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Abstract. We construct the first examples of flows with robust multidimensional
Lorenz-like attractors: the singularity contained in the attractor may have any num-
ber of expanding eigenvalues, and the attractor remains transitive in a whole neigh-
bourhood of the initial flow. These attractors support an SRB (Sinai-Ruelle- Bowen)
measure and, contrary to the usual (low-dimensional) Lorenz models, they have in-
finite modulus of structural stability.

ATTRACTEURS DE LORENZ DE VARIETE
INSTABLE DE DIMENSION ARBITRAIRE

Résumé. Nous construisons les premiers exemples de flots possédant un attracteur
robuste de type Lorenz multidimensionnel: [attracteur contient un zéro dont la
variété instable est de dimension arbitraire, et l'attracteur reste transitif pour toute
perturbation du flot initial. Ces attracteurs sont le support d’une mesure de Sinai-
Ruelle-Bowen et, contrairement aux attracteurs de Lorenz usuels (en dimension 3),
ils ont un module de déformations de dimension infinie.

Version francaise abrégée: Les attracteurs de type Lorenz (ou attracteurs sin-
guliers) ont été définis par [1] et [2], qui présentent un modele géométrique pour
le comportement, observé par Lorenz dans un article célebre [3], d’une famille
d’équations différentielles de R3 reliée & un modele de convection des fluides. Ce
sont des attracteurs transitifs de champs de vecteurs de R, contenant 3 la fois une
singularité hyperbolique de type selle et une infinité d’orbites périodiques hyper-
boliques régulieres. Le plus important est que ces attracteurs sont robustes: tout
champ de vecteurs voisin possede un attracteur du méme type.

L’étude des attracteurs singuliers est un sujet important en Systemes Dynami-
ques et de nombreux résultats ont été obtenus en dimension 3 . En particulier, [7]
a commencé une théorie générale de ces attracteurs, et montre que leur robustesse
implique une propriété d’hyperbolicité partielle.

L’étude des attracteurs singuliers sur des variétés de dimension plus grande est,
par contre, un sujet presque vierge. Bien siir, il est facile de plonger en dimen-
sion quelconque les modeles classiques, en ajoutant des directions ”fortes-stables”.
Cependant, I'existence de champs de vecteurs possédant un attracteur singulier ro-
buste dont la variété instable d’un zéro est de dimension strictement supérieure a
1, est resté un probleme ouvert depuis I'introduction des modeles géométriques, il
y a pres de vingt ans. Nous annongons ici une réponse positive:

Théoreme. Pour tout k > 2 et tout n > k+3, il existe une variété M de dimension
n et

(1) 1l existe un C'-ouvert Oy de champs de vecteurs Z sur M possédant un
attracteur transitif A(Z) qui contient a la fois des orbites réguliéres et une
singularité hyperbolique dont la variété instable est de dimension k.

(2) De plus, il existe un C*®-ouvert O1 C Op tel que pour tout Z € O
Uattracteur singulier A(Z) est le support d’une unique mesure yu de Sinai-
Ruelle-Bowen : pour toute fonction continue p: M — R et pour Lebesgue
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presque tout point z dans le bassin de 'attracteur, la moyenne temporelle
T fOT ©(Z4(2)) dt converge vers [ @du quand T tend vers +oo.

La partie (1) de notre théoréme reste valable pour £k = 2 et n = 4. Sur les
variétés de dimension 3, [7] annoncent actuellement que de tels attracteurs robustes
n’existent pas, par contre [5] montrent que I’ensemble des flots possédant des at-
tracteurs singuliers de variété instable de dimension 2 contient une sous-variété de
codimension 2 de ’espace des flots.

La construction de nos exemples sera présentée dans la Section 2 du texte en
Anglais, et la démonstration du théoreme sera ébauchée dans les Sections 3 et 4.
La Section 5 présentera ’exemple construit dans le cas k = 2, n = 4, ainsi que des
commentaires sur des raffinements possibles de notre résultat.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Lorenz-like (or singular) attractors were introduced by [1] and [2], as so-called
geometric models for the behaviour observed by Lorenz in his famous study [3]
of a three-dimensional system of differential equations related to a model of fluid
convection. These are transitive attractors of smooth flows, containing both regular
orbits and singularities. Most important, they are a robust phenomenon: any flow
close to the initial one has an attractor with similar features.

The study of these systems is a main topic in Dynamics, and important progresses
have been obtained, specially in low dimensions. Recently, [7] have been developing
a theory of Lorenz-like attractors in three-dimensional manifolds, and prove that
robustness implies a property of partial hyperbolicity.

The study of singular attractors for flows in higher dimensions is, however, mostly
open. Of course, one may embbed the usual Lorenz models into flows in any
dimension, just by “multiplying by a strong contraction” (the attractor is contained
in a three-dimensional submanifold, which is invariant and normally contracting for
the flow). But it has remained an open problem, ever since the introduction of the
geometric models about two decades ago, whether robust attractors of flows may
contain singularities with more than one expanding eigenvalue. Here we announce
a positive solution to this problem:

Theorem. Given k > 2 and any n > k+ 3 there exists a manifold M with dimen-
sion n, and

(1) There exists a Cl-open set Oy of vector fields Z on M exhibiting a tran-
sitive attractor A(Z) that contains regqular orbits together with a hyperbolic
singularity whose unstable manifold has dimension k.

(2) Moreover, there exists a C™-open set O1 C Oy such that for every Z € Oy
the singular attractor A(Z) supports a unique SRB measure u: the time
average %fOT ©(Z¢(2)) dt converges to [pdp as T goes to +oo, for any
continuous function ¢ : M — R and Lebesque almost every point z in the
basin of the attractor.

The first part of our theorem remains true for £ = 2 and n = 4, as we shall see in
the last section. In 3 dimensions, robust multidimensional Lorenz attractors do not
exist, according to [7], but [5] show that transitive attractors containing a singular-

ity with 2 expanding eigenvalues persist in certain codimension 2 submanifolds of
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In Section 2 we describe the construction of our examples, and in Sections 3 and
4 we sketch the proofs of the properties claimed in the Theorem. In Section 5 we
also comment on refinements and possible extensions of our statements.

2. CONSTRUCTING MULTIDIMENSIONAL SINGULAR ATTRACTORS

We begin by revisiting the classical geometric Lorenz models of [1], [2]. By
construction, these systems admit a two-dimensional submanifold ¥ as a partial
cross-section to the flow. More precisely, there is a curve I' C ¥ and a well-
defined Poincaré first-return map ® : ¥ \ I' — ¥X. The curve I' corresponds to
the intersection of ¥ with the stable manifold of a singularity O (contained in the
attractor), and future trajectories of points in I' do not intersect 3. Most important,
® is a hyperbolic map, in the following sense:

(1) ® admits an invariant contracting smooth foliation F* (containing I" as a
leaf): every leaf F? is mapped completely inside some leaf fg(z), and ®|F?
is a uniform contraction;

(2) the quotient space ¥/F* (i.e., the space of leaves of F*) is diffeomorphic to
an interval, and the map ¢ induced by ® on ¥/F? is uniformly expanding
(with derivative tending to infinity as one approaches I').

The robustness of the attractor stems from this hyperbolic character of the Poincaré
map, and sensitivity on initial conditions results from the expansivity of ¢. On the
other hand, the interval map ¢ has modulus of stability 2 (the classes of topological
conjugacy in a neighbourhood of it are parametrized by an open subset of R?) and,
as a consequence, a similar statement holds for the flow.

The general strategy for defining our examples is to try and reproduce these
basic ingredients, in the higher dimensional setting. Topology turns out to play a
significant role in this extension, imposing certain restrictions on the kind of ambient
manifolds and of cross-sections one may have. In the construction we now describe,
the cross-section is the product of the k-dimensional torus T* by the 2-dimensional
disk D2, and the flow is defined on a quotient manifold of T* x D? x [0, 1], obtained
by identifying points in T% x D? x {0,1} as explained below.

We start by considering a convenient smooth expanding map f of T* (our con-
ditions on f are stated along the way), and the corresponding natural extension.
This last notion is usually defined as the shift map on the space of all sequences
(zp)n on T* satisfying f(z,) = 2,_1 for every n € Z. Here we deal with a concrete
realization of this map, which is a generalization of the solenoid associated to an
expanding map of the circle [10]. That is, for some [ > 1, we consider a smooth
embedding F of N = T* x D! into itself which preserves the vertical foliation
{{z} x D' : z € T*} and induces a (strong) contraction on its leaves, and such that

moF = fomy, where m : N — T* is given by w1 (z,y) = .

Then the restriction of F' to the maximal invariant set Ap = ;50 F" 7(N) is topo-
logically conjugate to the natural extension of f. It is not difficult to see, from
transversality theory, that such an embedding F' does exist if [ is large enough, say
[ > k + 1. On the other hand, for certain choices of f (e.g. isotopic to a diagonal
matrix with integer two-by-two prime coefficients) we are able to show that such
an F' exists already for [ = 2, and we shall refer to this situation in what follows.
Such a solenoid does not exist with [ = 1, and that is why we need a different
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Now we suspend the map F' to a smooth flow, in the usual way. That is, we
let M be the quotient manifold of N x [0,1] by the relation (z,1) ~ (F(z),0), and
h : N x[0,1] - M be the corresponding identification map. Then the suspension
of F' is the flow on M associated to the vector X = h,(0/0t), where (z,t) denotes
the coordinate system on N x [0,1]. The image of N x {0} under h is a global
cross-section, and the corresponding Poincaré map is smoothly conjugate to F'.

U x{0} x{0} U x{0} x{1}
2
e
\
Figure 1

Next, we transform X into a vector field Y on M having a hyperbolic singularity
O with k expanding eigenvalues o1, ..., 0 and 3 contracting eigenvalues Ag, A1, As.
This surgery procedure is reminiscent of the classical construction of Cherry flows,
see [8]. A 3-dimensional version was used in [4], [6] to produce new examples of
Lorenz-like attractors, obtained from hyperbolic flows through a unique bifurcation.
Let ¢ be an arbitrary point in 7%, and U be a small neighbourhood of ¢. We fix
the “tube” V = h(U x D? x [0,1]) around the trajectory of ¢ = h(q,0,0), and
modify the vector field inside V' in such a way as to create such a singularity O.
Figure 1 describes the modified system, restricted to A(U x {0} x [0,1]). The
stable manifold of O intersects ¥ = h(N x {0}) transversely along a 2-dimensional
disk I' containing £. The unstable manifold of O intersects A(N x {1}) C ¥ on
a submanifold diffeomorphic to S¥~1. There is a Poincaré map ® : ¥\ T — X
associated to the vector field Y, which may thought of as the result of “gluing” the
solenoid F' with the transition map of a flow near a hyperbolic singularity such as
we have been considering.

Choosing Ap to denote the contracting eigenvalue of O along h(U x {0} x [0, 1]),
we suppose that |A\;| < |[Ao| for i = 1,2, and |oj|™' < |Ao| for j = 1,..., k. We
also take the contraction rate ||DF | {x} x D?|| of F along every vertical leaf to be
much smaller than |Ag|. Then & is a hyperbolic map:

(1) ® admits an invariant contracting smooth foliation F° of ¥, whose leaves
are diffeomorphic to D? (and include T');

(2) the quotient space ¥/ F? is diffeomorphic to T*; denoting ¢ the point in T*
corresponding to T, the map ¢: T* \ {¢} — T* induced by ® is expanding.

The local behaviour of ¢ is described in Figure 1. Near the point g the derivative
goes to infinity and, roughly speaking, ¢ maps ¢ to a sphere Sp of codimension 1
in T*, the image of any small neighbourhood of ¢ missing the “inside” of So.
Hyperbolicity of the first-return map ® is a robust property, in the sense that
every vector field Z which is C'-close enough to Y has a similar hyperbolic first-
return map on Y. Moreover, if Z is C'*°-close to Y then its contracting foliation
F$ is also C?, and it is C?-close to F* = F§. As a consequence, all the features of
the maps ® and ¢ we shall need in the sequel (e.g. strong expansion rate) remain
valid in a neighbourhood of Y, which ensures that the arguments in Section 3,
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Y. These are our examples of multidimensional Lorenz-like flows: the attractor of
7 is just the maximal invariant compact set

A(Z) = ﬂ closure ( U Zi(%)).

T>0 t>T

3. TOPOLOGICAL PROPERTIES OF THE ATTRACTOR

Observe that the expansion rate o of the map ¢ can be made arbitrarily large, by
choosing f strongly expanding and taking the neighbourhood U in our construction
small enough. In this section we show that the flow is transitive on the attractor,
if o is large enough: we assume that o > max{2,25}, where A is the diameter
of T* and R is the radius of injectivity of the exponential map on T%. The idea
is to prove that ¢ is transitive on T® ~ Y/F*: then, as an easy consequence, ®
is transitive on ¥, and the flow of Z is transitive on A(Z). For general C'-vector
fields Z close to Y, the contracting foliation F7, need not be smooth, in which case
¢ may fail to be differentiable. However, this technical point is easily bypassed (e.g.
dealing directly with the return map @), and so we need not be concerned with it
in this outline of our argument.

As a matter of fact, we prove a stronger (topological mixing) property for ¢:
given any open subset W of T*, there is N > 0 such that ¢V *1(W) covers the
whole T*. For any open subset Q C T* we define p(W) as the radius of the largest
ball contained in Q. First, we note that whenever p(W) < R, then p(¢(W)) >
(0/2)p(W) (dividing o by 2 is necessary only if the discontinuity ¢ belongs in W).
Since 0/2 > 1, we get that there exists N > 0 such that p(¢™ (W)) > R. Finally,
using (o/2)R > A we conclude that the image of any ball of radius R covers T,
and so gVt (W) = T*.

Now, let us briefly explain why these vector fields Z have infinite modulus of
stability, that is, the classes of topological equivalence in a neighbourhood of each
vector field cannot be parametrized by any open subset of an euclidean space R”,
n > 1. As the singular set S is infinite, for k¥ > 2, there are infinitely many degrees
of freedom to change the set of combinatorial itineraries of its points, by arbitrarily
small perturbations of the expanding map ¢. Since a topological conjugacy between
two such discontinuous maps must send the singular set of one into the singular
set of the other, preserving itineraries, it follows that ¢ has infinite modulus of
stability. The analogous statement for the flow is a direct consequence.

4. STATISTICAL PROPERTIES OF THE ATTRACTOR

The main step to show that the flow has an SRB measure supported on the
attractor is to prove that ¢ has an ergodic invariant probability measure pg which
is absolutely continuous with respect to Lebesgue measure on T*. We follow the
usual strategy of analysing spectral properties of the transfer operator £ : ¢ — Lo,

defined by @)
r = _y
0= 2 Tcs)

A very useful remark is that, although the map ¢ is not even continuous, its local
inverse branches are rather smooth. Indeed, the inverse of the restriction of ¢ to
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So, by setting ¢~!|Hp = q. In fact, this extension is everywhere C!, due to our
assumptions on the eigenvalues at the singularity O. It follows that the operator £
preserves the space of Lipschitz continuous functions, and even improves Lipschitz
constants (above a threshold that depends only on ¢). At this point we also need to
assume that the “gluing” in Section 2 has been done in a convenient way, to ensure
a fair amount of global regularity (distortion bounds) for the map ¢. Then one
deduces, along well-known lines, that the map ¢ has a unique absolutely continuous
invariant probability measure j4, and that this measure is ergodic and supported
on the whole T*.

Now, one may view 4 as a measure on the o-algebra of subsets of X which are
union of full leaves of F°. Then pe = lim @7 (uy) defines a probability measure
on Y, which is an SRB measure for ®. Finally, the measure g in the Theorem is
obtained, simply, by suspending pe along the flow Z (x,t) = Zi(z) of the vector
field Z. More precisely, u = Z, (po x dt | {(z,t) € ExR:0 <t < 7(x)}) where
T(z) = inf{t > 0: Zi(x) € ¥} € (0,+00] denotes the return time to ¥ of a point
x € ¥ (this is a pg-integrable function).

5. FURTHER COMMENTS

A modification of the previous construction allows us to extend part (1) of the
Theorem to the case k¥ = 2 and n = 4. The main new step is to exhibit an expanding
map ¢ : T? \ {q} — T2, having arbitrarily large expansion rate and admitting a
codimension 1 solenoid ®. That is, ® is an embedding of (T2 \ {¢q}) x D! into
T? x D', such that m; o ® = ¢ o w1, and which is a strong contraction along each
leaf of the vertical foliation of T2 x D!. We construct these maps in such a way
that in a neighbourhood of ¢ the singular solenoid ® coincides with the transition
map of a flow close to a hyperbolic singularity with 2 expanding eigenvalues. This
is done as follows.

A construction of P. Schweitzer [9] provides an embedding ¢y of T* \ {q} inside
Tk x D', transverse to the leaves of the vertical foliation. On the other hand, there
is a classical construction of a dimension 2 foliation of T2 x D!, whose leaves are
injective immersions of R?. Using this, one may obtain an embedding of D? x D?!
into T? x D! preserving the vertical foliation and strongly contracting each leaf,
and whose quotient map is a (strongly) expanding map ¢; from D? to T?. Then it
suffices to take ¢ = ¢1 o ¢y.

A few concluding remarks are in order on our statements. Periodic orbits are
dense in the attractors we have constructed, moreover, all the periodic orbits are
hyperbolic and have the same index (number of contracting eigenvalues). We men-
tion that a different construction, to be given elsewhere by the first and the last
authors, yields robust Lorenz-like attractors that contain several singularities with
different indices. In these other examples, the indices of (regular) periodic orbits
are also variable, and the orbits need not be hyperbolic.

Finally, it seems that solenoids may be replaced by much more general hyperbolic
attractors in the construction of Section 2, although at present we only have a
partial proof of this.
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