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ABSTRACT. We consider small random perturbations of a large class of nonuniformly hy-
perbolic unimodal maps and prove stochastic stability in the strong sense (L!-convergence
of invariant densities) and uniform bounds for the exponential rate of decay of correla-
tions. Our method is based on an analysis of the spectrum of a modified Perron-Frobenius
operator for a tower extension of the Markov chain.

1. INTRODUCTION

Let I C R be a compact interval and f : I — I be a smooth unimodal map with
f(I) C int (I). The prototype we have in mind are the quadratic maps f(z) = —z? +a
but our arguments and conclusions hold in the general context of maps with negative
Schwarzian derivative and nondegenerate critical point. Let ¢ € I be the critical point
of f and ¢ = f¥(c) for k > 0. Throughout this paper we assume that

(A1) |f%(c) —c| > ek for all k > Hy,

(A2) |(f*)'(c1)| > AF for all k > Hy,

(A3) f is topologically mixing on the interval bounded by ¢; and ca,
where Hy > 1,1 < A, < 2, and 0 < a with e2®* < /), are fixed constants.

Conditions (A1), (A2) are inspired by Benedicks-Carleson [BC], where it is proved
that they are satisfied by quadratic maps for a positive measure set of values of the
parameter a. Moreover, they imply the conclusion of Jakobson’s theorem [Ja]: The map
admits a (unique) invariant Borel probability measure mg which is absolutely continuous
with respect to Lebesgue measure on I. This invariant measure is ergodic and describes
the typical asymptotics of orbits of f, in the sense that % Z’;:_Ol d 43 (z) — Mo for Lebesgue
almost all z € I. Assumption (A3) is used only in Section 5 and we discuss it there
(quadratic maps satisfy all three conditions simultaneously, for a positive measure set
of values of a).
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Our purpose is to show that (A1)—(A3) ensure stability of the dynamics under random
perturbations of the map: The asymptotics are only slightly affected when one replaces
frby (f+tp)o---o(f+t1), with tq,...,t, chosen at random in a small interval [—e, €]
following some probability distribution #.. This contrasts with the structural instability
of these maps: For g arbitrarily close to f the asymptotic behaviour of ¢ may be very
different from that of f™ (e.g. it may be of periodic type).

Stability under random perturbations may be expressed more precisely as follows. For
each small € > 0 we consider the Markov chain x€ on the o- algebra of Borel subsets of 1
whose transition probabilities are given by P¢(z, E) = [0 g 0e(y— fz) dy. Our conditions
on the probability density 0. are stated in (2. 2) (2 4). Then (see Section 2) for each
€ > 0 there exists a unique probability measure m, which is stationary under x°¢, i.e

me(E) = /Pe(a:, E)dmc(x) for every Borel set E.

Moreover, m. is absolutely continuous with respect to Lebesgue measure and satisfies
%Z?:_Ol dz; — me for most random trajectories z; = (f +1t;) o---o (f +1t1)(x).

We want to call f stochastically stable if these asymptotic distributions m. converge
to the invariant probability mg of f as the noise level € goes to zero. More precisely, we
say that f is weakly stochastically stable under x€ if m. — mg in the weak*-topology.
This is the same as having p. — pg in the weak sense, where py and p. are the Radon-
Nikodym derivatives of my and m, with respect to Lebesgue measure. We say that f
is strongly stochastically stable under x¢ if m. — myg in the strong (norm) topology or,
equivalently, if p. converges to po in L(dzx).

Obviously, every strongly stable system is also weakly stable. A simple example
of a sequence of functions in [0, 1] which is weakly convergent but not L!-convergent
is gn(z) = (=1)[®] where [2] is the integer part of z. This example illustrates a
main advantage of strong stochastic stability over its weak analog: preventing large
oscillations of the p. around the limit density pg. For uniformly bounded sequences
of functions having uniformly bounded variation, it is not difficult to check that weak
convergence implies strong convergence. This provides a (very partial) explanation for
the role of the variation in the theorem below.

Another important stochastic parameter we analyse here is the exponential rate of
decay of correlations, which measures the mixing character of the dynamics. Let F be
some Banach space of test functions on I (we shall always consider F = BV (I), the
space of functions with bounded variation). We say that (f, mg) has exponential decay
of correlations in F if there exists 0 < 7 < 1 and for any ¢, € F there exists some
C =C(r, el llll) > 0 satisfying

‘/(wof")'ﬁdmo—/wdmo/ﬂ)dmo

Then the rate of decay of correlations of (f,mg) in F is the infimum 7y of all such
numbers 7. Analogously, we define the rate of decay of correlations of (x¢, m¢) in F to
2
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be the infimum 7. over all 7 > 0 such that

(s rinis o s

with C' = C(7,||¢||, ||[¥]|), and where PS(z, dy) denotes the n-step transition probability.

We shall now state our main result. Here we call a differentiable map f : I — I
unimodal if it has a unique critical point ¢ and c € int (I). We take f to be C* and to
have Schwarzian derivative Sf < 0, recall that Sf = (f /f') — (3/2)(f"/f")2. We also
let ¢ be nondegenerate, i.e., f”’(c) # 0 (but our arguments may be adapted easily to
the case when c is only nonflat, meaning f (22)(0) exists and is nonzero for some £ > 1).
Finally, we suppose f(I) C int () and that f admits an extension to some compact

interval J D I, preserving all the previous properties and satisfying f(9J) C 9J.

< Ct"forallm > 1,

Main Theorem. Let f : I — I be a unimodal map with negative Schwarzian derivative
and nondegenerate critical point as above, and let (x¢)e be random perturbations of f
as introduced before. If f satisfies (A1)—-(A3) then

(1) (Strong stochastic stability.) The density p. of the unique invariant probability
measure m. of X¢ converges in L'(dx) to the density po of the unique absolutely
continuous invariant probability measure mqg of f.

(2) (Uniform rates of decay of correlations.) The systems (x¢, m¢) and (f, mg) have
exponential decay of correlations in the space BV (I) of functions with bounded
variation, and their rates of decay are uniformly bounded: There exists T < 1
depending only on f such that 7. < max(\/7y,7) < 1 for small enough € > 0.

Stochastic stability and decay of correlations have been investigated for many dy-
namical systems, see e.g. Kifer [Ki2] and references therein. Let us focus on quadratic
maps. Katok-Kifer [KK] proved weak stochastic stability under a uniform hyperbolicity
assumption (nonrecurrence of the critical point). Then Benedicks-Young [BY1] showed
that a large set of nonuniformly hyperbolic maps are weakly stochastically stable (they
use a different form of assumptions (A1)-(A3) above). In fact, abundance of stochastic
stability (in the strong sense) among nonuniformly hyperbolic quadratic maps had also
been obtained in an unpublished work of Collet [Co]. Exponential decay of correlations
was proved independently by Keller-Nowicki [KN] and by Young [Yo], for classes of
nonuniformly hyperbolic maps related to ours.

Our basic approach in the proof of the main theorem is inspired by Baladi-Young
[BaY] who obtained similar results for some uniformly hyperbolic systems. Indeed, we
introduce certain transfer operators £y and L. associated with f and yx., respectively,
and derive the statements in the theorem from showing that these operators are quasi-
compact (the peripheral spectrum is discrete or, in precise terms, the essential spectral
radius is strictly smaller than the spectral radius) and that L. is “close” to Ly for small
e > 0. As a by-product, this method permits us to recover and unify in the present
setting many of the results mentioned previously, including the existence of absolutely
continuous invariant measures [Ja] and the exponential decay of correlations [KN, Yo.
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We also expect it to be useful in more general situations, e.g. for higher-dimensional
systems such as those in [BC], [BY2].

Let us sketch in more detail how this basic strategy will be carried out, describing
the main new ingredients necessary in the present situation to overcome the lack of
hyperbolicity. In Section 2, we construct a tower extension f :1 — I for the map f.
Towers are now a standard tool in 1-dimensional dynamics and were also used, e.g., in
[KN, Yo]. However, neither of these constructions can be used directly in a random
setting such as ours: Our tower must also support extensions x¢ of the Markov chains
x¢. In Section 2 we also introduce transfer operators Ly and L., acting on a Banach
space BV(f ) of functions of bounded variation. For the definition of £y we must use a
convenient cocycle wo: I — [0, 00):

1 o(y)
‘CO T) = wo ~
o(z) = s f(yz)::m Sy

(this corresponds to a change of coordinates and is required to remove the poles of 1/| /|
and to enforce the expansion during the “recovery” phases of orbits). Perturbed cocycles
w, and perturbed operators L., corresponding to x€, are also defined, involving averages
over past (random) orbits. This seems to be the first time that perturbed cocycles are
introduced.

Building on several preliminary results obtained in Section 3, we derive our main
estimates in Section 4. We show that Ly satisfies a Lasota-Yorke [LY] type inequality,
i.e., that there are C' > 0 and o > 1 such that for all n > 0,

var Lo < Co~"(var ¢ + sup |¢|) + C’/ |p|wo dx .

Estimates of this type are also central to [KN] and [Yo]. We also prove a similar fact for
L.. Combined with our other bounds, this yields that L. is close to Ly in the following
sense: There are C > 0 and 7 < 1, and for each n > 1 there are ¢(n) > 0 and a norm
|+ ll(n), such that [|LZ — L],y < CT" for e < €(n).

Ergodic properties of our systems may then be deduced from the accumulated knowl-
edge on these operators. This is done in Section 5, and follows well-known lines. First, if
Po is a (normalized) fixed function of Ly then 7y = wypo dz is an absolutely continuous
invariant probability measure for f , and it projects down to the invariant measure mg
of f. Moreover, after lifting the correlation functions to the tower, one sees that the
gap in the spectrum of Ly separating 1 from the second largest eigenvalue is directly
related with the rate of decay of correlations of the system (f,mg). Similar statements
hold for positive e. Finally, using the above closeness between £y and L., and applying
nonstandard perturbation results from [BaY], we obtain the claims in our main theorem.

Acknowledgements. V. Baladi is grateful to IMPA/CNPqg-Brazil and M. Viana
is grateful to FIM/ETH-Switzerland for their kind hospitality and support during the
preparation of this paper.
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2. THE TOWER

Throughout, the notation C represents a generic (large) positive constant, and C(-),
respectively c(-), is some positive function tending to infinity, respectively tending to
zero, with its argument. We also use Cy,(-), respectively c,(-), to denote a sequence of
positive functions which, for each fixed value of n, converge to infinity, respectively to
zero, with the argument.

We make frequent use of the following easy inequalities. Let I, J be compact intervals,
1,19 : I — C be functions of bounded variation, and A : I — J be a homeomorphism.

(a) varr(v1 + 1p2) < vary 1 + varr o,

(b) vary(e1 - ¢2) < varyepysupy [1he| + supy [1h1| vary ¥a,

(c) vary(i1 o h) = vary 91,

(d) varr(¢1xr) < varyiy + 2supy |91] for each interval I’ C I.

Moreover, given ¢ : I x J — C, ¢ : J — [0,+0oc) such that ¢(z,-)9(-) € LY(J,dz) for
each fixed z, and ¢(-,¢) has bounded variation for each fixed ¢, then
(e) varr [ ¢(z, t)(t) dt < [(varr ¢(z,t))p(t) dt.

The dynamics.

We always take f : I — I to be as in Section 1. Without any restriction, we take the
critical point ¢ to coincide with zero; sometimes we denote a = ¢;. Condition (A3) will
not be used until Section 5. We fix A > 1 and p > e® so that

e*Ap < V. (2.1)

Other constants 0 < § < o and 1 < ¢ < X will be introduced later on.

Now we fix some small ¢g so that f;(I) C int (I) for all |t| < €. Here fi(x) = f(x)+t,
and we also write f = fi' , = fi, 0 -0 fy for each n > 1 and t=(t1,...,tn).
As explained before, we are interested in Markov chains x€, with 0 < € < €y, whose
transition probabilities P¢(z,-) have densities 0.(y — fz). FEach 6. is a probability
distribution on [—¢, €], i.e., a nonnegative function with

supp 0. C [—¢, €] and /96($) dr=1. (2.2)

We also assume the 6. to satisfy

M = sup(esup |f.]) < 0o (2.3)

and, denoting J. = {t | 6.(t) > 0},
Je is an interval containing 0 and ¢, = log(f.|.) is concave. (2.4)
The technical condition (2.4) is introduced here in order to simplify some of our ar-

guments, a weaker regularity assumption should suffice. In any case, it holds in most
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interesting cases, e.g. Gaussian and uniform distributions. Note that (2.2)-(2.4) are
automatic if 6. has the form 6.(t) = (1/€)0(t/¢) for some 0 satisfying (2.2) and (2.4).

Clearly, ¢, is concave if (f.|s.) is concave. On the other hand, (f.|s. ) is at most
two-to-one if ¢, is concave: Otherwise, there would be a point y with at least three
preimages by 6., and therefore there would be some z with at least three preimages by
¢, so that ¢. would have to be constant, a contradiction.

It follows from our assumptions that, for all small enough €, the Markov chain ¢
has a unique invariant probability measure m. (we do not need (A3) for this) and this
measure is absolutely continuous with respect to Lebesgue. (See [BY1, Part II] for a
proof of uniqueness. We do not assume, as they do, that 6. is bounded from below, but if
€ is small enough it is still true that an invariant measure for x¢ must contain ¢ = 0 in the
interior of its support.) Uniqueness also implies that m, satisfies an ergodicity property:
The product measure m.x 6" is ergodic (and invariant) with respect to the map on I xRY
defined by (z,t1,ta,...) = (ft,(x),t2,t3,...), see [Kil, Theorem 2.1]. It follows, using
the ergodic theorem, that the Birkhoff averages of random trajectories x; = ftj_,,tl (z)
converge to m, for (Lebesgue) almost every (z,t1,...,t;,...) € suppme x supp Y, as
already mentioned in the Introduction.

The tower.

We now construct a tower extension f T — 1 of f, as well as its deterministic
perturbations f;, for |t| < € < eg. Let @ < 81 < B2 < 2a be two constants; note that
(2.1) above implies €%/2X\p < /A, for i = 1,2. The tower I is the union I = Up>oEx
of levels Ey = By, x {k} satisfying the following properties. The ground floor interval
By = [ag, bp] is just the interval I. For k > 1, the interval By, = [ag, bg] is such that

[ck — e Pk o+ e_ﬂ2k] C By C [ex — e Pk o+ e‘ﬂlk] .

Observe that 0 = ¢ ¢ By, for all k£ > Hy, where Hj is given by (Al). For future use we
introduce B = [0,bo], By = [ao,0] and Ef = BF x {0}.
Now we fix some small § > 0, in particular, we assume that

|7 (z) — ¢j| < min{|c;le”*, e} forall 1 <j < Hp and 2] < 6§ (2.5)

(the other conditions on § are stated later in this subsection, in Lemmas 1 and 2, in the
proof of the Sublemma, cf. (4.15), and in the proof of Corollary 2, cf. (5.1)). Then we
also set BY = BE N (—6,0) and E5 = B x {0}.

Given z # ¢ we shall denote by z_ the unique point z_ # x with f(z_) = f(z). It
is no restriction to suppose that there is an uncountable set of arbitrarily small values
of § > 0 for which (—6)_ < § (just change coordinates z — —x otherwise) and we do
so. Let us write {0, £6}U{a; | 7 > 0}U{b; |j >0} ={eo =0,e1 =9d,ea = —6,e3,...}.
We may, and do, require additionally that for all 7 > 1 and £,/ > 0

fi(er) #eq- (2.6)
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Indeed, our assumptions on f imply that f7(0) # 0 for all 5 > 1. We choose § such that
44 do not belong to the critical orbit, and that f7(+4) ¢ {0,£6} for all j > 1 (these are
co-countable conditions). For each >3 we impose the g:o-countable conditions that
e is not f-periodic, e, ¢ U;{f?(eo),..., f'(e;—1)} and f7(es) ¢ {eo,...,er—1} for all
Jj= 1L

For (z,k) € Ey, and [t| < € we set

(fe(z),k+1) ifk>1and fi(z) € Bgt1,
fu@ k) ={ (fi(w),k+1) ifk=0andz e (=4,0),
(fe(w),0) otherwise,

and we define f&...tl as above. (We write f= fo.) Denoting 7 : I — I the projection
to the first factor we have fyom =mo f, on I.

Define H(d) = H(d, €p) to be the minimal £ > 1 such that there exist some = € (-4, 6)
and some £ = (t,... ,tg, tes1) € Jeko+1 such that ft’fﬂ(x, 0) € Ey. We observe that H(9)
can be made arbitrarily large by choosing small enough § and ¢y (by continuity). In
particular, we assume that H(J) > max(2, Hy), cf. (2.5). We define the Markov chain x*
by considering the transition probabilities P¢((z, k), E) = >0t 0c((y,9), f(z, k) dy
where 0.((y,7), f(z,k)) = 0if Jfy—tz(z, k) ¢ E;, and 0.((y,J), f(z,k)) = 0.(y — fz)
otherwise (in which case fy_z(x, k) = (y,j); when there is no ambiguity, in particular
when j = k + 1, we simply write 0.(y — fx)).

The cocycles.

We wish to consider transfer operators £ and L, related to the (unique) absolutely
continuous invariant probability measure of f and each x€. For this, it is useful to
introduce cocycles in order to suppress the singularity of the weights 1/|f;|.

We first give the definition of the unperturbed cocycle w = wy : IR Ifk>£>1
then for each (z,k) € Ep N Im(f*) there is a unique (y,k — £) € Ej_p such that
fy,k —£) = (x,k) and fi(y) has the same sign as cx_gy; for 0 < j < £ (the second
condition is needed only if k —¢ < Hy). We write f;g(:v, k) =vy. If (z,k) € ExNIm (fk)
we also define f;k (z, k) = y where (y, 0) is the unique point in E~’0+ with f* (y,0) = (z, k).
We set

AP . o
wo(z, k) = { [(£%) (£ * (k)] if (z,k) € Im (f*),

0 otherwise.
(In particular, wo(z,0) = 1.) Note, for further use, that the support of the (Eocycle wo
in E is an interval for each k > 1, with endpoints in the set E U{f*(0,0), f*(£6,0)}.
For k > 1 and (x, k) € Im f we have wo(z, k) = Mwo(f1'(z, k), k — 1)/|f (f£ (z, k).
The perturbed cocycle w, is defined by:
1 ifk=0,
we(z, k) = )\féér Oc(z — fy)dy ifk=1.

A, we(y, bk —1)0c(z — fy)dy ifk>2.
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Defining (x4, ... +,,k —£) = ft;.e..t17+(x, k), with £ > £ > 1, as in the unperturbed case,

we(z,1) = A / ()| 0.(6) e

w (2, k) = )\/we(mt,k L) ()0 (t) dt, for k> 2,

(integration is over the ¢ such that z; is defined, with z; € [0,0) and z; € Bj_1,
respectively). Introducing the notation df.(f) = 6(t1)---0c(tp—_1) dty ... dtx_1, we
also have for k > 2

(e, k) = A1 / wel@ty st D [(FEY Y (o)~ BT,

where the integral is over the £ € J¥~! such that z;, ..+, € B; exists.

Our assumptions imply that €. converges to the Dirac function as € tends to zero. It
follows that we(z, k) converges pointwise to wo(z, k) = w(z, k) as e — 0. Moreover, for
small enough ¢, and for all £ > 0, the support of w, in Fj, is an interval with endpoints
close to the endpoints of the support of w = wg in Ey. Writing dx for Lebesgue measure
on I , we introduce the positive measures po = wg dz and p. = we dz. It will follow from
our analysis, e.g. the proof of Lemma 7, that these measures are finite.

We use the cocycles w, to define nonnegative weights g; on I ,for 0 <t <e, by

we(y, k) 1
we(fe(y, k) 1/ ()]

gt (y7 k) =

(if the denominator is nonzero, otherwise we leave g¢(y, k) undefined). Note that when-
ever wo(y, k) # 0 we have go(y, k) = (\*/|(f*) (F3* (. )1 - (1/1F'W)]) if f(y, k) € Eo,
g0(y, k) = (I (y-)I/Alf'(W)]) if (y, k) € Ey, and go(y, k) = 1/A in all other cases. We
(n)

shall use the notation g = go, g™ = H?:_Ol (go fj), and similarly for g..
The transfer operators.

Now we introduce a linear transfer operator £ = L acting on functions ¢ : I Cas
follows. For k > 1 let (ag, k), (b, k) be the endpoints of the interval Im f* N Ej,, with
dp < b. Given (z, k) such that either k =0 or k > 1 with a; < z < by, (in both cases
w(z, k) # 0), we set

1 I ‘ 9 ‘ . .
Lo(z, k) = o h) y % = > o) 5)-
T fi)=(a.k) F(y.5)=(z.k)

Moreover, we set Lo(z,k) = limsup, 5, RLp(y, k) + tlimsup, 5 SLo(y, k), if k > 1
and x > I~)k, and similarly if £ > 1 and z < ay.
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Analogously, denoting (ag, k), (5;, k) the endpoints of (Ut”e grlm ff’?) N Ey, we define

1 ™ (Y, J)we(y, J) ™ , ,
k = — =
Et(P(CU, ) we(ac, k) ) |fl(y)‘ ) (lo(y7])gt(y?-7)
.ft(yvj):(mak) ft(yvj):(wak)

and

Lep(z, k) = /Etw(x k) 0. (t) dt = Z/ w(y,j)we(y,j)ée((x, k), f(y,5)) dy

7>0

if k=0ork>1withaf <2 <b. Fork>1and z ¢ (a,b;) we define Lcp(z,k)
using limits in the same way as before.
We consider the Banach space BV (I) of functions ¢ : I — C such that

lellov = llgll = suplol +varp + [ [p(@)wo(e) do
I

is finite. It will follow from the results in Sections 3 and 4 that £ and L, are bounded
operators on BV (I) (in particular that BV (I) is invariant) and, in fact, that they are
quasicompact.

Intervals of monotonicity.

An interval n C Ej for some k > 0 is called an interval of monotonicity for a map
F I — Iifthe map F = woF is monotone on 7 and if there is a j such that F( ) C Ej.
Let Z7 be the set of intervals of monotonicity of fo , l.e.,

2y ={mn fo_ln2 N---N fo_"ﬂnn | 71, ..., N intervals of monotonicity of fo}.

Observe that property (2.6) from the definition of the tower implies that no element
no of Z{ is reduced to a point, and that ny is either disjoint from the support of the
measure fg or meets this support on an interval with nonempty interior (in the second
case, po(10) > 0).

Note that each level Ej contains at most three intervals of monotonicity of fy for
k > Hy, and at most four such intervals for 0 < k < Hy. Since, by definition, the image
of an interval of monotonicity of fo is always contained in some level E;, we conclude
that #{n € ZJ | n C Ex} < 4™ for all £ > 0. For fixed values of n, we will need to
consider monotonicity intervals corresponding to orbit pieces lying in a bounded part
of the tower. Fixing N > n we denote

ZoN ={mnfitne -0 fet i, € 25 | n € <UkSNEk>’1§i§n}'

The considerations above imply that #Z; N o< (N 4 1)4™ < oo and that there is a

constant C,,(N) > 0 so that || > 1/C,,(N) for each nonempty n c Z5".
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For { = (t1, ..., tn) € J2, let z? be the set of intervals of monotonicity of fg.‘

A

Z: = {mn ftjlng N---N (f[;j,,,tl)_lnn | n; monotonicity interval of f;. ,1 <4 <n},

and for N > n

A

Z?’N = {mn ft:1n2 NN (Pt ) € 22| C (ngNEk) ,1<i<n}.

Clearly, endpoints of nontrivial intervals in Z;l and Z;:”’N vary continuously with . Tt
follows that given any 7o in Z, for each t close enough to 0 there is n(f: Mo) € Z2 with
endpoints depending continuously of ¢ and such that 5(0,70) = 7. Moreover, there
is e(n,N) > 0 such that for e < e(n, N) and any i € J*, the map n(t,-) sends Zg™
bijectively to Z;’N. For np € 21"~ and € < €(n, N) we define

nt (e, m0) = U n(tno) and 17 (e, 1m0) = ﬂ n(t, no) -
teJn teJnr

Then we have the uniform bounds |57 (€,m0) \ no| < c(€) and |no \ 7 (€,m0)| < c(e).
Therefore for all 0 < ¢ < e(n,N) and no € Zi"" (reducing €(n, N) if necessary) we
have |n~(e,mp)| > 1/Cr(N). It follows also from the above considerations that for any
0 < € < €(n, N), each point z € (Up<k<n Fj) is contained in no more than two 77 (e, 7o)
(we call this the bounded overlap property). Finally, for fixed N > n, the consequence
of (2.6) mentioned above, the pointwise convergence of wg to we, and the properties of
the support of zo imply that for all 7o € Z5*" and all € < e(n, N) (reducing e(n, N) if
necessary), either pie(n* (€, 70)) = 0, or pe(n™(€,m0)) > 1/Cn(N).

3. PRELIMINARY LEMMAS

In this section, we derive some preliminary lemmas on the objects introduced in
Section 2. These lemmas will be used to prove our main bounds in the next section.
Sometimes one may omit the hats (e.g. write f for f) without ambiguity, and we do so.

The expansion constant o.

Lemma 1. There exist o > 1, b > 0 and 69 > 0 such that for any 0 < § < dg there are
c(0) > 0 and €p(d) > 0 such that for anyn > 1, |t1|,...,|tn| < €o(d) and x € I:

(1) i Jor @) &) & (=0.0) then |(17..0,)' )] 2 e(o)om;
(2) if, in addition, fi! . (v) € (=6,6) then ‘(fﬁb,,,tl)l (m)‘ > bo™.

Proof of Lemma 1. We begin by noting that given §; > 0 there are m > 1, 01 > 1 and
€1 > 0 such that, for all |t1],. .., [tm] < €1,

(ffnt)' W) 2 0" whenever y, fo,(y),-.., fin 10, (y) & (=01,01).  (3.1)
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Indeed, by (A2) and [Si], all periodic points of f are repelling. Then e.g. [MS, Section
I11.3] implies (3.1) restricted to ¢; = 0. The full statement follows by choosing €; small
enough. In the sequel we fix §; > 0 small, depending only on Hy, «, and A., see (3.4),
(3.7), and (3.8). Now, there are o9 > 1, 63 > 0, Ko > 1 and €5 > 0 such that, given any
1 <f<mand |t1],..., |t < €2,

, 1
|(ff) W) > Eaﬁ whenever  fy, _;, (y) € (=02, 02). (3.2)

For ¢t; = 0 this is a consequence of (A2), as proved by Nowicki [No]. The general
case follows, once more, by continuity. Now we take o = min{oy,09, A} and §y =
min{d, 62} and, for each 0 < & < &y, we define ¢(0) = (infy\(—s,5) | f'|/0)™ and € () =
min{e;, €2,02}. The constant b > 0 is defined below. Clearly, for all £ < m and
lt1],-- -, [te] < €0(9),

(fft) @) = e(0)0® 3y, fr ()5 s frr o, () & (=6, 0). (3.3)

Given n, t1,...,tn, and z as in the statement, we denote z; = ftjj,,,t1 (),0<j<n.If
zj ¢ (—01,01) for all 0 < j < n then both (1) and (2) in the lemma follow immediately:
Just write n = gm + £, with 0 < £ < m, and use (3.1), (3.2), (3.3). From now on we
suppose otherwise and define 0 < v; < --- < vy < n as follows. Let v; be the smallest
J > 0 with z; € (—01,61). For each v;, ¢ > 1, define

pi = max{k > 1:|z,,4; — ¢;| < e7PI for every 1 < j < k},
where 3 = 2a. Then let v;41 be the smallest n > j > v; + p; for which z; € (—61,61).
For the time being we fix 1 <7 < s, and simply write p = p; and v = v;. The previous

definition and (A1) yield |z,4; — ¢;| < e~%|c;| (we reduce §; so that this holds also for
j < Ho, . (2.5)) and so (1~ 3%)|f/(e;)] < |'(@o5)| < (1+€3%)|f(c;)]. Then

1
| UP) ()l S I(f 1) (@) S CIPY ()] (3.4)
In this proof C > 0 is some large constant depending only on Hy, o and A.. Moreover,
e~ Plrtl) < Zutpt1 — cpta| < zugp —op|(1+ e_pa)|fl(cp)‘ + €o,

and so, by recurrence,

e PlHD) < 1_[1 (L4 e 79[(£7) (c1)] [|$u+1 —c1| +eo z; 1_[‘§sz/(01)|_
= el |

_1(1+eta) (3.5)
Cl(f7) (ex)| [z ]* + o] < CI(S7)' (1) l|zu]?,
11
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where we also use |7,|2 > §2 > ¢y. Combining this with (3.4) and (A2), we conclude

1 1
1 _
(S atuyd) (@) P > ol ()Plaul® > Z (e Fypt, (3.6)
Up to taking J; small enough with respect to @ and A., we may suppose the p; (uni-
formly) sufficiently large so that (3.6) implies

P ) @)] 2 SOV > Z0ppe > M0t (3)
for each 1 < i <'s. At this point we write |(f{ ;) (z)| = H;:Ol |f'(z;)| and partition
the range [0,n) of this product into subintervals J C [0,n) as follows. Let |J| denote
the number of elements of .J. First, we suppose vs; +ps; < n. For J = [0,,) and for each
J = (Vi+pi,vit1), 1 <i < s, wehave [T, ; |f'(z;)] > K;'ol7l as a consequence of (3.1)
and (3.2). The same holds for J = (vs + ps,n) if |z,| < d. In general, J = (vs + ps, n)
has [[;e s [f'(z5)] > ¢(8)a!’!, by (3.1) and (3.3). Moreover, [Lies £ (@5)] > Kyl for
each J = [v;,v; + pi], 1 < i < s, recall (3.7). Altogether, this proves both parts of the
lemma when v; +ps < n (we shall take b < (1/K5)). Now we treat the case vs+ps > n.
We only have to consider J = [v4,n), as the previous estimates remain valid for all other
subintervals involved. In general, (3.1) and (3.3) give [T, ; | f'(z;)| > c(8)o!’l. Part (1)
follows, in the same way as before. In order to prove (2), we let ¢ = n — v; — 1. Then
0 < g < ps and so, recall also (A1),

[0, 20 > |za| 2 legra] = 20 — cqia| 2 (1/C)e” T+ (3-8)

(when ¢ < Hy just reduce 7 to ensure |z, — cqt1| < |cq+1|/2, then take C large with
respect to |cqy1/; similarly in the next equation). Moreover, (3.4) holds for v = v, and
p = q. Hence,

1 1 1
+1 -« 1 1
(e, ) (@) 2 5|(fq)'(01)||$us| > A(Ace )T > 5)\‘“ :

We take b = (CKy)™L, for C > 0 as in the last term. [

Remark. While the previous general argument gives o < A, better estimates are possible
in some special cases. For instance, it is well-known that for quadratic maps with
parameter a ~ 2 one may take o close to 2. Note that o~! will be our uper bound for
the essential spectral radius of Ly (Corollary 2), and that the constant 7 in our main
theorem can be taken to be any number larger than o—'/2,

Lemma 2. Let o, dp, c(6) and €y(6) be the objects from Lemma 1. Up to reducing do

and c(0) if necessary, the following holds for f; as long as 0 < 6 < dp: Given anyn > 1,

there is €(n) > 0 such that, for all t = (t1,... ,t,) with |t1],. .., [ty| < min(e(n), eo(6))
12



and any (z,0) € Ey with fti‘(:v,()) € Eo, we have |(f2) ()| > ¢(8)a™*\* where £ is the
mazximum integer such that ftjjtl(a:, 0) € Ej forall0 < j </

Proof of Lemma 2. Here C = C(Hy, o, B1, B2, Ac) > 0. We take |t1],...,|t,| bounded
by some € > 0. The case where all concerned iterates of (z,0) are in Fjy is treated in
Lemma 1 (1). Otherwise, the orbit (z,0),... ,f;’?(x,O) consists of ¢ > 1 loops of the
form: m > 0 iterations in level Ey, climbing the tower up to some level k£ > H(§) then
falling down to level 0; finally, there may be an additional s > 0 iterations in level 0.
By Lemma 1, it suffices to consider the case ¢ = 1, z € (—4,6) (that is m = 0), and
s = 0 and to prove that |(f2)'(z)] > A"/b. As in the proof of Lemma 1, assumptions
(Al) and (2.5) and the definition of E; yield, for all (y,j) € E; and j > 1,

(1= ) (e < [F' ()] < L+ P ' (cy)]. (3.9)

Then, using f}_; (z,0) € Ej for 1 <j <n—1and f2(x,0) € Ey (i.e., f*(z) ¢ By),
we obtain, in just the same way as in the deduction of (3.4), (3.5),

e < CI(f* Y (ew)lller = fuu ()| + Cel < CI(f"71) (ea) [|2]* + €] (3.10)

We take € < e(n) = e ?2"/(2C|(f* 1) (c1)|), where C > 0 is as in the last term. Then
(3.10) implies |f'(z)[> > &lz|* > Fe P2"[(f"71)(c1)| 7. Hence, using (3.9),

|(f?)l(37)| > ée_ﬂ2n/2|(fn_1)l(cl)|_1/2‘(fn_1)l(cl)| > épn—l)\n—l ) (3.11)

By the definition of f; we must have n — 1 > H (), and we assume that &y is small
enough to ensure épH(‘s) >A/bforall0<d<dg. O

Falling down from the tower.

Our next bounds concern the weight g:(y, k) evaluated at points in the support of p.
which “fall down” from the tower, i.e., such that kK > H(6) and fi(y, k) € Ep.

Lemma 3. There is C > 0 so that w.(y,k)|f'(y)|7* < Cp~* for alle >0, all k > 1,
and all (y, k) € By, having f,(y, k) € Ey for some [t < ¢,

Proof of Lemma 8. Suppose first that e = 0. By definition, if wy(y, k) # 0 then

AF A
wo(y, B)|f (v)| "t = ———-——, where z = f *(y, k) € (0,6).
Since f¥*+1(z,0) € Eq, (3.11) applies and yields wo(y, k)| f/(y)|~ < (CAF/XkpF).
Assuming now that € > 0, we derive a preliminary estimate for w. on F;. We continue
to denote C = C(Hy, a, 1, B2, Ae) > 0. If 2 > a + € then we(z,1) = 0. Otherwise, we

use
_ Oc(t) 1
we )= [ s ar <o [ s a
13




where z; = ft_i (z,1), the first integral is taken over {t > z —a,|2z;| < §} and the second
one over {t > z — a, |t| < e€}. Hence, if a — € < z < a + € then

N dt ze ze  CA\M
we(z,1 S)\supHE-/ :)\supHE/ dz = Mesupf.) = < , (3.12
. o PG , WTNeROr S T B
because |z¢| < C'y/e. On the other hand, for z < a — ¢ we have
¢ dt (ze)? — (22¢)* _ CAM
we(z,1) < A su 96-/ = A supf, < , 3.13
(2,1) Pl | He PO - (3.13)

since (zt)2 is a smooth function of ¢t and z. + z_. > z9. Now we consider a general
k > H(J). From the definition in Section 2,

we(y, k)| ()7 =>\k_1/we(ytk1---t1,1)|(fé“,tk_1..-t1)'(:l/tk1---t1)\_1d56(f)- (3.14)

We split this into a sum Wj + Ws, where the two terms correspond to restricting the
domain of integration, respectively, to {|a —yt, ,..+,| > €} and to {la —ys, ..., | < €}.
In order to bound Wy and W5, we note that

e P2 < C|(F%) ()| [Ja — vy yoota | + €] - (3.15)

This is deduced in just the same way as (3.10), using ftjjjtl (Yty_y--t1,1) € E; for
1<j<kand ﬂftk,l---tl (Yt 11, 1) € Eg for some [t| < e.

Let first |@ — ys,_,...c;| > €. Then (3.15) gives |a — s, _,..t;| > (€7P2E/C|(£*) (¢1)])
and, since |zo| > /|a — z[/C, (3.13) then yields

k\/
el 1) < OOMY LEEE < otz gty e,
Replacing in W7 and using again the distorsion inequality (3.9),
k\/ 1/2 .
Wy < Ak-1 /Ceﬂ2k/2%d0€(t) < CAP22ATYE < 0pF
C1

For Ws, we use (3.15) to get that e > (e P2k /C|(f*) (c1)|) if |a — ys,_,...t,| < €. Then
we use (3.12) to conclude that we(ys, ,...t,, 1) < CeP2R/2|(f%) (c1)|*/2. The same calcu-

lation as before gives Wy < Cp~*, ending the proof of Lemma 3. O

For k > 1, we introduce the subintervals of Ej}

B ={Wk) [ f(y) > bpsr —€} and B ={(y,k) | f(y) < ars1+e}.

Note that (y, k) € ka+ U B, if and only if ft(y, k) € Ey for some |[t| < e.
14



Lemma 4. There is a constant C > 0 such that for all e > 0 and k > 1

var(we(y, ) (y)7h) < Cle*p™)F.

k

Proof of Lemma 4. Recall that, for each fixed ¢ > 0 and k£ > 1, {w.(y,k) # 0} is an
interval. Denote by 'y,:f its intersection with ,B,f. We suppose k > H(0) for otherwise
fy,zt is empty. First suppose that e = 0. For (y,k) € 7,:5 we have wo(y, k)| f'(y)|~! =
(X¥/|(F*1) (F7%(y, k))|)- Note that f¥+! has negative Schwarzian derivative, because

f has. Moreover, f**1 does not have critical points on f;k('yfct), because this last set
does not contain ¢ = 0, neither does 7(E; N suppwp) for j > 1, see Section 2. This

implies that |(f**1)'(f7"(y, k))| has a unique maximum and so wo(y, k)| f'(y)|~" has a
unique minimum, restricted to ’y,:f. Hence

var(wo(y, k)| ()| 71) < 2sup(wo(y, k)| (y)| 7).
B; vk
and the claim corresponding to € = 0 follows from Lemma 3.

Assume now that € > 0. The main step is to prove that w, is at most two-to-one on
each Ej. For this we use the assumption that ¢. = log(f.|s. ) is concave. Observe that
a function 1 is concave if and only if

Y(x1) + Y(xe) < P(x2) + Y(x3) for every 1 < x5 < 23 < x4 with 21 + 24 = 29 + 3.
Given j > 0 (if j = 0 replace B; by Bar)
We (21, J + D we(2a,J + 1) — we(z2, 5 + Dwe(z3,5 +1) =
=3 [ [ e d)Oulor = F)8s = £2) = Oulea = f)e(oa — f2)) dyd
<0, ] foJr all 1 < 29 < 23 < x4 With 1 + 24 = 22 + 3.

For the last inequality observe that the integrand is always nonpositive since we have
(1 — fy) + (x4 — f2) = (x2 — fy) + (3 — fz) and log(f.|;,) is concave. This proves
that logw, is concave and so w, is at most two-to-one on Ej i, see Section 2. As a
consequence
var we(y, k) < QSujP we(y, k) < Cp~F,
k Tk

by Lemma 3. Therefore, since |cx| > e~ and |f’| has a unique maximum on each By

for k > H(0) (use Sf < 0 once more) we get

var(we (y, k)| (y)[71) < varwe(y, k) sup | f'(y)| ™" + sup we(y, k) var | f'(y)| "
Br Br ﬂ,f,t ﬂ,:f Br

<CpF.Ce** +Cp7F.Ce*. O
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Climbing the tower.

We now proceed with some preliminary bounds on L. concerning points which are
“climbing the tower” : (y,k) € Ej and f,(y, k) € Egy1. Given z # ¢ we let 2_ be the
unique point with z_ # z and f(z_) = f(z) and write K(x) = |f'(z-)|/|f'(x)|. Then
we set K = sup,_. K(z), and K = vary,. K(z). Note that under our assumptions K
and K are finite because K (z) is C! (apply Morse’s lemma, this is the only place where

we use f € C*4, in particular, C?3 suffices for all our purposes if f is symmetric) .
Lemma 5. Let ¢ € BV(I) and e > 0.
(1) For k> 1 and each 8 C Ey1N supp i, we have supg |Lcp| < %supv lp|, where

v = Uses. (filme) 1 (B) N supp pe.
(2) For each B C E1 N supp pe, we have supg |Lep| < K (supy+ @] + sup,- [el),

where v* = Utey, (fel ) 7 (B)-

Proof of Lemma 5. The case € = 0 being easy, we assume ¢ > 0. We first consider (1).
By definition, for £ > 1 and = € By such that we(z,k + 1) # 0,

ka w€(z’ k)(p(z, k)ae(m - fZ) dz
A Jp, we(y: K)0c(z — fy)dy

Lep(z,k+1) =

and the claim follows. To show (2), we note that if w¢(z,1) # 0 then

- Jo ol x—fZ)dz+f05<P() (z— f2)dz

Lep(x,1
)\f() fy dy )\fo fy dy

and use the change of variable z = w_, with Jacobian bounded above by K, in the
numerator of the second term (recalling that we take (—6)_ < §). O

Lemma 6. Let ¢ € BV(I) and € > 0.

(1) For all k > 1 and each interval 8 C Eg11, we have varg L.p < 5 var, ¢, where

v = Uses, (film,) "1 (B) N supp pe. )
(2) For each interval § C Ep, we have varg Lo < %varﬁu,yf v+ % sup.,— ||,

where we write fyi = Utel. (ft\ES_L)_l(,B)-

Proof of Lemma 6. Again, the easier case ¢ = 0 is left to the reader. We start with
k > 1. Consider first ¢|g, = Hy = X|[u,bs]x{k} for some point v € By. We shall prove
that L.y is monotone on Efy1. Obviously, we may disregard the points (x, k+ 1) where
Lep is defined by a limit (recall Section 2). At all other points,

fbk we(z, k)@ (x — fz)dz

Af we(y, k)0e(z — fy)dy
16
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Fix 1 > x5 in 7(B) with we(z;, k+ 1) # 0, 2 = 1,2. Then, up to a positive factor, the
difference Lcp(z1,k + 1) — Lep(x2,k + 1) is equal to

/a z dy /ubk dz we(y, k)we(z, k) (96(x1—fz)96(x2— fy)—0(za— f2)0c(x1— fy)). (3.16)

Assume that f|p,nsuppp. is increasing (the other case is similar). Then f(y) < f(2)
in (3.16). Thus 1 — fy > max(z; — fz,z2 — fy), and 23 — fz < min(zy — fz, 22 —
fy), so that, using (z1 — fy) + (z2 — fz) = (x1 — fz) + (x2 — fy) together with the
concavity of log(f|s.), we get Oc(x1 — f2)0c(x2 — fy) > 0 (22 — f2)0.(z1 — fy). Hence
Lep(x1) > Lep(a), ie., Lep is nondecreasing on B. This proves, using Lemma 5, that
varg Lcp = supg L — infg Lep < %(1 —0).

Consider now the case where

m
olp, = diH,, (3.17)
=1

for some u; € By and d;j > 0. Then varg Lo = varg Le(doxy + Zuj@ d;jH,;) for
some constant do > 0. Observe that L(dox.) is constant on . Therefore, by linearity,
varg L.p < + Zuj@/ d; = 5 var, @.

If ¢|g, is nonnegative and nondecreasing, we take a sequence of ¢,, of the form (3.17)
with ¢, |g, < ¢|g, and converging uniformly to ¢|g,. Since L.¢, converges pointwise
to Lep on Egiq, we get

_ 1. 1
var L < liminf var L., < —limsupvar ¢, < —var .
B n B A n v A

Finally, if ¢|g, is any function with bounded variation, we may write ¢|g, = (¢1 —

@2) + i(p3 — @4) with the ¢; nonnegative, nondecreasing, and such that var, ¢ =

Z§:1 var, ¢;. Then

1 1
var L. < var L.p; < —varg,; = —vary.
K @_;ﬂ QO]_;)\’Y@] )\’YSO
Consider now 8 C F;. For a function ¢ which vanishes on [—§,0), the argument
above may be reproduced and yields varg Lo < var,+ ¢/A. It therefore suffices to
consider functions with ¢(z,0) = const for z > 0. Observe that L.o(z,1) may be
rewritten as

(=5)_
0 80(71)—,0)96(37 - fw)K(w_)dw
Eeloxm)n Ly My Oclw — fy)dy

where we used the change of variable w = z_, with Jacobian K(w_) = [f'(w)/f'(w-)|
and 1(z,0) = ¢(2_,0)K (2_)X[s,0)(2—). This yields varg Lc(¢) = varg L(¢) and, since
) vanishes on [—4, 0], we are reduced to the previous case. An application of properties
(b) and (c) from Section 2 ends the proof of the lemma. O

= ,Ce((pXESL)(:E, D+L(p)(x, 1),
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The measures o and p..
Lemma 7. lime 0 45 [, [we(®, k) — wo(, k)| dz = 0.

Proof of Lemma 7. The term for k = 0 vanishes. For £ = 1 we have

0 X —5,(5 0 xr Ute eft —(5,5
wo(z,1) = { A F I ) we(x,1) = { 6. (t) dt ’ il )

Flaoy] Otherwise, A Fwy]  Otherwise,

with z; = ftji (z,1) for t > 0. Therefore, for small fixed ¢ > 0 we have, by a computation

similar to (3.12), fla—w|<c wo(z,1)dr = Axzo(a — (, 1) — zo(a,1)) < ACV/. Since

we(z) converges uniformly to wg(x) on |a — x| > (, the integral f|a |we — wol| dz

—a|>¢
_al<¢ we(z, 1) dz into a
sum W; + Wy where W7, W5 correspond to restricting the domain of integration to
¢ > |a — x| > 2¢, respectively |a — x| < min(2¢, (). The first term vanishes if { < 2e,

otherwise it satisfies o
Wi < / <C
e TPy SOV

since |a — x + t| > |a — x|/2. For the second summand, we have (recall (3.12))

C\M C
Wy < / dr < — min(2¢,¢) < C min(y/e, \[C)
|a—z|<min(2¢,() \/E \/E

We have thus proved:

can be made arbitrarily small by taking e small. We split fla

21_1)1(1) . lwg — we| dz =0, (3.18)
/ we(z,1) de < C/C. (3.19)
la—z|<¢

For the levels k > 2, we get by the definition of w,(z, k) and a change of variable
/ wo(w, k) do = AF~1 / we(y,1)dy dd.(F) (3.20)
By, EJk ! ’Wﬁ)({)
where 7 (t) C By is defined by y4(f) = 7r(( FE=1)~1(E}) Nsupp fte). To control the top
levels, we shall use the fact that for all k¥ > 1, teJFand y € v ()
ly —a| < Ce™ PR < C(ePrr,)7F. (3.21)

(To prove (3.21), use | Bg| < 2e7#1% and (3.9) to obtain a constant C > 0 such that for
all k > 1, all £ € J* 1 and all y € v(#) we have |(f; E=1y(y)| > (1/C)NE=1.) Tt then
follows from (3.19)-(3.21) that for any Ny > 2

Z / we(x, k) dz < Z ONF=L(ePrr,) /2 < Z C(edth/2p)7k (3.22)
By,

k>Ny k> Ng k>No
18



Therefore, by taking Np large enough we may assume that ;5 n / B we(x, k) dz is
arbitrarily small, uniformly in e. The same argument also gives

3 / wolz, K)de = 3 Ak_lf Cwo(y Dz < 3 CEH2p)F (3.23)
k>N, ” Bk k> No 7k (0) k> No

which is small if Ny is large. It remains to bound », ., n, ka lwe(z, k) —wo(x, k)| de.
Using (3.20), and the equality in (3.23), we find

Z / \we(x, k) — wo(z, k)| dz < NoAN° max [/ |lwe(y, 1) — wo(y,1)|dy
By i (£) Nk (0)

2<k<Ng
s w Dl [ () dy
Y (#)\ 7k (0) Y (0)\ vk (%)

(the maximum is taken over all fand 2 < k < Np) and the three terms of the right-
hand-side tend to zero with €, by (3.18), (3.19) and the properties of the intervals of

monotonicity from Section 2 (note that i (#) is contained in some element of Zt’fk) O

Lemma 8. For all ¢ > 0 and ¢ € BV (I) we have [; Lepdpe = [; @ dpe.

Proof of Lemma 8. The presence of the w, factor in the integrand means that we do
not need to consider the points (z, k) for which L.p(z, k) is defined by a limit. If e = 0,
use the change of variable formula in the integral. For ¢ > 0, by Fubini’s theorem

Z/B Lep(z, k)we(x, k) de =
k>0
—Z/ ije?/J(Z k), f(y, 1)) d )dy

7>0 k>0

and (using f(I) C I, all t) 3755 ka ée((x, k),f(y,j))dx =1 for any (y,j) € I (this
just corresponds to the fact the Markov transitions Pe are probability measures). O
4. MAIN ESTIMATES

Bounding the variation.

We prove our main estimate:

Variation Lemma. For each o9 < o there is a constant C > 0 cAmd for each n >'1
there is an €(n) > 0 such that for all 0 < € < e(n) and all p € BV (I)

var L2 < Coy™(var -+ sup o) + C [ lo(@)lwo(s) ds
i I i I

We shall need:
19



Sublemma. There is C > 0 and given n > 1 there are ¢(n) > 0 and C(n) > 0 such
that for every 0 < e < e(n), every ¢ € BV (I), and every interval A C Ey,

var Lt < Co ™" (var ¢ + sup |¢|) +C(n)/\<p\due-
I i I

Proof of the Sublemma. We only consider € > 0: the case ¢ = 0 is obtained by (simpler
forms of) the same arguments, using the versions for ¢ = 0 of the lemmas in Section 3.

Fix A C Ep and n > 1. Our starting point is the following decomposition of back-
wards orbits. Let ¢ > 0 and ¢ = (t1,...,tp) € JI be fixed. For each 0 < j < n we

define G(j) = G(j, €, tn,--- ,tn—;) to be the set of all nonempty intervals of the form
y=nn( fitl )_1(A) N supp pe, where 7 is an interval of monotonicity of f] +1

tntn_j

with 7 C (Ug>1Ek) and f firt ,(n) C Eqg for 0 < £ < j. Moreover, we let G = g(t)

tn —Jj+e tn—

tp—j

be the set of all nonempty mtervals of the form v = 7N ( ft’; ...tl)_l(A), where 7 is an

interval of monotonicity of f&_,,tl with ft‘;._.tl (n) C Ep for 0 < ¢ <n.
Using this decomposition, the definition of £%, and (a), (c) from Section 2, we obtain
the basic inequality:

var (xaL?p) Z Z var (x,gUtD Ly Jnlj P +Zvar(xlg(”)g0). (4.1)

0<j<n veG(j) V€9

(we write g(© = g(n) tn_oq, for simplicity). Note that vara(Lfe) < vary(xaLlte).
Hence, by the definition of L7 and using inequality (e) from Section 2 (observe also that

neither gU+1) nor G(j) depend on t1,... ,t,_;_1),

var(Clp) < Y sup Y var(gUtILTI o)+ sup Y var(xag™e).
0<j<n tn=iotn g () b1 t”veﬁ !

Writing the right-hand-side of the above inequality as S + Sa, we first bound Sy (recall
(b) and (d) from Section 2):

S < sup Z varg(") + 2supg(")) sup \(,0| + var @ - sup g("))
t YEG x 2 7

By Lemma 1 and the definition of v and g™,

{ Co~n if A C (—6,0)

4.2
C(1/6)c~™ in general. (42)

sup g™ = sup |(f2)'|7* <
¥ b
Also, since ft_’? has negative Schwarzian derivative and no critical points in v, the function
¢(™ has at most one local minimum on 7- Therefore
var g™ < 2sup g™ . (4.3)
L i
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For each v € G let n be the corresponding interval of monotonicity of ft_’? This is the
continuation (in the sense of the last subsection of Section 2; we assume € < €(n)) of
some interval ng € Z;"". Theny C n C n*(e,m0). We write y* =~7(y) = 0T (e, m0) and
denote G*(S2) the set of all y* found in this way. By the properties of the monotonicity
intervals described in Section 2, we have 1/pu.(y") < C(n) for all y© € G (observe that
tte| B, = 10|, is Lebesgue measure on Ep). Altogether, this allows us to write

1
supcpﬁsupcpﬁvargo—i-i/ p|due < var —l—C’n/ dite , 4.4
wlol < suplol <varg+ s | lolduc S varo+ C f loldue, (44)

for all € < €(n), where y* = 4" (7). Combining the bounds (4.2)-(4.4) with the remark
that #£G1(S2) < Z§™ < C(n), we obtain

< Y (O VlangrC(%)C(n) | 1ldn)

TteGt(S2)
- 1 (4.5)
<C(5)0" (> Varw)+0 /|w|due
7+€9+(5‘2) -
where C(1/6) may be replaced by C if A C (—4,9).
We now move on to bound S;, and again start with the observation that
S < Z Z
0<j<n tn=ix ’t veG(5) (4.6)

((var gU*h 4+ 25up gU ) sup | L7777 | + sup gV var [£27T 1)) .
v Y Y 107 Y

Note that for v € G(j) with v C Fy, Lemmas 3 and 4 together with the analogues of
(4.2)—(4.3) obtained replacing v by f;,_;(v) and n by j, yield for all t

sup g¥tY) =sup(gW o fy, - g) < C(1/8)o I p7F,
v v

vargUth < sup ¢@ varg+ _var g9 supg < C(1/6)o ek pF (4.7)
! Fro,(0 Y F ;) 5

(we used (b), (c¢) from Section 2), where C'(1/6) may be replaced by C if A C (-6, 6).
For v € G(j) we write j(v) = j, and also k() = k if v C E. Observe that we always

have k(v) > H(d), because v C (Ug>1Ex) Nsupp pe and ftn_j (v) C Ey. Fixing a large

value of N > n, to be determined below as a function of n only, we split the sums in S,

into
)DEETS VD DRSS DI EFERES
0<j<ntrmir ot Ny eg(iy: veG(i)k(MNSN  vEG():
kE(v)>N k(v)>n—j—1 k(v)<n—j—1
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We now proceed to bound si, s3, and s3, using each time a decomposition such as in
(4.6) as a starting point.
First, using Lemmas 5 and 6 (n — j — 1 times) together with (4.7), we get

1 . .
< Y s Y O e A T D arg + et suplol), (48)
0<j<n "I 4G (j)ik () > N - z

where v = y(v) = (Ug( Affb__i:ll...tl)_l(j)) Nsupp pe C Eg(y)—(n—j—1) and C(1/5) may be
replaced by C if A C (=4, 9). Since ft]nmtnﬂ_+1 |E, is at most 27-to-1, and Ej, contains at
most two intervals of monotonicity mapped to Fy by ftn,,-, each sum on v € G(j) in s1

(or s9) Tanges over at most 27! elements for each given value of k = k(7). Therefore,
(4.8) yields

< Y Y 2O 0V o) A var o+ sup o)

0<j<n k>N I
<o (f)N(QYA—"(var +supo) < S p-n (var o + sup o) )
< 5 P pn 2 2 fp @) = Cn(N) 2 2 fp 2

(recall that p > e® and o < 2)). As usual, C(1/0) may be replaced by C if A C (-6, ).
Analogously

1 ) .
s2 < Z sup Z C’(S)p_keako_J)\_(”_J_l)(Vgu”<p +sup|p|) (4.10)
0<j<n ‘ma ot e g (j)h(y)<N - 1
k(y)2n—j-1

where v = ¥(v) C Ek(y)—(n—j—1) is as defined after (4.8). Note that v is an interval
if k() > n—j—1 and + is a union of two subintervals of E0+ , respectively Eo_ , if
k(y) = n —j — 1. In what follows we consider the first case, the second one being
entirely analogous (just treat the two subintervals separately). Proceeding as before in
the case of Sy, we find 7y € Zg+1’N such that v C n7(€,m0) and also &, € Zg’N such
that v C 7" (¢,£0). Observe that

fri7 &) Cmo and  fPTITY(& Nsupp po) = 1o N SUPP Ho- (4.11)

Indeed, the first statement is a direct consequence of the properties of the partitions
into intervals of monotonicity studied in Section 2. For the second one, recall also that
EyNsupp o = E,NIm fe is an interval for each £ > 1 and that f is monotone on each
of these intervals. Now we write y* = 7+ (v) = ¥ (e, &) and denote G*(s2) the set of
7" obtained by varying j and vy € G(j) in (4.10). Clearly, #G " (s2) < #20N < CL(N).
We also claim that 1/p.(y+) < Cp(N) for all v+ € G¥(s2), as long as € < e(n, N). To
prove this, combine the properties of the monotonicity intervals with the remark that

wo(&o) > 0, which is a consequence of p.(y) > 0 and (4.11).
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Hence, we are in a position to apply the same kind of calculations as in (4.4)—(4.5)
and (4.9), to get

1 fe*\" i —d
> > C(g)<—) AT g ”(Xe}r)w+0n(N)/|¢|du€)
0<j<n v€G(j):k(v)<N P Ty i

k(y)>n—j-1 (4.12)

<Ce( X vare) +CICHW) [ leldie,

2+EgH(sn) L

(we use p > e® and o < \) where, again, C'(1/6) may be replaced by C if A C (-4, ).
Using similar arguments and similar sets v (v) € G¥(s3), we get

k
(X oG (S) o tterto) +cGICm [Ioldn, (@13

yteGt (ss)

where, for simplicity, we write £ = 5+ 1+ k. Note that we used Lemma 8 in the integral
term. As before, C'(1/4) can be replaced by C if A C (-9,9).
Putting together (4.5), (4.9), (4.12), and (4.13), we obtain for general A C Ej

1 C(1/6
var(Ll¢p) < C(<)o™™" Z vargo + (1/ )0_"(Var<p + sup |p|)
A 0 Cn (N) i I
7+€9+(52)U9+(82) - (4.14)
o) [lelduct 30 OG0t ez ),
ytegt(ss)
and for A C (—9,9)
1
var(Leg) < Co™" > vare + oy "(V?w + sup l)
¥+ EGH(S2)UGH (s2)
(4.15)
oL n—~¢
/Iw\ dpe+ Y 1o var(Le™)
yt€eGt(ss) -

Note that the previous calculations, for A C (=6, 4), yield a factor C(e®/p)¥ in the last
term of (4.15), see (4.13). On the other hand, since p > e® and k > H(J), we have
C(e®/p)¥ < 1 has long as 6 has been fixed small enough. This allows us to replace that
factor by 1, as we did, which is necessary for the sequel of our argument.

If the sum over 1+ € Q+(33) in (4.14) is not void, we need to proceed by recurrence.
We change the name of the G1, the y*, and their indices k(yT), j(y*) in (4.14)-(4.15),
to gl , 71 , k1, and j;. The corresponding objects appearing at the " step (for each
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fixed lzr_l) will be denoted G, ZZF, k;, 7; and we also let £; = j; + 1 + k;. Since every
such z:r is, by construction, a subset of (—d,d), we may apply (4.15) to it. After one
induction step, we get

1/6
Var£"<p < C’ Z\:arcp + g( (5\[)) o " (Vargo + Sup lo|) + C Cn(N) / lo| dpe
+ Z C(—) [CU‘"Hl Zvar o+ ! o~ (var ¢ + sup |¢|)
egt(en) | On(N) ! d

—4s n—~0;—4o
CulN) / Pldict 3 o (et )

”/+€g+ (s3) -2

the first sum being over v € G (S2) UG (s2), the third one over v € G5 (S2)UG; (s2).
This gives,

Val‘[,n(p<c ZV&I‘(p—i—C Z Var(p Z C —41—4> VaI‘(En —£— £2S0)
oy % vt i ot
1 1
+ l
(L #GTNOG) | e e +supliel) + Cu) [ ol du].

the sums running over v € G7(S2)UGT (s2), over v € G (s3), vy € G (S2) UGy (s2),
and over vf € G (s3), v € G (s3), respectively. Now, #G (s3) < #2500 < C(n)

because ki < £; < n. In fact, #Q;r(s,g) < C(n) for all 1 <4 < n, for a similar reason.
Hence, after at most n steps we get

1 n
Vir£?<p < C(E)J_"Z< Z vz;g‘cp)

i=1 Nyttt (4.16)
1 1
+Cme) (oo oare +suwleh + Cu) [ ol du).
the second sum being over v} € G (s3),... i, € G (s3), v € G (S2) UGS (s2).

Now observe that the intervals zj occurring in (4.16) are all distinct elements of

{nt(e,m) | mo € Zy ’N}. Therefore, they have the bounded overlap property (over-
lap bounded by 2 in fact, recall Section 2) and so the first term on the right-hand-
side of (4.16) is bounded by 2C(1/d)oc ™" var; ¢. Also, fixing N > n depending only
on n, we may ensure that C(n)/Cy(IN) < 1, so that the second term is bounded by
C(1/0)o~"(varj ¢ + sup; |p|). Finally, since ¢ is fixed at this point, we may omit the
dependence of the constants in (4.16) on it (i.e., we just write C instead of C(1/9)),
thus ending the proof of the Sublemma. [
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Proof of the Variation Lemma. We start by fixing some n = ng and decomposing
vary L20¢ = >, varg, L@, for € > 0. Note that for £ > ng, Lemma 6 yields
varg, L20¢ < A0 Varg, ., ¢- For k < mg, we first use Lemma 6 (k times), then

invoke supg, |Llp| < varg, Lip + C’fEO |Lo| dp (for £ = ng — k), finally apply the
Sublemma (for A = Fy and n = ng — k < ng) and Lemma 8. In this way we get

var L2 < CA™* [Co™ P (var o + sup |¢]) + C(no) / ol dpse]
k I i i
for all € < €(ng). Therefore (recall that o < A),
var L@ < A7 var ¢ + nogCo ™" (var ¢ + sup |p|) + noC(n) / ol dpse -
I I I i I

Hence, for each fixed g < 6¢ < o there is C' > 0 and there are C'(ng) > 0 and €(ng) > 0
such that

var L2 < Coy™ (vax o + suplip)) + Clo) [ Il (4.17)
I I i I

for all € < €(ng). We also need an analogue of this inequality for the supremum:

sup [£2°| < O™ (var o + sup ) + C() [ [ldc. (4.18)
I I I I

To prove (4.18) distinguish two cases. If sup; |L2°p| = sup, > mo P |L7 |, simply apply
Lemma 5 repeatedly. Otherwise, use

1
sup [£2°| < sup (yar L2 + o [ 1Ll d) < var 20 + Cloo) [ [l dc
i k<no Bk te(Ex) Jg, i i

where we have invoked Lemma 8 and the fact that sup., (1/pe(Ex)) < C(no) if
€ < €(no).

Now the lemma follows easily. Fix ¢ > 1 large enough so that 2Ca,? < 05¢ < 1
and then, for arbitrary n > 1, write n = pg + r with 0 < r < ¢q. Using (4.17)-(4.18)
recursively, p times with ng = ¢ and then once with ng = r (together with Lemma 8),

var(L¢ ¢) SCJJ"(va}r<p+supls0\)+0/|w\due,
i i i i

for all n > 1 and 0 < € < €(q) (the constants C' depend only on ¢). The lemma is thus
proved for € = 0. If € > 0, we also use [;|p|du. < [;|¢|dpo + sup; |¢| [; lwo — we| dz,

restricting if necessary to e < €(n), some €(n) > 0, to ensure [;|wo — we|dz < o™
(recall Lemma 7). O
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Bounding the supremum.
The following is an easy consequence of (4.17)—(4.18) (use the same argument as in the
proof of the Variation Lemma):

Supremum Lemma. For each og < o there is a constant C > 0 and for each n > 1
there is an €(n) such that for all 0 < e < €(n) and all ¢ € BV (I)

sup || < Cog™(var @ + sup ) + C / (@) wo(x) de
i I i I

Remark. 1t follows from Lemma 8, the Variation Lemma and the Supremum Lemma

A

that the operators L. preserve the Banach space BV (I) and are bounded for all € > 0.

Bounding the integrals.

We now deduce our final estimate:

Integral Lemma. There is a constant C > 0 and for each n > 1 there is an €(n) > 0

A

such that for all 0 < € < €(n) and all ¢ € BV (I)

[ €20 - £puoldo < Co~" (var o+ suplo).
1 I

Proof of the Integral Lemma. This time, we use the decomposition [ i Lepwodr =
J7 > k>0 £2(0xE, )wo dz. We first bound the integral on the unbounded top part of the
tower. Fix some large N > n and write T = Ug>n_n Fr. Then, using the positivity of
L., Lemmas 7-8, and the Supremum Lemma (r_ecall also from the proof of Lemma, 7,
e.g. (3.22), that w, is integrable over I for € > 0), we have

[ 1eztoxnlwods < [ lobxr w.ds+ sup £2(elxr) [ wo = w.]do
i i i i

< sup ¢le(7) + [Cog"(sup ol + var )+ C [ [phunda] - [ fuo ~ w.| do
I i I I

1
Cn(N)

< sup || + (sup |¢| + var p)e(e) < CU—"(V?NP +sup|epl), (4.19)
I I I

for 0 < e < ¢e(n), as long as N is fixed large enough, depending only on n.

It remains to control the bottom part of the tower B = Ug«n_nFEx. We shall do
this by “trimming” intervals as in [BaY, Section 5]. Our notations are as in the last
subsection of Section 2. First, we note that B C U,,On(t_: no) C Ug<n Ej, for all teJr,
the union being over all g € Zg’N. Given any such ng let (~(e,m0) = Ngegn ftﬂ (n(t,m0))
and define (T (e,70) in a similar way, replacing intersection by union. Let £ = £(n)
be defined by 19 C E;. Clearly, given (z,k) € ¢~ (e,m0) C Ej and £ € J”, there is
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exactly one yy = yr(no) such that (yz£) € n(f,n0) and f (yp:¢) = (x,k). Now we
define £(e,7m0) C (™ (€,m0) by the condition that either yz € supp wy or else yp ¢ supp w.
for all £ € J™. Observe that, for each fixed 79 and n, all three sets ¢(*(e,70) and
¢(e,mo) converge to f™(ny) as € — 0. Set Yen = Uy, (CT(€,m0) \ €(€,m0)). Then, using
#ZS’N < C(n) (recall that N is fixed depending only on n), we get po(Yen) < cn(e)
Together with the Supremum Lemma, this gives

| Ieroxmluode < (suplp| + var plen(e) < Com(varg 4 suplp) (420
Yen i I

for all 0 < € < €(n). On the other hand, clearly, (L"(¢xB) - wo)(z, k) = 0 if (z, k) does
not belong in X, = U,,(t(e,m0). Hence, we are left to bound

/ (L0 — ) (oxs)lwode < C sup (L0 — LD)(oxs) . (421)
(Xen\Ye,n) (Xe,n\Ye n)

For the rest of the proof we fix an arbitrary (z, k) € (X, \Yen)Nsupp po. By definition,

(L=Lo)(exB)(z, k) =

= Z/(wgén))(y{(ﬂo),f(no)) da.(F) — (g™ (o), £(no)) , (4.22)

where g(™) gé.n)

are the iterated weight functions introduced in Section 2, y = ¥y, and
the sum is over all 7 € Zg’N with no C B and (z,k) € £(¢,m0). We fix 1y and consider
two possibilities. If y g?_f supp wo then y; ¢ supp w, for all t. recall the definition of
§(e,mo). This implies g )(yt) = ¢(™)(y) = 0, hence 7y does not contribute to (4.22). In
the opposite case, the term in (4.22) corresponding to 7o is bounded by (we omit the
reference to 7o in ¢, y and y;)

/ 0 £) — 93, D198 (5,0 / 001195 (w5, &) — 9 (4, 0) dB.(F)

<varg- / e LT + w0 o / 105 (52 £) — 9™ (4, £)| B (0

770

(4.23)

with nt = 77 (¢,m0). Note that g™ (y,£) = X% < g™ if {+n—k = 0. For +n—Fk >0
0

we claim that

wo(y, £) 1 B XF R (x, k)

wo(z, k) [(f) ()| |(fr+e=ky (F8(y, £)] ~

g(”) (y,4) = Co™", (4.24)

where h(z,k) = |f'(f7%(x,k)/f' (f* *(y)|. Indeed, we use that f*(z,k) is either
" k(y) or (f»*(y))_ (recall the notations z_, K(x) introduced before Lemma 5)
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for the second equality, the we obtain the last inequality by applying Lemma 2 to the
frHt=k_trajectory of (f;e(y, ?),0) (recall that ¢ is fixed) and noting that |h(z, k)| < K.
Now for & € J?, i € J*, and 7 € J, we write zg = fﬁ_’i(m, k) and Yrg = AU_’_‘L(y;,Z),
whenever these objects are defined. Then, restricting to the case £+n —k > 0 (the case
£+ n—k =0 is simpler) and recalling the definition of the perturbed cocycles w,

Y
[ 9 w0 d0.(6) = X A 5 ) eyl )
S5 (za | do. (i) (4.25)
CY (f’“)( Al 1() by 1 g
1075y () -1 di(@) (5775 ()| dOe(5),
where we write 7 = (tp—g+1,---,tn) and § = (v1,...,vg,t1,... ,th—k), and denote

h(z,7) = |f'(z7) ) f (f2TE k(yt #))|. Observe that f2¢- k(ygﬁ) is either z7 or (z7)_, the
choice between the two pOSSlbllltleS depending only on (z, k) and 7y for small enough
€(n). Hence, Lemma 2 yields

/ 98 (g5, ©) dB() < NFK sup | (f3HF) (yp) TP < Co. (4.26)

£
To control the last term in (4.23), we bound |g§") (y, £) — 9™ (y, £)| by

g(»") (yz £)
h(z, )

and observe first that
(n)
ZAULTCA NP e e (f*w,0)
[Vt e~ | 00 < suv| sy (i)

Indeed, the first inequality follows from previous considerations, see (4.24)-(4.25). More-
over, by construction, (f nH=Ry(y 75 has the same sign as (f"’”_k)’(f;e(y, ¢)) and their

difference is bounded by (note that f;e(y, £) = Y535)

9 (Y5 0) h(z, k)
9™ (y,£) h(x,7)

-1

|A(z, 7) — h(z, k)| + g™ (y, ) : (4.27)

U - 1‘ <ecple). (4.28)

57

sup [(FETM)"(2)] - lygs — 14w, )] < C(n)eal(e) < cale) -

2,7

Combining this with Lemma 2 (to bound the denominator) we obtain the second in-
equality in (4.28). Observe, moreover, that the first term in (4.27) is also bounded by
cn(€), because 1/h(z,7) < K and |h(z,7) — h(z, k)| < c,(€) (use here that K(z) is
Lipschitz). Therefore, we obtain from (4.23)—(4.28) that (4.22) is bounded above by

Z (Co™ var ¢ + Co "cn(€)sup |p|) < Co™"varp + o "cp(€) sup |¢|
I 1 I

i
WOEZSL’N 0
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for all 0 < € < €(n) (use the bounded overlap property to sum the variations and
#20"N < C(n) to sum the suprema). Replacing in (4.21),

/ (£ = £3)(px)wo do < Co™(varp +suplpl)  (4.29)
(Xe,n\Ye n) I I

Together, (4.19), (4.20), and (4.29) prove the lemma. O
In Section 5, we shall also need the following version of the integral lemma:

Nonuniform Integral Lemma. [;|Lr¢o—L{o|dug < cp(€) for each fized p € BV (I).

A

Proof of the Nonuniform Integral Lemma. Fix ¢ € BV (I) and n > 1 and let 7 > 0.
Reading the proof of the Integral Lemma, first choose N so as to make 1/C,,(N) < 7
in (4.19) (restricting to € < €(n, N) if necessary). Next, since ¢ has bounded variation,
there are € = &, , (1) > 0 and E = E, ,(7) C I with Lebesgue measure |E| < 7 (hence
po(E) < ¢(7)), such that |o(yz £) — @(y, £)| < 7 for all £ € J? whenever (y,£) ¢ E. For
(z,k) € Xne\ (f*(E) U Y,,) this permits us to replace var, + ¢ by 7 in (4.23) and so
also Co™"varj ¢ by C(n)7r in (4.29). On the other hand, in just the same way as in
(4.20), the integral of |L.(¢xB)| over f*(E) is bounded by ¢(7). Finally, take € > 0
small enough so that the factors c(e), ¢, (€) in (4.19), (4.20), (4.29) be smaller than 7.
Putting all this together, we conclude that [ [(L? — L§)(¢)|wodz < ¢,(7) if € > 0 is
small. Since 7 > 0 is arbitrary, this proves the lemma. [

Balanced norms.

We introduce a family of equivalent norms on BV (I), defined for 0 < { <1 by
Il = ¢ - (varp+sup i) + [ loldio. (4.30)
i

(Analogous “balanced” norms are used e.g. in [BaY].) We now state an immediate
consequence of the Variation, Supremum and Integral Lemmas:

Dynamical Lemma. For any 7 with c~! < 72 < 1, there is C > 0, and for any n > 0
there is €(n) > 0 such that for each 0 < € < €(n) we have |[L? — LF||-» < C -T™.
5. CONCLUSION OF THE PROOF

We first reprove the result (essentially due to [BC], see [MS]) that f satisfies the
conclusion of Jakobson’s theorem [Ja]:

Corollary 1 (Invariant measure). Let f satisfy assumptions (A1)—(A2). Then f
has an absolutely continuous invariant probability measure mg = pg dx.

Proof of Corollary 1. (The arguments are fairly standard, see e.g. [Ry].) We start by
constructing an absolutely continuous f-invariant probability measure mg. Consider
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the sequence of nonnegative functions ¢, = (& Zﬂz_ol Li(xr,)). It follows from the
Variation Lemma (for e = 0) that varj ¢, < C, and from the Supremum Lemma that
supj ¢n, < C, uniformly in n. By Helly’s theorem, a subsequence of ¢,, converges in
LY(I,dz) to some py € BV (I) which, by construction, is a fixed function of £o. By
Lemma 8, [ poduo > 0 and g = popo is an f—invariant measure. We replace py by

po/ | Podpo in what follows. Now, let P : L(I,dz) — L'(I,dz) be the usual Perron-
Frobenius operator for f (i.e., P(p) = > ¢ _, .20 9¥)/[f' (¥)]), and P be the usual

Perron-Frobenius operator for f Then, ﬁ(ﬁowo) = powp, and an easy computation
shows that P(po) = po, where po(z) = Y _re o (Powo)o(7|g, )" (). Note that [; podz =1
because [ 7 Powo dr = 1. By well-known arguments, the probability measure mo = po dz
is f-invariant. [

Remark. Lemma 5 applied to po provides the following additional information on the
measure mg: Supg, Po < const A7F for all k£ > 0, in particular >k Sup g, Po is finite.

Condition (A1) combined with [Si] ensures that f has no periodic attractors. Hence,
by a result of Blokh-Lyubich (see e.g. [MS, Theorem V.1.2] for a statement and refer-
ences), f is ergodic with respect to Lebesgue measure. It is easy to deduce that f is
ergodic with respect to mg and, moreover, that this is the unique absolutely continuous
invariant probability measure of f (see e.g. [MS, Theorem V.1.5]).

By [BL], the entropy of f with respect to this absolutely continuous invariant prob-
ability measure is strictly positive. Now, since we also assume (A3), f™ is ergodic with
respect to mg for all n > 1. Indeed, almost every ergodic component of mg for f" is
absolutely continuous [Le, Corollary 4]; there are finitely many such components and
their supports consist of finitely many intervals [Yo, Proposition 3.3]; the topological
mixing assumption (A3) then implies that these supports must all coincide, hence mg
is ergodic for f™. Therefore, [Le, Theorem 1] gives that the natural extension of (f, mg)
is Bernoulli, and thus (f, mo) is exact (that is N,>0f~"(B) contains only zero or full
mo-measure sets, where B is the Borel o-algebra of I). This conclusion plays a central
role in the proof of the next corollary.

Let us also note that in this context (A3) may be formulated

(A3) for any interval J C I there is n > 1 such that f™(J) contains the interval
bounded by ¢; and ¢y (which coincides with f*(I) for all k > 2),

and is equivalent to f being non-renormalisable, see [BL]. Finally, [Yo, Lemma 2.1],
for quadratic maps with parameter a close to 2, conditions (A1l)-(A2) imply (A3).
Combined with [BC], this gives that the three conditions hold simultaneously for a
positive measure set of values of a.

Corollary 2 (Quasicompacity). Assume (A1)-(A3). The spectrum of the operator
Ly acting on BV (I) decomposes as 3(Ly) = 31 U{1}, where 1o = sup{|z| | z € £1} < 1
and 1 is a simple eigenvalue with a positive eigenfunction py and spectral projection

mo(@) = po [; pdpo. Moreover, the essential spectral radius of Lo is at most 1/o < 1.

Proof ofACorollary 2. We shall first show that the essential spectral radius of £y acting
on BV (I) is at most 1/ < 1. Since the Variation Lemma, the Supremum Lemma, and
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Lemma 8 imply that ||£f]| is uniformly bounded, in particular the spectral radius of
Lo is equal to 1, it will immediately follow that the spectrum of £y decomposes as the
union of a finite set of eigenvalues of finite multiplicity on the unit circle and a compact
subset of a disc of radius 79 < 1 (note that 7¢ is either the essential spectral radius of
Lo or the modulus of the second largest eigenvalue). We have already observed that
(A3) ensures exactness of (f,mg). We shall then deduce that ( f, M) is also exact and,
from this, that the only eigenvalue of £y on the unit circle is 1, and is simple.

Lemmas 1 and 2 (see also (4.24)) imply that there is a constant C' > 0 such that
supfg(") < Co™ for all n > 1. Let N > n be such that po(UgsnEg) < o~™, and
define projections a,, and o, y : BV(f ) — BV(f ) by chosing an arbitrary point z, in
each monotonicity interval n € Z7' and setting

an(e)= > @lan)xy  and o n(®) = an (9 XUwenEr)) -
neZy

We first bound ||£™ — L™y, ||By, using (a)—(c) from Section 2:

sup |(L" — L an)p| <sup > g™ (yn) () — p(zy)| < Co™ var o

I Yy 77626‘
yef™(n)
var(L" — L") (p) < > (varg®™ sup o — ()| + sup g™ var o — (a)]
neze n n

+2sup g™ sup | — (z,)[) < Co™"var o
n n I

J :
with y, = (f7"|,)(y) (we used Sf < 0 and the fact that K(z) has bounded variation,
see again (4.24), to get var, g(™ < Csupng(") for all n € Z§). Now, for any fixed
0p < 0, the above bounds together with the Supremum Lemma yield

(L™ = L )| dpo < Csup [(L™ — L )| < Co " varp,
i

(L™ =L Nl < (L™ = L) (@ - X(Upen B+ L7 (@ - X(Uis nED))
< Co™ sz}r(p + Cao_”(v?rgo + sup |p|) + C/ [ - X (U v Bx) | Q0
T I

< Cao‘"(v?rso + sup |¢|) + C'sup [p|po(Uk>nEx) < Cog ||l
I I

with constants independent of N. Since each «a,, x has finite-dimensional range and is

therefore compact, the essential spectral radius of Ly is not bigger than 1/0, as claimed.

We now go to the second part of our argument. We start by claiming that, given

any A € ﬂnzof_"(lg’), where B is the Borel o-algebra of I, there is a Borel set A C I

such that A = 7~ 1(A), up to a zero my-measure set. In what follows we disregard zero
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measure sets, in particular we always restrict to supp mg, respectively supp mg. Note
that B € f~"(B) if and only if B € B and satisfies [¢ € B, f*(¢) = f*(n)] = n € B.
Also, there is B C I such that B = n~'(B) if and only if [(z,k) € B, (z,¢) € I] =
(2,0) € B. Therefore, in order to prove our claim it suffices to show that, given (1ho-
almost) any (z, k), (z,£) € I, there is j > 0 such that fi(z, k) = fi(z,£). For z € (—6,6)
we define p(z) to be the “falling time” of x, that is the smallest integer j > 1 such that
fi*1(z,0) € Eo. Then, e=#17@) > (1/C)|(f7@)1Y (er)ler — f(a)] > (1/C)XEP?:
this is proved in the same way as (3.10) (using the first inequality of (3.9) instead).
Moreover, p(z) > H () and so, if 6 > 0 is small enough, the previous inequality implies

@) g2 < 42 where we write v = (1 — e* #1) min{1, |¢1], ... , |cm, |} (5.1)

Now let (2, k), (z,£) € I. Note that n(fi(z,k)) = n(fi(z,£)) = fi(z) for every j > 0.
We suppose that the f-orbit of z is disjoint from the critical orbit (this excludes only
a countable set), so that p(f7(z)) is always finite. It is not difficult to see that, either
there is j > 0 such that both f7(z,k) and f7(z,£) belong in Eq, or else there are
0 < vy <wvy<--- with f¥i(z) € (=4,9) and v;11 < v; + p(f*(2)) (each point starts
climbing up the tower again before the other one falls down) for all 4 > 1. In the first
case, it must be fJ (2, k) = fi (z,£), which proves our claim. In the second one, we write
pi = p(f¥i(2)) and note that v;41 —v; < p; implies | f¥+1 (2) = c(y,,, —py)| < e PrWir1=71)
which, together with (A1)-(2.5), yields |f¥i+1(z)| > ye~@¥i+1=%) > ye=2Pi  In view of
(5.1) and our assumption e2® < /A, this gives p;y1 < (p;/2) for every i > 1. Since
the p; are positive integers, we conclude that the sequence v; is necessarily finite. This
means that one eventually gets into the first case, thence the claim is proved.

As a consequence, (f, ) is exact. Indeed, given any A € Nn>0 f~"(B), take
A C I with A = 77 1(A). Clearly, A € Ny>of ™(B) and so, since (f,mg) is exact,
mo(A) - mp(A°) = 0. On the other hand, recall the proof of Corollary 1, my = mhg
and so mg(A) = mo(A). Tt follows that 1mg(A) - mg(A¢) = 0, as we wanted to prove.
In particular, f is mixing with respect to mg. Combining this with the equality
[ 0L (ppo) do = [ (o f*)pio dpo for 1, ppo € BV (I) (use Lemma 8), it follows that
L7 (wpo) weakly converges in L*(uo) to po [ ppo dpo as n — oo, whenever ¢pg € BV (I).

Now let A\; € S! be an eigenvalue of £y and p; € BV(f ) be a corresponding eigen-
function. We claim that supp g1 C supp po. In view of our definitions, it suffices to prove
supp p1 N Ey C supp po N Ey. Let J(J) be the interval in Ey bounded by f2(—4§) x {0}
and f(—0) x {0} (since (—6)_ < &, we have |f¢(8)| < |fi(=6)|, for i = 1,2). On the
one hand, supp p1 N Ey C J(8) because f2(I) N Ey C J(8) (points (z, k) with |z| < &
have fi(z,k) = (fi(z),k +4) for i = 1,2). On the other hand, inf pg|s(s5) > 0. Indeed
(following [Yo]), let J C I be any interval with inf po|; > 0. Since f is topologically
mixing there is ny > 1 such that (f™ (J)) contains a neighbourhood of the (expanding)
fixed point ¢ of f. Then there is ny > ny such that f™(J) contains a neighbourhood
of (¢,0) in Ey. Tt is easy to deduce that f"s(J) > J(d) for some ng > ny. This shows
that po is positive on J(§) and so proves the claim. Hence we may write p; = @pg
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for some function ¢. Applying the weak convergence statement above we get that
Nip1 = LEp1 — po | p1dpo. This implies that Ay = 1 and p1 = po [ p1dpo. Finally,
the eigenvalue 1 must also have algebraic multiplicity one because ||£}]| is uniformly
bounded. [J

From Corollary 2, we recover a result of [KN, Yo|. For a function ¢ : I — C with
bounded variation, we define ||¢|| = ||¢||sy = varr ¢ + sup; |¢| + [ |¢| dz.

Corollary 3 (Decay of correlations). Let mg be the unique absolutely continuous
invariant probability measure for f and let 9 < 1 be as in Corollary 2. For any T > 1
and ¢, : I — C of bounded variation, there is C = C(r,||¢ll,||¥]]) > 0 such that for
alln>1

|/I(<P°f")1/)dm0—/demo-/ll/)dmo\ <Crm.

Proof of Corollary 3. The proof uses standard arguments, see e.g. [Yo]. Lifting a
function ¢ with bounded variation to v (z, k) = t(z), we have 9py € BV (I), with
[hpoll < const [|9|| (recall that 3, supg, fo < o0). By definition of mo, 7ig, and Lo,
we may thus write (using Lemma 8 for € = 0)

(oo rmwamo = [ pamo [ ama| =| [ @o Frybdina [ odino [ 6 dia] =
‘/@[ﬁg(i’ﬁo) - ﬁo(/lﬁﬁo dpo) | dpo| = |/¢£8(W1(1ﬁﬁ0))duo‘ < sup [@|C(r, Py ",
I

where 7, is the spectral projection associated to ¥;. [

Our main result will now follow from a version of the perturbation theorems on
families of linear operators in [BaY, Section 5.E and Erratum]: Let (X,||-||) be a
complex Banach space and (T, € > 0) be a family of bounded linear operators. Assume
that the spectrum of Ty decomposes as X (Tp) = Yo U X1 with X = {1} and k; =
sup{|z| | z € X1} < 1. Let X = Xo® X; and np : X — X;, ¢ = 0,1, be the
corresponding vector space decomposition and projections. Assume further that X is
finite-dimensional. Now let |- | be a norm on X with |z| < ||z|| for all z, and let || - ||,
0 < ¢ <1 be the family of norms defined by || - ||¢ = (|- ||+ (1 = ¢)| - |- Assume that 7
is a bounded projection for the norm | - |.

Perturbation Lemma ([BaY]). Suppose that supy,cx, [Tex —Tox|/|z| — 0 ase — 0
and |T¢| is uniformly bounded. Suppose also that there exists K1 < K < 1 such that
for each large enough n > 1 there exists e(n) > 0 with ||T? — T < k™ for each
0 < e <e(n). Then, for each small enough e,
(1) The spectrum of T, splits as X(T.) = X§ & XS with k§ = sup{|z| | z € £{} <
inf{|z| | z € £§}, and limsup,_, k§ < max(k1/k, k).
(2) Let X = X§ @ X5 be the associated decomposition. Then dimX§ = dim Xy,
Z(TE\XS) — X(To|x,), and |7§ — mo| — 0 as € — 0.
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For the bound on k5 in (1), just note that the constant &’ in the proof of Lemma 1’
in [BaY] need only satisfy max(r1/k, k) < ' < 1.

Proof of the Main Theorem. We will first check that the hypotheses of the Perturbation
Lemma are satisfied, and then derive our theorem from the conclusion of this lemma.

We let X = BV(I), T, = L. for € > 0, and consider the norms || - || = || - || sy and
-] = [;]-]duo (then ||-||¢ is the balanced norm defined in (4.30)). The hypotheses on Lo
are satisfied for k1 = 79 because of Corollary 2, in particular Xy = Cpy has dimension
1. Note that |£.| < 1+ c(e) for all ¢, by Lemmas 7 and 8, and that the assumption
on m is obvious from Corollary 1. Fixing 1 > k > max(y/7,, /1/0), the bounds on
the differences L7 — L§ follow from the Nonuniform Integral Lemma (for ¢ = pg) and
the Dynamical Lemma of Section 4. It follows that for all small enough ¢, the essential
spectral radius of L is smaller than max(x1/k, k), which can be made arbitrarily close
to max(y/7y,y/1/0) < 1. By the same arguments as in Corollary 1, £, has a positive
fixed function p. € BV (I), in particular we have £§ = {1} and X¢ = Cp.. Moreover,
we normalize [ p.dpe =1 and then «§ is given by n§(¢) = pe [ ¢ dpe. Note that, using
the definition of £, and Fubini’s theorem,

J [ olo.Pil(, k), d0w.00) W) o ) disl, )

(5.2)
_ / oy, )L (pe) v, 3) de(w, 7).

A

for all n > 1, and ¢,¢ € BV (I). Taking ¢ = 1, this proves that m. = pepe is an
invariant probability measure for x.. Now, consider the measure m, on I with density
pe(z) =Y 1o o(Pe - we) (7| g, )~ (z). Clearly, m, is absolutely continuous and, as it lifts
to me, it is the unique xc-invariant probability measure. Moreover, the same kind
of computations as in the proof of Corollary 3 (with (5.2) replacing Lemma 8) prove
that the correlations of (x¢,m.) decay exponentially fast, with rate at most 7. = .
From the Perturbation Lemma (1), we get limsup,_,, 7. < max(/7o,/1/0) < 1, which
proves the second statement in the theorem.
Finally, by Perturbation Lemma (2),
A) — e

/f /LZ(I)

Together with |po(I)/pe(I) — 1| < ¢(€), which is a consequence of Lemma 7, this gives
that [;|pe — pol dpo < c(e). We claim that sup; pe is bounded uniformly in €. Indeed,

A

pio (1 1

pe(D)

Po )| dpo < c(e).

dpo = /f|(7T8 — o) (

[ peduo < [ pudno+ [ 1oc=oldo < 1+e(0) < C.
I I I

Then, the Variation Lemma and the Supremum Lemma yield, for large n and € < €(n),
Supp Pe = Supy E?ﬁe < %(Va‘rf Pe + Supj /36) + C, and varjg Pe < %(Varf pe + Supjy /A)e) +C,
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hence sup; p. < 3C. Finally, using Lemma 7 once more,

/ po(@) — pe(a)| do = / petwe — powo| dz < c(€) + sup e / lwo — we] dz < c(e),
I i i i

which completes our proof. [
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