. Let L > 0 be fized. Given any disk 0 C V tangent to the strong-

unstable cone field, and given any n sufficiently large, there exist open sets V; C
Wi, i=1,...,k(n) such that

(a) the V; are two-by-two disjoint;

(b) Leb(Ufi"l) W;) converges to Leb(c) as n — oo;

(c) each f*(V;),i=1,...,k(n), is a ball of radius L inside f™(o);
(d) each f*(W;), i =1,...,k(n), is a ball of radius 2L inside f™(o).

Proof. Given any large enough n, let B(z;, L), i = 1,...,k(n), be a maximal
family of disjoint balls of radius L contained in f"(c). This means that any
other z € f™(0), the ball of radius L around x intersects either the boundary of
o or B(x;,L) for some i =1,...,k(n). In particular the family B(x;,2L) covers
the set of points in f™(o) whose distance to the boundary is larger than L. We
take

Vi=f""(B(z;,L)) and W;= f~"(B(x;,2L)).

We are left to prove part (b) of the statement. For this note that the union of
the W;, i = 1,...,k(n), contains the set of points of o whose distance to the
boundary of o is larger than A" L, where A~! is the rate of expansion of D f on
the strong-unstable cone field. The Lebesgue measure of the complement of this
set goes to zero as n goes to infinity, and so the proof is complete. O

Now we prove the general case of Proposition 4.2.

Proof. Suppose there was a positive Lebesgue measure subset of B(A) not in
B(p1) U---U B(un). Then there would be some disk « tangent to the strong-
unstable cone field and a density point z of v\ (B(u1) U---U B(un)) inside 1.
This is proved just as in the previous case. Let o, be a decreasing sequence of
balls around z in + such that the relative measure of B(u1) U --- U B(un) in
Om goes to zero as m — oco. For each m let V,,; and W, ; be the open sets
obtained by taking ¢ = oy, in Lemma 4.3 (for each m we choose n = n(m) large
enough so that the lemma applies). Since the curvature of the iterates of « is
uniformly bounded. cf. Lemma 3.1, Leb(f"(V;))/ Leb(f™(W;)) is bounded away
from zero (by some constant that depends only on the curvature bound, and
on the dimension of 7). Properties (b), (c), (d) in the lemma, combined with
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the distortion Lemma 3.3, ensure that the union of V,, ; over all ¢ covers a fixed
fraction of oy, for every m. Since these Vi, ; and Vi, ; are disjoint whenever
i # j, and in view of the choice of the o,,, we may choose some V,;, jm) so that

Leb (Vm,i(m) N(Bu)U---U B(HN)))
Leb(Vm,i(m))

—0 asm — oo.

Using the bounded distortion lemma once more, we conclude that the same is
true with v, = f"(m)(Vm,i(m)) in the place of V,;, j(m)- Recall from (c) that these
vm are balls of radius L. Now the proof proceeds precisely as before. O

The proof of Theorem A is now complete.

Remark 4.4. The argument of the proof of Proposition 4.2 proves a bit more:
given any disk v C B(A) tangent to the strong-unstable cone field, Lebesgue
almost every point in + is in the basin of some ergodic Gibbs u-state. So, recall
Lemma 2.6, A9 < 0 Lebesgue almost everywhere in .

5 Proof of Theorem B

Finally, we prove Theorem B. More precisely, we show that hypotheses (H4)
and (H5) imply (H3), and that the set S (introduced in Section 2.1) consists of
a unique accessibility class. Then A supports a unique ergodic Gibbs u-state p,
and B(p) contains a full Lebesgue measure subset of the basin of A. We also
deduce that supp u = A.

We fix a wu-disk D** as in (H5), and let Ay be a positive Lebesgue measure
subset such that A (z) < 0 for all z € Ao.

Lemma 5.1. 1. Given any € > 0 there exists L1 > 0 such that any uu-ball v
with radius larger than Ly is e-dense in the attractor A.

2. Given any € > 0 there exists Ly > 0 such that any uu-ball v with radius
larger than Lo contains o subdisk that crosses the tubular neighbourhood
D¥*(g) of D,

Proof. The proof of the first part is by contradiction. Suppose that there exists a
sequence 7, of uu-balls and a sequence of points z,, € A such that radius(vy,) > n
and v, N B(x,,e) = 0, for every n > 1. Up to taking subsequences, we may
suppose that (z,), converges to some point & € A. Then there exists ng > 1
such that vy, N B(z,e/2) = () for every n > ng, and so

closure ( U Yn) ﬂB(m, %) =0.

n>ng

On the other hand, closure(Upsn,vn) must contain some leaf of F** (e.g. the
leaf through any accumulation point of the sequence of center points of the =),
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because radius(y,) — 0o. Since any such leaf is dense, by (H4), we have reached
a contradiction. The first claim is proved.

To prove the second one, let g be in the interior of D** and choose § > 0
small enough so that any point z € B(xg,d) N A is in a uu-disk vy, that crosses
D¥"(g). By the first part of the lemma, there exists L; > 0 such that any wu-ball
with radius larger than L, intersects B(zy,d). Take Ly = L; + diam(D**) + 1.
Given any wu-ball v with radius larger than Lo, let 4’ be the wu-ball of radius
L, centered at the same point. Then 4’ intersects B(zo, d) at some point z. Our
choice of Ly ensures that « contains 7,, and so the proof is complete. O

Condition (H3) is an immediate consequence. Given any wu-disk vy, some
iterate f™(v) contains a ball of radius Ls. By Lemma 5.1 this ball intersects the
union of the local stable manifolds of points in Ag in a positive Lebesgue measure
subset Bg. Then f~"(Bg) C + has positive Lebesgue measure, and A5 (z) < 0
for every z € By. As a consequence we even have A\ < 0 Lebesgue almost
everywhere in v, c¢f. Remark 4.4.

The next lemma, which is last step in the proof of Theorem B, follows directly
from Lemmas 2.4 and 2.9, together with the fact that strong-unstable leaves are
dense.

Lemma 5.2. The map f has a unique Gibbs u-state p on A and it is ergodic.
Moreover, the support of p is the whole attractor A.

6 Examples

In this section we describe a number of examples related to our results.

The following notations are useful. Given a disk o tangent to the strong-
unstable cone field, we let d(z,00) be the minimum length of a curve in o con-
necting z to a point in the boundary of o, and call it the distance from x to the
boundary of 0. Then we call internal radius of o to

p(o) = sup d(z,00).
TET
We use similar notions for disks inside leaves of a central foliation F¢. We also let
dc(z,y) be the central distance between two points in a same leaf of F¢, defined
as the length of the shortest curve connecting the two points inside the central
leaf. And we define the central diameter of a subset of a central leaf using this
distance.

6.1 DA attractors

The first one, due to [Car], consists of a C! open set of diffeomorphisms f with
transitive attractors on the torus T, derived from an Anosov (or globally hyper-
bolic) diffeomorphism fo through a Hopf bifurcation. More precisely,
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(a) there exist a constant A < 1 and a D f-invariant splitting of the tangent
space TM = E** @ E¢ such that dim E** =1, dim E° = 2,

I(DfTE*) <X and [[(Df | E)|I(Df | E*) M <A,
and both subbundles E** and E° are uniquely integrable;

(b) f has a hyperbolic repelling fixed point p, obtained from a hyperbolic saddle
of fo through a Hopf bifurcation;

(c) every strong-unstable leaf of a point in A = 7%\ W¥(p) is dense in A.

(d) for any uu-segment 7y there exists a full Lebesgue measure subset of points
z in 7 such that A§ (z) < 0.

(e) f does not admit an invariant strong-stable (i.e., uniformly contracting)
subbundle E?%°.

As a consequence of (c¢), A is nowhere dense and it is transitive for f.

For this class of systems, [Car] proves that there exists an SRB measure
supported on A, and this was a main inspiration for our Theorem B. Since the
proof of property (c) for her systems [Car, Lemma 1] seems to have a gap (there
is no uniform contraction on the central bundle in the whole A, this was pointed
out also by A. A. Castro and J. C. Martin), and this is a key assumption in
Theorem B, we give here a detailed proof, based on an idea of [Mal].

Property (d) is also crucial in Theorem B. For these examples it can be read
out from [Car], but we include (in Section 6.3) a direct argument that applies
also to another class of examples we introduce in the next section. Property (e)
is not in [Car], and we also prove it below.

One considers an Anosov diffeomorphism fo : 7% — T°, with one expanding
and two contracting directions. We suppose that the norm of D f along the stable
subbundle and the norm of Df~! along the unstable bundle are bounded by a
constant A\g < 1/3. Let p be a fixed point of fo and 6 > 0 be a small constant.
Denote Vo = B(p,d/2), and V3 = B(p,36). Then we deform f;' inside V> by
isotopy in such a way that

(1) The continuation of the fixed point p goes through a Hopf bifurcation, and
becomes a repeller (staying all the time inside 153);

(2) In the process, there always exist a strong-unstable cone field C** and a
centre-stable cone field C°®, defined everywhere, such that C°® contains
the stable direction of the initial map fo;

(3) Moreover, the width of the cone fields C** and C°® are bounded everywhere
by a small constant a > 0.
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In particular, by [HPS], the map f we obtain in this way has an invariant
central foliation F°¢, tangent to the cone field C°*. Moreover, this foliation is
topologically conjugate to the stable foliation F§ of fo (because it remains nor-
mally expanding all the way during the isotopy), and so all its leaves are dense
in T7%. On the other hand, there is also a unique strong-unstable foliation JF*“
invariant under f and tangent to centre-stable cone field C**, whose leaves are
uniformly expanded by f.

(4) There exist a constant ¢ > 1 and a neighbourhood Vi of p contained in
Vo N W¥(p), such that J¢ = |det Df 1T F¢| > o outside V;.

(5) The map £~ is 6-C° close to f; ' everywhere and it is sufficiently C*-close
to Jy " outside V2 so that [[(Df [TF%) 1 < A< 1/3 outside Vi

These conditions hold for a whole C'-open set U of diffeomorphisms of T°3.

We fix L > 0 large enough so that every segment of an unstable leaf of f, with
length L/2 is 6/2-dense in every stable leaf of fy. Choosing « in (3) sufficiently
small, we ensure that every segment with length less than 2L in a strong-unstable
leaf of f is C! close to some segment in an unstable leaf of fy, and every disk
of diameter less than 58 contained in a central leaf of f is C! close to some disk
contained in a stable leaf of fy. As a consequence, every segment of length L of a
strong-unstable leaf of f is §-dense in every central leaf of f (with respect to the
central distance). We suppose that § > 0 is small enough so that the minimum
central distance between two connected components of the intersection of V3 with
any central leaf is larger than 1000.

Lemma 6.1. For every f € U as before, every strong-unstable leaf is dense in
T3\ WH(p). As a consequence, W*(p) is dense in T°.

Proof. Let W C T? be a nonempty open set not contained in W*(p). Then there
exists some central stable leaf F'° and a nonempty open disk D C W N F° which
is not contained in W*(p).

Claim 1: Some negative iterate of D has central diameter larger than 1000.

There are two possibilities. If D does not intersect W*(p) at all, then f~"(D)
is disjoint from V; for every n > 1, and so its Lebesgue measure goes to infinity,
by (4). As a consequence, the central diameter of f~"(D) also goes to infinity
as n — oo. Therefore, it suffices to take any large n. In the second case, D must
intersect the boundary of some connected component of W¥(p) N F¢. It follows
from the local theory of Hopf bifurcations that the boundary OW*(p);,. of the
connected component C), of W¥(p) N Vz that contains p coincides with the local
unstable manifold of the invariant circle formed at the bifurcation. In particular,
it is invariant under f~!. Then f~"(D) intersects OW¥(p);,. for every large
n > 1. Since f~"(D) is not contained in W¥(p), it must contain an open subset
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D; outside the connected component C, and whose boundary touches W ™*(p);.
Then the boundary of every f*(D;) touches OW*(p)ioe- If f¥(Dy) is disjoint
from V; for every n > 1, we may use the same argument as in the previous case,
to conclude that the central diameter of f~*(D;) goes to infinity as k — oo. If
f~¥(D,) intersects V; for some k > 1, then the closure of f~*(D;) intersects
two connected components of the intersection of V2 with a central leaf. Hence,
due to our choice of §, the central diameter of f~*(D;) is larger than 1005. We
completed the proof of our claim.

This means that, up to replacing D by some iterate f~™ (D), we may suppose
right from the start that the central diameter of D is larger than 1004.

Claim 2: There exists z in D such that f="(z) € T3\ Vs for every n > 0.

By our choice of d, the central neighbourhoods of radius 40§ around the
connected components of V3 N F¢ are two-by-two disjoint. On the other hand,
since T'g = D has central diameter larger than 1004, it can not be contained in
any of those neighbourhoods. So, by connectivity, there exists zo € Iy whose
central ball By of radius 354 is disjoint from V3. Since Iy is too large to be
contained in By, we may take a compact connected subset I'y C I'g joining zg to
the boundary of By. By (5), f~(Bo) contains the central ball of radius

1
- 1
\ 356 > 1006

around f~!(z¢). In particular, the diameter of I'y = f~1(T{) is larger than
1004. Repeating this procedure, we construct a sequence I'y,, n > 0, of compact
connected nonempty sets such that

fMTa) C 7 (Tnmr \ Vi)

for every n > 1. This implies that K, = f™(T',, \ V3) is a decreasing sequence of
compact sets, and any point & € N,>0K,, satisfies the conclusion of Claim 2.

Now, let z be any such point, that is, f~"(z) ¢ V3 for every n > 1. In
particular, every disk of central radius 2§ around an iterate f~"(z) is disjoint
from V3. Now let D, be any small disk around z and contained in D. By (5),
iterates f"(D.) have exponentially increasing internal radius, as long as this
internal radius is smaller than 2§. Therefore, there must be some N > 1 for
which the internal radius of f~V(D,) is at least 25. Then f~™(D,) intersects
every segment of length L of any strong-unstable leaf (and so it intersects every
strong-unstable leaf). Therefore, D. C D intersects every strong-unstable leaf.
This proves that every strong-unstable leaf is dense in the complement of W (p).
In particular, W¥(p) is dense in T because the strong-unstable leaf of p is dense
in T3\ W¥(p). O
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We also observe that f can not admit an invariant strong-stable bundle E*%.
This is clear if fo has some periodic point ¢ # p with complex contracting eigen-
values. We may choose V3 small enough to be disjoint from the orbit of ¢, and
then ¢ is also a periodic point for f. Since the contracting eigenvalues are also
unchanged, there can be no invariant contracting direction.

With a bit more effort we can obtain the same conclusion when all the periodic
points of the Anosov diffeomorphism have only real eigenvalues. We use the fact
that the invariant circle C formed at the Hopf bifurcation is normally hyperbolic,
see e.g. [RuTa, Remark 7.3]. So, such a strong-stable bundle would be tangent to
the central leaf F'¢ containing C' and transverse to C inside the TF°. Then E®*
would be everywhere tangent to the central foliation and transverse to the strong-
unstable manifold W**(C) of C, defined as the union of the strong-unstable leaves
through points of C'. Let g be a periodic hyperbolic saddle point of f, of period
k > 1, whose orbit is disjoint from V3 (it exists if V3 is small, i.e. if we fix § small
enough). Then ¢ has stable index 2 and its stable manifold contains a central
ball B, of radius 2§ around ¢. In view of the way we haven chosen the constant
L associated to 4, the local strong-unstable leaves of radius L around every point
& € C intersects B, transversely. By considering the first (i.e. the closest to &
inside the strong-unstable leaf) intersection of these strong-unstable leaves with
the stable manifold of g, we conclude that the intersection of W**(C) with the
stable manifold W*(q) contains some connected component C' (a circle). Then
E®* is transverse to every f*(C), j > 1, inside TW?(q). Since the diameter of
f%3(C) goes to zero as j — 0o, we conclude that E** can not be continuous at the
point ¢. This contradicts the fact that a strong-stable subbundle is necessarily
Holder continuous.

6.2 Transitive diffeomorphisms without stable bundle

Using similar arguments we are also able to exhibit new C open sets of transitive
diffeomorphisms in (the whole) M = T which admit no invariant strong-stable
(or strong-unstable) subbundle E**. That is, there is a D f-invariant dominated
splitting TM = E** ¢ E° into a 1-dimensional strong-unstable subbundle E**
and a 2-dimensional subbundle E€. On the other hand E° is not uniformly
hyperbolic and does admit an invariant subbundle. The first examples of this
kind were exhibited by [Bon]. The present construction may be thought of as a
modification of an example of [Mal].

As in the previous section, we start with an Anosov diffeomorphism f; and a
fixed point p of fo. We deform fy by isotopy in a neighbourhood V2 = B(p,d/2)
of p, in such a way that the map f we obtain (actually, a whole C'-open set I/
of maps)

(A) satisfies the global properties (2), (3), (5) above; in particular, f has a
strong-unstable foliation F** and a central foliation F¢ as before;

(B) has three hyperbolic fixed saddle points inside V5, contained in a same
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Figure 1:

central leaf F°: one saddle with stable index 1 and two saddles with sta-
ble index 2; at least one of the index 2 saddles has complex contracting
eigenvalues;

(C) there exists ¢ > 1 such that J¢ = |det Df~|TF¢| > o at every point.

One way to obtain (B) is to have p go through a pitchfork bifurcation, as one
of its contracting eigenvalues becomes 1. Then, the stable index changes from
2 to 1, and two other saddle points, of index 2, are created. Then it suffices to
make the contracting eigenvalues of one of these new saddles become complex
numbers. See Figure 1. As before, we suppose that a > 0 and § > 0 are small.

Lemma 6.2. For every f € U as before, every strong-unstable leaf is dense in
T3. As a consequence, f is transitive.

Proof. As in the first step of the proof of Lemma 6.1, we show that any disk D
in a central leaf, has a negative iterate f~"(D) with central diameter larger than
1004. This follows from property (C), which is a stronger version of the property
(4) we had in the previous case. The second step of the proof of Lemma 6.1
translates immediately to this case, proving that some point z in f~"(D) has
all its negative iterates outside V3 = B(p,3d). The third and last step of the
proof of Lemma 6.1 also applies without change here: any small disk around z
has a negative iterate which has internal radius larger than 2§, and so cuts every
strong-unstable leaf. This proves the first statement in the lemma.

In particular, the unstable manifold of any periodic point is dense in T3.
Moreover, by construction, every central leaf of f is dense in T3. Therefore,
to conclude that f is transitive, it suffices to show that the stable manifolds of
the periodic points with stable index 2 are dense in some central leaf. Let F°©
be the central leaf in (B). The fact that fo is contracting on its stable leaves,
together with C%-closeness of f to fo (by [HPS, Theorem 7.1] this yields C°-
closeness on central leaves) imply that every point in F'° has a positive iterate in
a neighbourhood of radius 506 < 1 of the three fixed saddle points contained in
F¢. Then by the local description of the dynamics near the saddles, the point is
in the stable manifold of one of the saddles. That is, F° coincides with the union
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of the stable manifolds of the three fixed saddles it contains, and this completes
the argument. O

The presence of periodic points with complex contracting eigenvalues ensures
that E° does not admit any invariant subbundle.

Remark 6.3. We could also start with an Anosov diffeomorphism fy having,
besides p, a periodic point ¢ with complex contracting eigenvalues. In that case,
to get the same conclusions as before one does not need the last condition in (B):
it suffices to make p go through a pitchfork bifurcation, with no need to create
new saddles with complex eigenvalues.

In the next subsection we show that these diffeomorphisms satisfy (H3): the
central direction is mostly contracting at Lebesgue almost every point (in each
strong-unstable leaf, and in the whole manifold M). Then we can also obtain the
following nice consequence of our results.

Remark 6.4. We have shown that Theorem B may be applied to the maps we
constructed above, and so they have a unique SRB measure y, whose basin con-
tains Lebesgue almost all of M. If we start with a volume preserving Anosov
diffeomorphism fy then our construction can be carried out to give maps with
the same properties as above which are also volume preserving (see, for instance,
Section 6.4 where we do this in a different setting). Then, Lebesgue measure
(volume) must be ergodic (Birkhoff averages are constant Lebesgue almost ev-
erywhere), in fact it coincides with p. So, such maps are stably ergodic with
respect to Lebesgue measure.

6.3 Control of the central Lyapunov exponents

To complete the construction of the previous examples, in Sections 6.1 and 6.2,
we are left to explain why they are mostly contracting in the central direction.
We begin with an abstract statement, that we apply later to the two classes of
examples.

We suppose that A satisfies (H1), (H2), with dim E** = 1. Furthermore,
there exists a domain V' C M such that

(i) there exists E > 0, ¢g € (0,1) such that, given any uu-segment -y with
length(y) > E, we may partition f(7) into segments v(1),...,7v(k) such
that E < length(y(i)) < 2F for every i = 1,... ,k, and the total length of
those «y(¢) that intersect V is less than cg length(f(7));

(ii) there exist A < 1 and § > 0 such that
|IDFIES|| < 1+ B)forz €V and |DF|E||<Aforze M\V.
and, for some k sufficiently large,

M=A1+8)F<1. (3)
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The precise condition & should satisfy is the following. Let E and ¢q be as in (i),
let K > 0 be the distortion bound given by Lemma 3.3 with L = 2E||Df||, and
c=Keo/(1+ (K —1)cg) < 1. We need

=

C1=c(1+%)(1+k) <1 (4)

which holds for any large k.

Proposition 6.5. Under these assumptions (H3) holds, in fact A9 (z) < 0 for
Lebesgue almost every point in any uu-segment.

Proof. The proof has two main steps. First we use (i) to show that the orbit of
Lebesgue almost every point in any uwu-segment v spends a positive fraction of
the time outside V. Then condition (ii) implies the conclusion.

Starting the first step, we note that it is no restriction to suppose that
length(y) > E. We decompose successive iterates

fn(')'): U ’Y(ila"'ain)

11,0585

as follows. First we write f(y) = v(1) U ---+y(k) as in (i). Then, supposing
(i1, .. yin—1) is defined, with length in between E and 2F, we use (i) once
more to write

f(’)/(ll, 77:n—1)) = ’)’(7,1, 7in—171) U U’Y(Zl, ,in_l,kl).

(k' depends on iy,... ,ip—1). Givenn >r >land 1 <t < --- <t <mn, we
denote M(ty,... ,t.) the following subset of . Firstly, M (¢;) consists of those
points z € vy for which the segment v(i1,... ,i,) that contains f¥ (z) intersects
V. Observe that then ff(M(t1)) is a union of segments (i1, ... ,i;) for every
t > t;. Next, we proceed by recurrence: M (t1,... ,t._1,t,), r > 2, is defined as
the set of points € M (ty,...,t,_1) such that fi~(z) is in any of the segments
Y(41y - 504,_1,---,0t,) that intersects V.

Lemma 6.6. The Lebesgue measure of M (t1,. .. ,t,) is bounded by ¢" length(y).

Proof. The way we have defined these sets, f{(M(¢1,...,t, 1)) is a union of
segments 7 (i1,...,t) for every t > ¢._1 and, in particular, for t = ¢, — 1. We
write ¢ = (i1,... ,4, 1), for simplicity. For each one of these segments, (i) gives

Leb (£ (M1, ,tr1,8:)) N £(3(:))) < co length(f ().

Note that the length of f(v(¢,)) is bounded by 2E||D f||. So, using the distortion
Lemma 3.3,

Leb (M(t1,... ,tr—1,t,) N f75 T (v(er))) < ¢ length(f~H (y(er))).
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Adding over all the (i) contained in fé»~1(M(t1,... ,t, 1)), we get
Leb (M (t1,... ,tr—1,t;)) <cLeb (M(t1,... ,t,—1))
The lemma follows by recurrence. O

Corollary 6.7. There exists B > 0, a universal constant, such that for any
n > 1 the Lebesgue measure of the subset M, of points in x € ~ such that
fi(z) € V for at least kn/(k + 1) values of j € {0,... ,n — 1} is bounded by
Bn ™"+ length ().

Proof. This set is contained in the union of all M (¢1,... ,t,) for all choices of
n>r>kn/(k+1)and t1,...,t.. So, its Lebesgue measure is bounded by
Z ( i ) c.
r
r>kn/(k+1)

We claim that, if » > kn/(k + 1), then

(7)33((1+%)(1+k>i)r,

for some universal constant B. Summing over all such r we get the bound in the
statement.
The claim is a classical consequence of Stirling’s formula. Indeed, it gives

n n! n"
=— <B—
( r ) rlln—r) = r"(n—r)nr

for some universal constant B. The last term can be rewritten

(%) (nir)n_TZ [(1+n;r)(1+nir)¥ "

Then it is enough to note that r > kn/(k+1) is just the same asr > k(n—r). O

It follows that N,>1 Uj>n M; has zero measure. Note that the orbit of any
point in the complement spends at least a fraction 1/(k + 1) of the time outside
V. So the first step in the proof of Proposition 6.5 is complete.

The second step is very short:

for any point z not in M,,. Recall, from (4) that A\; < 1. O
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Proposition 6.5 enables us to check assumption (H3) whenever f is sufficiently
contracting along the central direction outside V', not too expanding in the cen-
tral direction inside V', and sufficiently large expansion in the strong-unstable
direction, while keeping the distortion constants not too large.

We apply it to the examples in Sections 6.1, 6.2, with V being the perturbation
box V5. To have these conditions satisfied, we just suppose that for the initial
Anosov diffeomorphism f, any vector in the unstable subbundle is expanded
by a factor 3 and any vector in the stable subbundle is contracted by a factor
1/3. Then we deform fy along a one-parameter family of diffeomorphisms f,, by
isotopy inside V3, to make it go through either a Hopf bifurcation or a pitchfork
bifurcation. The expansion in the unstable/strong-unstable subbundle remains
large everywhere, and the same is true for the contraction in the stable/central
subbundle restricted to the outside of V5. Then the distortion along strong-
unstable leaves remains uniformly bounded in the whole family f,,. Moreover,
the deformation can be done in such a way that the f, be contracting along the
central direction, all the way up to the bifurcation parameter pyg.

Now we choose £ > 0 not much smaller than the size of V5, so that the
image of any uu-segment with length bigger than E has a positive fraction ¢y (in
length) outside V5. Having fixed these constants, the distortion constant K may
also be fixed, independent of the parameter u, as we already observed. So we
may fix k > 0 large enough to satisfy (4), and then choose g sufficiently close to
zero so that (3) also holds. Finally, for parameters just slightly beyond po, any
expansion f, may display in the central direction must be smaller than 1+ 3. In
this way we obtain the hypothesis of Proposition 6.5 (and, hence, its conclusion
(H3)) for the systems in Section 6.1 and in Section 6.2.

6.4 Diffeomorphisms without hyperbolic bundles

Finally, we prove Theorem C. We start with a linear Anosov diffeomorphism fy
induced in T* by a linear map of R* with eigenvalues

0< A <A<1/3<1<3<A3< A

Up to replacing it by some iterate, we may suppose that fo has at least two fixed
points p; and p;. Let F§ and F§ be the unstable and the stable foliations of
fo- Let 0 < p € 1 be fixed. For i = 1,2 let D¥(2p) and D$(2p) be balls of
radius 2p around p; in the unstable, respectively, in the stable leaf through p;.
Fix 0 < § < p small enough so that the distance along the leaves of F§ of any
two distinct points in D} (2p) U D% (2p) is larger than 1004, and similarly for the
distance along the leaves of F{ of any two distinct points in D§(2p) U D5(2p).
Then let V2 = B(p1,0/2) U B(p2,6/2) and V3 = B(p1,36) U B(pa, 36). We also
consider a sufficiently small constant a > 0, the precise condition is stated below.

Now we consider the set V of C' diffeomorphisms f of T* satisfying the
following conditions:
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(1) f has a centre-unstable cone field C°* and a centre-stable cone field C°® both
with width bounded by a > 0 and containing, respectively, the unstable
subbundle and the stable subbundle of fo;

(2) There exists o > 1 such that |det D f|T'D*| > o for every disk D tangent
to the cone field C°* and |det D f|TD®*| < o0~ for every disk D°® tangent
to the cone field C°%;

(3) There exists A < 1/3 we have ||Df(z)v|| > A~ 1||v°¥|| and |Df 1 (z)v?|| >
A~ 1Jve#|| for every z outside V> and every v°* € C%(x), v € C°(x);

(4) f has some periodic saddle point ¢ with stable index 2, whose stable mani-
fold intersects every disk of radius 26 tangent to C'°“, and whose unstable
manifold intersects every disk of radius 24 tangent to C**.

We suppose that a > 0 is sufficiently small so that (1), together with the way
we have chosen ¢, imply that every disk of radius 450 tangent to C'°%, respectively
C*, intersects Df(p) U D5(p), respectively D3(p) U D¥(p), in at most one point.

Lemma 6.8. Every diffeomorphism f €V is transitive.

Proof. In view of assumption (4), it suffices to show that, for an arbitrary open
set U C T*, some positive iterate contains a disk of radius 24 tangent to C°* and
some negative iterate contains a disk of radius 2J tangent to C'°*. Moreover, since
our assumptions are symmetric under taking inverses, we only need to prove the
first statement.

Claim: Any open set U C T* contains some point z such that f™(z) avoids V3
for every sufficiently large n.

The lemma is an easy consequence. Indeed, for such a point  we may take a
disk Dy C U around z and tangent to the centre-unstable cone field. Up to
replacing U by some iterate, we may suppose that f™(z) ¢ V3 for every n > 0.
If Dy does not intersect Vo then we may use assumption (3) to conclude that
f(Dg) contains a disk D; around f(z) whose radius is twice as large as the
radius of Dy. Repeating this, we construct a sequence disks around the orbit of
z D;,i=0,1,..., tangent to the centre-unstable cone field, with D; C f(D;_1)
and whose radii increase geometrically. As long as the radius remains smaller
than 26 the disk can not intersect V> and the procedure can be repeated. So,
eventually the radius of some D,, must be larger than 24, and the lemma follows.

It remains to prove the claim. The argument is similar to those in Lemmas
6.1 and 6.2, with the additional difficulty that this time there may be no invariant
foliations for the map f.

It is convenient to consider a lift f : R* — R* of f to the universal covering
of the torus. We denote 172,173 C R* the preimages of V5 and V3 under the
covering map (note that they have infinitely many connected components), and
we use similar notations for lifts of other objects. Let 7% the projection along
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the stable foliation fg from R* to some arbitrary unstable leaf of fo (which we
identify with R?). Let F™ be an arbitrary leaf of the unstable foliation. For
every n > 0, the image f™ (F‘”) is a graph over R2, in the sense that 7% induces
a diffeomorphism from f(F*) onto R?. This is just because F* — fm(F%) is
a proper embedding of R? ~ F* into R* whose tangent space, being contained
in the lift of the centre-unstable cone field, avoids a cone around the vertical
(stable) direction of R* = R2 x R? with width uniformly bounded from zero.
Let D be any disk contained in the intersection of U with some unstable leaf
F of fo. Assumption (2) implies that the volume of iterates f"(D) increases
exponentially fast. Then, since these iterates are contained in graphs tangent to
C°*, the same is true about the diameter of f*(D). So, some iterate Ty = f°(D)
has diameter larger than 1005. Then I'y can not be contained in a ball inside
f™(F™) of radius 456 around any point of D§(p) U D3(p). Since these balls are
two-by-two disjoint, due to our choice of «, and I'y is connected, we conclude
that there exists some zg € I'g such that the ball By of radius 356 around zg
inside f™(F™) does not intersect V3. On the other hand, Ty can not be contained
in By either. So, there exists a compact connected set vy C I'g disjoint from Vs
joining zq to the boundary of By. Then assumption (3) implies that the diameter

of 'y = f(n) is larger than
%355 > 1000.

By recurrence, we obtain a sequence ', n > 0, of compact connected nonempty
sets with I, C f(I‘n,l \ 173) Then f‘"(I‘n \ 173) is a decreasing sequence, and
any point z € T* having a lift in the intersection of these compact sets satisfies
the conclusion of the claim. O

We are left to construct diffeomorphisms such any other diffeomorphism in
a C! neighbourhood satisfies conditions (1) through (4). We do this in such a
way that if the initial Anosov diffeomorphisms fy preserves volume then the maps
obtain are also volume preserving. Roughly, our construction goes as follows. We
consider two different fixed (or periodic) points p; and ps. In a neighbourhood of
p1 contained in B(py,d2) we modify the map along the stable direction (keeping
the unstable direction essentially unchanged) in the same way as we did for the
examples in Section 6.2, see Figure 1. Then we do the same in a neighbourhood
of py contained in B(pa, d2), exchanging the roles of the stable and the unstable
direction. Let us describe this procedure in more detail.

As a first step, we consider two models of volume preserving vector fields in
the unit 2-dimensional disk D?, which are depicted in Figure 2. Both are zero in
a neighbourhood of the boundary of the D2. The first model, X, has a singularity
of center type at the origin. The second model, Y, has a hyperbolic saddle at
the origin. It may be obtained, for instance, as the Hamiltonian vector field of
some smooth function, which is constant at the boundary and has a saddle type
critical point at the origin.

29



Figure 2:

Next, we construct vector fields X and Y in D? x D2, given by

X(z,y) = (6(y)X(2),0)  Y(2,9) = (¢(y)Y (2),0),

where ¢ : D? — [0,1] is a smooth function such that ¢(0) = 1, and ¢ = 0
on a neighbourhood of the boundary of D2?. Note that X, ¥ are still volume
preserving. Moreover, Y has a singularity at the origin with a strong-unstable,
a strong-stable, and two central directions.

As already mentioned, we obtain our examples by modifying the initial linear
Anosov diffeomorphism fq in neighbourhoods of two different fixed (or periodic)
points p; and ps. We describe the modification in the neighbourhood of py,
the construction for ps is just the same, with stable and unstable directions
interchanged. It is useful to consider that this takes place in three stages.

First, we fix a linear chart ¢; : D x D? — M mapping 0 to p;, the horizontal
leaves D? x {y} into the stable leaves of f, and the vertical leaves {z} x D? into
the unstable leaves of fy. We also suppose that the local unstable manifold of
the saddle point of Y is mapped parallel to the eigenspace corresponding to the
weakest contracting eigenvalue Ay of fy.

We consider the one-parameter family of diffeomorphisms f; = (.Y o fo
obtained by composing fy with the flow of the push-forward of Y. The point p; is
fixed for every f;, on the other hand, the weakest contracting eigenvalue of D f;(p)
increases as t increases from zero. Eventually, for some ¢ = ¢y (depending only
on A and the expanding eigenvalue of ¥ at the origin) this eigenvalue becomes
equal to 1, then the stable index of p; changes to 1. In the process new fixed
saddles, with stable index 2, are created in the neighbourhood of p;.

As a second stage, we consider go = f;, for some t; slightly larger than #,
and let ¢; be one of the new fixed saddle points with index 2. We modify g in a
neighbourhood of ¢; disjoint from p;, in the same way as we did before for f close
to p1, except that this time we use X instead of Y. We obtain a one-parameter
family of diffeomorphisms g, such that ¢; is a fixed point of every g, with the
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contracting eigenvalues of Dg,(g;) becoming equal, and then complex conjugate,
as s becomes larger than some sgp.

We choose s; slightly larger than sg, and let h = g,,. The reason why we
are not done yet is that h may not preserve a thin centre-unstable cone field as
in condition (1). We fix a as in (1). Observe that all the modifications we did
took place in the direction of the stable foliation of fy. So, on the one hand, this
foliation is still invariant (but not any more contracting) for h; on the other hand,
vectors in unstable subbundle of fy are still expanded by Dh (but the subbundle
itself is no longer invariant). As a consequence, any sufficiently thin cone field
around the stable foliation of fj is a centre-stable cone field for h.

We choose such a cone field, then its complement C is a strong-unstable cone
field (but it may be very wide). Now we conjugate h in ¢(D? x D?) by some
linear map (z,y) — (rz,y), where (z,y) are coordinates in D? x D?, and r > 0
(the conjugated map extends correctly because h = fy is a linear map of 7% in a
neighbourhood of the image of the local chart). Taking » > 0 sufficiently small
we have that the image C°* of C' under this conjugacy has width smaller than
«, and so it is a thin centre-unstable cone field for the new map f. Moreover,
since the stable foliation of fy is still invariant under f, and we have once more
preserved the expansion along the unstable bundle of fy, any cone field with
width less than «a centered in the stable subbundle of fy as centre-stable cone
field of f.

Up to dual modifications, carried out independently in a neighbourhood of
p2, this f is the map we were looking for: conditions (1) through (4) stated
at the beginning of this section hold in a C! neighbourhood of f. Indeed (1),
(2), (3), follow from the construction, and for (4) it suffices to choose the chart
©(D? x D?) sufficiently small that we keep unchanged arbitrarily large compact
disks in the stable and in the unstable manifolds of the periodic point g.

We close with the following

Conjecture: The class of volume-preserving examples without uniformly
hyperbolic invariant subbundles that we construct in this section contains C*-
stably ergodic diffeomorphisms (every C! close map that preserves Lebesgue
measure is ergodic with respect to it).
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