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Abstract

We show that the integrated Lyapunov exponents of C! volume preserving
diffeomorphisms are simultancously continuous at a given diffeomorphism only
if the corresponding Oseledets splitting is trivial (all Lyapunov exponents equal
to zero) or else dominated (uniform hyperbolicity in the projective bundle)
almost everywhere.

‘We deduce a sharp dichotomy for generic volume preserving diffeomorphisms
on any compact manifold: almost every orbit either is projectively hyperbolic
or has all Lyapunov exponents equal to zero.

Similarly, for a residual subset of all C'! symplectic diffeomorphisms on any
compact manifold, cither the diffcomorphism is Anosov or almost every point
has zero as a Lyapunov exponent, with multiplicity at least 2.

Finally, given any closed group G C GL(d) that acts transitively on the
projective space, for a residual subset of all continuous G-valued cocycles over
any mecasure preserving homeomorphism of a compact space, the Oseledets
splitting is either dominated or trivial.

1 Introduction

Lyapunov exponents describe the asymptotic evolution of a linear cocycle over a
transformation: positive or negative exponents correspond to exponential growth or
decay of the norm, respectively, whereas vanishing exponents mean lack of exponen-
tial behavior.

In this work we address two basic, a priori unrelated problems. One is to under-
stand how frequently do Lyapunov exponents vanish on typical orbits. The other,
to analyze the dependence of Lyapunov exponents as functions of the system. We
are especially interested in dynamical cocycles, i.e. given by the derivatives of con-
servative diffeomorphisms, but we discuss the general situation as well.

Several approaches have been proposed for proving existence of non-zero Lya-
punov exponents. Let us mention Furstenberg [10], Herman [12], Kotani [13], among
others. In contrast, we show here that vanishing Lyapunov exponents are actually
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very frequent: for a residual (dense Gs) subset of all volume-preserving C' diffeo-
morphisms, and for almosl every orbil, all Lyapunov exponents are equal lo zero
or else the Oseledets splittings is dominated. This extends to generic continuous
G-valued cocycles over any transformation, for any matrix group G that acts tran-
sitively on the projective space.

Domination, or uniform hyperbolicity in the projective bundle, means that each
Oseledets subspace is more expanded/less contracted than the next, by a definite
uniform factor. This is a very strong property. In particular, domination implies thal
the angles belween the Oseledels subspaces are bounded from zero, and the Oseledels
splitling extends lo a conlinuous splilling on the closure. For this reason, it can
often be excluded a priori:

Example 1. Let f : S' — S! be a homeomorphism and x be any invariant ergodic
measure with supp u = S'. Let A be the set of all continuous A : S' — SL(2,R)
non-homotopic to a constant. For a residual subset of A/, the Lyapunov exponents
of the corresponding cocycle over (f,u) are zero. That is because the cocycle has
no invariant continuous subbundle if A is non-homotopic to a constant.

These results generalize to arbitrary dimension the work of Bochi [3], where it
was shown that generic area preserving C! diffeomorphisms on any compact surface
either are uniformly hyperbolic (Anosov) or have no hyperbolicity at all: both Lya-
punov exponents equal to zero almost everywhere. This fact had been announced
by Maiié [15, 16] in the early eighties.

The high dimensional setting requires a conceptually different approach. That is
partly because of the difficulty involved in handling several subbundles, with variable
dimensions, and partly because one has to deal with projectively hyperbolic, instead
of uniformly hyperbolic, sets. The properties of projectively hyperbolic sets are much
weaker (e.g. they need not be robust) and not yet understood.

Our strategy is to analyze the dependence of Lyapunov exponents on the dynam-
ics. We obtain the following characterization of the continuity points of Lyapunov
exponents in the space of volume preserving C'! diffeomorphisms on any compact
manifold: they must have all exponents equal Lo zero or else the Oseledels splilling
must be dominated, over almost every orbil. Similarly for continuous linear cocycles
over any transformation, and in this setting the necessary condition is known to be
sufficient.

The issue of continuous or differentiable dependence of Lyapunov exponents on
the underlying system is subtle, and not well understood. See Ruelle [23] and also
Bourgain, Jitomirskaya [7] for a discussion and further references. We also mention
the following simple application of the result we just stated, in the context of quasi-
periodic Schrédinger cocycles:

Example 2. Tet f : S' — S' be an irrational rotation, u be Lebesgue measure,
and A: 8" — SL(2,R) be given by
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for some E € R and V : S' — R continuous. Then A is a point of discontinuity for
the Lyapunov exponents, among all continuous cocycles over (f,u), if and only if



the exponents are non-zero and E is in the spectrum of the associated Schrédinger
operator. Compare [7]. This is because £ is in the complement of the spectrum
if and only if the cocycle is uniformly hyperbolic, which for SL(2,R) cocycles is
equivalent to domination.

We extend the two-dimensional result of Mafié-Bochi also in a different direction,
namely to symplectic diffeomorphisms on any compact symplectic manifold. Firstly,
we prove that continuity points for the Lyapunov exponents either are uniformly
hyperbolic or have at least 2 Lyapunov exponents equal to zero at almost every
point. Consequently, generic symplectic C' diffeomorphisms either are Anosov or
have vanishing Lyapunov exponents with mulliplicily al least 2 al almost every poinl.

Topological results in the vein of our present theorems were obtained by Million-
shchikov [18], in the early eighties, and by Bonatti, Diaz, Pujals, Ures [6, 9], in their
recent characterization of robust transitivity for diffeomorphisms. A counterpart of
the latter for symplectic maps had been obtained by Newhouse [20] in the seventies,
recently extended by Arnaud [1].

1.1 Dominated splittings

Let M be a compact manifold of dimension d > 2. Let f : M — M be a diffeo-
morphism and I' C M be an f-invariant set. Suppose for each = € I one is given
non-zero subspaces E! and E2 such that 7, M = E}! ® E2?, the dimensions of E}
and E? are constant, and the subspaces are D f-invariant: D f,(EL) = E}(I) for all
ze€landi=1,2.

Definition 1.1. Given m € N, we say that Tt M = E' @ E? is an m-dominaled
splitting if for every x € I' we have

DLzl - D) < 5 (11

We call Tt M = E' ® E? a dominaled splitling if it is m-dominated for some m € N.
Then we write E' > E2.

Condition (1.1) means that, for typical tangent vectors, their forward iterates
converge to E' and their backward iterates converge to £?, at uniform exponential
rates. Thus, E' acts as a global hyperbolic attractor, and E? acts as a global
hyperbolic repeller, for the dynamics induced by D f on the projective bundle.

More generally, we say that a splitting 7TrM = E' @ --- @ E¥, into any number
of sub-bundles, is dominated if

E'o---oF »ktlg. ..ok for every 1 < j < k.
We say that a splitting T-M = E' @ --- @ E*, is dominaled al z, for some point
z €T, if it is dominated when restricted to the orbit {f"(z); n € Z} of .
1.2 Dichotomy for volume preserving diffeomorphisms

Let f € Diff‘l‘(M). By the theorem of Oseledets [21], for p-almost every point z € M,
there exists k(z) € N, real numbers 3\ (f,z) > -+ > j\k(z)(f,z), and a splitting

T:M = b; O--D Eﬁ(z) of the tangent space at z, all depending measurably on the
point z, such that

1 . §
ngrinooﬁlogHng(u)H =Aj(f,z) forallv e E] \ {0}.

Let A (f,2) > Xa(f,2) > -+ > Ag(f,2) be the numbers X;(z), in non-increasing
order and each repeated with multiplicity dim b{c They are called the Lyapunov
ezponents of f at z. Note that A\ (f,z) + - + Xa(f,z) = 0, because f preserves
volume. We say that the Oseledets splitting is (rivial at z when k(z) = 1, that is,

when all Lyapunov exponents vanish.

Theorem 1. There exisls a residual sel R C Diff‘l‘(M) such that, for each f € R
and p-almost every x € M, the Oseledels splilling of f is eilther lrivial or dominaled
al x.

For f € R the ambient manifold M splits, up to zero measure, into disjoint
invariant sets Z and D corresponding to trivial splitting and dominated splitting,
respectively. Moreover, D may be written as an increasing union D = UpenDp,
of compact f-invariant sets, each admitting a dominated splitting of the tangent
bundle.

If f € R is ergodic then either u(%) = 1 or there is m € N such that u(D,,) = 1.
The first case means that all the Lyapunov exponents vanish almost everywhere.
In the second case, the Oseledets splitting extends continuously to a dominated
splitting of the tangent bundle over the whole ambient manifold M.

Example 3. Let f, : N — N, { € S', be a smooth family of volume preserving
diffeomorphisms on some compact manifold N, such that f; = id for { in some
interval I C S', and f, is partially hyperbolic for ¢ in another interval J C S
Such families may be obtained, for instance, using the construction of partially
hyperbolic diffeomorphisms isotopic to the identity in [5]. Then f : S'x N — S x N,
f(t,z) = (t, f(z)) is a volume preserving diffeomorphism for which D > S' x J and
7> 8 x1.

Thus, in general we may have 0 < u(Z) < 1. However, we ignore whether such
examples can be made generic (see also section 1.3):

Problem 1. Is there a residual subset of Diﬂ"i(M) for which invariant sets with a
dominated splitting have either zero or full measure ?

Theorem 1 is a consequence of the following result about continuity of Lyapunov
exponents as functions of the dynamics. For j =1,... ,d — 1, define

LE() = [ W) -+ Ay () dite).
It is well-known that the functions f € Diff}l(M) — LE;(f) are upper semi-

continuous. Our next main theorem shows that lower semi-continuity is much more
delicate:



Theorem 2. Lel fy € Diff‘lL(M) be such thal the map
f € Diff},(M) = (LE1(f), ... ,LEq_1(f)) € R*!

is conlinuous al f = fo. Then for u-almost every x € M, the Oseledels splilling of
fo is either dominaled or lrivial al z.

The set of continuity points of a semi-continuous function on a Baire space is
always a residual subset of the space (see e.g. [14, §31.X]); therefore theorem 1 is
an immediate corollary of theorem 2.

Problem 2. Is the necessary condition in theorem 2 also sufficient for continuity ?

Diffeomorphisms with all Lyapunov exponents equal to zero almost everywhere,
or else whose Oseledets splitting extends to a dominated splitting over the whole
manifold, are always continuity points. Moreover, the answer is affirmative in the
context of linear cocycles, as we shall see.

1.3 Dichotomy for symplectic diffeomorphisms

Now we turn ourselves to symplectic systems. Let (M?¢, w) be a compact symplectic
manifold without boundary. We denote by u the volume measure associated to
the volume form w? = w A --- Aw. The space Sympll (M) of all C' symplectic
diffeomorphisms is a subspace of Diff}l(M). We also fix a Riemannian metric on M,
the particular choice being irrelevant for all purposes.

The Lyapunov exponents of symplectic diffeomorphisms have a symmetry prop-
erty: Aj(f,z) = —Agq—j(f,z) for all 1 < j < q. In particular, Aj(z) > 0 and LE,(f)
is the integral of the sum of all non-negative exponents. Consider the splitting

.M=EeE ok,,

where EJ, EY, and E, are the sums of all Oseledets spaces associated to positive,
zero, and negative Lyapunov exponents, respectively. Then dim £} = dim £, and
dim E? is even.
Theorem 3. Lel fy € Sympll,(M) be such thal the map

f € Sympl}, (M) = LE,(f) €R
is conlinuous al f = fo. Then for u-almosl every x € M, either dim ES > 2 or lhe
splitting T, M = E} ® E is hyperbolic along the orbil of z.

In the second alternative, what we actually prove is that the splitting is dom-
inated at z. This is enough because, for symplectic diffecomorphisms, dominated
splittings into two subspaces of the same dimension are uniformly hyperbolic.

As in the volume preserving case, the function f — LE4(f) is continuous on a
residual subset Ry of Sympl}u(M). Also, we show that there is a residual subset

Ra C Sympll (M) such that for every f € Ry either f is an Anosov diffeomorphism
or all its hyperbolic sets have zero measure. Taking R = R N Ry, we obtain:

Theorem 4. There ezisls a residual sel R C Sympli,(M) such that every f € R
either is Anosov or has al leasl lwo zero Lyapunov exponenls al almosl every poinl.

For d = 2 one recovers the two-dimensional result of Mané-Bochi.

1.4 Linear cocycles

Now we comment on corresponding statements for linear cocycles. Let M be a
compact Hausdorff space, 4 a Borel regular probability measure, and f: M — M a
homeomorphisms that preserves pu.

Let G ¢ GL(d,R) be a closed group and C(M,G) represent the space of all
continuous maps M — G, endowed with the C%-topology. To each A € C(M,G)
one associates the linear cocycle

Fa:M xR M xR, Fz,v) = (f(2), Alz)v). (1.2)

Oseledets theorem extends to this setting, and so does the concept of dominated
splitting; see sections 2.1 and 2.2.

Theorem 5. Lel G be a closed subgroup of GL(d,R) acling lransilively on RP41.
Then Ay € C(M,G) is a poinl of conlinuily of

C(M,G) 3 Aws (LEi(4),... ,LE4 (4)) € Ri!

if and only if the Oseledels splitling of the cocycle Fx al z is either dominated or
trivial al p-almost every x € M.

Consequenlly, there exisls a residual subsel R C C(M,G) such lhal for every
A € R and almost every © € X, the Oseledels splilling of F's al z is either trivial
or dominaled.

The most common matrix groups satisfy the hypothesis of the theorem, e.g.,
GL(d,R), SL(d,R), Sp(2q,R), as well as SL(d,C), GL(d,C) (which are isomorphic
to subgroups of GL(2d,R)). Notice that compact groups are not of interest in this
context, because all Lyapunov exponents vanish identically.

Corollary 1. Assume (f,p) is ergodic. For any G as in Theorem 5, lhere exisls a
residual subsel R C C(M,G) such thal every A € R eilher has all ezponents equal al
almosl every poinl, or lhere exists a dominaled splitling of M x R which coincides
with the Oseledels splitling almosl everywhere.

1.5 Extensions and related problems

Problem 3. For generic smooth families RF — Diﬁ'i(M), Sympll (M), C(M,G),
what can be said of the Lebesgue measure of the subset of parameters corresponding
to zero Lyapunov exponents ?
Problem 4. What are the continuity points of Lyapunov exponents in Diﬁ‘l‘“(M)
or C"(M,G) forr > 07

Most of the results stated above were announced in [4]. Actually, our theorems 3
and 4 do not quite give the full strength of theorem 4 in [4]. The difficulty is that the
symplectic analogue of our construction of realizable sequences is less satisfactory,
unless the subspaces involved have the same dimension; see remark 5.2.
Problem 5. The Oseledets splitting of generic symplectic C' diffeomorphisms is
either trivial or partially hyperbolic at almost every point.

Theorem 5 and the corollary remain true if one replaces C(M, G) by L*(M,G).
We only need f to be an invertible measure preserving transformation.



2 Preliminaries

2.1 Lyapunov exponents, Oseledets splittings

Let M be a compact Hausdorff space and = : £ — M be a continuous finite-
dimensional vector bundle endowed with a continuous Riemann structure. A cocycle
over a homeomorphism f : M — M is a continuous transformation ¥ : £ — £ such
that mo ' = fom and Fy : £ — Sf(z) is a linear isomorphism on each fiber
&, = m Y(z). Notice that (1.2) corresponds to the case when the vector bundle is
trivial.

2.1.1 Oseledets theorem

Let 4 be any f-invariant Borel probability measure in M. The theorem of Os-
eledets [21] states that for y-almost every point z there exists a splitting

& =E o o END (2.1)

and real numbers A; (z) > --- > ;\k(z)(z) such that Fy(E]) = E}(z) and

B 1 n 3
Jim Llog | B2 @) = Ay(a)

for v € B4~ {0} and j =1,...,k(z). Moreover, if J; and J, are any disjoint subsets
of the set of indices {1,...,k(z)}, then

o1 i j -
nll)gloo n IOgd(eajeJlbf"(z)’ ®jerbf"(z)) =0. (2.2)

Let Ai(z) > Ao(z) > -+ > A4(z) be the numbers j\j(z), each repeated with
multiplicity dim EZ and written in non-increasing order. When the dependence
on F' matters, we write A\;(¥,z) = X\i(z). In the case when F = Df, we write
Ailf,z) = Ai(F,2) = Ai(z).

2.1.2 Exterior products

Given a vector space V and a positive integer p, let A?(V) be the p:th exterior
power of V. This is a vector space of dimension (d), whose elements are called
p-veclors. It is generated by the p-vectors of the form v; A --- A v, with v; € V,
called the decomposable p-vectors. A linear map L : V — W induces a linear map
AP(L) : AP(V) = AP(W) such that

AP(L)(vy A -+~ Avp) = L(vy) A+ A L(vp).

If V has an inner product, then we always endow AP(V) with the inner product such
that [[v1 A -+ Ayl equals the p-dimensional volume of the parallelepiped spanned
by vi, ..., v,. See [2, section 3.2.3].

More generally, there is a vector bundle AP(E), with fibers AP(&;), associated
to &, and there is a vector bundle automorphism AP(F), associated to F. If the

vector bundle £ is endowed with a continuous inner product, then AP(E) also is.
The Oseledets data of AP(F') can be obtained from that of ¥, as shown by the
proposition below. For a proof, see [2, theorem 5.3.1].

Proposition 2.1. The Lyapunov ezponenls (with mulliplicily) of the aulomorphism
AP(F') al a point x are the numbers

iy (2) 4+ + Xy (z),  where 1 <4y <+ <1y < d.
Lel {e1(z),...,eq(x)} be a basis of E; such thal
ei(z) € BY fordmE! +... 4+ dimES Y < i < dimEL + ... 4 dim EX.
Then the Oseledels space Eﬁ’/\p of AP(F) corresponding lo the Lyapunov ezponenl
Aj(z) is the sub-space of NP(E;) generaled by

e A Neiy, with1 <4 <+ <y < d and Ny (z) + - + X, (z) = Aj().

2.1.3 Semi-continuity of integrated exponents
Let us indicate Ap(F,z) = M (F,z) +--- + Ap(F,z), for p=1,... ,d — 1. We define
the integrated Lyapunov exponent

LE(F) = [ Ay(#,3) duo).
More generally, if I' C M is a measurable f-invariant subset, we define

LE,(F,T) = / Ap(F,z) dp(z).

T
By proposition 2.1, A, (F,z) = A\ (APF,z) and so LE,(#,I') = LE;(AP(F),T).

When F = Df, we write Ay(f,z) = Aj(¥,z) and LE,(f,T') = LE,(¥,T).

Proposition 2.2. IfT' C M is a measurable f-invariant subsel then

1 i
LE,(,T) = inf /r log [|AP(E2) | diu(a).

Proof. The sequence a, = [.log||AP(F})| du is subadditive (anim < @n + am),
therefore lim %2 = inf %= O

As a consequence of proposition 2.2, the map f € Diﬂi(M) — LE,(f) is upper
semi-continuous, as mentioned in the introduction.

2.2 Dominated splittings
Let T' C M be an f-invariant set. A splitting &r = E' @ E? is dominaled for F if it

is F-invariant, the dimensions of E; are constant on I', and there exists m € N such
that, for every z € T,
[l £zl

m(F3 1)

< (23)

1
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We denote m(L) = ||[L™||~! the co-norm of a linear isomorphism L. The dimension
of the space E! is called the indez of the splitting.

A few elementary properties of dominated decompositions follow. The proofs
are left to the reader.

Transversality: If&r = E'®E? is a dominated splitting then the angle <(E., E2)
is bounded away from zero, over all z € T'.

Uniqueness: If & = E'® E? and & = B @D E2? are dominated decompositions
with dim E? = dim E? then E* = E for i = 1,2.

Continuity: A dominated splitting & = E' @ E? is continuous, and extends
continuously to a dominated splitting over the closure of I'.

2.3 Dominance and hyperbolicity for symplectic maps

Let (V,w) be a symplectic vector space of dimension 2g. Given a subspace W C V,
its sympleclic orthogonal is the space (of dimension 2¢ — dim W)

W ={w e W; wv,w)=0forallveV}
The subspace W is called symplectic if W¥ N W = {0}, that is, w|wxw is a non-

degenerate form. W is called isolropic if W C W¥, that is, w|lwxw = 0. The
subspace W is called Lagrangian if W = WY, that is, it is isotropic and dim W = q.

Now let (M, w) be a symplectic manifold of dimension d = 2g. We also fix in M a
Riemannian structure. For each z € M, let J, : T, M — T, M be the anti-symmetric
isomorphism defined by w(v,w) = (Jyv,w) for all v,w € Ty M. Denote

C,, = sup || JF. (2.4)
zeM

In particular, we have
lw(v,w)| < Cyllv|| |w] for all v,w € Ty M. (2.5)

Lemma 2.3. If E, F C T;M are lwo Lagrangian subspaces with KN F = {0} and
a=<(E,F) then:

1. For every v € E \ {0} there ezists w € F \ {0} such that
w(v, w)| > C;' sina o] [lwl].
2. If S TyM — T, M is any symplectic linear map and f = <(S(E), S(F)) then

C,%sina < m(S|g) S| < C:(sing) .

Proof. To prove part 1, let p : T, M — F be the projection parallel to E. Given
a non-zero v € K, take w = p(Jyv). Since E is isotropic, w(v,w) = w(v, Jyv) =
1920l2 > G50l a0l Also w]l < [ip] [Jso]l and |p]l = 1/sina, so the claim
follows.

To prove part 2, take a non-zero v € E such that ||Sv||/||v] = m(S|x) and let w
be given by part 1. Then

C;tsina vl ] < lw(v, w)| = [w(Sv, Sw)| < Cu||Svll | Swl-

Thus m(S|g) ||Sw|/||w| > C;?sina, proving the lower inequality in part 2. The
upper inequality follows from the lower one applied to S(#'), S(E) and S~! in the
place of E, F, and S, respectively. O

Lemma 2.4. Lel f € Sympl&,(M), and lel x be a regular poinl. Assume lhal
Ag(fyz) > 0, that is, there are no zero ezponents. Let B} and E; be the sum of
all Oseledels subspaces associaled lo posilive and lo negalive Lyapunov ezponents,
respeclively. Then

1. The subspaces E} and E are Lagrangian.

2. If the splilling EY © E~ is dominaled al x then Et is uniformly ezpanding
and B~ is uniformly conlracting along the orbil of x.

Proof. To prove part 1, we only have to show that the spaces E} and Ej are
isotropic. Take vectors vy, vy € E;. Take ¢ > 0 with € < Ay(f, ). For every large
n and i = 1,2, we have | D f2v;|| < e”"¢||v;||. Hence, by (2.5),

|w(v1,v2)| = [w(DfFv1, Dffva)| < Cue 2 ual] |lvell,

that is, w(vi,v2) = 0. A similar argument, iterating backwards, gives that E; is
isotropic.

Now assume that BT = E~ at 2. Let @ > 0 be a lower bound for <(Et, E™)
along the orbit of z, and let C = C2(sina)~!. By domination, there exists m € N

be such that
”fomn(,;)‘E*” 1

— W« . forallneZ.
m(D [ le+)  4C

By part 2 of lemma 2.4, we have C' ! < m(Df}',ﬁ(z)\EJr) HDf}'ﬁ(zﬂgf || < C. There-
fore
m(Dffilp+) >2 and [Dffaylp-| <3 forallneZ.

This proves part 2. ]

Remark 2.5. More generally, existence of a dominated splitting implies partial hy-
perbolicity: If E ® F is a dominated splitting, with dimE < dim F, then F splits
invariantly as F= COF, withdim F' = dim E. Moreover, E is uniformly expanding
and F' is uniformly contracting. This fact was pointed out by Mané in [16]. A proof
in dimension 4 was given recently by Arnaud [1]. Since the present paper does not
use this result, we omit the proof.
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2.4 Angle estimation tools

Here we collect a few useful facts from elementary linear algebra. We begin by
noting that, given any one-dimensional subspaces A, B, and C of R¢, then

sin<((A, B) sin<(A + B, C) =sin<(C, A) sin<(C + A, B)
=sin<(B,C) sin<(B + C, A).

Indeed, this quantity is the 3-dimensional volume of the parallepipid with unit edges
in the directions A, B and C. As a corollary, we get:

Lemma 2.6. Let A, B and C be subspaces (of any dimension) of R, Then
sin<((A,B + C) > sin<(4, B) sin<(4 + B,C).

Let v, w be non-zero vectors. For any a € R, ||v + awl|| > ||v| sin <(v, w), with
equality when o = (v,w)/||w|?. Given L € GL(d,R), let 8 = (Lv, Lw)/||Lw]||?
and z = v + Pfw. By the previous remark, ||z| > |jv||sin<t(v,w) and ||Lz| =
||Lv|| sin <(Lv, Lw). Therefore
_ 2| | m(D)|jv]]

=Ll > ol sin <((v, w). (2.6)

sin <((Lv, Lw)

As a consequence of (2.6), we have:

Lemma 2.7. Lel L : R* — R be a linear map and lel v, w be non-zero veclors.

Then I i Lo L I
m(L) _ sina(Lv,Lw) _ |L]

L] — sin<(v,w) ~ m(L)
Thus | L||/m(L) measures how much angles can be distorted by L. At last, we
give a bound for this quantity when d = 2.

Lemma 2.8. Lel L : B2 — R? be an inverlible linear map and lel v,w € R? be
linearly independent unil vectors. Then

o (el [l 1 1
m(L) ~ ||Lw|]” || Lv|| J sin<(v,w) sin<(Lv, Lw)’

Proof. We may assume that L is not conformal, for in the conformal case the left
hand side is 1 and the inequality is obvious. Let Rs be the direction most contracted
by L, and let 8, ¢ € [0, 7| be the angles that the directions Rv and Rw, respectively,
make with Rs. Suppose that ||Lv|| > ||Lw||. Then ¢ < 6 and so <(v,w) < 26.
Hence

ILoll > |Ll|sind > |1Z] sin26 > 4] L] sin <(v, w).

Moreover, |det L| = m(L)|L|| and
|| Lo |||| Lw|| sin <(Lv, Lw) = |det L| sin <(v, w).

The claim is an easy consequence of these relations. O

11

2.5 Coordinates, metrics, neighborhoods

Let (M,w) be a symplectic manifold of dimension d = 2q > 2. According to Dar-
boux’s theorem, there exists an atlas A* = {yp; : Vi — R“} of canonical local
coordinates, that is, such that

(pi)sw = dzy Ndzg + - 4 dzog_1 N dzoy

for all 4. Similarly, c¢f. [19, Lemma 2], given any volume structure 8 on a d-
dimensional manifold M, one can find an atlas A* = {p; : V;* — R} consisting
of charts ¢; such that

((p,)*,@ =dzi N+ Ndzg.

In either case, assuming M is compact one may choose A* finite. Moreover, we
may always choose A* so that every V;* contains the closure of an open set V;, such
that the restrictions ¢; : V; — R¢ still form an atlas of M. The latter will be denoted
A. Let A* and A be fixed once and for all.

By compactness, there exists 7 > 0 such that for each 2 € M, there exists
i(z) such that the Riemannian ball of radius r¢ around z is contained in Vi(z)- For
definiteness, we choose i(z) smallest with this property. For technical convenience,
when dealing with the point z we express our estimates in terms of the Riemannian
metric || - | = || - || defined on that ball of radius rq by |[v]| = || Dgj(yvl|. Observe
that these Riemannian metrics are (uniformly) equivalent to the original one on M,
and so there is no inconvenience in replacing one by the other.

We may also view any linear map A : Ty, M — Ty, M as acting on R?, using local
charts ¢;(z,) and @;(z,). This permits us to speak of the distance |4 — B|| between
A and another linear map B : Ty, M — Ty, M whose base points are different:

[|A—B| =||D2AD;" — D4sBD3||, where D; = (D@ig;))z; -

For 2 € M and r > 0 small (relative to rg), By (2) will denote the ball of radius r
around z relative to the new metric. In other words, B, (z) = Lp;(;) (B(goz-(z) (),7)).
We assume that r is small enough so that the closure of B, (z) is contained in VZ.’(*Z).

Definition 2.9. Let eg > 0. The gg-basic neighborhood U(id,eo) of the identity
in Diff},(M), or in Sympl}, (M), is the set U(id, &) of all h € Diff, (M), or h €
Sympll (M), such that h*!(V;) C V;* for each i and

h(z) € B(z,e0) and | Dhy— 1| <eq forevery z € M.
For a general f € Diff‘l‘(M), or f € Sympll, (M), the gg-basic neighborhood U(f, o)
is defined by: g € U(f, o) if and only if f~'og € U(id, ep) or go f~1 € U(id, &o).
2.6 Realizable sequences

The following notion, introduced in [3], is crucial to the proofs of theorems 1
through 4. It captures the idea of sequence of linear transformations that can be
(almost) realized on subsels with large relalive measure as tangent maps of diffeo-
morphisms close to the original one.
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Definition 2.10. Given f € Diﬂlll(M) or f € Sympll (M), constants gg > 0, and
0 < £ < 1, and a non-periodic point z € M, we call a sequence of linear maps
(volume preserving or symplectic)

M 2 T By M
an (eq, k)-realizable sequence of length n at z if the following holds:
For every v > 0 there is r > 0 such that the iterates f7(B,(z)) are two-by-two
disjoint for 0 < j < m, and given any non-empty open set U C B,(z), there are
g € U(f,e0) and a measurable set K C U such that

(i) g equals f outside the disjoint union |_]J".:01 F1(0);
(i) p(K) > (1-K)pU);
(ifi) if y € K then ||Dggs, — L;|| < for every 0 < j <n —1.
Some basic properties of realizable sequences are collected in the following

Lemma 2.11. Lel f € Diff‘l‘(M) or f € Sympl,(M), z € M nol periodic and
neN

1. The sequence {Dfy,... ,Dfsn-1(3)} is (€0, k)-realizable for every eo and & (we
call this a trivial realizable sequence).

2. Lel k1,62 € (0,1) be such thal & = k1 + ko < 1. If {Lg,...,Lp—1} is
(€0, k1)-realizable al z, and {Ly,... ,Lyym—1} is (€0, k2)-realizable al f"(z),
then {Lg, ... ,Lpim 1} is (€0, &)-realizable al z.

3. If{Lo,...,Ln_1} is (€0, k)-realizable al z, then {L;L,--- ,Lal} is an (g0, K)-
realizable sequence al f™(x) for the diffeomorphism f~1.

Proof. The first claim is obvious. For the second one, fix 7 > 0. Let 71 be the radius
associated to the (eg, k1 )-realizable sequence, and 74 be the radius associated to the
(€0, k2)-realizable sequence. Fix 0 < r < r; such that f*(B,(z)) C B(f"(z),r2).
Then the f/(B,(z)) are two-by-two disjoint for 0 < j < n + m. Given an open
set U C B,(z), the realizability of the first sequence gives us a diffeomorphism
g1 € U(f,e0) and a measurable set Ky C U. Analogously, for the open set f™(U) C
B(f™(x),r2) we find g2 € U(f,e0) and a measurable set Ko C f*(U). Then define a
diffeomorphism g as g = gy inside UU---U f* Y(U) and g = g, inside fA(U)U---U
FrmY(U), with g = f elsewhere. Consider also K = K; Ng~"(K3). Using that g
preserves volume, one checks that g and K satisfy the conditions in definition 2.10.
For claim 3, notice that U(f, e0) = U(f ", o). O

The next lemma makes it simpler to verify that a sequence is realizable: we only
have to check the conditions for certain open sets U C B, (z).

Definition 2.12. A family of open sets {W,} in R? is a Vitali covering of W =
UaW, if there is C' > 1 and for every y € W, there are sequences of sets Wy, 3 y
and positive numbers s, — 0 such that

B, (y) C Wa, C Bes,(y) forallneN
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A family of subsets {Uy} of M is a Vilali covering of U = UpU, if each U, is con-
tained in the domain of some chart ;(4) in the atlas A, and the images {;(,)(Ua)}
form a Vitali covering of W = ¢(U), in the previous sense.

Lemma 2.13. Lel f € Difflll(M) or f € Sympll (M), and lel &g > 0 and & > 0.
Consider any sequence Lj : Tfj(I)M — Tfj+!(z), 0 < j<n-—1 of linear maps al
a non-periodic poinl x, and lel ¢ : V — R? be a chart in the allas A, with V 5 z.
Assume the condilions in definilion 2.10 are valid for every element of some Vilali
covering {Us} of By(z). Then the sequence L; is (e, k)-realizable.

Proof. Let U be an arbitrary open subset of B,(z). By Vitali’s covering lemma
(see [17]), there is a countable family of two-by-two disjoint sets U, covering U up
to a zero Lebesgue measure subset. Thus we can find a finite family of U, with
disjoint closures and such that p (U — | |, Us) is as small as we please. For each
U, there are, by hypothesis, a perturbation g, € U(f,e0) and a measurable set
K, C U, with the properties (i)-(iii) of definition 2.10. Let K = |J K, and define g
as being equal to g, on each f7(U,) with 0 < j <n—1. Then g € U(f, ) and the
pair (g, K) have the properties required by definition 2.10. O

3 Geometric consequences of non-dominance

The aim of this section is to prove the following key result, from which we shall
deduce theorem 2 in section 4:

Proposition 3.1. Given f € Diff}‘(M), o0 >0and 0 < k <1, ifm € N is
sufficiently large then the following holds: Lel y € M be a non-periodic poinl and
suppose one is given a non-lrivial splilling TyM = E @ F' such thal

DSy el

m(Df7]) ~

1
3
Then there exists an (eq, K)-realizable sequence {Ly, ... ,Lm—1} aly of length m and
Lthere are non-zero veclors v € E and w € nym(F) such thal

Lp—q--- LO(v) =w.

3.1 Nested rotations

Here we present some tools for the construction of realizable sequences. The first
one yields sequences of length 1:

Lemma 3.2. Given [ € DiﬂL(M), o0 > 0, kK > 0, there exisls € > 0 with the
following properties:

Suppose we are given a non-periodic poinl © € M, a splilling RE=X @Y with
X 1Y and dimY = 2, and a elliplic lincar map R: Y — Y with |[R - I|| < e.
Consider the linear map R : T,M — T, M given by R(u +v) = u + E(v), for
u€ X,veY. Then {Df,R} is an (gg, k)-realizable sequence of length 1 al x and
{RDff-1(s)} is an (9, )-realizable sequence of length 1 al the point FY=).
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We also need to construct long realizable sequences. Part 2 of lemma 2.11 pro-
vides a way to do this, by concatenation of shorter sequences. However, simple
concatenation is far too crude for our purposes because it worsens x: the relative
measure of the set where the sequence can be (almost) realized decreases when the
sequence increases. This problem is overcome by lemma 3.3 below, which allows us
to obtain certain non-trivial realizable sequences with arbitrary length while keeping
# controlled.

In short terms, we do concatenate several length 1 sequences, of the type given
by lemma 3.2, but we also impose that the supports of successive perturbations be
mapped one to the other. More precisely, there is a domain Cy invariant under the
sequence, in the sense that L; 1---Lo(Co) = D f2(Co) for all j. Following [3], where
a similar notion was introduced for the 2-dimensional setting, we call such L; nested
rotations. When d > 2 the domain Cy is not compact, indeed it is the product
Co = Xo @ By of a codimension 2 subspace X by an ellipse By C Xoi.

Let us fix some terminology to be used in the sequel. If £ is a vector space with
an inner product and F' is a subspace of E, we endow the quotient space F/F with
the inner product that makes v € F* — (v+F) € E/F an isometry. If B’ is another
vector space, any linear map L : £ — E' induces a linear map L/F : E/F — BE'[F',
where F/ = L(F). If E' has an inner product, then we indicate by || L/¥| the usual
operator norm.

Lemma 3.3. Given [ € DiffL(M), gg > 0, & > 0, there exists € > 0 with the
Sollowing properties: Suppose we are given a non-periodic poinl x € M and, for
j=01,...,n-1,

e codimension 2 spaces X;j C Tgjg)M such thal X; = Dfi(Xo);

e ellipses Bj C (Tys(q)yM)/X; cenlered al zero with B; = Df:g/Xg)(Bg).

o linear maps Rj C(TpiyM) /X5 = (Tpi@yM)/X; such thal R; i(B;) C Bj and
[|R; — I|| <e.

Consider the linear maps R; Tf,(I)M — Tf,(I)M such thal R; restricled lo X; is
lhe idenlily, R; (Xi) XL and Rj/X; = R Define

L;= foj(z)Rj : Tfj(z)M — Tfj+1(z)M for0<j<n-—1.
Then {Lg, ... ,Lyn—1} is an (&g, k)-realizable sequence of length n al .

We shall prove lemma 3.3 in section 3.1.2. Notice that lemma 3.2 is contained
in lemma 3.3: take n = 1 and use also part 3 of lemma 2.11. Actually, lemma 3.2
also follows from the forthcoming lemma 3.4.

3.1.1 Cylinders and rotations

We call a cylinder any affine image C in R% of a product B4~% x B? where BJ
denotes a ball in R7. If ¢ is the affine map, the azis A = (B¢ % x {0}) and the base
B = %({0} x B?) are ellipsoids. We also write C = A® B. The cylinder is called right
if A and B are perpendicular. The case we are most interested in is when 7 = 2.
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The present section contains three preliminary lemmas that we use in the proof
of lemma 3.3. The first one explains how to rotate a right cylinder, while keeping
the complement fixed. The assumption a > 7b means that the cylinder C is thin
enough, and it is necessary for the C! estimate in part (ii) of the conclusion.

Lemma 3.4. Given ¢g > 0 and 0 < o < 1, there is € > 0 with the following
properlies: Suppose we are given a splitling R* = X ®Y with X 1 Y and dimY =2,
a rzgh[ cylinder A® B cen[ered al the orzgm with AC X and B C Y, and a linear
map R:Y =Y such thal R(B) B and HR I|| < e. Then there exisls T > 1 such
that the following holds:

Let R : RY — R? be the linear map defined by R(u+v) = u + }A%v, foru e X,
v €Y. Fora, b>0 consider the cylinder C = aA® bB. If a > 7b and diamC < ¢q
then there is a C' volume preserving diffeomorphism h : R — R? salisfying

(1) h(z) = z for every z ¢ C and h(z) = R(z) for every z € oC;
(i) |h(z) — 2| < €0 and |Dh, —1|| < &g for all z € R?.
Proof. We choose ¢ > 0 small enough so that

18¢
l1-0

< £9. (3.1)

Let A, B, X, Y, IA%, R be as in the statement of lemma. Let {e1,...,eq} be an
orthonormal basis of R? such that e1, ez € Y are in the directions of the axes of the
ellipse B and e; € X for j = 3,...,d. We shall identify vectors v = ze; +yes € Y
with the coordinates (z,y). Then there are constants A > 1 and p > 0 such that
B ={(z,y); \ 222 + X%y? < p?}. Relative to the basis {ei, es}, let

A0 cosa —sina
Hy= (0 )\’1) and R = (sina cos o ) ’
The assumption E(B) = B implies that R= H)\I-?,QH)T1 for some «. Besides, the
condition Hﬁ — 1| < € implies
Msina| < ||(R - 1)(0,1)]| <e. (3.2)
Let ¢ : R = R be a C* function such that ¢(t) = 1 for ¢ < o, ¢(t) = 0 for
t>1,and 0 < —¢'(t) < 2/(1 — o) for all {. Define smooth maps 9 : ¥ — R and
'Y =Y by
1/)(11 y) = 0190( V z% + yZ) and @(1,1}) = R(p(t}d)(z,y) (z)y)

On the one hand, §;(z,y) = (z,y) if either £ > 1 or 22 +y?> > 1. On the other
hand, §;(z,y) = Ra(z,y) if L < o and 22 + y? > 0. We are going to check that the
derivative of g, is close to the identity if € is close to zero; note that |sinc| is also
close to zero, by (3.2). We have

N _ (cos(typ) —sin(lep) —xz sin(lh) — y cos(lyh)
D(31)g) = (sin(u/;) cos(t1) ) + ( z cos(trp) — ysin(ir)
= Ripteg) + L [Brpsiwiaa) (@ 9)] - D¥iay)

) (L0 1Oyy)
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Consider 0 < ¢ < 1 and z2 + y2 < 1. Then
1D(G) @) = LIl = | Reyay) = LIl + 1R j2s () (25 DI - 1 DYy
< |sin (e )| + || 2azd (@® +17) , 2004 (@® + 7))

Taking € small enough, we may suppose that o < 2|sina|. In view of the choice of
¢ and 1, this implies

1D()(zy) — 1l < Isinal +4lal/(1 - 0) < Ysinal/(1 - o). (3.3)
We also need to estimate the derivative with respect to ¢:
183z I < [|¢'(%(2,y) Brja i mpiag) (@, 9)]| < 4lsinel/(1-0).  (34)

Now define g, : Y = Y by g, = Hyog, 0 H, !, Bach g, is an area preserving
diffeomorphism equal to the identity outside B. Thus

lg:(z,y) — (z,9)| <diamB, (3.5)

for every (z,y) € B. Moreover, g, = R= HARQH)TI on o for all ¢t < 0. By (3.3),
. _ 9|sin &
1D(90)a) = 21l = | HA(D @) =10 = 1) HR | < 3 (H) ’
and, applying (3.2) and (3.1), we deduce that

9e £0
— 3.6
170< 2 (3:6)

1D(92) 2.9y — 11l <
for all (z,y) € B. Similarly, by (3.4),

€0

. 4[sina
el < Rlag sl < 2 (IRe) <2

l1-0
Now let @ : X — R be a quadratic form such that 4 = {u € X; Q(u) < 1},
and let ¢: R — X and p: R? = Y be the orthogonal projections. Given a,b > 0,
define b : R? — R? by
h(z) = 2’ + bgg-2q()(b™'2"), where 2’ = gq(2) and 2" = p(2).

It is clear that A is a volume preserving diffeomorphism. The subscript { = a’QQ(z’)
is designed so that ¢ < 1 if and only if 2’ € aA. Then h(z) = z if either 2’ ¢ aA
or 2 ¢ bB. Moreover, h(z) = z' + R(2") = R(2) if 2’ € 0aA and 2" € obB. This
proves property (i) in the statement. The hypothesis diamC < gq and (3.5) give
I8(2) = 2l = bllga-2q(ary (b '2") = b72"|
< bdiam B < diam(aA @ bB) < g

which is the first half of (ii). Finally, fix 7 > 1 such that [|[DQy| < 7|u| for all
u € R?, and assume that a > 7b. Clearly,

Dh =4+ (219)(DQ)a + (D).
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Using (3.6), (3.7), and the fact that ||¢|| = ||p|| = 1 (these are orthogonal projections),

DR — 1| < Ha%(ﬁzg)(DQ)QIl +11(Dg - Dpll

A

b
—glaliTalall +Dg = LIl p] < eo-

This completes the proof of property (ii) and the lemma. O

The second of our auxiliary lemmas says that the image of a small cylinder by a
C" diffeomorphism h contains the image by Dh of a slightly shrunk cylinder. Denote
C(y,p) = pC +y, for each y € R% and p > 0.

Lemma 3.5. Let h: B¢ — R? be a C' diffeomorphism with h(0) = 0, C C R? be
a cylinder cenlered al 0, and 0 < A < 1. Then there exists T > 0 such thal for any
C(y,p) C B:(0),

h(C(y, p)) D Dho(C(0, Ap)) + h(y).

Proof. Fix a norm | - [¢ in R? for which € = {z € R%; |z|lo < 1}. Such a norm
exists because C is convex and C = —C. Let H = Dhg and g : R* — R? be such that
h=Hog. Since g is C' and Dgg = I, we have

(2, y)

z) — =z—-y+{(z with lim ———— =
o) ol =z myrEew) R e T - o

Choose 7 > 0 such that |z||,|y]| < 7 = |€(z,9)ll0 < (1 =Nz — ylo (where
| - || denotes the Euclidean norm in R%). Now suppose C(y,p) C By(0), and let
2 € 9C(y, p). Then ||z — yllo = p and

llg(z) = 9@l = [z = yllo = £(z: ¥)llo > Ao

This proves that the sets g(dC(y, p)) — g(y) and AC are disjoint. Applying the linear
map H, we find that h(0C(y,p)) — h(y) and AHC are disjoint. From topological
arguments, h(C(y, p)) — h(y) D MAHC. O

The third lemma says that a linear image of a sufficiently thin cylinder contains
some right cylinder with almost the same volume. The idea is contained in figure 1.
The proof of the lemma is left to the reader.

Lemma 3.6. Lel A®B be a cylinder cenlered al the origin, L : R? — R? be a linear
isomorphism, Ay = L(A) and By, = p(L(B)), where p is the orthogonal projection
onto the orthogonal complement of Ay. Then, given any 0 < X\ < 1, there exisls
7 > 1 such that if a > 7b,

L(aA®bB) D AaA: @ bBi.

18



VB
bI(B)

e
aA

Figure 1: Truncating a thin cylinder to make it right
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3.1.2 Proof of the nested rotations lemma 3.3

Proof. Let f, €, and & be given. Define o = (1 — )!/2¢ and then take ¢ > 0 as
given by lemma 3.4. Now let z, n, X;, Bj, }Aij, Rj, L; be as in the statement. We
want to prove that {Lg,..., Ly} is an (eg, k)-realizable sequence of length at z, cf.
definition 2.10.

In short terms, we use lemma 3.4 to construct the realization g at each iterate.
The subset U \ K, where we have no control on the approximation, has two sources:
lemma 3.4 gives h = R only on a slightly smaller cylinder oC; and we need to
straighten out (lemma 3.5) and to “rightify” (lemma 3.6) our cylinders at each
stage. These effects are made small by considering cylinders that are small and very
thin. That is how we get U \ K with relative volume less than x, independently
of n.

For clearness we split the proof into three main steps:

Step 1: Fix any v > 0. We explain how to find > 0 as in definition 2.10.
We consider local charts ¢; : V; — R* with i = Qi(piz) and Vj = Vi(pig), as
introduced in section 2.5. Let 7' > 0 be small enough so that

e fi(By(z)) C V for every j =0,1...,n;
o the sets f7(B,(z)) are two-by-two disjoint;
o IDJ. = Dyl IRyl < for every = € fi(By(a)) and j =0,1... .

We use local charts to translate the situation to R%. Let fi=w¢jpofo sp;l
be the expression of f in local coordinates near f7(z) and fi*1(z). To simplify the
notatlions, we suppose that each ¢; has been composed with a translation to ensure
@;j(fI(x)) = 0 for all . Up to identification of tangent spaces via the charts @; and
©jt1, we have L; = (D f;)oR;.

Let Ay C Xp be any ellipsoid centered at the origin (a ball, for example), and
let Aj = Dfi(Ag) for j > 1. We identify (T, M)/X; with in, so that we may
consider B; C X]-L. In these terms, the assumption B; = (Df3/X0)(Bo) means that
B; is the orthogonal projection of D f1(Bo) onto in.

Fix 0 < A < 1 close enough to 1 so that A%(@1) > 1. Let 7; > 1 be associated
to the data (A; @ By, (Df;)o,A) by lemma 3.6: if a > 7;b then

(Df]')[)(llA]' D bB]) D )\ll.A]'+1 (6] ij+1 (38)
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and let 7; > 1 be associated to the data (eo, 0, X; @XJ-L,.A]' @ B;j, fij) by lemma 3.4.
Fix ag > 0 and by > 0 such that

ag > boA " max{7;,7}; 0<j <n—1}. (3.9)
For 0 < j < n, define C; = )\ZjagAj [¢3] )\jbgB]-. For z € R* and p > 0, denote

Cj(z,p) = pC;j + z. Applying lemma 3.5 to the data (f;,Cj,\) we get r; > 0 such
that

C(z,p) C B (0) = [f;(Ci(2,p)) D (Df;)o(C;(0,A0)) + f;(2). (3.10)
Now take 7 > 0 such that r < 7’ and, for each j =1,... ,m — 1,
Ji 1 fo(Br(0)) C By, (0). (3.11)

Step 2: Let U be fixed. We find g € U(f,e0) and K C U as in definition 2.10.

For this we take advantage of lemma 2.13: it suffices to consider open sets of
the form U = ¢y (Co(yo,p)), because the cylinders Co(yg, p) contained in B,(0)
constitute a Vitali covering.

We claim that, for each j =0,1,... ,m — 1, and every ¢ € [0, p],

Ci(y5:t) C fi-1-- fo(Br(0)) (3.12)

and

Fi(Ci(y;: 1) D Ciya(yjn,t) (3.13)

For j = 0, relation (3.12) means Cy(yo,¢) C B,(0), which is true by assumption.
We proceed by induction. Assume (3.12) holds for some j > 0. Then, by (3.11)
and (3.10),

Ji(C3y5,0) 2 (DJ5)0(C(0, A1) +yj4
= (Dfo)o [(}\2]+1La0Aj) 3} ()\J+1lbij)] + Yjt1.
Relation (3.9) implies that A% *14ag > 7;(A9*11by). So, we may use (3.8) to conclude

that
Fi(Ci;, 1) D (A +2tagAj) @ (M H1boBo) + g1 = Cia(yja1, 1)

This proves that (3.13) holds for the same value of j. Moreover, it is clear that if
(3.13) holds for all 0 < i < j then (3.12) is true with j + 1 in the place of j. This
completes the proof of (3.12) and (3.13).

Condition (3.9) also implies A¥ag > i (Mbg). So, we may use lemma 3.4 (cen-
tered at y;) to find a volume preserving diffeomorphism h; : R¢ — R? such that

1. hj(z) =z for all z ¢ C;(y;,p) and h;(z) = y; + Rj(z —y;) for all z € C;(y;,0p)
and, consequently,

hj(Ci(y;.op)) = Ci(yj,op) and  h;(Ci(y;,p)) = Cj(y;, p)- (3.14)
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2. ||hj(2) — || < e and ||(Dhj), — I|| < & for all z € R%.

R; is the linear map 7'y ;) — T'jj+1(5) in the statement of the theorem or, more
precisely, its expression in local coordinates ;. Let S; = w;l({z; h(z) #2z}) C M.
By property 1 above and the inclusion (3.12),

8; € @5 (fizt -+ fo(Br(0))) = f(Br(x)).

In particular, the sets S; have pairwise disjoint closures. This permits us to define
a diffeomorphism g € Difflll(M) by

9= ‘P}:1°(fj°hj)°‘/’j on Sj foreach 0 < j<n—1
outside So U ---U S, 1

Property 2 above gives that f~' o g € U(id, &), and so g € U(f, ).

Step 3: Now we define K C U and check the conditions (i)—(iii) in definition 2.10.
By construction, h; = id outside C;(y;, p), and so
@ifro(fiohs)op; = [ outside 79(C;(y;,p)).
Using (3.13) and (3.14), we have ¢ 7(C;(y;,p)) C f(U) for all 0 < j < n—1. Recall
that U = @5 (Co(yo,p)). Hence, g = j outside the disjoint union U?;éfj(U). This
proves condition (i).
Define K = g "(¢,'(Ca(yn,0p))). Using (3.13) and (3.14) in the same way

as before, we see that K C U. Also, since all the maps f, g, hj, ¢; are volume
preserving, and all the cylinders C;(y;, p), Cj(y;,op), are right

volK _ vol(op A*aA, ® opA"bB,) _ (A?"0)4"2 vol 4, (\"0)? vol B,
volU ~— vol(paAg @ pbBy) - vol Ay vol By '

Notice also that vol.A, vol B, = volAg vol By, since the cylinders D f2(Ay & By)
and A, ® B, differ by a sheer. So, the right hand side is equal to A2nld Dgd Now,
this expression is larger than 1 — &, because we have chosen o = (1 — x)'/2 and
A > (1 —&)1/47(d=1) This gives condition (ii).

Finally, let z € K. Recall that Lj = Dffi(s)R;. Moreover, (Dhj),. gi(z)
(we continue to identify R; with its expression in the local chart ¢;), because

=R,

¢ (2) € g7 (0" (Calyn: 0p))) C 05" (C;(y5,0p)).
Therefore, writing z; = h;j(p;(¢?(2))) for simplicity,
[1Dgyi () = Lill = 1DU5)25 B = DUoRS|| < [|DU5)z; = DUdolll| Bl < -

The last inequality follows from our choice of r’. This gives condition (iii) in defini-
tion 2.10. The proof of lemma 3.3 is complete. O

Remark 3.7. This last step explains why it is technically more convenient to require
[[Dgyi(zy — Ljll < v, rather than Dgg;(,) = Lj, when defining realizable sequence.
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3.2 Proof of the directions interchange proposition 3.1

Proof. First, we define some auxiliary constants. Fix 0 < &' < %K. Let &1 > 0,
depending on f, €y and &', be given by lemma 3.2. Let e9 > 0, depending on f,
g0 and &, be given by lemma 3.3. Take ¢ = min{ej,e2}. Fix a > 0 such that
V2 sina < e. Take

K > (sina)™? and K > max {IDfsll/m(Df,); z € M}. (3.15)
Let 8 > 0 be such that
8v2 K sin 8 < esin® a. (3.16)

Finally, assume m € N satisfies m > 27 /.
Let y € M be a non-periodic point and 7yM = E @ F be a splitting as in the
hypothesis:

(il

m(Dfi]) =

1
—. 1

; (317)
We write B; = Dfj(E) and F; = Dfj(F) for j = 0,1,... ,m. The proof is divided
in three cases. Lemma 3.2 suffices for the first two, in the third step we use the full
strength of lemma 3.3.

First case: Suppose there exists £ € {0,1,... ,m} such that
4(Ey, ) < a. (3.18)

Fix £ as above. Take unit vectors ¢ € E; and 7 € F; such that <(¢,7) < a. Let
Y=REORpand X =Y " Let R:Y = Y be a rotation such that 1?(5) = 1. Then
|IR=1]| = V2 sin<(¢,n) <e. Let R: TpeyM — Tpe(,yM be such that R preserves
both X and Y, R|x = I and R|y = R.

Consider first £ < . By lemma 3.2, the length 1 sequence {D fy¢(,) R} is (x', €0)-
realizable at f%(y). Using part 2 of lemma 2.11 we conclude that

{Lo, S Lm—l} = {ny, ceey fozf1(y), fol(y)R,fo£+1(y), S ,fom—l(y)}

is a (k,¢€q)-realizable sequence of length m at y. The case £ = m is similar. By
lemma 3.2, the length 1 sequence {RDfym-1(,)} is (&', €0)-realizable at " (y).
Then, by part 2 of lemma 2.11,

{Lg., s Lm—l} = {ny., S 7fom72(y)’ Rfomq(y)}.

is a (k,éeq)-realizable sequence of length m at y. In either case, Ly, 1---Lg sends
the vector v = Df (&) € Ey to a vector w collinear to Df™ (1) € Fp,.
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Second case: Assume there exist k,£ € {0,... ,m}, with k < ¢, such that
HDfﬁk(];/) ‘Fk ”
m(Dfﬁ;(I;)lEk)
Fix k and ¢ as above. Let £ € Ej, n € Fi, be unit vectors such that

IDF*E) = m(Df**p,) and DS Fm) =D Hm

(3.19)

(Df** is always meant at the point f*(y)). Define also unit vectors

Dtk Dtk
oo DIHO g DI
D@ (02 A )|
Let & = £ + (sina)n. Then 6 = <(§,&1) < «, simply because ||| = 7] = 1. In
particular, if R : RE @ Ry — RE @ Ry is a rotation of angle +6, sending R¢ to Ré;
then

€ F.

IR 1] = V2 sinf <e.
Let Y = REQRy and X = Y'. Let R : Tfk(y)ﬂ{\ — Tyry)M be such that R
preserves both X and Y, with R|x = I and R|ly = R. By lemma 3.2, the length 1
sequence {D [y, R} is (x', £9)-realizable at T*(y). Let ) = s¢' + 7', where

_ 1 IDfEOI - 1 m(Df g,
sina [DfEE@m)| sina DR

Then the vectors Df¢%¢ and #; are collinear. Besides, s < 1/(K sine) < sina,
because of (3.15) and (3.19). Hence, ¢ = <(n},7) < a. Then, as before, there
exists R : TjeyM — Tju(yM such that R'(Rp;) = Ry and {R'Dfpi-11)} is a
(', 0)-realizable sequence of length 1 at f~1(y).

Notice that (3.15) and (3.19) imply £ — 1 > k. Then we may define a sequence
{Lo, ...y Ly 1} of linear maps as follows:

fok(y) R for j =k
Lij=4 R'Dfp forj=£-1
D friy) for all other j.

By parts 1 and 2 of lemma 2.11, this is a (x, €¢)-realizable sequence of length m at
y. By construction, L, ;- Lq sends v = Df~*(¢) € Ey to a vector w collinear to
Df™() € Fip.

Third case: We suppose that we are not in the previous cases, that is, we assume
for every j € {0,1,... ,m}, <(&;,F;)>a. (3.20)
and
G—i
Hfoi(y)‘Fi” <K

pr < (3.21)
m(Df i(y)‘Ei)

for every 4,5 € {0,... ,m} withi < j,
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We now use the assumption (3.17), and the choice of m in (3.16). Take unit vectors
€ € Eo and n € Fy such that [Df™€| = m(Df™|z,) and [ D™yl = | D"
(Df™ is always computed at y). Let also ' = Df™(n)/||Df™(n)| € Fm.

Define Go = EgN¢L and G = Dfi(Go) C Ej for 0 < j < m. Dually, define
Hpy = FEnnn'' and H; = Df~™(H,,) C Fj for 0 < j < m. In addition, consider
unit vectors v; € E; N GjJ and w; € F; N HjJ for 0 < j < m. These vectors are
uniquely defined up to a choice of sign, and vy = +¢ and w,, = +n'. See Figure 2.
For j =0,...,m, define

Xj = G]‘G)Hj and Y] :R’l)j G)]R'w]‘ .
The spaces X; are invariant: D fy;(,)(X;) = Xj41 (the ¥; are not). We shall prove,

using (3.20) and (3.21), that the maps ng/Xo t TyM/Xo = Ty M/X; do not
distort angles too much:

Lemma 3.8. For every j =0,1,... ,m,
IDfi/Xoll _ 8K
m(Df]/Xy) ~ sin

ij
Go G Gm
§=mw V|
vy
Ey < Ej B
Hy F F F
Y H, J > u,
wq wJN ~. 77’ = Wm

Dfim
Figure 2: Setup for application of the nested rotations lemma

Let us postpone the proof of this fact for a while, and proceed preparing the
application lemma 3.3. Let By C (T;M)/Xo be a ball and B; = (D fy/Xo)(Bo) for
0 < 7 <m. Since mf > 2m, it is possible to choose numbers 6y, ... ,0,,_1 such that
|6;] < B for all j and

m—1
0; = (v + Xo, wo + Xop). (3.22)
=0
Let P; : (IyM)/Xo — (T;M)/Xy be the rotation of angle §;. Define linear maps

Ry (TiyM)/ X — (TpiyM)/X; by
Ry = (Dfj/Xo) Py (Df/X0) ™"
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Since P; preserves the ball By, we have R i(B;j) = B; for all j. Moreover,

IRy 1y < A2BIX )y < K e,

m(Df}/Xo)
by lemma 3.8, the relation ||P; — I|| < +/2 sin$, and our choice (3.16) of S.
Applying lemma 3.3 to these data (g9, &k, =y,n =m, X, Bj,ﬁj) we obtain an

(€0, &)-realizable sequence {Lg, ... ,Ly—1} at the point y, with Lj|x;, = foj(y)\xj
and

Li/X; = (Dfiy)/X;) Rj = (Df§*/X;) P (D] Xo) ™"
Let £= Ly 1---Lo. Then £/ Xq = (Df'/X0)Pm 1---Py. In particular, by (3.22),

L(vo + Xo) = (Dfy"/ Xo)(wo + Xo) = D f"(wo) + Xm
Recall that X,,, = G,,, ® Hy,, by definition. Then we may write

L(vo) = Dfy(wo) + tm + up,

with uy, € Gy and ul, € Hy,. Let ug = (Df;")’l(um) € Gy C XoN Ey. Since £
equals D f," on Xg, we have L(ug) = Up,. This means that the vector v = vg—ug € Ey
is sent by £ to the vector D f;"(wg) +uj, € Fp,. This finishes the third and last case
of proposition 3.1.

Now we are left to give the

Proof of lemma 3.8. Recall that X; = G; ® H;, G; C E; and H; C Fj, v; € Ej
and w; € Fj, and v; L G and w; L Hj;. Hence, using (3.20),

<i(X]‘,’U]‘) = <I(H]‘,’Uj) > 4(}‘},E]‘) >a and
UX; @ Roj,wj) = <(Roj ® Gj,w;) > <(Bj, 1) >

Using lemma 2.6 with A = X, B = Ry;, C = Rw;, we deduce the following lower
bound for the angle between the spaces X; and Y; = Rv; @ Rw; :

sin<(X;,Y;) > sin<(X;,v;) sin<(Rv; ® X;,w;) > sin’ .

Let mj : Y; — (Tyi()M)/X; be the canonical map m;(w) = w + X;. Then 7; is an
isomorphism, ||7;|| = 1 and

ol =1/ sin (Y5, X;) < 1/sin* . (3.23)

(the quotient space has the norm that makes in 5 w — w+ X; an isometry).

Now let p; : Ty, (yyM — Y; be the projection onto Y; associated to the splitting
Ty, )M = X; ©Y;. Let D;j : Y; — Y;41 be given by Dj = pj10(Dfri(yly;). Define

DU Yy »Y; by DY =D 10+ 0Dy=p;jo(Dfily).
We claim that the following inequalities hold:

1 _ DY (o)

oK < W < K forevery j with0<j <m. (3.24)
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To prove this, consider the matrix of D; relative to bases {v;,w;} and {vj41,w;j41}:

_ (4 O
2=(7 )

Then DY (wg)|| = |aj_1---ao| and [DW (wy)| = |bj_1---bo|, since v; and w; are
unit vectors. Moreover, for 0 < i < j < m we have
laj1 @il = Ip; o Dfi z(y @Il = I 0 DIE(0) |7,
by -+ bil = lIpy 0 DI (wll = I o DI (wy)l
Recall that vy € Ey and wy € F; for all s. When restricted to B, (or Fj), the
map p; is the orthogonal projection to the direction of vs (or ws). In particular,
Ipile:ll = |pjlr; || = 1 and so
jaj 1o+ai > [Df 8 Ol = m(D il ) and by 1 bl < D)
Using (3.21), we obtain that
‘bj—l . bz‘
‘aj 1e-- ai‘

<K forall0<i<k<m. (3.25)

Taking ¢ = 0 gives the upper inequality in (3.24). For the same reasons, and the
definitions of vg = ¢ and wyp, = 7' = Df)"(n)/| D f;* (n)|l, we also have

lam-1---ao| < |Dfy*(vo)ll = IDS(E)]l = m(Df™|x,),
b1+ bol > | DS 7 () | = (DA )] = DS ™y
Now (3.17) translates into
[Brn—1--- bol
‘am—l . aO‘
Combining this inequality and (3.25), with i, j replaced by j, m, we find

lbj—1---bol _ lbm—1---bo| ; [bmy---bjl _ 1/2
lai1-ao] ~ lam—1---ao| | lam1---a;] = K’

which is the remaining inequality in (3.24).
Now, combining lemma 2.8 with (3.24) and <((vs, ws) > «, we get
D@ _ 8K

—— < .
m(D@) ~ sina

Moreover, ng/Xo =mjo DU o 7r0’1. So, using the relation (3.23),

IDR/XL Il D9l 8K
ny/Xo m(r;) m(DUW) m(m) ~ sin®

This finishes the proof of lemma 3.8.

The proof of proposition 3.1 is now complete. O
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4 Proof of theorems 1 and 2

Let us define some useful invariant sets. Given f € Diﬁi(M), let O(f) be the set of
the regular points, in the sense of the theorem of Oseledets. Givenp € {1,... ,d—1}
and m € N, let Dy(f,m) be the set of points z such that there is an m-dominated
splitting of index p along the orbit of 2. That is, 2 € D,(f,m) if and only if there
exists a splitting Tyna M = E, ® F, (n € Z) such that for all n € Z, dim E, = p,
Dffng(Ep) = Eny1, Dfpng(Fn) = Fnyq and

“Df}rrlz(z)‘Fn”
m(Df}rrlL(z)‘En)

By section 2.2, Dy(f,m) is a closed set. Let

1
<.
-2

Fp(fam) =M \Dp(f’m)’

Fg(fﬂm) = {m € F:D(fﬂm) I’]O(f); Ap(fﬂm) > )\p+1(f,l) }v
Ly(fym) = {m € I‘g(f,'m); z is not periodic}.

Define also

Tp(f,00) = ﬂ Tp(f,m) and F;E(fﬂoo) = ﬂ Fg(fam)

meN meN
It is clear that all these sets are invariant under f.

Lemma 4.1. For every f and p, the sel Fg(f,oo) conlains no periodic poinls of f.
In other words, ey (Fg(f, m)\T;(f,m)) = @.

Proof. Suppose that z € O(f) is periodic, say, of period n, and A, (f, ) > Api1(f, z).
The eigenvalues of Df? are v1,... ,vq, with |y| = emilh?) | Let B (resp. F) be
the sum of the eigenspaces of D[ associated to the eigenvalues vy,... v, (resp.
Vpt1s--- ,¥4)- Then the splitting T, M = E @ F is Df}-invariant. Spreading it
along the orbit of 2, we obtain a dominated splitting. That is, 2 € Dy(f,m) for
some m € N, and so:vg?l"g(f,oo). O

4.1 Lowering the norm along an orbit segment
Recall that we write A,(f,z) = M\i(z) + - + Ap(z) for each p = 1,... ,d.

Proposition 4.2, Let f € Difft(M), e >0,6>0,6>0andpe{l,...,d—1}.
Then, for every sufficiently large m € N, there exists a measurable funcltion N :
Ty (f,m) = N with the following properties: For almost every x € Tp(f,m) and
every n > N(x) lhere exisls an (g9, k)-realizable sequence {L((]z’"), e ,L(:j"l)} al T
of length n such thal

Apr(f,2) + Apia(f52)

D) + 0.

1 = >(zy
~log [A(EY - L) <
Proof. Fix f, g, &, 6 and p. For clearness, we divide the proof into two parts:
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Part 1: Definition of N(-) and the sequence Egz’").

Fix f, €9, k, 6 and p. Assume m € N is sufficiently large so that the conclusion of
proposition 3.1 holds for f, ¢ and %n’ (in the place of ). To simplify the notation,
let I' = I'*(p,m). We may suppose that u(I') > 0, otherwise there is nothing to
prove. Consider the splitting 7rM = E @ F, where E is the sum of the Oseledets
subspaces corresponding to the first p Lyapunov exponents A\; > --- > )\, and F' is
the sum of the subspaces corresponding to the other exponents A,11 > --- > Ag.
This makes sense since A, > Apy1 on I'. Let A C T be the set of points  such that
the non-domination condition (3.17) holds. By definition of I' = ['; (f,m),

r=J/mA). (4.1)

nez

Let X\P(z), 1< i < (Z) denote the Lyapunov exponents of the cocycle AP(Df)
over f, in non-increasing order. Let V, denote the Oseledets subspace associated to
the upper exponent )\f” (z) and let H, be the sum of all other Oseledets subspaces.
This gives us a splitting AP(TM) =V @ H. By proposition 2.1, we have

X7 (z)
257 (x)

=M(@) + - 4 A (@) + Mp(2),
= M)+ + A1 (@) + Ay ().
If z € T then A\y(z) > Apy1(z) and so A\P(z) > XjP(z). That is, the subspace V; is
one-dimensional.

For almost every z € T, Oseledets’ theorem gives Q(z) € N such that for all
n > Q(z), we have:

. %logw < AP(z) + 6 for every v € V; N {0};

[oll

. %log LAPD S]] /\;\p(z) + 6 for every w € Hy \ {0};

Il
. %10gsin<I(anz,anI) > —4.

For g €N, let By = {z € I'; Q(z) < ¢}. Then B, 1 T, that is, the B, form a non-
decreasing sequence and their union is a full measure subset of I'. Define Cy = @
and

Co=J MAnf ™B,)). (4.2)

nez

Since f~™(Bg) 1 T and (4.1), we have C, 1 . To prove the proposition we must
define the function N on I'. We are going to define it on each of the sets Cy \ Cq_1
separately. From now on, let ¢ € N be fixed.

We need the following recurrence result, proved in [3, lemma 3.12].

Lemma 4.3. Lel f € Diff;(M). Let A C M be a measurable sel with pu(A) > 0,
and lel T = Upezf"(A). Fiz any v > 0. Then lhere exisls a measurable funclion
Ny : T — N such that for almost every z € T, and for all n > Ny(z) and ¢ € (0,1),
there exists £ € {0,1,... ,n} such that t —y < £/n < t+~ and f(z) € A.
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Let ¢ be a strict upper bound for log ||AP(Df)|| and v = min{c~'4,1/10}. Using
(4.2) and lemma 4.3, we find a measurable function N;” : C;, — N such that for
almost every = € Cy, every n > N[g'n(z) and every { € (0,1) thereis £ € {0,1,... ,n}
with [¢/n — (| < v and flz € AN f~™(B,). We define N(z) for z € Cy \ Cy_1 as
the least integer such that

N(z) > max{N{?(z), 10Q(z), my~", 6 log[4/sin <(Va, H)]}.

Now fix a point € Cy \ Cy—1 and n > N(z). We will now construct the
sequence {E;z’"]}. Since n > Néq)(m), there exists £ € N such that
J4

1 _ —m
H—§‘<'y and y=f"(z) € AN [T™(By).

Since y € A, where the non-domination condition (3.17) holds, proposition 3.1 gives
a sequence {Lq,... , Ly_1} which is (e, %n)—realizable , such that there are non-zero
vectors vy € Ey, wg € Ffm(y) for which

Lp—1...Lo(vo) = wp .
We form the sequence {Eéz’"), . ,E;zj"l)} of length n by concatenating
{Dffiay; 0<i <€}, {Los-.. s L1}, {Dffimy: £+m <i<m}.
According to parts 1 and 2 of lemma 2.11, the concatenation is an (gq, &)-realizable
sequence at z.
Part 2: Estimation of H/\I’(E(:jnl) .- -Z((]I’")) II.

Write ALY -+ L§*™) = DiLDy, with Do = AP(DfE), Dy = (DS}t ),
and £ = AP(Ly,—1 - -+ Lg). The key observation is:

Lemma 4.4. The map L : NP(TyM) — NP(Tym () M) satisfies L(Vy) C Hpmy)-

Proof. Proposition 2.1 describes the spaces V and H. Let z € I' and consider a
basis {e1(2),...eq(z)} of T, M such that

ei(z) € B for dmE! +. +dim B! ' <4 < dimE} + -+ + dim EJ.

Then V, is the space generated by e(z) A --- A ey(z) and H, is generated by the
vectors e; (2) A -+ Aeg,(z) with 1 < iy < -+ < iy < d, iy > p. Also notice
that {ei(z),...,ey(2)} and {ep41(2),... ,eq(2)} are bases for the spaces E, and
F, respectively. Consider the vectors vy € Ky, and wq = L(v) € Fymy, where
L=Lp_...Ly. Thereis v € {1,... ,p} such that

{’Uo, el(y)1 s aevfl(y)velﬂrl(y)’ s 1ep(y)}

is a basis for £y,. Therefore V;, is generated by the vector

vo Aer(y) Ao Aey—1(y) Aevyr(y) A Aep(y),
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which is mapped by £ = AP(L) to

wo A Ley(y) A -+ A Ley—1(y) A Leyy1(y) A -+ A Lep(y), (4.3)
Write wy as a linear combination of vectors ep11(f™(y)), ... , eq(f™(y)) and write
each Le;(y) as a linear combination of vectors e1(f™(y)), ..., ea(f™(y)). Substi-

tuting in (4.3), we get a linear combination of e;, (f™(y)) A--- A ey, (f™(y)) where
er(f™W)) A--- ANep(f™(y)) does not appear. This proves that the vector in (4.3)
belongs to Hymy). O

To carry on the estimates, we introduce a more convenient norm: For zg,z1 € T'
we represent a linear map T' : AP(Tyo M) — AP(Ty, M) by its matrix

Tt pt—
with respect to the splittings T, M = Vo ® Hy, and Ty M =V, ® Hy,. Then we

define
I lmax = max {4741, |7+ | 0T+ T 1

The following elementary lemma relates this norm with the original one ||7'|| (that
comes from the metric in AP(IT7 M) ).

Lemma 4.5. Lel Oyy = <(Vyq, Hyy) and 0, = <(Vg,, Hy,). Then:

1T < 4 (5in 0z0) ™" 1T maxs

2. 1T max < (sin6g,) " 7.
Proof. Let v = vy +v_ € Vyo ® Hyy. We have |lvi| < ||v||/sinfy, for * = + and
*=—. So

7o <N+ ol + 17 o | + 1777 o | + 17770 || < AT maxlv]l/ sin 6.

This proves part 1. The proof of part 2 is similar. Let vy € Vg,. Its image splits as
Tvy =Tt v, + Tty €V, @ Hy,. Hence,

IT* o || < | Tvll(sinbs,) < [T vl (sinbz,) '

for + = 4 and * = —. Together with a corresponding estimate for 7*"v ,v € Hy,,
this gives part 2. [m]

For the linear maps we were considering, the matrices have the form:

_ (Dt 0 o _ (0 Lt
D,—( 0 D. ,1=0,1, and L= )¢

i

D~ =0=D; " because V and H are AP(Df)-invariant, and £+* = 0 because of

i

lemma 4.4. Then

T ( 0 D1++L+7D0") . (4.4)

P(Tp 1+ Lg) =
N (Ln—l LO) D;—£—+Dar+ foﬁ’*DOﬁ*
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Lemma 4.6. Fori=0,1, 2 € Cy\Cy 1 and n > N(z),
log | D || < $n(A{*(z) +56) and log|D; | < in(A3P(z) + 56).
Proof. Since £ > (5 —7)n > &n > £N(z) > Q(z), we have
log | D§ || =Tog [[AP(Df5) v, || < £(\"(z) + ),
log |Dg ™ || = log | A(D f&) i, | < €N (x) +0).
Let X be either A}?(z) or X\p”(z). Using 7A < y¢ < § and 7y < 1, we find
A+0) <nE+7)A+6) <n(3r+ 16 +6+6) = in(X +56).

This proves the case 4 =0. We haven — £ —m >n(3 — ) —ny > &n > Q(z) > ¢.
Also fé(z) € f~™(By), and so Q(f¢t™(z)) < q. Therefore

log DY || = log [ AP(Df {1t M)y m, | < (0 = €= m) (A" () + ),

log | Dy ™[l =1og | AP(D 725k g, | < (1 — £ = m) (X3P (2) +6).

As before, (n—£¢—m)(A+3) < n(3+7)(A+5) n(A+55). This proves cases =1. O
Lemma 4.7. 1og | £|max < 2nd.

Proof. Since the sequence {Lg, ... ,Ln_1} is realizable, each L; is close to the value
of Df at some point. Therefore we may assume that log || A?(L;)|| < c. In particular,

log||lL]] < mc < ney < nd. We have £+ m > n(3 —7) > &n > Q(z). So

log[1/ sin <(Vt4mg, Hpremg)] < 6 and, by part 2 of lemma 4.5, 10g || £||max < 2nd. O
Using lemmas 4.6 and 4.7, we bound each of the entries in (4.4):
log [ Df £~ Dg || < $n(ATP(z) + X" (z) + 145)
log [Dy L7 D || < $n(ATP(z) + M7 (z) + 145)
log |Dy "£7~ Dy || < in(2X3P(z) + 146)
The third expression is smaller than either of the first two, so we get

NP () + AP (a)

1og [A*(a-1 -+ Lo)lmax < n (=25

+75).
Therefore, by part 1 of lemma 4.5 and log[4/ sin <(V, Hg)] < nd,

Ap Ap
log [|AP(Za_1 - Lo)|| < H(M + 86).

We also have A\?(z) + 57 (z) = Ap 1(f,2) +Api1(f,z). This proves proposition 4.2
(replace § with §/8 along the proof). O
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4.2 Globalization
The following proposition renders global the construction of proposition 4.2:

Proposition 4.8. Lel f € Diff}L(M), e0>0,p€{l,...,d—1} and § > 0. Then
there exist m € N and a diffeomorphism g € U(f,0) thal equals f oulside the open
set T'y(f,m) and such that

/ Ap(g,2) du(z) < & +/ M du(z).
Tp(fim) Tp(fim)

We need some preparatory terminology:

Definition 4.8. Let f € Diff‘ll(M). An f-lower (or simply lower) is a pair of
measurable sets (7',7}) such that there is a positive integer n, called the height of
the tower, such that the sets Ty, f(Tp), . .. , f/® '(Tp) are pairwise disjoint and their
union is 7. Ty, is called the base of the tower.

An f-caslle (or simply castle) is a pair of measurable sets (Q,Qp) such that
there exists a finite or countable family of pairwise disjoint towers (7}, Tj,) such that
Q=UT; and Q, = UTi- Qp is called the base of the castle.

A castle (Q, Q) is a sub-castle of a castle (Q', Q}) if Qy, C Q) and for every point
z € Qp, if n (respectively n') denotes the height of a tower of (Q, Qp) (respectively
(@', Q})) that contains z, then n = n'. In particular, Q C Q'.

We shall frequently omit reference to the base of a castle @ in our notations.

Definition 4.10. Given f € Diﬂ'i(M) and a positive measure set A C M, consider
the return time 7 : A — N defined by 7(z) = inf{n > 1; f"(z) € A}. If we denote
Ap =77Y(n) then T,, = A, U f(A,) U---U f"~1(A4,) is a tower. Consider the castle
@, with base A, given by the union of the towers 7},. Q is called the Kakutani castle
with base A.

Note that Q =,z f"(A) mod 0, in particular the set Q is invariant.

Proof of proposilion 4.8. Let f, €9, p and 6 be given. For simplicity, we write

_ Ml 2) + Apa(fr2) _

#(z) :

Step 1: Construction of families of castles @,- D Q;.

Let £ = §2. Take m € N large enough so that the conclusion of proposi-
tion 4.2 holds: there exists a measurable function N : I';(f,m) — N such that
for ae. z € I';(f,m) and every n > N(z) there exists a (gg, #)-realizable sequence

{igz’"), . ,fsffi)} at z of length n such that

! pEEm | fEm

S log |N"(Ly 2y Lo )l < ¢(z) + 6. (4.5)
We shall also (see lemma 4.1) assume that m is large enough so that

1(TE(f,m) \T3(f,m)) < 6. (4.6)
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Let C > supgey(1,e0) SUPyen 10g [|AP(Dgy)|| and £ = [C/d]. Fori=1,2,... ¢, let
7' ={z e Tj(f,m); (i —1)6 < p(z) < id}.

Each Z; is an f-invariant set. Since ¢ < C, we have I';(f,m) = |_]f:1 Z1. Define the
sets Z% = {z € Z*; N(z) < n} for n € Nand 1 <7 < £ Obviously, Z} t Z* when
n — oo. Fix H € N such that, for alli =1,2,... ¢,

W2\ Zy) < 5 u(2). (4.7)

Using the fact that A,(f) equals ¢ in the f-invariant set T'p(f,m) \ F%(f,m), and
proposition 2.2, we may also assume that H is large enough so that

log[n#(Df] <+ [ ¢ G

/rp(f,m)\rﬁ,(f,m) To(fm)NTh(f,m)

for allm > H.
A measure preserving transformation is aperiodic if the set of periodic points has
zero measure.The following result was proved in [3, Lemma 4.1]:
Lemma 4.11. For every aperiodic inverlible measure preserving lransformalion f
on a probabilily space X, every subsel U C X of posilive measure, and every n € N,
there ezisls a posilive measure sel V C U such thal the sets V., f(V), ..., f*(V) are
lwo-by-lwo disjoinl. Besides, V' can be chosen mazimal in the measure-theoretical
sense: no sel that includes V' and has larger measure than V has the staled properlies.
By definition of the set T'y(f,m), the map f : T;(f,m) — T;(f,m) is aperiodic.
So, by lemma 4.11, for each i there is B* C Z%; such that B?, f(B?),..., f#=1(B?)
are two-by-two disjoint and such that B’ is maximal for these properties (in the
measure-theoretical sense). Consider the following f-invariant set:

G = rms.
neZ

Q' is the Kakutani castle with base B%. It is contained in Z¢ and, by the maximality
of B*, it contains Z}; up to a zero measure subset. Thus, by (4.7),

Wz QY < 6%u(2Y). (4.9)

Let Q' C @i be the sub-castle consisting of all the towers of @i with heights at most
3H floors. The following is a key property of the construction:

Lemma 4.12. For eachi=1,2,... £, we have p(QF ~ Q) < 3u(Z < Zi).

Proof. We split the castle @’ into towers as @’ = LI 5 7§ where B = | |32 ;, Bl is
the base Qi and T} = U?;& J3(B) is the tower with base B and of height & floors.
Take k > 2H and H < j < k— H. The sets f/(Bi),... fiT#~1(B}) are disjoint and

do not intersect B* U --U fH=1(B?). Since B* is maximal, we conclude that

kE>2Hand H<j<k—-H = pu(fiBinzy)=0
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(otherwise we could replace B! with BLI(f7(Bi)NZ%,), contradicting the maximality
of B%.) Thus
k—H

E>2H = pu(TisZy) > Zﬂ(fj(Blic)) =
=t

k—2H+1 ;
s
In particular,
) ) 1 )
k>3H+1= u(Ty \ Zy) > EM(T’:)

and so
w@NQ)= Y wTH< Y 3u(Ti~Zy)
k=3H+1 k=3H+1
= Bu( L = \Z;) <3u(Z N Z),
k=3H+1
as claimed. O

Step 2: Construction of the diffeomorphism g.

Lemma 4.13. For almost every x € T;(f,m) and every n > N(z), lhere exisls
r > 0 such thal for every ball U = By (z) with 0 < r' < r there exist h € U(f,&q)
and a measurable sel K C B,/(z) such thal

(i) h equals | oulside L7~} f(By(x));
(ii) p(K) > (1= k)u(By (x));
(iii) if y € K then Llog||AP(DhY)|| < ¢(z) + 26.

Proof. Fix  and n > N(z). Recall the point z is not periodic. Let vy > 0 be
very small. Since the sequence {E;z’")} given by proposition 4.2 is (k, €g)-realizable,
there exists r > 0 such that for every ball U = B,/(z) with 0 < 7' < r there exists
h € U(f,e0) satisfying condition (i) above and there exists K C B,(z) satisfying
condition (ii) and

yeKand 0<j<n—-1 = Hth]‘ny?’n)H <.
Taking «y small enough, this inequality and (4.5) imply
1 1 -~ N
yeK = —log|N(DhY)| < ~log|WP(EEY - LE™)] +6 < g(a) +29,
as claimed in the lemma. O

Lemma 4.14. Fiz v > 0. There exisls g € U(f,eq) and for each i = 1,2,...,¢
there exist a g-castle U* and a g-sub-castle K* such thal:

(i) the U* are open, pairwise disjoint, and conlained in Tp(f, m);
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(i) w(U*~ Q') < 2yp(ZY) and p(Q' N U") < 2yp(Z7);
(iii) p(U' \ K'Y < 26pu(ZY);
(iv) g(U?) = f(U?) and g equals f oulside [_|z 1UZ

(v) if y is in base of K* and n(y) is the heighl of the lower of K* thal conlains
then

log | AP(Dg" )| < i6 + 24.

n( )
Proof. By the regularity of the measure y, one can find a compact sub-castle J! C Q*
such that

p(QF N I < 7@ (4.10)

Since the J? are compact and disjoint we can find open pairwise disjoint castles V?
such that each V* contains J* as a sub-castle, is contained in the open and invariant
set Ty(f, m), and

p(VIS ) < (@), (4.11)

For each z € Ji, let n(z) be the height of the tower that contains z. Ji is
contained in Z%, so N(z) < H < n(z). Let r(z) > 0 be the radius given by
lemma 4.13, with n = n(z). This is defined for almost every z € Ji. Reducing r(z)
if needed, we suppose that the ball B,(I)(m) is contained in the base of a tower in
Vi (with the same height).

Using Vitali’s covering lemma", we can find a finite collection of disjoint balls
U,ﬁ = B,kﬂ.(zk},-), with zx; € J{; and 0 < r; < r(zk,), such that

1

(A~ LT < mi). (412)
k

Let ng; = n(zy,;). Notice that n(z) = ny,; for all zt e U,’C'.
Now we apply lemma 4.13 to each ball U}i- We get, for each k, a measurable set
K} c U}, and a diffeomorphism hy; € U(f, o) such that (in 3 we use that z;; € Z*)

1. hy, equals f outside the set |_|"’“ lf’ (Uh);

2. p(Kf) > (1~ H)M(Ui);
3. ify € Kj then ;- log [AP(DRA Il < (k) + 26 < i6 + 26.

n

'nkl

Let g be equal to hy; in the set |_| Fi( U’“) for each 7 and &, and be equal to f
outside. Since those sets are disjoint, g E Diff} (M) is a well-defined diffeomorphism.
Each hy; belongs to U(f, &) and so g also does.

IFirst, cover the basis J{ of the castle by chart domains.
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Since each U,é is contained in the base of a tower in the castle V%, V? is also a
castle for g. Let U’ be the g-sub-castle of V? with base UkU,i. Analogously, let K*
be the g-sub-castle of U* with base LixKj,.

It remains to prove claims (ii) and (iii) in the lemma. Making use of the castle
structures, relation (4.12) and item 2 above imply, respectively,

w(JENUY <Ap(J) and p(U' N K < su(UY). (4.13)
By (4.11) and Qi C Zi,
pU N QY < u(VEN I < yu(@) < yu(2Y). (4.14)
This implies the first part of item (ii). Combining the first part of (4.13) with (4.10),
W@ NTUY) <@ N I + (I N UY) < 2(@) < 2yu(Z).
This proves the second part of item (ii). Finally, second inequality in (4.13) and
p(UY) < p(@Q) + p(U N Q) < (1+7u(@) < 2u(2).
imply item (iii). The lemma is proved. O

Step 3: Conclusion of the proof of proposition 4.8.

Let U = | [f_,Utand Q = ||, Q  and Q = | [, @Q". Set N = Hs '. (Of
course, we can assume that ! € N.) Let

3 N—
G= |_| G' where G'=Z'n ﬂ 9 1 (K")
i=1 j

for each 4 = 1,2,... ,£. The next lemma means that on G we managed to reduce
some time N exponent:

Lemma 4.15. If z € G* lhen

1
+ log [AP(Dg )| < i8 + (6C + 2)6.

Proof. For y € K{;, let n(y) be the height of the g-tower containing y. Take z € G,
say z € G'. Since the heights of towers of K* are less than 3H, we can write

N=ki+n +na+---+n;+k
so that 0 < k1,ky < 3H, 1< my,...,n; < 3H, and the points
k1tnittn; (2)

71 =g"(z), 22 =g"""(2), ..., 1=

are exactly the points of the orbit segment z,g(z),... ,g"¥~(z) which belong to K.
Write

A2 (Dg )l < A" (Dgg)I| AP (D) -+ AP (Dga))Il | AP(Dgg2, )l
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Using item (v) of lemma 4.14, and our choice of N = H6~!, we get

log || AP(Dg)|| < k1C + (n1 + - -+ + ;) (36 + 26) + kaoC
< 6HC + N(i6 + 26) < N(6C6 + 16 + 26),
as claimed. O

We also use that G covers most of U UT}(f,m), as asserted by the next lemma.
Let us postpone the proof of this lemma for a while.

Lemma 4.16. Lel y = 6%/(¢H) in lemma 4.14. Then p(U UTH(f,m) \ G) < 126.

Continuing with the proof of proposition 4.8, write ¥(z) = % log || AP(Dg)].
Since g leaves invariant the set T'(f,m), proposition 2.2 gives

/ Ap(g) < / P
Tp(fim) Tp(fm)

We split the integral on the right hand side as

/ = / v+ / vt / "
Ty(fom) Ty (fm) (UUTh (f;m) (UUTY(f;m)~G G

= (I) + (II) + (III).
Outside U, g equals f and so 9 equals + log | AP(Df")||. Thus

1

<[ tog |w7(D )] <5+ [
Typ(fm)srh(f.m) NV

Ty (fm)~Th (f;m)

by (4.8). By lemma 4.16 and (4.6), (U UTE(f,m)) \ G) < 136. Since ¢ < C, we
have (IT) < 13C4. Using lemma 4.15,

L

L l
) = Z/ <Y (16 + (6C +2)0)u(GY) < (6C +3)d+ Y (i — 1)du(GY).
i=17G" i=1

i=1

Since ¢ > (i — 1) inside Z* D G*, we have

(I11) < (6C +3)5 +/ é.

T3(f:m)

Summing the three terms, we get the conclusion of proposition 4.8 (replace § with
0/(18C + 4) throughout the arguments):

Tp(fm)

/ Alg) < (180+4)(5+/ 5.
Tp(fim)

This completes the proof of the proposition, modulo proving lemma 4.16. O
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Step 4: Proof of lemma 4.16.

The following observations will be useful in the proof: If X C M is a measurable
set and N € N, then

N-1
w(U 67(%) <) + (V= Du(g™'(X) ~ X). (4.15)
=0

Moreover, u(g~ ! (X) N\ X) = p(X ~ g7 1(X)).
Proof of lemma 4.16. We shall prove first that

w( @\ GY) < 106u(Z1). (4.16)
Since Qf C Zi, we have Qi ~ G ¢ Q' n U}V:BI g~/ (M ~ K*). Substituting

MK c U ~K)YU(Q ~\U)U (D' \Q)u M~ Q,

we obtain
gncic Wik u Jo?@~v)u 7@~ Q)
j=0 j=0 j=0

N 1
U l@nJg?M~@)|=@unu@nuav).
j=1
Let us bound the measure of each of these sets. The second one is easy: by
lemma 4.14(ii) and our choices vy = §2/¢H and N = H/S,
p(Il) < Np(Q \UY) < 2Nyu(ZY) < sp(ZY).

The other terms are more delicate.

Theset X; = Ui\ K’ isa g-castle whose towers have heights at least H. Hence
its base, which contains X1 \ g(X1), measures at most %u(X1). By (4.15), we get

ulD) < (1+ 3 Ja(x) < 28 ().

By lemma 4.14(iii), we have u(X1) < 2ku(2%) = 26%u(Z%). So, u(l) < 46u(Z?).

Let X3 = Q' \ Q. By lemma 4.12 and (4.7), we have u(X3) < 62u(Z;). Since f
and g differ only in U, we have

9(X3) N\ X3 C [f(X3) N X3] Ug(X3NU) = (V) U(VI).

Since X3 is an f-castle whose towers have heights of at least 3H,



Since X3 NU C |, (U* \ Q*), lemma 4.14(ii) gives pu(VI) < 26yu(Z*). Combining
the estimates of p(V), u(VI), u(X3) with (4.15) and the definitions of N and v,

p(UID) < p(X3) + N (57 (Xs) + 29u(29)

<(1+

3

315) (X3) +20u(2%) < 36u(ZY).

We also have

N4 Nl s
V) =@~ N g7 @) c U (@ @) ~97(@)
j=1 j=1

In particular, u(IV) < (N — l)p(éi N g’l(éi)). Notice that QF < g’l(@i) C LUk
(since @' is f-invariant). Therefore

Q' g H@) @ NUEuUR VU N g7H(@Y)] = (VID U (VIII).

Combining
(vin ¢ [ |k~ Q%) c | |0t~ Qb
k#i ki

with lemma 4.14(ii) we obtain p(VII) < 2(¢ - 1)yu(Z ). Using that g(U?) = f(U?)
and Q’ = f(Q’), we also get

p(VIL) = p(g(U') ~ Q%) = p(UF N Q') < u(U' N Q) < 2yu(2Y).

Altogether, p(Q ~ g7 (Q") < 20yu(Z") and p(1V) < 2NCyu(Qs) < 20p(Z;).

Summing the four parts, we obtain (4.16). Now

p(UUTH(f,m) N G) < u(Ty(f,m)~ Q) +u(U N Q) + (@~ G)
= p(IX) + u(X) + p(XI).

Using (4.9), lemma 4.14, and (4.16), respectively, we get
w(IX) <Z“ iCQY) < 6% <6,
u(X) < (U~ Q) < Z/L Q) <2y <6,

w(XI) <Zl‘ Q' \ G) < 106.

Summing the three parts, we conclude the proof of lemma 4.16. O
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4.3 End of the proof of theorems 1 and 2

We give an explicit lower bound for the discontinuity “jump” of the semi-continuous
function LE,(-). Denote, for each p=1,... ,d,

_ Ap(fs2) = Ap1(fy2)
Jp(f) = /F,,(f,oo) R

Proposition 4.17. Given [ € DiﬂL(M) and p € {1,...,d — 1}, and given any
g9 > 0 and 6 > 0, there ezists a diffeomorphism g € U(f,e¢) such thal

du(z)

/A 0,2) du(s /A (f,2) du(e) — Jp(f) + 6.

Proof. Let f, p, €0 and 0 be as in the statement. Using proposition 4.8, we find
m € N and g € U(f, &) such that g = f outside I',(f,m) and

RS RTEY = E L
Tp(fm) Ty(fm)

[ o= [ IREOR / NG

Ap () +Apni(f)
<o /rpu,m) 2 " /M\rpu,m) b4

Since T',(f, 00) C T'y(f,m), and the integrand is non-negative,

/rp(,,m) (Ap(f) - M) .

> [ (st - 2D RenD) gy

Therefore, the previous inequality implies

/ Aylo) <6—Jp<f)+/ M)
M M

as we wanted to prove. O

Then

Theorem 2 follows easily from proposition 4.17:

Proof of theorem 2. Let f € DiﬁL(M) be a point of continuity of LE,(-) for all
p=1,...,d—1. Then Jy(f) = 0 for every p. This means that A,(f,z) = A\py1(f,2)
for almost every « € I'y(f,00). Let £ € M be an Oseledets regular point. If all
Lyapunov exponents of f at 2 vanish, there is nothing to prove. Otherwise, for any
p such that \,(f,z) > A\py1(f, ), the point z ¢ T',(f, 00) (except for a zero measure
set of ) . This means that 2 € D,(f, m) for some m: there is a dominated splitting
of index p, Tyny M = E, @ Fy, n € Z along the orbit of 2. Clearly, domination implies

40



that £, is the sum of the Oseledets subspaces of f, at the point f"z, associated
to the Lyapunov exponents A;(f,z), ..., A\p(f,x), and F), is the sum of the spaces

associated to the other exponents. Since this holds whenever X, (f, z) is bigger than
Ap+1(f,z), it proves that the Oseledets splitting is dominated at z.

Theorem 1 is an immediate consequence:

Proof of theorem 1. The function f — LE;(f) is semi-continuous for every j =
1,...,d —1, see section 2.1.3. Hence, there exists a residual subset R of Diﬂ'}l(M)
such that any f € R is a point of continuity for f — (LEi(f),... ,LE4_1(f)). By
theorem 2, every point of continuity satisfies the conclusion of theorem 1.

O

5 Consequences of non-dominance for symplectic maps
Here we prove a symplectic analogue of proposition 3.1:

Proposition 5.1. Given f € Sympll (M), g0 >0 and 0 < & < 1, if m € N is large
enough then the following holds:

Lely € M be a non-periodic poinl and suppose we are given a non-lrivial splitling
TyM = E @ F inlo two Lagrangian spaces such that

D m
LIy -
m(DfME) ~ 2
Then there ezists a (gg, k)-realizable sequence {Lo,... ,Lm—1} al y of length m and

there are non-zero veclor v € E, w € Dfy(F) such that L1+ Ly(v) = w.

Remark 5.2. The hypothesis that £ and F' are Lagrangian subspaces in proposi-
tion 5.1 is the sole reason why theorem 4 is weaker than what is stated in [4].

In subsections 5.1 and 5.2 we prove two results, namely, lemmas 5.3 and 5.8, that
are used in subsection 5.3 to prove proposition 5.1. In section 6 we prove theorems 3
and 4 using proposition 5.1.

5.1 Symplectic realizable sequences of length 1

First, we recall some elementary facts: Let (-,-) denote the usual hermitian inner
product in C?. Up to identification of C? with R??, the standard inner product in
R is Re(-,-) and the standard symplectic form in R?4 is Tm(-,-). The unitary group
U(g) is subgroup of GL(g, C) formed by the linear maps that preserve the hermitian
product. Viewing R € U(g) as amap R : R% — R, then R is both symplectic and
orthogonal.

IfR:T,M — T, M is a w-preserving linear map, we shall call R unilary if it
preserves the inner product in 7, M induced from the Euclidean inner product in
R% by the chart Pi(z) (recall subsection 2.5).

The next lemma constructs realizable sequences of length 1:
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Lemma 5.3. Given f € Sympll (M), e¢ > 0, & > 0, there exisls ¢ > 0 wilh
the following properties: Suppose we are given a non-periodic point x € M and
an unitary map R : Ty M — T; M with |[R — 1| < €. Then {DfyR} is an (g0, k)-
realizable sequence of length 1 al the point x and {RDf-1(4)} is an (eo, k)-realizable
sequence of lenglh 1 al the point f~'x.

We need the following elementary lemma, whose proof is left to the reader:

Lemma 5.4. Lel H : R% — R be a smoolh funclion such thal lhe corresponding
Hamillonian flow ' : R* — R is globally defined for every t € R. Lel 7 : R — R
be a smoolh functlion and lel 9 be a primilive of 7. Define H= Yo H. Then lhe
Hamillonian flow (@) of H is globally defined and il is given by @' (z) = ™ H@)(g).

If R € U(g) then all its eigenvalues belong to the unit circle in C. Moreover,
there exists an orthonormal basis of C? formed by eigenvectors of R. If J C R is
an interval, we define S; as the set of matrices R € U(g) whose eigenvalues can be
written as €1, ... | ¢ with all 6 € J. There is Cy > 0, depending only on g, such
that if ¢ > 0 and R € §(_¢) then |R — I| < Coe. It is convenient to consider first

the case where the arguments of the eigenvalues of R have all the same sign:

Lemma 5.5. Given g9 > 0 and 0 < o < 1, there exists € > 0 with the following
properlies: Given R € S(_.0)U S, there exisls a bounded open sel U C R such
that oU C U, and lhere exists a C sympleclomorphism h : R% — R%4 such thal

(i) h(z) =z for every z ¢ U and h(z) = R(2) for every z € oU;
(i3) |Dh, — I| < o for all z € R?2.

Proof of lemma 5.5. Let gy and o be given. Let ¢ > 0 be a small number, to
be specified later. Take R € S(y.): the other possibility is tackled in a similar

way. Let {v1,... ,v,} be an orthonormal basis of eigenvectors of R, with associated
eigenvalues € ... e, and all 0 < 6; < e. Up to replacing R with SRS~
for some S € U(g), we may assume that the basis {v1,... ,v4} coincides with the

standard basis of C!. Therefore R assumes the form
Rz, ,29) = (€%121,... ,e'fz,)

Let H: C? — R be given by H(z) = 1 3=, 0)|2¢|%. Then R is the time 1 map of the
Hamiltonian flow of H. Besides, there is Cy = C}(gq) such that

|lz|| |DH,|| < C1H(z) for all z € CI. (5.2)
Let 7 : R — R be a smooth function such that 7(s) = 1 for s < 02, 7({) = 0

for £ > 1, and 0 < —7'(t) < 2/(1 — ¢?) for all &. Let 9(s) = [ 7(u)du and let

H =1 o H. By lemma 5.4, the time 1 map h of the Hamiltonian flow of H is

h(z) = (e 7H @)y . efT(H(2) 5

Then h(z) = R(z) if H(z) < o? and h(z) = z if H(z) > 1. Moreover, a direct
calculation and (5.2) give

|IDh, — I|| < Coe(1 —0?) L +& for every z € C? with H(z) < 1,
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where Cy = C»(q). Take ¢ = €(eq, o) such that the right hand side is less than eq.
Since H is definite positive, the set U = {z € C?; H(z) < 1} is bounded. O

Remark 5.6. We may assume that the set U in lemma 5.5 has arbitrarily small
diameter. Indeed, if @ > 0 then we may replace U with U = aU and h with
h(z) = ah(a 'z). Notice Dh, = Dhy1,, so & is a symplectomorphism and satisfies
property (ii) of the lemma.

Lemma 5.7. Given g > 0 and 0 < o < 1, there exists € > 0 with the following
properties: Given R € S(,E,E), there exisls a bounded open sel U C R* such thal
oU C U, a measurable sel K C U with vol(U \ K) < 3(1 — ¢%) vol(U), and a C!
symplectomorphism h : R? — R?4 such thal

(i) h(z) =z for every z ¢ U and Dh, = R for every z € K;
(ii) ||Dh, — I| < q for all z € R%.

Proof. Any R € S(_.) can be written as a product R = Ry R_, with Ry € S(o)
and R_ € S( ), in fact we may take Ry and R_ with the same eigenbasis as
R. Applying lemma 5.5 to R4, with gy replaced by €¢/2, we obtain sets Uz and
symplectomorphisms h4. Let U = U;. Consider the family F of all sets of the form
aU +b, with @ > 0 and b € R%4, that are contained in U. This is a Vitali covering of
U, so we may find a finite number of disjoint sets U? = a;U_ + b; € F that cover U
except for a set of volume (1 —0%) vol(U). Using lemma 5.5 and remark 5.6, for each
i we find a symplectomorphism A% such that A% = id outside U’ and D(h'), = R_
for z € K; = a;oU_ +b;, and D(h? ), is uniformly close to I. Let K = (oU) NL; K"
Define h = hy o ht inside each U, and h = h, outside. Then K and h have the
desired properties. O

Proof of lemma 5.3. Given ¢y and &, choose o close to 1 so that 3(1 — o%) < k.
Remark 5.6 also applies to lemma 5.7: the set U may be taken with arbitrarily
small diameter. Using lemma 2.13, we conclude that the sequences {D f;R} and
{R D ff-1(z)} are (g0, x)-realizable as stated. O

5.2 Symplectic nested rotations

In this subsection we prove an analogue of lemma 3.3 for symplectic maps:

Lemma 5.8. Given f € Sympl, (M), &0 >0, k>0, E > 1, and 0 < y < 7/2, there
ezists § > 0 with the following properties: Suppose we are given a non-periodic point
z € M, an ilerate n € N, and a two-dimensional symplectic subspace Yo C Ty M
such that:

o IDflvll/m(DfIly,) < E? for every j=1,... ,n;
o (X;,Y;) > for each j =0,... ,n—1 where Xo =Yy, X; =Df£(X0), and

Y; =D fi(Y).
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Let 0g,... ,6, 1 € |-B,0] and let So,...,Sn 1: Yo = Yy be the rolations of the
plane Yy by angles Oq, ... ,0,_1. Lel linear maps

LM L By B g M

be defined by L;j(v) = Df i) (v) for v € X; and Ly(w) = (Df*)- S; - (DfF)~ (w)
for w €Yj. Then {Lg,...,L,_1} is an (eo, &)-realizable sequence of length n al the
point x.

We begin by proving a perturbation lemma that corresponds to lemma 3.4:

Lemma 5.9. Given ¢g > 0 and 0 < o < 1, there is ¢ > 0 with the following
properlies: Suppose we are given: a splilling R% = X ®Y wilh dimY =2, X¥ =Y
and X 1Y, an ellipsoid A C X cenlered al the origin, and a unilary map R € U(q)
with R|x =1 and |R—I|| <e.

Then there exists T > 1 such that the following holds. Let B be the unit ball in Y .
For a, b > 0 consider the cylinder C = Cop = a A®bB. If a > 7b and diamC < gg
then there is a C' sympleclomorphism h : R* — R%4 salisfying:

(i) h(z) =z for every z ¢ C and h(z) = R(z) for every z € oC;
(i) |h(z) — || < o and | Dh, — I|| < & for all z € R,

Remark 5.10. T H : R — R is a smooth function with bounded | DH|| and || D2H|,
then the associated Hamiltonian flow ¢* : R2¢ — R% is defined for every time ¢ € R,
and

lg'(2) = 2|l < |t|sup |DHIl,  |(D¢"). ~ || < exp(|¢|sup||D*H])) - 1.
for every z € R and € R.
Proof of lemma 5.9. Given ¢q and o, let
K=10(1-0)"24+200"(1-0) 1 +30(1 — o)t +3.

Fix > 0 such that e’ —1 < ¢, and let ¢ > 0 be such that ¢ < v/2 sini. Let X,
Y, A, B, and R be as in the statement. Let A : X — X be a linear map such that
A(A) is the unit ball in X. We define 7 = ||4].

Let H : R% — R be defined by H(z,y) = H(y) = %HyHZ, where (z,y) are
coordinates with respect to the splitting X @ Y. The Hamiltonian flow of H is a
linear flow (R;);, where R; is a rotation of angle ¢ in the plane Y, with axis X. In
particular, ||R, — I|| = v/2 |sin{| and there exists {y with |lo| < I such that Ry, = R.

Take numbers a, b > 0 such that a/b > 7 and the cylinder C = a.A @ bB has
diameter less than £9. We are going to construct another Hamiltonian H which is
equal to H inside oC and constant outside C. The symplectomorphism h will be
defined as the time {y of the Hamiltonian flow associated to H.

For this we need a few auxiliary functions. Let ¢ : R — [0,1] be a smooth
function such that:

e ((t)=1fort<oand {(t)=0"fort>1;
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o [¢'(1) < 10/(1 — o) and |¢"(1)| < 10/(1 — o)?.

Let 9 : X — [0,1] be defined by () = ¢(a "|z[), and ¢ : X — [0,1] be defined
by ¥ =1 o A. Tt is clear that

P(z) =11for z € caA and (z) =0 for z ¢ aA. (5.3)

We estimate the derivatives:

Do) = o ¢a ol i,

Dz'g;z(v,'w) — a—ZCII(a—lnm”)< ,U)(.T, w) +a—1 Cl(ailllzn) ((’U, ,w) _ <zlv)(m7w)) .

ElR [l [EIR

Since |¢'(a|z])|/lz] < 10a(l — 0)'o™!, we get the bounds

[D9]| <10(1 —0)ta~! and D% < [10(1—0)2+2007 (1 -0) a2

Moreover,
1Dyl < Al HD%H and [ D% < | Al* D%y
Now define p : R = R by p(¢ f0( and then let ¢ : Y — R be given by
#(y) = 30°p(b [lyl))>. Then

¢(y) = H(y) for y € obB and ¢(y) =c for y ¢ b8, (5.4)
where 0 < ¢ < %bz is a constant. The first and second derivatives of ¢ are:

Dy (v) = bp(b™ 1yl (b lyll) -v)

ol
Dy (v,w) = [0 lyl)* + (6~ ylDe" (6 lyl)] <|\ H>

N
bl ) = (“’ T )

Since |p| <1, || < 1, p"| <10(1 = )", and |o' (6~ lyl)I/llyll < b~', we have
[Dél <b and [D¢|| <3+10(1-0) ".
Define H : R2 — R by H(z,y) = ¢ — ¢(z)(c — ¢(y)). Then, by (5.3) and (5.4),

r€oad and ye€ 0bB=>I;'(:v,y) = H(y),

~ (5.5)
z¢aA or y¢bB=H(z,y)=c

The derivatives of H are (write v = vy + vy € X ®Y and analogously for w)

Dﬁ(z,y)(v) = —(c — ¢(y)) Dbz (vz) +1/)(m)D¢y('vy)a
Dzﬁ(z,y)(”aw) =—(c— ¢(y))D2¢z(vzy’wz) + Dwz(vz)D¢y(wy) +
Dy (wz) Dy (vy) +¢(1)D2¢y(”vay)-
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Using the previous bounds we obtain

ID*H|| < 1001 —0) *+200 '(1-0) '] [4]*(6/a)” +
20(1 — o) Y| Al (b/a) + 3+ 10(1 — o)t

Since a/b > ||A||, we conclude that | D2H|| < K.

Iake h : R% — R to be the time {y map of the Hamiltonian flow associated
to H. Property (i) in the lemma follows from (5.5). Since diamC < &g, we have
[h(2) — z|| < eo for all z. And, by remark 5.10, | Dh, —I|| < "% —1 < 'K —1 < g,
proving (ii) and the lemma. O

An ellipse B contained in a 2-dimensional symplectic subspace ¥ C R?? and
centered at the origin has eccentricily B if it is the image of the unit ball under a
linear transformation B : Y — Y with ||B||/m(B) = E?. If a map R:YovY
preserves the ellipse B, then B~'RB is a rotation of the plane Y of some angle 6.
In this case we say that R rotates the ellipse B through angle 6.

The following statement is a more flexible version of lemma 5.9. In fact, it follows
from lemma 5.9 just by a change of the inner product.

Lemma 5.11. Giveneg >0,0< o0 <1,v>0 and E > 1, there is > 0 with the
Sollowing properties: Suppose we are given:

o a splitting R = X @Y with dimY =2, X¥ =Y and <(X,Y) > v;

e an ellipsoid A C X cenlered al the origin;

e an ellipse B CY cenlered al the origin and wilh eccenlricily al most E;
e amap R:Y =Y lhal rolales B through angle 0, wilh 6] < B.

Then there ezists T > 1 such thal the following holds. Lel R : R — R be Lhe
linear map defined by R(v) =v if v € X and R(w) = R(w) if w €Y. Fora,b>0
consider the cylinder C = Cop = aA®bB. If a > 7b and diamC < gy then there is
a C' symplectomorphism h : R% — R salisfying:

(i) h(z) =z for every z ¢ C and h(z) = R(z) for every z € oC;

(i) |h(z) — 2| < €0 and ||Dh, —I|| < &g for all z € R?.

Now lemma 5.8 is proved in the same way as we proved lemma 3.3, using lem-
mas 5.11 and 3.5 instead. The argument is even a bit simpler since no truncation
(like in lemma 3.6) is necessary, as we assume that the angles <((X;,Y;) are bounded
from zero. The details are left to the reader.

5.3 Proof of proposition 5.1

We use the following lemma, which will also be needed in section 7:

Lemma 5.12. Lel G C GL(d,R) be a closed group which acls lransilively in RP41.
Then for every g1 > 0 there exists a > 0 such thal if vi, vy € R? satisfy <(v1,v2) < @
then there exists R € G such that |R — I|| < &1 and R(Rv;) = Ruv,.
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Proof. Foré > 0,let Us ={R; Re G, |[R—I| < é}. Givene > 0, fix 6 > 0such that
if Ry, Ry € Us then RZRI’1 € Ug,. The hypothesis on the group implies that for any
w € RP%"1, the map G — RP*! given by A — A(w) is open (this follows from [11,
Theorem 11.3.2]). Therefore, for any 6 > 0, the set Us(w) = {Rw; R € Us} is an
open neighborhood of w. Cover RP?~! by some finite union Us(w) U - - - U Us(wy,).
Now take two directions vy, vo € RP?¢ ! sufficiently close. Then both belong to
some Us(w;), and so there are Ry, Ry € Us such that v1 = Ryw; and vo = Row;.
Therefore R = Rngl belongs to U, and Rv; = va. O

Proof. Let f, g, & be given. Fix 0 < &' < %n. Let € > 0, depending on f, &g, £,
be given by lemma 5.3. Let @ > 0, depending on 1 = € and G = U(g), be given by
lemma 5.12. Take K satisfying K > (sine)~2 and K > max, || Df;|/m(Df,). Let
E > 1 and v > 0 be given by

E?=8CjK(sina) * and siny=}C,"K %sin’q,

where C,, is as in (2.4). Let 8 > 0 be given by lemma 5.8. Finally, let m > 27/8.
The proof is divided into three cases.

First case: Suppose that there exists £ € {0,1,... ,m} such that
<(Ey, Fy) < a. (5.6)

Fix £ as above and take unit vectors ¢ € Ky, n € Fy such that <(¢,n7) < a. By
lemma 5.12, there exists a unitary transformation R : ng(y)M — Tfe(y)M such
that |R — || < € and R(§) = n. By lemma 5.3, the sequences {D fy(,) R} and
{RDfpr-1(3)} are (&', ep)-realizable. Define {Lg,...Ly—1} as

{Dfys-- s Df iy D ey B D peayys - s Df pmmiy}
if £ < m and as {Dfy, ... ’fom—Z(y),Rfom—‘l(y)} if £ = m. In either case, this is

a (k, £g)-realizable sequence of length m at y, whose product Ly, - - - Lo sends the
direction RDf~¢(¢) C Ej to the direction RD f™¢(n) C Fp,.

Second case: Assume that there exist k,£ € {0,... ,m} with k¥ < £ and

ID S fegey e

L 5.7
m(D ffi i) o

The proof of this case is easily adapted from the second case in the proof of propo-
sition 3.1. We leave the details to the reader.

Third case: We suppose that we are not in the previous cases, that is,

for every j € {0,1,... ,m}, <(¥;F;)>a. (5.8)
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and

|‘ijzz;)‘Fz H

for every i,j € {0,... ,m} withi < j, ———*—— < (5.9)
m(D 4 |E:)
Fiw)
By (5.8) and lemma 2.3, we have, for all 7,5 € {0,... ,m} with: < j,
Gy sina <m(DfI7|k,) | Df 7|k < C(sina) ™. (5.10)
This, together with (5.9), gives
m(D 77 |) > C;' K~ *(sina)'/2, (5.11)
IDF 1]l < Cuk'(sina) /2. (5.12)
Also, by (5.10) and the main assumption (5.1),
m(Df™|i,) < 21/2C,(sina) 112, (5.13)
1Dkl > 2720 (sin ) /2, (5.14)

Let vy € Eg be such that |lve]| = 1 and |Df;*(v)ll = m(Df;"|s,). Using
lemma 2.3.1, take wy € Fy with |wg| = 1 such that |w(vg,wo)| > C;'sinc. Let
Gy = Ey Nwg and Hy = Fy Nog. (By v we mean (Rv)*.) Let X¢ = Go ® Hy and
Yo =Ruyy @ Rwg. Then Xg =Y. Let, for j =1,... ,m,

v; = DfI(vo) /I D (wo)ll, Gj=Df(Go),  X;j=Df(Xo),
wj = DfI(wo)/|Df (wo)l,  Hj=Df(Ho),  Y;=Df (%)

(all the derivatives are at y). By (2.5),
C5'sina < |w(vo, wo)| = [w(Df™v0, Df ™ wo)| < CullDf™voll | Df ™ wol
Thus ||Df™wq| > Cg%sina- m(Df™|g,)~"! and, using (5.10),
DS ™ woll > CZ* sin? - [ Df™| g | (5.15)
that is, wg is “almost” the most expanded vector by D f™ in Fy. By (5.1) and (5.15),

D™ wl| 4. o IDJEI Ld o2
0 > O sin"a——2—— > ;0 " sin” .
1D fmell = 7 m(Dfmg) ~ >

This and (5.9) imply that, for each j = 1,... ,m,

o 1DPwoll o IDS™woll/IDF™ 7| |

K - -
Dol T NID Mol /m(Df™ ;)

1o—Adpr—1 g 2
> 5C, K™ sin” a.

Therefore, using (5.8) and lemma 2.8,

DS v

Yol < 8CiK (sina) ™t = B2 5.16
m(Dfly,) = K (sina) (5.16)
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We now deduce some angle estimates. First, we claim that
sin<(vg,Go) > C%sine and  sin<t(wg, Hy) > C;%sina. (5.17)
Indeed, write vo = u + u' with v’ € Gy and u 1 Gy. Since Gy is skew-orthogonal to
wo,
O sina < |w(vg, wo)| = |w(u, wo)| < Cullull.

That is, sin <(vg, Gp) = ||u|| > C;?sina. Analogously we prove the other inequality

in (5.17). Next, we estimate sin <((v;, G;) and sin <t(w;, H;) for j = 1,... ,m. For
this we use relation (2.6) from subsection 2.4, which gives:
. m(DfI|g) .
sin<(vj,G;) > ————2 sin <(vo, Go), 5.18
(05:5) > TS s (0, Go) (518)
. D fAwo| .
sin<(wj;, Hj) > ="~ sin<t(wg, Hy). (5.19)
P Dkl

By (5.11) and (5.13),

D™ voll . m(Df™|m)
[ Dfm=dvll = m(Dfm=i| g, )

for each j =1,...,m. So, using (5.11) again,

1D fivell = < 2/2C2K2(sin ) L.

(|2 f3w]| 12093 e (ain o) =3
L 0L < 91203 K (sin ) ~%/2.
m(Dfily,) < O
This, together with (5.17) and (5.18), gives
sin €(vj, G5) > 2720 K~ (sin @)%/2. (5:20)
Similarly, by (5.15), (5.12), and (5.14),
j [ Df™woll 19 1Dl “1/20-6 5 -1/2
oo |l — : > Foll o 9-1/20-6-1/2 3 4
1Bl = [p frmgy] 2 G S @ [z 22 Co K sinTe
Then, using (5.12) again,
(| fFw| 120 Tre V(g 7/2
T > 2 C,'K “(sina)"/*.
[T 22 e K ine)

By (5.17) and (5.19),
sin <(wj, Hj) > 2’1/20;9K’1(sina)9/2. (5.21)
Now we use lemma 2.6 three times:
sin <(Y}, X;) > sin <((vj, X;) sin <(w;, Rv; ® X;)
> sin <(v;, G;) sin <(&}, H;) sin <(w;, Ru; ® X;)
> sin <t(vj, G;) sin <(wy, H;) sin<(E;, H;)*
So, using (5.20), (5.21), and <(&}, H;) > a, we obtain
sin<(X;,Y;) > $C, K ?sin® o = siny. (5.22)
Relations (5.16) and (5.22) permit us to apply lemma 5.8. Since mf3 > 2, it is
possible to choose numbers 6y, ... , 8,1 such that 0 < 6; < g and ) 6; = <t(vo, wo).

Let Sj and L; be as in lemma 5.8. We have Ly,_1 -+ Loly, = (Df™|v,)Sm-1-" " So,
80 Lyy—1 -+ Lo(Rvg) = Ruy,. This completes the proof of proposition 5.1. O
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6 Proof of theorems 3 and 4

Given f € Diﬁlll(M) and m € N, let D(f,m) be the (closed) set of points z such
that there is a m-dominated splitting of index ¢ = d/2 along the orbit of z. Let
T(f,m) =M \D(f,m) and let I'*(f, m) be the set of points z € I'(f, m) which are
regular, not periodic and satisfy A\y(f,z) > 0. Let also I'(f,00) = ,,en T (f,m).
We have the following symplectic analogues of propositions 4.2, 4.8 and 4.17:

Proposition 6.1. Lel f € Sympl (M), g9 >0, >0, and 0 < k< 1. If m €N is
sufficiently large, then there exisls a measurable function N : T*(f,m) — N such that
Jor a.e. z € T*(f,m) and every n > N(z) there exisls a (o, k)-realizable sequence
{Lo,... ,Ln_1} al z of length n such Lhal

1 N ~
o og [N (L1 Lol < Ag-1(f, ) +4.

Proposition 6.2. Lel f € Sympll (M), eo > 0 and § > 0. Then lhere exist m € N
and a diffeomorphism g € U(f,eq) thal equals f oulside the open sel T'(f,m) and
such that

Aolg,3) du(z) < 6+ / o a2 )

sm)

T(fm)
Proposition 6.3. Given f € Sympll (M), let

() = / o M2 )

Then for every eg > 0 and 6 > 0, there exisls a diffeomorphism g € U(f,e0) such
that

[ Aatg,)duta) < [ Af,2)duta) = 3() 45
M M

The proofs of these propositions are exactly the same as those of the correspond-
ing results in section 4, in the following logical order:

proposition 5.1 = proposition 6.1 = proposition 6.2 = proposition 6.3.

Concerning the first implication, notice that if z € I'*(f,m) then, by lemma 2.4, the
spaces B} and E, (that correspond to positive and negative Lyapunov exponents)
are Lagrangian, so proposition 5.1 applies.

6.1 Conclusion of the proof of theorems 3 and 4

Proof of theorem 3. Let f € Sympll,(M) be a point of continuity of the map LE,(-).
By proposition 6.3, J(f) = 0, that is, A\y(f,z) =0 for a.e. z € T(f,00). Let z € M
be a regular point. If Ay(f,z) > 0, we have (if we exclude a zero measure set of z)
z ¢ T'(f,00). This means that there is a dominated splitting, Tn ;)M = Ep @ Fy,
n € 7 of index ¢, along the orbit of . Then E,, is the sum of the Oseledets spaces

of f, at the point f"z, associated to the Lyapunov exponents A1 (f, ), ..., Ag(f, z),

and F), is the sum of the spaces associated to the other exponents. By part 2 of

lemma 2.4, the splitting Tn () M = Eyp @ Fy, n € Z is hyperbolic. O
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The next proposition is used to deduce theorem 4 from theorem 3.

Proposition 6.4. There is a residual subsel Ro C SymplL (M) such thal if f € R
then either f is Anosov or every hyperbolic sel of f has measure 0.

Proof. This is a modification of an argument from [16]. We use the fact, proved
in [24], that C? diffeomorphisms are dense in the space Sympll,(M). Another key
ingredient is that the hyperbolic sets of any C? non-Anosov diffeomorphism have
zero measure. We comment on the latter near the end.

For each open set U C M with U # M and each f € DIH}I(M), consider the
maximal f-invariant set inside U,

A ) = () SO

neZ

For € > 0, let D(e,U) be the set of diffeomorphisms f € Sympl},(M) such that at
least one of the following properties is satisfied:

(i) There is a neighborhood U of f such that Ay(U) is not hyperbolic for all g € U;

(i) p(Ap(U)) <e.

Clearly, the set D(e,U) is open. Moreover, it is dense. Indeed, if f does not satisfy
(i) then there is g close to f such that Ay(U) is hyperbolic. Take f; € C? close to g
in SymplL(M). Then Ay, (U) is hyperbolic with measure zero, and so fi € D(e,U).
This proves denseness. Hence the set

D(U) =nN.>0D(e,U) D{f € Sympl}d(M); A¢(U) is hyperbolic = pu(Af(U)) = 0}

is residual. Now take B a countable basis of open sets of M and let B be the set of
all finite unions of sets in B. The set

Ry= (] D)

UeB,U+M

is residual in Sympl!,(M) and the hyperbolic sets for every non-Anosov f € R have
ZEro Imeasure.

Finally, we explain why all hyperbolic sets of a C2 non-Anosov diffeomorphism
have zero measure. This is well-known for hyperbolic basic sets, see [8]. We just
outline the arguments in the general case. Suppose f has a hyperbolic set A with
u(A) > 0. Using absolute continuity of the unstable lamination, we get that
pu(We(z) N A) > 0 for some 2 € A, where p, denotes Lebesgue measure along
unstable manifolds. By bounded distortion and a density point argument, we find
points z € A such that p, (W (zx) \ A) converges to zero. Taking an accumulation
point z we get that W¥(zo) C A. We may suppose that every point of A is in the
support of u|A. In particular, there are recurrent points of A close to zo. Apply-
ing the shadowing lemma, we find a hyperbolic periodic point pg close to zp. In
particular, W2 (po) intersects W} (zq) transversely. Using the A\-lemma we conclude
that the whole W*(pg) is contained in A. Define Aq as the closure of the unstable
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manifold of the orbit of py. This is a hyperbolic set contained in A, and it consists
of entire unstable manifolds. Hence, W*(Ag) is an open neighborhood of Ag. Using
that f preserves volume, we check that f(W?(A¢)) = W (Ao). This implies that
W$(Ag) = Ao and so, by connectedness, Ag must be the whole M. Consequently, f
is Anosov. O

Proof of theorem 4. It suffices to take R = R; N'Rg with R; a residual set of conti-
nuity points of f — LE4(f), and R2 as in proposition 6.4. [m]

7 Proof of theorem 5

Let M be a compact Hausdorff space, u a Borel regular measure and f: M — M
a homeomorphism preserving the measure pu. Let also G € GL(d,R) be a closed
group which acts transitively on RP4~1,

The following result provides an analogue of proposition 3.1:
Proposition 7.1. Given A € C(M,G) and ¢ > 0, if m € N is large enough then
the following holds:

Let y € M be a non-periodic poinl and suppose il is given a non-irivial splitling
R = E @ F such thal

4@l | 1
m(An(y)]s) > 2
Then there exisls, for each j = 0,1,... ,m~1, some L; € G with | Li—A(f7y)|| < €0,
and there are non-zero vectors v € E and w € A™(y)(¥) with Ly - Lo(v) = w.

(7.1)

Proof. Let &1 = ||Al oo e, where || Alloc = supgcp | A(z)]. Let o > 0, depending on
€1, be given by lemma 5.12. Let

8K
sin
and m > 2C/a. Now take y, £ and F an in the statement. For j =0,1,... ,m — 1,
indicate 4; = A(f'y), B; = A(z)(E), F; = A(z)(F). As before, we divide the
rest of the proof into three cases:

K =max{1/sin’ @ | A xllA Y}, C=

First case: We assume that there exists £ € {0,... ,m} such that
<UEg, Fy) < a. (7.2)

Fix ¢ as above and take ¢ € Ey, n € Fy such that <(¢,£) < o. Let R € G be such
that |[R — I|| < & and R(R) = Ry. If £ < m, then we define L; as Ly = AR and
Lj = Aj for j # £. If £ = m, then we define L; as Ly = RAg and L; = A; for j # m.
In either case, the sequence {Lo,... ,Ly—1} has the required properties.

Second case: Assume that there exist k,£ € {0,... ,m} such that £ < £ and
[[Ag—1--- Aglr |l
m(Ag_y - Aglg,)

Once more, this is similar to the second case in propositions 3.1 and 5.1. We leave
it to the reader to spell-out the details.

> K. (7.3)
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Third case: We suppose that we are not in the previous cases, that is, we assume
for every j € {0,1,... ,m}, <(Ej;,F;)>a. (7.4)
and

[ 4j—1--- Ailr]

for every 4,7 € {0,... ,m} with ¢ < 7,
{ ) m(4;_1 - Ailg;)

< K. (7.5)

Take unit vectors ¢ € Ey and 5 € Fy such that
[Am 1 Aol = Il Am 1+ Aolgll and [Ap—1 - Ao(m)ll = m(Am—1 - Aolr,)-

Let & = Aj_1-+- Ao(§), nj = Aj_1--+ Ag(n) and Y; = RE; @ Ry;. By the assump-
tion (7.1), we have ||Apm—1 -+ Ao(M)]|/]|Am—1 -+ Ao(&)|| > 1/2. Also, using (7.5), we
have that for each j € {1,... ,m},

141 Aol o NAm—1--- Ao/l Am—1 - - 4] 1
K> > > .
T A AN T A1 Ao(E)ll/m(Am—y -+ 4;) T 2K

This, together with (7.4) and lemma 2.8 implies that, for all j € {1,... ,m},

[[Aj-1 - Ad|wll
— 0 < C. 7.6
m(A4;_ - Agly) (76)

Now assign orientations to the planes Y; such that each Ajly; : Y; — Yjy1 is
orientation-preserving. Let P; be the projective space of Y;, with the induced ori-
entation. Let v; = R{; and w; = Rn; € P; For each z € Pj, let [z] € [0,7) be
the oriented angle between z and v;. So z — [z] is a bijection and [z] — [4;z] is
monotonic. If L : Yy — Y} is any linear map then, by lemma 2.7,

™ [Lzo] = [Lz1] _ 2 |
0<[z-|[n]<7 = —/—————F— < —- ——. 7.7
Bl = T S m) 0
We define directions ug € Py, ... ,um € Py by recurrence as follows: Let [ug] =0
and
[uj1] = [Aju;] + min{[w;1] — [Aju], o} (7.8)

Then, for each j < m, [Aju;] < [uj11] < [wjq1]. Therefore, defining [z;] =
[(Aj_1---Ag) uj], we have

0=[z0] < [oa] < -+ < o] < [wo] < .

In particular, for some ¢ = 0,... ,m — 1, [zi41] — [z:] < m/m. Therefore, by (7.6)
and (7.7),

[u,url} - [A,-u,-] = [Aj,1 s Aoz,-“] - [A]‘,1 s Aoz,‘} < 2C/m <a.
By (7.8), [uit1] = [wjt1]. We conclude that [u;,] = [wm,]. Now for each j, let

R; € G be such that |R; —I|| < € and R;j(Aju;) = uj41. Let also Lj = RjA;. Then
Lpy—1 -+ Lo(vg) = wp. O
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Next we define sets I'y(4,m), T'5(4,m), I‘g(A,m) for p € {1,...,d — 1} and
m € N, in the same way as in section 4, with the obvious adaptations. Lemma 4.1
also applies in the present context.

Proposition 7.2. Given A € C(M,G), ¢ >0,6 >0, andp € {1,... ,d-1},ifm €

N is sufficiently large then there exists a measurable function N : F;(A, m) — N such

that for a.e. z € T(A,m) and every n > N(z) there exist malrices Lo,...,Ln 1 €

G such thal HZ] - A(fIz)| < € and

Ap-1(A, ) + Apii (A, 2)
2

1 ~ ~
Elog INP(Lp—q -+ Lo)| < + 4.

The proof is the same as proposition 4.2.

Proposition 7.3. Lel A € C(M,G), e0 >0, pe {1,... ,d—1} and § > 0. Then
there ezist m € N and a cocycle B € C(M,G), with |B — Ao < €0, thal equals A
outside the open set I'y(A,m) and such that

/ Ap(B,z)du(z) < 6 +/ Ay 1(4,2) + Ay (4, 7) du(z).
T, (Am) Tp(Am) 2

The proof of proposition 7.3 is not just an adaptation of that of proposition 4.8,
because Vitali’s lemma may not apply to M. We begin by proving a weaker state-
ment, in lemma 7.4. Let L°°(M, G) denote the set of bounded measurable functions
from M to G. Oseledets theorem also applies for cocycles in L*(M, G).

Lemma 7.4. Let A € C(M,G), g >0, p€{l,... ,d~1} and § > 0. Then there
ezist m € N and a cocycle B € L*®°(M,G), wilth |B — Al < €0/2, lhal equals A
outside the open set I'y(A,m) and such that

/ Ay(B,z)du(z) < 6 +/ Ap1(4,2) + Ap 11 (A7) du(z).
T,(Am) T,p(A;m) 2

Skelch of proof. We shall explain the necessary modifications of the proof of propo-
sition 4.8. The sets Z, @’ and Q' are defined as before. In lemma 4.14, the castles
U? and K become equal to Q* (as & and « were 0). We decompose each base Q{) into
finitely many disjoint measurable sets Uy with small diameter. In each tower with
base U,é we construct the perturbation B using proposition 7.2, taking B constant in
each floor. The definitions of N and G’ are the same. In lemma 4.16 several bounds
(those involving & or ) become trivial. Then one concludes the proof in the same
way as before. O

Proof of proposition 7.3. Let A, €g, p and d be as in the statement. Let m and B
be given by lemma 7.4. Let N € N be such that

/ llog AP (BN (2))]| dp < 26 +/ Ap-1(A,2) + Apia (4, 2) dp.
rp(Am) N

Ty (Am) 2

Let v = N~'4. Using Lusin’s theorem (see [22]) and the fact that G is a manifold
(see [11]), one finds a continuous B : M — G such that B = B = A outside the
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open set I';(A,m), the norm ||B — Blloo < £0/2, and the set E = {z € M; B(z) #
B(z)} has measure u(E) < v. Let G = ﬂ;VQOI [ (Tp(A,m) N\ E) C Ty(A,m).
Then p(Tp(A,m) N\ G) < Nu(E) < 6. Then, letting C be an upper bound for
log ||AP(B(z))|,, we have

1
R R )
Tp(A,m)

Tp(A,m)
ccopvapy [ At i)
Tp(A,m) 2

dy.

Up to replacing § with §/(C + 2), this completes the proof. O

Using proposition 7.3, one concludes the proof of theorem 5 exactly as in sub-
section 4.3. The fact that either vanishing of the exponents or dominance of the
splitting is also a sufficient condition for continuity is an easy consequence of semi-
continuity of Lyapunov exponents and robustness of dominated splittings under
small perturbations of the cocycle.
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