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Preface

What is Dynamics about ?

In broad terms, the goal of Dynamics is to describe the long term evolution of
systems for which an “infinitesimal” evolution rule is known. Examples and
applications arise from all branches of science and technology, like physics,
chemistry, economics, ecology, communications, biology, computer science, or
meteorology, to mention just a few.

These systems have in common the fact that each possible state may be
described by a finite (or infinite) number of observable quantities, like position,
velocity, temperature, concentration, population density, and the like. Thus,
the space of states (phase space) is a subset M of an Euclidean space R™.
Usually, there are some constraints between these quantities: for instance, for
ideal gases pressure times volume must be proportional to temperature. Then
the space M is often a manifold, an n-dimensional surface for some n < m.

For continuous time systems, the evolution rule may be a differential equa-
tion: to each state x € M one associates the speed and direction in which the
system is going to evolve from that state. This corresponds to a vector field
X (z) in the phase space. Assuming the vector field is sufficiently regular, for
instance continuously differentiable, there exists a unique curve tangent to X
at every point and passing through z: we call it the orbit of x.

Even when the real phenomenon is supposed to evolve in continuous time,
it may be convenient to consider a discrete time model, for instance, if obser-
vations of the system take place at fixed intervals of time only. In this case
the evolution rule is a transformation f : M — M, assigning to the present
state x € M the one f(z) the system will be in after one unit of time. Then
the orbit of = is the sequence z,, obtained by iteration of the transformation:
Tnt1 = f(zn) with zg = z.

In both cases, one main problem is to describe the behavior as time goes
to infinity for the majority of orbits, for instance, for a full probability set of
initial states. Another problem, equally important, is to understand whether
that limit behavior is stable under small changes of the evolution law, that is,
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whether it remains essentially the same if the vector field X or the transforma-
tion f are slightly modified. It is easy to see why this is such a crucial question,
both conceptually and for the practical applications: mathematical models are
always simplifications of the real system (a model of a chemical reaction, say,
taking into account the whole universe would be obviously unpractical...)
and, in the absence of stability, conclusions drawn from the model might be
specific to it and not have much to do with the actual phenomenon.

It is tempting to try to address these problems by “solving” the dynamical
system, that is, by looking for analytic expressions for the trajectories, and
indeed that was the prevailing point of view in differential equations until
little more than a century ago. However, that turns out to be impossible in
most cases, both theoretically and in practice. Moreover, even when such an
analytic expressions can be found, it is usually difficult to deduce from them
useful conclusions about the global dynamics.

Then, by the end of the 19th century, Poincaré proposed to bring in meth-
ods from other disciplines, such as topology or ergodic theory, to find quali-
tative information on the dynamics without actually finding the solutions. A
beautiful example, among many others, is the Poincaré-Birkhoff theorem stat-
ing that an area preserving homeomorphism of the annulus which rotates the
two boundary circles in opposite directions must have some fixed point. This
proposal, which was already present in Poincaré’s early works and attained full
maturity in his revolutionary contribution to Celestial Mechanics, is usually
considered to mark the birth of Dynamics as a mathematical discipline.

Hyperbolicity and stability.

This direction was then pursued by Birkhoff in the thirties. In particular, he
was much interested in the phenomenon of transverse homoclinic points, that
is, points where the stable manifold and the unstable manifold of the same
fixed or periodic saddle point intersect transversely. This phenomenon had
been discovered in the context of the N-body problem by Poincaré, who im-
mediately recognized it as a major source of dynamical complexity. Birkhoff
made this intuition much more precise by proving that any transverse ho-
moclinic orbit is accumulated by periodic points. A definitive understanding
of this phenomenon unfolded at the beginning of the sixties, when Smale in-
troduced the horseshoe, a simple geometric model whose dynamics can be
understood rather completely, and whose presence in the system is equivalent
to the existence of transverse homoclinic points.

The horseshoe, and other robust models containing infinitely many peri-
odic orbits, such as Thom’s cat map (hyperbolic toral automorphism), were
unified by Smale’s notion of uniformly hyperbolic set: a subset of the phase
space invariant under the dynamical system and such that the tangent space
at each point splits into two complementary subspaces that are uniformly con-
tracted under, respectively, forward and backward iterations. Then Smale also
introduced the notion of uniformly hyperbolic dynamical system (Axiom A)
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which essentially means that the limit set, consisting of all forward or back-
ward accumulation points of orbits, is a hyperbolic set. These ideas much
influenced contemporary remarkable work of Anosov where it was shown that
the geodesic flow on any manifold with negative curvature is ergodic.

Another major achievement of uniform hyperbolicity was to provide a char-
acterization of structurally stable dynamical systems. The notion of structural
stability, introduced in the thirties by Andronov, Pontrjagin, means that the
whole orbit structure remains the same when the system is slightly modified:
there exists a homeomorphism of the ambient manifold mapping orbits of the
initial system into orbits of the modified one, and preserving the time arrow.
Indeed, uniform hyperbolicity proved to be the key ingredient of structurally
stable systems, together with a transversality condition, as conjectured by
Palis, Smale.

In the process, a theory of uniformly hyperbolic systems was developed,
mostly from the sixties to the mid eighties, whose importance extended much
beyond the original objectives. It was part of a revolution in our vision of
determinism, strongly driven by observations originating from experimental
sciences, which shattered the classical opposition between deterministic evo-
lutions and random evolutions. The uniformly hyperbolic theory provided a
mathematical foundation for the fact that deterministic systems, even with a
small number of degrees of freedom, often present chaotic behavior in a robust
fashion. Thus, it led to the almost paradoxical conclusion that “chaos” may
be stable.

On the other hand, structural stability and uniform hyperbolicity were
soon realized to be less universal properties than was initially thought: there
exist many classes of systems that are robustly unstable and non-hyperbolic
and, in fact, that is often the case for specific models coming from concrete
applications. The dream of a general paradigm in Dynamics had to be post-
poned.

Beyond uniform hyperbolicity.

The next years saw the theory being extended in several distinct directions:

e The study of specific classes of systems, such as quadratic maps, Lorenz
flows, and Hénon attractors, which introduced a host of new methods and
ideas.

e Bifurcation theory including, in particular, the study of the boundary of
uniformly hyperbolic systems, and of the local and global mechanisms
leading to chaotic behavior, especially homoclinic bifurcations.

e New developments in the ergodic theory of smooth systems and, especially,
the theory of non-uniformly hyperbolic systems (Pesin theory).

e  Weaker formulations of hyperbolicity, still with a uniform flavor but where
one allows for invariant “neutral” directions (partial hyperbolicity, projec-
tive hyperbolicity or existence of a dominated splitting).
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e The converse implication in the stability conjecture (hyperbolicity is nec-
essary for stability), which led to the introduction of new perturbation
lemmas (ergodic closing lemma, connecting lemma).

Building on remarkable progress obtained in these directions, especially
in the eighties and early nineties, several ideas have been put forward and
a new point of view has emerged recently, which again allow us to dream of
a global understanding of “most” dynamical systems. Initiated as a survey
paper requested to us by David Ruelle, the present work is an attempt to put
such recent developments in a unified perspective, and to point open problems
and likely directions of further progress.

Two semi-local mechanisms, very different in nature but certainly not
mutually exclusive, have been identified as the main sources of persistently
non-hyperbolic dynamics:

e What we call here “critical behavior”, corresponding to critical points in
one-dimensional dynamics and, more generally, to homoclinic tangencies,
and which is at the heart of Hénon-like dynamics. This is now reasonably
well understood, in terms of non-uniformly hyperbolic behavior. More-
over, recent results show that this type of behavior is always present in
connection to non-hyperbolic dynamics in low dimensions.

e In higher dimensions, dynamical robustness (robust transitivity, stable er-
godicity) extends well outside the uniformly hyperbolic domain, roughly
speaking associated to coexistence of uniformly hyperbolic behavior with
different unstable dimensions. It requires some uniform geometric structure
(transverse invariant bundles: partial hyperbolicity, dominated decompo-
sition) that we refer to as “non-critical behavior”.

On the other hand, new perturbation lemmas permitted to organize the global
dynamics of generic dynamical systems, by breaking it into elementary pieces
separated by a filtration. A great challenge is to understand the dynamics
on (the neighborhood of) these elementary dynamical pieces, which should
involve a deeper analysis of the two mechanisms mentioned previously. Indeed,
a good understanding has already been possible in several cases, especially at
the statistical level.

What is this book, and what is it not ?

The text is aimed at researchers, both young and senior, willing to get a quick
yet broad view of this part of Dynamics. Main ideas, methods, and results are
discussed, at variable degrees of depth, with references to the original works
for details and complementary information.

We assume the reader is familiar with the fundamental objects of smooth
Dynamics, like manifolds or C" diffeomorphisms and vector fields, as well
as with the basic facts in the local theory of dynamical systems close to a
hyperbolic periodic point, such as the Hartman-Grobman linearization the-
orem and the stable manifold theorem. This material is covered by several
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books, like Bowen [86], Irwin [225], Palis, de Melo [342], Ruelle [394], Katok,
Hasselblatt [232], or Robinson [382].

Familiarity with the classical theory of uniformly hyperbolic systems is
also desirable, of course. This is also covered by a number of books, including
Bowen [86], Shub [411], Mafié [281], Palis, Takens [345], and Katok, Hassel-
blat [232]. For the reader’s convenience, in Chapter 1 we review the main
conclusions of the theory that are relevant for our purposes. In that chap-
ter we also give an introductory discussion of robust mechanisms of non-
hyperbolicity, and other key issues outside the hyperbolic set-up. This is to
be much expanded afterwards, so at that point our presentation is sketchier
than elsewhere.

Apart from these pre-requisites, we have tried to keep the text self-
contained, giving the precise definitions of all relevant non-elementary notions.
Occasionally, this is done in an informal fashion at places where the notion is
first needed in a non-crucial way, with the formal definition appearing at some
later section where it really is at the heart of the subject. This is especially
true about Chapter 1, as explained in the previous paragraph.

Although we have used parts of this book as a basis for graduate courses,
it is certainly not designed as a text book that could be used for that purpose
all alone. The properties of the main notions are often only stated, and most
results are presented with just an outline of the proof.

The book is also not meant to be an exhaustive presentation of the recent
results in Dynamics. We are only too conscious of the many fundamental
topics we left outside, or touched only briefly. Deciding where to stop could
be one of the most difficult and most important problems in this kind of
project, and no answer is entirely satisfactory.

How should this book be used and what does it contain ?

The 12 chapters are organized so as to convey a global perspective of dynam-
ical systems. The 5 appendices include several other important results, older
and new, which we feel should not be omitted, either because they are used
in the text or because they provide complementary views of some aspects of
the theory.

Although there is, naturally, a global coherence in the text, we have tried to
keep the various chapters rather independent, so that the reader may choose to
read one chapter without really needing to go through the previous ones. This
means that we often recall main notions and statements introduced elsewhere,
or else give precise references to where they can be found. On the other hand,
the chapters often rely on ideas and results from the appendices.

The main text may be, loosely, split into the following blocks:

e Chapter 1 contains a brief review of uniformly hyperbolic theory and an
introduction to main themes to be developed throughout the text.

e Chapters 2 to 4 are devoted to critical behavior in various aspects: one-
dimensional dynamics, homoclinic tangencies, Hénon-like dynamics.
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Chapter 5 shows that, for low dimensional systems, far from critical be-
havior the dynamical behavior is hyperbolic.

Chapters 6 to 9 treat non-critical behavior, especially the relation be-
tween robustness and existence of invariant splittings. While most of the
text focusses on dissipative discrete time systems, Chapter 8 deals with
conservative diffeomorphisms and Chapter 9 is devoted to flows.

In Chapter 10 we try to give a global framework for the dynamics of generic
maps, where critical and non-critical behavior could fit together.

Chapter 11 presents some of the progress attained in describing the dynam-
ics in ergodic terms, both in critical and in non-critical situations (either
separate or coexisting). Lyapunov exponents are an important tool in this
analysis, and Chapter 12 is devoted to their study and control.
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1

Hyperbolicity and beyond

Uniformly hyperbolic systems are presently fairly well understood, both from
the topological and the ergodic point of view. In Sections 1.1 throughl.3
we review some of their main properties (spectral decomposition, stability,
physical invariant measures) that one would like to extend to great generality.
Several very good references are available for this material, including the books
of Shub [411], Palis, Takens [345, Chapter 0] and Katok, Hasselblat [232,
Part 4], and Bowen [86] for the ergodic theory of this systems.

Outside the hyperbolic domain, two main phenomena occur: homoclinic
tangencies and cycles involving saddles with different indices. These notions
are introduced in Section 1.4 and 1.5 and serve as a guiding thread through
the chapters that follow, where they will be revisited in much more detail. In
Section 1.7, we present a conjecture of Palis pointing at a global description
of most dynamical systems. Section 1.6 introduces a few fundamental notions
involved in this conjecture and in most of our text.

1.1 Spectral decomposition

Let M be a compact manifold, and f: M — M be a diffeomorphism.

Definition 1.1. An invariant compact set A C M is a hyperbolic set for
f: M — M if the tangent bundle over A admits a continuous decomposition

T\M = E* @ E°, (1.1)

invariant under the derivative and such that |[Df~! | E¥|| < X and ||Df |
E?|| < X for some constant A < 1 and some choice of a Riemannian metric on
the manifold.

A point z is non-wandering for f if for every neighborhood U of z there
is n > 1 such that f™(U) intersects U. The set of non-wandering points is
denoted 2(f). It contains the set Per(f) of periodic points, as well as the
a-limit set and the w-limit set of every orbit.
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Definition 1.2. The diffeomorphism f : M — M is uniformly hyperbolic, or
satisfies the Aziom A, if 2(f) is a hyperbolic set for f and Per(f) is dense in

2(f)-

The definitions for smooth flows f¢ : M — M, t € R, are analogous, except
that (unless A consists of equilibria) the decomposition (1.1) becomes

T\M = E*® E° 9 E*, (1.2)

where E° is 1-dimensional and collinear to the flow direction.

The spectral decomposition theorem of Smale [418] asserts that the limit
set of a uniformly hyperbolic system splits into a finite number of pairwise
disjoint basic pieces that are compact, invariant, and dynamically indecom-
posable. The precise statement follows.

We say that an f-invariant set is indecomposable, or transitive, if it contains
some dense orbit {f™(z) : n > 0}. An f-invariant set A is called isolated, or
locally maximal, if there exists a neighborhood U of A such that

A=) ). (1.3)

neEZ

That is, A coincides with the set of points whose orbits remain in U for all
times.

Theorem 1.3. The non-wandering set 2(f) of a uniformly hyperbolic diffeo-
morphism [ decomposes as a finite pairwise disjoint union

2(f)=MmU---UAdy

of f-invariant transitive sets A;, that are compact and isolated. Moreover, the
a-limit set and the w-limit set of every orbit are contained in some A;.

Here is a sketch of the proof. Consider the equivalence homoclinic relation
defined in Per(f) by p1 ~ pa < the stable set of the orbit of each of the
points has some transverse intersection with the unstable set of the orbit of
the other. The stable manifold theorem implies that there are finitely many
equivalence classes, and they are open in Per(f). The basic pieces A; in the
theorem are the closures of the equivalence classes. By construction, they are
compact, invariant, and open in £2(f) = Per(f). The latter implies that they
are isolated sets, because Per(f) is an isolated set if it is hyperbolic. Moreover,
the stable and the unstable manifold of any periodic point in some A; are
dense in A; . This implies that A; is transitive. Finally, if the a- or w-limit set
of some orbit intersected more than one A;, there would be non-wandering
points outside the union of the basic pieces, a contradiction.

Transitive sets and isolated sets of flows ft : M — M, t € R, are defined
in the same way. Theorem 1.3 remains true for uniformly hyperbolic flows

{ft:teR}.
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Remark 1.4. A question dating from the late sixties asked whether every
hyperbolic set is contained in an isolated one. This was recently solved by
Crovisier [143], who constructed a transitive diffeomorphism of M = T* hav-
ing a hyperbolic set which is not contained in any isolated hyperbolic set A:
Crovisier shows that A would have to be the whole torus, which is not a hyper-
bolic set because the diffeomorphism has saddles with different indices. This
has been improved by Fisher [183], using different methods: he obtains robust
examples in any dimension > 2, and for dimension 4 or higher his examples
are also transitive.

1.2 Structural stability

A smooth dynamical system is called structurally stable [15] if it is equivalent
to any other system in a C' neighborhood. In the discrete-time case, equiva-
lence means conjugacy by a global homeomorphism. In the case of flows this
notion is too restrictive: it forces all periods of closed orbits to be preserved
under perturbation. Instead, one asks for the existence of a global homeo-
morphism sending orbits of one system to orbits of the other, and preserving
the direction of time. More generally, replacing C' by C™ neighborhoods, any
r > 1, one obtains the notion of C" structural stability.

The stability conjecture of Palis-Smale [343] proposes a complete charac-
terization of structurally stable systems. Namely, they should coincide with
the hyperbolic systems having the property of strong transversality: every
stable and unstable manifolds of points in the non-wandering set should be
transversal. In fact their conjecture is for C” structural stability, any r > 1.

Robbin [377], de Melo [146], and Robinson [379, 380] proved that these
are sufficient conditions for structural stability. Strong transversality is also
necessary [378]. These results hold in the C™ topology, any r > 1. The hardest
part was to prove that stable systems must be hyperbolic. This was achieved
by Maifié¢ [283] in the mid-eighties, for C' diffeomorphisms, and extended
about ten years later by Hayashi [208] for C! flows. Thus

Theorem 1.5. A C! diffeomorphism (or flow) on a compact manifold is
structurally stable if and only if it is uniformly hyperbolic and verifies the
strong transversality condition.

A weaker property, called 2-stability is defined requiring conjugacy (re-
spectively, equivalence) only restricted to the non-wandering set. The 2-
stability conjecture in [343] proposes a characterization of the (2-stable sys-
tems: they should be the hyperbolic systems having no cycles, that is, no basic
pieces in their spectral decompositions cyclically related by intersections of the
corresponding stable and unstable sets.

The (2-stability theorem of Smale [418] states that these properties are
sufficient. The proof uses the following notion:
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Definition 1.6. A filtration for a diffeomorphism f : M — M is a finite
family M, ,M> ..., M}, of submanifolds with boundary and with the same
dimension as M, such that

e M; =M and M;, is contained in the interior of M; for every 1 < i < k.
f(M;) is contained in the interior of M; for all 1 <7 < k.

The open sets L; = int(M; \ M;41) are the levels of the filtration (set My41 =
0).

The first step is top show that if f is hyperbolic and has the no-cycles
property, then it admits a filtration such that each basic piece coincides with
the set of orbits contained in some level: up to reordering,

Ay= () fM(Li)  forall i,

neEZ

Let g be any diffeomorphism C"-close to f. Then My, ,..., My is also a fil-
tration for g. Therefore, £2(g) is contained in A;(g) U--- U Ag(g), where

Ai(g) = () 9™ (La).

neEZ

Stability of hyperbolic sets gives that each f | A; is conjugate to g | A;(g).
Then, every A;(g) is contained in 2(g), and f | 22(f) is conjugate to g | £2(g).
Thus f is 2-stable, in the C” sense.

Palis [339] proved that the no-cycles condition is necessary for (2-stability,
in any C" topology. Necessity of hyperbolicity for (2-stability was proved by
Palis [340], based on Mafié [283], for C* diffeomorphisms, and extended to C*
flows by Hayashi [208].

1.3 Sinai-Ruelle-Bowen theory

A basic piece A; is a hyperbolic attractor if the stable set
We(A;) ={z € M :w(z) C A;}

contains a neighborhood of A;. In this case we call W#(A;) the basin of the
attractor A; , and denote it B(A;). When the Axiom A system is of class C?,
a basic piece is an attractor if and only if its stable set has positive Lebesgue
measure. Thus, the union of the basins of all attractors is a full Lebesgue
measure subset of M. This remains true for a residual (dense Gj) subset of
C' uniformly hyperbolic diffeomorphisms and flows. See Bowen [86, 87].

The following fundamental result, due to Sinai [416], Ruelle, Bowen [86,
90, 390] says that, no matter how complicated it may be, the behavior of
typical orbits in the basin of a hyperbolic attractor is completely well-defined
at the statistical level:
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Theorem 1.7. Every attractor A of a C? uniformly hyperbolic diffeomor-
phism (or flow) supports a unique invariant probability measure p such that

Jim ; o5 = [ o (1.4)

for every continuous function ¢ and Lebesgue almost every point x € B(A).

One way to construct p is starting with normalized Lebesgue measure mp
over a compact domain D inside any leaf of the unstable foliation of the at-
tractor. A distortion argument, using the fact that f is C?, gives that the
sequence of iterates {f”(mp) : n > 1} has a property of uniform absolute
continuity along the unstable foliation. Contracting behavior in the transverse
direction, together with minimality of the unstable foliation, are used to show
that the limit g = lim,_, f*(mp) exists and is an ergodic measure whose
support coincides with A. Very important, because of the previous observa-
tion p disintegrates into conditional measures along unstable foliation (see
Appendix C) that are equivalent to the Lebesgue measure of each leaf.

Ergodicity gives (1.4) for p-almost every point in A. Using conditional
measures we get it for a full Lebesgue measure subset L of some unstable
leaf. To prove the much more interesting fact that (1.4) is true for Lebesgue
almost every point in the basin of attraction, a whole open set, one uses the
observation that time-averages of continuous functions are constant on stable
manifolds. The stable manifolds of points in the attractor foliate the whole
B(A). Absolute continuity of this stable foliation (see Appendix C) ensures
that the stable manifolds of the points in L cover a full Lebesgue measure of
the basin. Theorem 1.7 follows.

Property (1.4) means that the Sinai-Ruelle-Bowen measure p may be ex-
plicitly computed, meaning that the weights of subsets may be found with
any degree of precision, as the sojourn-time of any orbit picked “at random”
in the basin of attraction:

w(V) = fraction of time the orbit of z spends in V

for any typical subset V of M (the boundary of V' should have zero y-measure),
and for Lebesgue almost any point z € B(A). For this reason p is called a
physical measure.

There is another sense in which this measure is “physical” and that is that
4 is the zero-noise limit of the stationary measures associated to the stochastic
processes obtained by adding small random noise to the system. This property
is called stochastic stability; a formal definition will appear later. For uniformly
hyperbolic systems it is due to Sinai [416], Kifer [240, 242], and Young [457].
The model of small stochastic perturbations to represent external influences,
too small or too complex to express in deterministic terms, goes back to
Kolmogorov and Sinai.
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1.4 Heterodimensional cycles

Although uniform hyperbolicity was originally intended to encompass a resid-
ual, or at least dense subset of all dynamical systems, it was soon realized
that this is not true. There are two main mechanisms that yield robustly non-
hyperbolic behavior, that is, whole open sets of non-hyperbolic systems. Not
surprisingly, they are at the heart of recent developments that we are going
to review in the next sections.

Historically, the first one was the coexistence of periodic points with dif-
ferent Morse indices (dimensions of the unstable manifolds) inside the same
transitive set. See Figure 1.1. This is how the first examples of C'-open subsets
of non-hyperbolic diffeomorphisms were obtained by Abraham, Smale [4, 414]
on manifolds of dimension d > 3. It was also the key in the constructions by
Shub [410] and Maiié [277] of non-hyperbolic yet robustly transitive diffeo-
morphisms, that is, such that every diffeomorphism in a C* neighborhood has
a dense orbit. The examples of Shub and Maifié are outlined in Section 7.1.

D1

/P2
q

Fig. 1.1. A heterodimensional cycle

For flows this mechanism may assume a novel form, because of the in-
terplay between regular periodic orbits and singularities (equilibrium points).
That is, robust non-hyperbolicity may stem from the coexistence of regular
and singular orbits in the same transitive set. The first and very striking ex-
ample was the geometric Lorenz attractor proposed by Afraimovich, Bykov,
Shil'nikov [5] and Guckenheimer, Williams [201, 452] to model the behavior
of the Lorenz equations [267]. This is a main theme in Chapter 9.

1.5 Homoclinic tangencies
Heterodimensional cycles may exist only in dimension 3 or higher. The first ro-

bust examples of non-hyperbolic diffeomorphisms on surfaces were constructed
by Newhouse [319], exploiting the second of the mechanisms we mentioned:
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homoclinic tangencies, or non-transverse intersections between the stable and
the unstable manifold of the same periodic point. See Figure 1.2.

o)

\l/

\ (ZH >
” s

Fig. 1.2. Homoclinic tangencies

It is important to observe that individual homoclinic tangencies are easily
destroyed by small perturbations of the invariant manifolds. To construct open
examples of surface diffeomorphisms with some tangency, Newhouse started
from systems where the tangency is associated to a periodic point inside an
invariant hyperbolic set with rich geometric structure. See the right hand side
of Figure 1.2. His argument requires a very delicate control of distortion, as
well as of the dependence of the fractal dimension on the dynamics. Actually,
for this reason, his construction is restricted to the C" topology for r > 2.
By comparison, robust examples of heterodimensional cycles in higher dimen-
sions are obtained by much more elementary transversality and hyperbolicity
arguments.

1.6 Attractors and physical measures

Several attempts were made, specially in the seventies, to weaken the defini-
tions of hyperbolicity and structural stability, while keeping their topological
flavor, so that they could encompass a residual set of dynamical systems. One
such extension was the notion of 2-stability that we mentioned before.

In parallel, a more probabilistic approach was being proposed, especially
by Sinai, Ruelle, Eckmann, where one focus on the statistical behavior of
typical orbits, and its stability under perturbations. See [176] for a detailed
exposition.

Definition 1.8. A set A C M is an attractor for a diffeomorphism (or a flow)
on a manifold M if it is invariant and transitive, and the basin of attraction,

BA)={z € M :w(z) C A}

has positive Lebesgue measure.
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Definition 1.9. A physical measure, or SRB measure, of a diffeomorphism
on a manifold M is an invariant probability measure pu on M, such that the
time average of every continuous function ¢ : M — R coincides with the
corresponding space-average with respect to u,

1 n—1 ,
o1 j _ ‘
fim 3 elf(2) [ (15)
i=
for a set of initial points z with positive Lebesgue measure. We call this set

the basin of p, and denote it B(p).

For flows (1.5) is replaced by

1 /7
lim — t(z))dt = dp.
Jim = [ et ar= [oan
Problem 1.10. For most dynamical systems, does Lebesgue almost every
point have a well-defined time average ? Are there SRB measures whose basins
cover almost all M ?

This is the case for C2 hyperbolic systems, by Theorem 1.7. But the answer
can not always be affirmative. A simple counter-example, due to Bowen, is
described in Figure 1.3: time averages diverge over any of the spiraling orbits
in the region bounded by the saddle connections. However, no robust counter-
example is known.

Fig. 1.3. A planar flow with divergent time averages

The following semi-global version of the previous problem also goes back
to Sinai and Ruelle:

Problem 1.11. (basin problem) Let A be an attractor for a diffeomorphism,
or a flow, supporting a unique SRB measure p. Does

B(p) = B(A) up to a zero Lebesgue measure set ? (1.6)

More generally, does B(A) coincide with the union of the basins of the SRB
measures supported in A, up to zero Lebesgue measure ?
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Again, the answer can not always be positive: [41] shows how Bowen’s
example can be inserted into an attractor, so that the basin property (1.6) is
violated. Note also that general (transitive) attractors may support more than
one SRB measure. See Kan [229] and Section 11.1.1. But no robust examples
of either of these phenomena have been found to date.

1.7 A conjecture on finitude of attractors

A program towards a global understanding of complex dynamical behavior
has been proposed by Palis [341]. Here we quote some of the conjectures
embodying his program, others will appear later.

Conjecture 1.12. (finitude of attractors [341]) There is a C", r > 1, dense
set subset D of dynamical systems on any compact manifold that exhibit
a finite number of attractors whose basins cover Lebesgue almost all of the
manifold.

Conjecture 1.13. (physical measures and stochastic stability [341]) For any
element of D all the attractors support SRB measures and have the basin
property. Moreover, any element of D is stochastically stable on the basin of
each of the attractors.

Stochastic stability means that adding small random noise to the sys-
tem has little effect on its statistical behavior. For discrete-time systems
f: M — M, one considers random orbits {z; : j > 0} where each z;41
is chosen at random in the e-neighborhood of f(z;). Then, for ¢ small, the
time averages of continuous functions over almost every random orbit should
be close to the corresponding time averages over typical orbits of the orig-
inal f. There is a corresponding notion for flows, where noise takes place
at infinitesimal intervals of time: random orbits are solutions of a stochastic
differential equation. Precise definitions are given in Appendix D.

Conjecture 1.14. (metric stability of basins of attraction [341]) Given any
element of D and any of its attractors, then for almost all C” small pertur-
bations along generic k-parameter families there is a finite set of attractors
whose basins cover most (a fraction close to 1 in volume) of the original basin,
and these attractors also support physical measures.

A key novelty in the formulation of this conjecture, and in the whole sce-
nario proposed by Palis, is to allow the existence of pathological phenomena,
e.g. related to cycles, occupying a small volume in the ambient space. Indeed,
cycles have been a main obstruction to the realization of previous global sce-
narios for Dynamics.

For one-dimensional systems these conjectures take a stronger form: finite-
ness of attractors, with the nice properties above and with their basins con-
taining Lebesgue almost all points, should correspond to full Lebesgue mea-
sure in parameter space, for generic parametrized families. This has been fully
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verified for C? unimodal maps of the interval, as we shall see in Chapter 2. In
this case the attractor is unique. There is also substantial partial progress in
higher dimensions, some of which is reported throughout the text.

Beyond finiteness ?

Palis’ program represents an ambitious attempt to achieve a global descrip-
tion of dynamical systems, and has been inspiring much work in this area.
As we have just mentioned, its conclusions have been fully confirmed in the
context of unimodal maps of the interval, and it should certainly hold for
general smooth maps in dimension 1. At the present stage this program also
seems a realistic goal for surface diffeomorphisms. The main remaining dif-
ficulty for understanding these systems is given by Newhouse’s phenomenon
of coexistence of infinitely many attractors or repellers. The previous conjec-
tures are compatible with this phenomenon, except if it occurs robustly, that
is, for every diffeomorphism in a whole open set. This is not known at the
time, but seems unlikely. Another important related open question is whether
this phenomenon may correspond to positive Lebesgue probability in param-
eter space, on generic parametrized families of diffeomorphisms. In higher
dimensions, the situation is presently much less understood, and the previous
conjectures remain long term goals.

Even if parts of this program turn out no to be confirmed, investigation
of these questions will certainly lead to important further progress. For in-
stance, if coexistence of infinitely many SRB measures does occur for an open
subset of systems, but their basins cover a full volume set, and the measures
vary continuously with the dynamics, then one will still get a very satisfactory
variation of the conclusion in Conjecture 1.14. Also, coexistence of infinitely
many independent ergodic behaviors is known to be robust in the conserva-
tive setting: by KAM (Kolmogorov, Arnold, Moser) theory many conservative
systems exhibit positive volume sets consisting of invariant tori (see for in-
stance [454]). Notwithstanding the existence of a whole continuum of ergodic
behaviors, these systems can be understood to some extent. This leaves hope
for dissipative systems as well, even if the general finiteness paradigm turns
out not to be dense.

Robust non-convergence of time averages for many initial states would,
perhaps, be a more disturbing difficulty. We have seen a codimension-2 ex-
ample in Section 1.6 and it is also known that non-convergence occurs with
codimension-1 in the setting of interval maps (see for instance [217]). Different
approaches may be envisaged to handling such a difficulty.

One of them, going back to Kolmogorov, is to consider zero-noise limits
of stationary measures associated to random perturbations of the system. In-
deed, stationary measure exist in great generality (see for instance [18, 19])
and, for small noise levels, they may be considered to provide a certain “phys-
ical” perception of the system’s behavior. This approached was undertaken
in [19] for Bowen’s example in Figure 1.3, where the zero-noise limit is an
average of the Dirac measures on the two saddle points.
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A very different approach is to consider convenient resumations of the time
averages, that might be convergent even when the time averages themselves
do not. For instance, one may consider higher order averages

n—1

1 - 4
@ =o2a" @) =e(f@).
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This would yield a stratification of many dynamical systems reflecting, in some
sense, their statistical complexity. In this direction we propose the following
example, as a test case for both aforementioned approaches:

Problem 1.15. Let X be a vector field on [0,1] which vanishes exactly
at the endpoints. Consider the map f : S* x [0,1] — S x [0,1] defined
by f(z,y) = (2z modZ, X*"(272)(y)). Observe that the second coordi-
nate of f"(z,y) is given by the time-T;, map of the vector field X, where
T, = Z?;Ol sin(2"*t!7z). The Birkhoff time averages a'V) of f should diverge
almost everywhere. Do second order time averages converge ? Are there zero-
noise limits of stationary measures ? Do they provide the same information ?

Notice that it may happen that all these higher order averages ai") diverge;
indeed, that seems to be the case in Bowen’s example.



