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Abstract. We explore new connections between the dynamics of conservative partially
hyperbolic systems and the geometric measure-theoretic properties of their invariant
foliations.

Our methods are applied to two main classes of volume preserving diffeomorphisms:
fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic sys-
tems. When the center is 1-dimensional, assuming the diffeomorphism is accessible, we
prove that the disintegration of the volume measure along the center foliation is either
atomic or Lebesgue. Moreover, the latter case is rigid in dimension 3 (this does not
require accessibility): the center foliation is actually smooth and the diffeomorphism is
smoothly conjugate to an explicit rigid model.

A partial extension to fibered partially hyperbolic systems with compact fibers of any
dimension is also obtained.

A common feature of these classes of diffeomorphisms is that the center leaves either
are compact or can be made compact by taking an appropriate dynamically defined quo-
tient. For volume preserving partially hyperbolic diffeomorphisms whose center foliation
is absolutely continuous, if the generic center leaf is a circle, then every center leaf is
compact.
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1. Introduction

Consider the volume preserving linear map defined on the 3-torus T3 by f0 : (x, y, z) 7→
(2x + y, x + y, z). It admits an invariant foliation by circles, namely the vertical circles
{(x, y) = const}, and this foliation is normally hyperbolic: there is an invariant normal
bundle to the foliation on which the dynamics is hyperbolic. Indeed, f0 is one of the
simplest examples of a partially hyperbolic diffeomorphism and one whose properties have
been analyzed thoroughly.

It follows from the general theory of normally hyperbolic manifolds (Hirsch, Pugh,
Shub [16]) that every map in a C1 neighborhood of f0 also admits an invariant foliationWc

whose leaves are smoothly embedded circles and which is the image of the vertical foliation
by a global homeomorphism. However, this center foliation is usually not transversely
smooth.

Indeed, Shub-Wilkinson [32] and, later Ruelle-Wilkinson [30, 31], considered volume
preserving perturbations of f0 and found open sets of maps whose center foliations Wc

are not smooth and, in fact, exhibit the following bizarre behavior: there are full volume
subsets of T3 that intersect every leaf in a finite (bounded) number of points.

The mechanism in these papers behind this phenomenon of atomic disintegration of
the volume along the center leaves is non-vanishing of the center Lyapunov exponent. In
brief, for almost every point x ∈ T3, the tangent direction to the center leaf is either
exponentially expanded or exponentially contracted by the dynamics:

λc(x) := lim
n→∞

1

n
log ‖ Dxf

n(x)|TxWc ‖ 6= 0.

However, the center foliation may have atomic disintegration even when the center Lya-
punov exponent λc does vanish almost everywhere. Such an example has been given by
Katok (see [22]) and we also describe some generalizations in Appendix 11.

The purpose of this paper, a follow-up to [6], is to investigate the measure-theoretical
properties of center foliations and, in particular, to understand when this and other forms
of pathological behavior may occur, within a general context of partially hyperbolic dy-
namics.

One property that is of special interest to us is absolute continuity which, in this paper
we take to mean that the volume has Lebesgue disintegration along the leaves, meaning
that a subset of T3 has full volume if and only if its intersection with almost every center
leaf has full volume inside the leaf (this is implied by, but somewhat weaker than the
usual definition of absolute continuity). When the leaves are circles, vanishing of the
center Lyapunov exponent is a necessary condition for absolute continuity [32].
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Our first main result applies in particular to every volume preserving perturbation of
f0. More generally, it applies to partially hyperbolic diffeomorphisms in dimension 3
preserving a foliation by circles.

A diffeomorphism f is partially hyperbolic if the tangent bundle TM admits Df -
invariant splitting Es ⊕ Ec ⊕ Eu such that Df |Es is a uniformly contracting, Df |Eu is
uniformly expanding, and Df |Ec is dominated by both: vectors in Ec are neither as
contracted as vector in Es, nor as expanded as vectors in Eu. The stable and unstable
subbundles, Es and Eu, are always uniquely integrable, that is, there exist unique folia-
tions Ws and Wu whose leaves are smoothly embedded manifolds tangent to Es and Eu

at every point. Moreover, these foliations are f -invariant. A center foliation, tangent to
Ec, need not exist although many interesting examples do have such foliations. A priori,
such a foliation need not be unique or invarant under the dynamics.

By a rotation extension we mean a diffeomorphism that acts by isometries on the fibers
of an invariant C∞ circle bundle.

Theorem A. Let M be a 3-manifold and let f : M →M be a partially hyperbolic, volume
preserving diffeomorphism. Assume that there exists an f -invariant foliation Wc with C1

leaves, all whose leaves are circles.

If Wc is absolutely continuous, then Wc is C∞; moreover, up to finite covering, f is
C∞ conjugate to a rotation extension of a volume preserving Anosov diffeomorphism on
T2. That is, there exists a C∞ T-bundle

T ↪→ B
π→ T2,

a lift of f to a finite cover (at most fourfold)

f̂ : M̂ → M̂

and a C∞ diffeomorphism h : M̂ → B sending the leaves of Ŵc to fibers of B and such
that h ◦ f̂ ◦ h−1 : B → B is a bundle isomorphism, rotating the fibers and covering an
area-preserving diffeomorphism of T2.

In fact, it suffices to suppose that the generic leaf of the center foliation is a circle: we
will show that in this and more general contexts, that implies that all the leaves are circles
(See Theorem D below).

To state the next result, we need to discuss the notion of accessibility. A partially
hyperbolic diffeomorphism f : M → M is accessible (or has the accessibility property) if
any two points in M can be joined by an su-path, which is a concatenation of finitely
many subpaths, each of which lies entirely in a single leaf of Ws or a single leaf of Wu.

The next result shows that for accessible circle extensions in dimension 3, the only way
for the center foliation of a perturbation to fail to be absolutely continuous is to have
atomic disintegration of volume.

Theorem B. Let M be a 3-manifold and let f : M →M be a partially hyperbolic, volume
preserving diffeomorphism. Assume that f is accessible and that it admits an f -invariant
foliation Wc with C1 leaves, all whose leaves are circles.
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If Wc is not absolutely continuous then there exists k ≥ 1 and a full volume subset of
M that intersects every leaf of Wc in exactly k points.

In dimension 3, any perturbation of a circle extension of an Anosov diffeomorphism is
accessible unless it (or some finite-order quotient) is smoothly conjugate to the product
of an Anosov diffeomorphism with a rotation [11].

Theorems A and B follow from more general theorems (C and D), which we state in
the next section. In this section we also state a result (Theorems F) that apply to skew
products with higher dimensional compact leaves. In Theorem G we show that for partially
hyperbolic diffeomorphisms preserving an absolutely continuous center foliationWc, if the
generic leaf is compact, then every leaf is compact.

Finally we describe a result (Theorem H) that applies to partially hyperbolic diffeomor-
phisms fixing the leaves of a 1-dimensional foliation.

2. Further results

Throughout this paper, unless otherwise mentioned, M is a compact Riemannian man-
ifold without boundary and all diffeomorphisms are assumed to be partially hyperbolic
and C∞ (C2 will suffice in most cases, but we restrict to C∞ to keep the statements clean)
and to preserve a C∞ volume measure, usually denoted by m.

When we say that “every perturbation” of a volume preserving diffeomorphism f :
M →M satisfies some property, we mean that there exists a C1-open neighborhood U of
f such that every g ∈ U satisfies this property.

A dominated splitting for a C∞ diffeomorphism h : M →M is a direct sum decomposi-
tion of the tangent bundle

TM = E1 ⊕ E2 ⊕ · · · ⊕ Ek

such that

• the bundles Ei are Dh-invariant: for every i ∈ {1, . . . , k} and x ∈ M , we have
Dxh(Ei(x)) = Ei(h(x)); and
• Dh|Ei dominates Dh|Ei+1 : there exists N ≥ 1 such that for any x ∈ M and any

unit vectors u ∈ Ei+1 , and v ∈ Ei:

‖Dxh
N (u)‖ ≤ 1

2
‖Dxh

N (v)‖.

The property of a splitting being dominated is independent of choice of metric and is
always continuous. If h′ is C1 close to h with a dominated splitting, then h′ also has a
dominated splitting, which varies continuously with h′ in the C1 topology.

A C1 diffeomorphism f : M → M of a complete Riemannian manifold M is partially
hyperbolic if there is a dominated splitting TM = Eu ⊕Ec ⊕Es and N ≥ 1 such that for
any x ∈M , and any choice of unit vectors vs ∈ Es(x) and vu ∈ Eu(x), we have

max{‖Dxf
N (vs)‖, ‖Dxf

−N (vu)‖} < 1/2.
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We will always assume the bundles Es and Eu are nontrivial. If Ec is trivial then f is
Anosov. As mentioned above, the bundles Es and Eu are uniquely integrable, tangent to
foliations Ws,Wu with C∞ leaves. The leaves of these foliations are always contractible.

A partially hyperbolic diffeomorphism f is dynamically coherent if there exist f−invariant
center stable and center unstable foliations Wcs and Wcu, tangent to the bundles Ecs :=
Ec ⊕ Es and Ecu := Ec ⊕ Eu, respectively; intersecting their leaves gives an invariant
center foliation Wc tangent to Ec.

The foliations Wu and Ws of a partially hyperbolic diffeomorphism f : M →M induce
an equivalence relation on M : we say that x, y ∈ M are in the same accessibility class if
they can be joined by an su−path, that is, a piecewise C1 path such that every piece is
contained in a single leaf of Ws or a single leaf of Wu. Then f is accessible if M is an
accessibility class.

We say that a partially hyperbolic diffeomorphism f : M → M is center bunched if
there exists an integer k ≥ 1 such that for every p ∈M :

‖Dpf
k|Es‖ · ‖(Dpf

k|Ec)−1‖ · ‖Dpf
k|Ec‖ < 1

and

‖(Dpf
k|Eu)−1‖ · ‖Dpf

k|Ec‖ · ‖(Dpf
k|Ec)−1‖ < 1 .

In words, center bunching requires that the non-conformality of Df | Ec be dominated
by the hyperbolicity of Df | Eu ⊕ Es. Center bunching holds automatically if the re-
striction of Df to Ec is conformal in some continuous metric; in particular, if Ec is
one-dimensional, then f is center bunched. Center bunching is a hypothesis in all results
in this paper but for this reason appears explicitly only the theorems where Ec is poten-
tially higher-dimensional. In Section 3.9 we discuss a generalization of center bunching
called r-bunching.

In what follows, P(M) denotes the space of C∞, volume preserving, partially hyperbolic,
dynamically coherent, and center bunched diffeomorphisms of M , and Pj(M) denotes the
set of all f ∈ P(M) with f -dimensional center distribution Ec.

Burns and Wilkinson [12] have shown that any f ∈ P(M) that is accessible is ergodic
with respect to m. Indeed if U is an open accessibility class for a C2, volume preserving,
center bunched, partially hyperbolic diffeomorphism f : M → M , then there exists an
` ≥ 1 such that f `(U) = U and the restriction of f ` to U is ergodic with respect to volume
on U .

2.1. Fibered partially hyperbolic systems. Our strategy for proving Theorems A
and B is to establish corresponding facts for a special class of dynamics that we call
fibered partially hyperbolic systems, a class of systems that we define in the sequel and
that includes an arbitrary perturbation of the map f0 in the introduction.

The manifolds that we consider will be endowed with a continuous fiber bundle struc-
ture, a generalization the familiar smooth fiber bundle structure. A continuous fiber bundle
with C1 fiber is a continuous surjection π : M → B, where M and B are smooth manifolds,
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with the following properties. There exists a Riemannian manifold N , an open cover {Uα}
of the base B, and a family of homeomorphisms hα : Uα ×N → π−1(Uα) such that

(1) hα maps each {b} ×N to the fiber π−1(b);
(2) if Uα ∩ Uβ is non-empty then

hβ ◦ h−1
α : (Uα ∩ Uβ)×N → (Uα ∩ Uβ)×N

has the form hβ ◦h−1
α (b, x) = (b, φb(x)), where φb : N → N is a C1 diffeomorphism

of N depending continuously on the base point b in the uniform C1 topology, and
such that ‖Dφ±1

b ‖ are uniformly bounded.

There is a natural notion of morphism between continuous fiber bundles with C1 fiber:
a morphism between π : M → B and π′ : M ′ → B′ is a homeomorphism f : M → M ′

that sends the fibers of π to the fibers of π′, and whose restriction to each fiber is a C1

diffeomorphism, varying uniformly continuously with the fiber. In the case where π = π′,
we say that π is f -invariant. Two bundles π : M → B and π′ : M → B are isomorphic if
there is a morphism between them covering the identity on B.

A diffeomorphism f : M → M is a fibered partially hyperbolic system if it is partially
hyperbolic, with Df -invariant splitting Es⊕Ec⊕Eu, and M admits an f -invariant struc-
ture π : M → B of continuous fiber bundle with C1 fiber, such the fibers of π are tangent
to Ec.

Remark 2.1. If f is a fibered partially hyperbolic system, and g is a C1 perturbation of
f , then g is also a fibered partially hyperbolic system. More precisely, if f preserves the
bundle structure π : M → B with fibers tangent to Ec(f), then there is a g-invariant bundle
structure, πg : M → B and a morphism h between π and πg such that πg ◦h◦f = πg ◦g ◦h
(the fibers of πg are then necessarily tangent to Ec(g)).

This follows immediately from the main structural stability result of [16] assuming that
that the center foliation for f is plaque expansive. This plaque expansivity was proved in
[25] and also implies that if f is a fibered partially hyperbolic system, then the f -invariant
fiber bundle structure tangent to Ec is unique: any two such f -invariant structures must
be isomorphic.

A fibered partially hyperbolic system is dynamically coherent ([7, Theorem 1.26]).

To summarize, the set of fibered partially hyperbolic systems form a C1-open sub-
set of the partially hyperbolic, dynamically coherent diffeomorphisms, and g 7→ Wc

g is
continuous on this set. We denote by Pfib(M) the set of C∞ volume-preserving fibered

partially hyperbolic, center-bunched systems, and by Pjfib(M) the set of f ∈ Pfib(M) with

j-dimensional fiber. We note that Pfib(M) ⊂ P(M) and Pjfib(M) ⊂ Pj(M).

The next result is the version of the rigidity theorem (Theorem A) for fibered systems
in dimension 3.

Theorem C. Let M be a 3-manifold and let f ∈ P1
fib(M).
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If Wc is absolutely continuous, then Wc is C∞; moreover f is C∞ conjugate to a
rotation extension of a volume preserving Anosov diffeomorphism on T2, as described in
Theorem A.

The next result is the version of Theorem B for fibered systems.

Theorem D. Let M be a 3-manifold and let f ∈ P1
fib(M). Assume that f is accessible.

If the center foliation is not absolutely continuous then there exists k ≥ 1 and a full
volume subset of M that intersects every fiber in exactly k points.

Proof of Theorems A and B from Theorems C and D. Let M be a 3-manifold, and sup-
pose that f ∈ Diff(M) is partially hyperbolic and preserves a foliation by C1 circles.

Bohnet proved [7] that there is a finite cover (at most 4−fold) M̂ of M such that the lifts

of Eu, Ec to M̂ are orientable, a lift f̂ ∈ Diff(M̂) of f , and a fibration π : M̂ → T2 such

that π ◦ f̂ = A ◦ π, where A ∈ SL(2,Z) is hyperbolic. The fibers of π are the leaves of the

foliation Ŵc, which is the lift of Wc. In particular, the lift f̂ on M̂ is a fibered partially
hyperbolic system. Then Theorems A and B follow immediately from Theorems C and
D. �

In higher dimension, there is still a strong result for fibered systems if we assume the
fibers have dimension 1. We can also relax the accessibility assumption.

Theorem E. Let M be a manifold of dimension d ≥ 3, and let f ∈ P1
fib(M).

(1) If Wc is absolutely continuous, then there exists a continuous, volume-preserving
flow ψt on M commuting with f . The vector field X generating ψt is tangent to
the leaves of Wc. If f is accessible, then X is C∞ along the leaves of Wc.

(2) Suppose that f has a nonempty open accessibility class U ⊆M .
Then either

(a) m|U has atomic disintegration along the leaves of Wc, or
(b) f is accessible and Wc is absolutely continuous.

We emphasize that Theorem E says that, while it is possible to be accessible and have
atomic disintegration, if there is a nontrivial accessibility class U /∈ {∅,M} then the
disintegration of m|U must be atomic.

Part of Theorem D generalizes to fibered systems with higher dimensional compact
fiber. Here we need to add the hypotheses of vanishing of center Lyapunov exponents.

Theorem F. Let M be a manifold of dimension d ≥ 3, and let f ∈ Pfib(M). Assume
that f is accessible and that the center Lyapunov exponents of f vanish almost everywhere.
Then either:

(1) The disintegration of volume is atomic along the leaves of Wc, or
(2) There exists an absolutely continuous foliation Wcc with C1 leaves that is f -

invariant, holonomy invariant, subfoliatesWc, and all of whose leaves are compact
and diffeomorphic. In particular, if Wcc = Wc then Wc is absolutely continuous.

If f is center r-bunched, for some r ≥ 2, then Wcc is a Cr subfoliation of Wc.
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Topological considerations sometimes rule out possibilities in the conclusion of this
theorem. For example, if the leaves of Wc are homeomorphic to a surface other than the
torus, it follows that, under the hypotheses of Theorem F, either the disintegration of
volume is atomic or Wcc is absolutely continuous. On the torus, other possibilities may
occur.

Example 2.2. Consider g : M × R/Z → M × R/Z a volume preserving, accessible, C∞

perturbation of an Anosov skew product with R/Z fiber for which the disintegration of
Lebesgue measure is atomic. Now construct a C∞ skew product (isometric extension) on
M ×R/Z×R/Z over g of the form gφ(x, t, u) = (g(x, t), u+ φ(x, t)). One can choose φ so
that gφ is accessible. In this case, the leaves of Wcc are circles.

2.2. Systems with mostly compact leaves. As mentioned in the introduction, the
hypotheses of Theorem A can be weakened in another direction. Rather than assuming
that every leaf of the f -invariant foliation Wc is compact, it suffices to assume that the
generic center leaf is compact. By this we mean that for all points x in a dense Gδ in M , the
leafWc(x) through x is compact. The following theorem applies to all partially hyperbolic
diffeomorphisms admitting an invariant center foliation with generic leaf compact.

Theorem G. Let M be a manifold of dimension d ≥ 3, and let f ∈ P(M). Assume
the center foliation Wc is leafwise absolutely continuous, the center Lyapunov exponents
vanish, and the generic center leaf is compact.

Then every center leaf is compact, with uniformly bounded volume, and the center foli-
ation Wc has finite holonomy. Moreover, if dimWs = dimWu = 1, then Wc has finitely
many non-regular leaves, and f is finitely covered by a fibered partially hyperbolic system.

Corollary 2.3. In Theorems A and B the hypothesis “ there exists an f -invariant foliation
Wc with C1 leaves, all whose leaves are circles.” can be replaced by “there exists an f -
invariant foliation Wc tangent to Ec, whose generic leaf is a circle.”

2.3. Center fixing dynamical systems. Our final series of main results concern a gen-
eralization of the setting in our previous paper [6].

We say that a partially hyperbolic diffeomorphism f : M → M is center fixing if it is
dynamically coherent and f(Wc(x)) = Wc(x), for each x ∈ M . Center fixing diffeomor-
phisms arise naturally as elements of partially hyperbolic Lie group actions – to name two
examples, the R action of an Anosov flow and the Rn−1 action of the diagonal subgroup

on a homogeneous space of SL(n,R). We denote by Pjfix(M) the set of all center fixing

elements of Pj(M).

Problem 2.4. Let f : M → M be partially hyperbolic, dynamically coherent, and homo-
topic to the identity. Is f center fixing?

There is an analogue to Theorem E for center fixing diffeomorphisms.

Theorem H. Let M be a manifold of dimension d ≥ 3, and let f ∈ P1
fix(M).

(1) If Wc is absolutely continuous, then there exists a continuous, volume-preserving
flow ψt on M such that f = ψ1. Orbits of ψt are tangent to the leaves of Wc. If
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f is accessible, then ψt is C∞ along the leaves of Wc, and if dim(M) = 3, then ψt
is a C∞, volume preserving Anosov flow.

(2) Suppose that f has an nonempty open accessibility class U ⊂M .
Then either

(a) m|U has atomic disintegration along the leaves of Wc, or
(b) f is accessible.

Theorem H generalizes the main results in our previous paper [6], in which we considered
perturbations of the time-one map of geodesic flows over negatively curved surfaces.

Corollary 2.5. Let M be a 3-manifold, and let ϕt : M →M be a C∞, volume preserving
Anosov flow, Suppose that f ∈ Diff∞m (M) is C1-close to ϕ1. Then one or more of the
following holds:

(1) ϕt is the constant time suspension of an Anosov diffeomorphism,
(2) m has atomic disintegration along the leaves of Wc, or
(3) f embeds in a C∞, volume preserving Anosov flow.

Proof. Since ϕt is smooth and volume-preserving, it has a dense center leaf, a.k.a orbit.
Structural stability implies that for f sufficiently C1 close to ϕ1, there is a dense leaf of
Wc. According to the main result in [11], the proof breaks down into cases:

Case 1: The bundles Eu, Es are jointly integrable. This implies that the bundles for
ϕt are also jointly integrable, and so ϕt is the constant time suspension of an Anosov
diffeomorphism.

Case 2: There is an open accessibility class for f . This implies that ϕ1 has an open
accessibility class and is stably accessible; hence f is accessible. Theorem H implies that
either m has atomic disintegration, or f embeds in a C∞, volume-preserving Anosov
flow. �

2.4. Structure of the paper. In Section 3, we give background on foliations disintegra-
tion of measure, absolute continuity, and normal hyperbolicity. Section 4 is devoted to the
main technical result we use, a invariance principle of Avila-Santamaria-Viana [4] whose
origins go back to work of Ledrappier [19, 20]. In Section 5 we sharpen this invariance
principle so that it can be applied to analyze the disintegration of measures along center
foliations. Section 6 presents a result of Repovš-Skopenkov-Ščepin [28] that we will use,
as in [33], to establish regularity of holonomy-invariant objects such as vector fields and
foliations.

The proofs of Theorems C, D and E concerning systems with compact 1-dimensional
center foliation are in Section 7. Fibered systems with higher-dimensional compact center
are discussed in Section 8, in which Theorem F is proved. In Section 9, we prove Theo-
rem G, the main result about center foliations with mostly compact leaves. Section 10 is
devoted to center-fixing systems and is where we prove Theorem H.

Finally, in Section 11, we discuss some open questions and construct examples.
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3. Background and preliminaries

3.1. Topological preliminaries.

3.1.1. Foliations. Let M be a manifold of dimension d ≥ 2. A foliation (with Cr leaves) is
a partition F of the manifold M into Cr submanifolds of dimension k, for some 0 < k < d
and 1 ≤ s ≤ ∞, such that for every p ∈M there exists a continuous local chart

Φ : Bk
1 ×Bd−k

1 →M (Bm
1 denotes the unit ball in Rm)

with Φ(0, 0) = p and such that the restriction to every horizontal Bk
1 × {η} is a Cr

embedding depending continuously on η and whose image is contained in some F-leaf.
The image of such a chart Φ is a foliation box and the Φ(Bk

1 ×{η}) are the corresponding
local leaves or plaques

A foliation F has uniformly compact leaves if there exists a constant C > 0 such that
the restricted Riemannian volume of every leaf F is bounded by C, with respect to some
(any) Riemannian metric on M . If f is a fibered partially hyperbolic system, then the
leaves of Wc are uniformly compact.

To study the precise smoothness of the leaves of a normally hyperbolic foliation, we
refine the definition of normal hyperbolicity. For r ≥ 1 we say that (f,F) is r-normally
hyperbolic if there exists k ≥ 1 such that

sup
p
‖Dpf

k|Es‖ · ‖(Dpf
k|TF )−1‖r < 1, and sup

p
‖(Dpf

k|Eu)−1‖ · ‖Dpf
k|TF‖r < 1.

Note that 1-normally hyperbolic = normally hyperbolic, and r-normal hyperbolicity is a
C1-open condition.

3.1.2. Normal hyperbolicity. Suppose M is closed manifold, and let f1, f2 ∈ Diff(M).
Assume that F1,F2 are foliations of M with C1 leaves and that f1 and f2 respectively
preserve F1 and F2.

Definition 3.1. A leaf conjugacy from (f1,F1) to (f2,F2) is a homeomorphism h : M →M
sending F1 leaves diffeomorphically onto F2 leaves, equivariantly in the sense that

h(f1(F1(p))) = f2(F2(h(p))), ∀p ∈M.

Definition 3.2. Suppose f ∈ Diff(M) and F is an f−invariant foliation of M with C1

leaves. F is normally hyperbolic if there exists a Df−invariant dominated splitting TM =
Eu⊕Ec⊕Es, with at least two of the bundles nontrivial, such that Df uniformly expands
Eu, uniformly contracts Es, and such that TF = Ec.

Note that a diffeomorphism with a normally hyperbolic foliation is partially hyperbolic,
with Ec = TF , but, as remarked above, the converse does not hold in general: the center
bundle of a partially hyperbolic diffeomorphism is not necessarily tangent to a foliation,
let alone an invariant foliation.
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3.1.3. Dynamical coherence. Throughout this section, f denotes a partially hyperbolic
diffeomorphism. Recall that f is dynamically coherent if there exist f -invariant foliations
Wcs and Wcu tangent to the bundles Ecs and Ecu, respectively. Intersecting the leaves of
Wcu and Wcs gives an f -invariant foliation Wc tangent to Ec. Most of the facts here are
proved in [16]. A more detailed discussion can be found in [12].

We first discuss the stability of dynamical coherence under perturbation. It is not
known whether every perturbation of a dynamically coherent diffeomorphism is dynam-
ically coherent, but in systems that are plaque expansive, dynamical coherence is stable.
Plaque expansiveness was introduced by Hirsch, Pugh, and Shub [16], who proved among
other things that any perturbation of a plaque expansive diffeomorphism is dynamically
coherent. Roughly, f is plaque expansive if pseudo orbits that respect local leaves of the
center foliation cannot shadow each other too closely (in the case of Anosov diffeomor-
phisms, plaque expansiveness is the same as expansiveness, which is automatic). Plaque
expansiveness holds in a variety of natural settings; in particular we have the following,
whose proof can be found in [13].

Theorem 3.3 (Foliation Stability and Hölder continuity of the leaf conjugacy). Let M
be a closed manifold, and let (f,F) be an r-normally hyperbolic foliation of M , for some
r ≥ 1, with Df -invariant splitting Eu ⊕ (TF = Ec) ⊕ Es. Then the leaves of F are
uniformly Cr, and we have the following.

(1) Suppose that one of the following holds:
(a) the restriction Df |TF is an isometry, or
(b) the bundles Ecu and Ecs are C1, or
(c) F is uniformly compact.

Then f is dynamically coherent, and plaque expansive and r-normally hyperbolic
with respect to the foliations Wcu, Wcs and F =Wcu ∩Wcs.

(2) If (f,F) is plaque expansive then it is structurally stable in the following sense. For
each diffeomorphism g that C1-approximates f , there exists a unique g-invariant
foliation Fg (with C1−leaves) near F . The foliation Fg is normally hyperbolic,
plaque expansive, and (f,F) is leaf conjugate to (g,Fg) by a homeomorphism
hc : M →M close to the identity.

(3) If in addition, condition (a), (b) or (c) holds in item (1), then g is dynamically
coherent.

Problem 3.4. Is every diffeomorphism f ∈ P1
fix(M) plaque expansive?

3.2. Local and global holonomy maps. If f is dynamically coherent, then each leaf of
Wcs is simultaneously subfoliated by the leaves of Wc and by the leaves of Ws. Similarly
Wcu is subfoliated byWc andWu. This implies that for any two points x, y ∈M with y ∈
Ws
x there is a neighborhood Ux of x in the leafWc

x and a homeomorphism hsx,y : Ux →Wc
y

with the property that hsx,y(x) = y and in general hsx,y(z) ∈ Ws
z ∩W

c,loc
y . We refer to hsx,y

as a (local) stable holonomy map. We similarly define unstable holonomy maps between
local center leaves. We note that, because the leaves of stable and unstable foliation are
contractible, the local holonomy maps h∗x,y for ∗ ∈ {s, u} are well-defined and are uniquely
defined as germs by the endpoints x, y. An important fact that will be used repeatedly
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is that if f is center bunched, then h∗x,y is C1, locally uniformly in x, y. See [26, 33] and
Section 3.9 below.

We say that f admits global stable holonomy maps if for every x, y ∈ M with y ∈ Ws
x

there exists a homeomorphism hsx,y : Wc
x → Wc

y with the property that hsx,y(x) = y and
in general hsx,y(z) ∈ Ws

z ∩ Wc
y. Since global stable holonomy maps must agree locally

with local stable holonomy, we use the same notation hsx,y for both local and global. We
similarly define global unstable holonomy maps and say that f admits global su-holonomy
maps if it admits both global stable and unstable holonomy. Note that if f admits global
su-holonomy, then all leaves of Wc are homeomorphic.

Lemma 3.5. Fibered partially hyperbolic systems have global su-holonomies.

Proof. Let f : M → M be a fibered partially hyperbolic system. Dynamical coherence
implies that the foliations Wcu and Wcs project to topological foliations W̄u, W̄s on the
leaf space B = MWc and the restriction of the projection M → B to any W∗-leaf is a
homeomorphism (and these homeomorphisms vary continuously from leaf to leaf).

Dynamical coherence and unique integrability of the restriction of W∗ to Wc∗ for ∗ ∈
{u, s} imply that for any W̄∗-path γ̄ : [0, 1] → B, and any x ∈ M that projects to γ̄(0),
there is a unique lift of γ̄ to a W∗-path γx : [0, 1]→M with γx(0) = x. These lifts γy vary
continuously over y ∈ Wc

x.

Given x, x′ ∈M with x, x′ ∈ W∗x, any path γx : [0, 1]→W∗x connecting x to x′ projects
to a W̄∗-path γ̄ in B. Fixing such a path and taking lifts γy over y ∈ Wc

x defines a
∗-holonomy map from Wc

x to Wc
x′ by y 7→ γy(1). �

In contrast to the to fiber bunched maps, time-one maps of Anosov flows do not have
global su-holonomies, since their center leaves are not all homeomorphic.

3.3. Measure-theoretic preliminaries. We expand here on the discussion in Section 3
of our previous paper [6].

We begin with a general discussion of disintegration of measures. Let Z be a polish
metric space, let µ be a finite Borel measure on Z, and let P be a partition of Z into
measurable sets. Denote by µ̂ the induced measure on the σ-algebra generated by P,
which may be naturally regarded as a measure on P.

A system of conditional measures (or a disintegration) of µ with respect to P is a family
{µP }P∈P of probability measures on Z such that

(1) µP (P ) = 1 for µ-almost every P ∈ P;
(2) Given any continuous function ψ : Z → R, the function P 7→

∫
ψ dµP is measur-

able, and ∫
M
ψ dµ =

∫
P

(∫
ψ dµP

)
dµ̂(P ).



14 A. AVILA, M. VIANA, AND A. WILKINSON

3.4. Measurable partitions and disintegration of measure. It is not always possible
to disintegrate a probability measure with respect to a partition – we discuss examples
below – but disintegration is always possible if P is a measurable partition. We say that
P is a measurable partition if there exist measurable subsets E1, E2, . . . , En . . . of Z such
that

(1) P = {E1, Z \ E1} ∨ {E2, Z \ E2} ∨ · · · mod 0.

In other words, there exists a full µ-measure subset F0 ⊂ Z such that, for any atom P of
P, we have

P ∩ F0 = E∗1 ∩ E∗2 ∩ · · · ∩ F0

where E∗i is either Ei or Z \ Ei, for i ≥ 1. Our interest in measurability of a partition
derives from the following fundamental result.

Theorem 3.6 (Rokhlin [29]). If P is a measurable partition, then there exists a system
of conditional measures relative to P. It is essentially unique in the sense that two such
systems coincide in a set of full µ̂-measure.

A basic family of examples of measurable partition is given by the following proposition.

Proposition 3.7. Let F be a foliation of M , and let µ be a Borel probability measure on
M . Suppose for µ-almost every x ∈ M , the leaf Fx is compact. Then F is a measurable
partition.

Proof. (A related result is proved in [5, Section 4.3].) Replacing M by some full µ-measure
subset if necessary, we may suppose that every leaf is compact. Let X be a countable dense
subset of M . For each x ∈ X and n ≥ 1, define V (x, k) to be the of points y ∈ M such
that the leaf Fy intersects the closed ball of radius 1/k around x. We claim that V (x, k)
is closed and, hence, measurable. Indeed, let yn be any sequence in V (x, k) converging
to some y ∈ M , and let zn ∈ Fyn ∩ B(x, 1/k). By compactness and continuity of the
leaves, Fyn converges to Fy in the Hausdorff topology and then znFyn must accumulate

on some z ∈ Fy. Since z also belongs to B(x, 1/k), this implies that y ∈ V (x, k). That
proves the claim. It is clear from the definition that each V (x, k) consists of entire leaves.
It is easy to see that for any two different leaves F1 and F2 there exists (x, k) such that
V (x, k) contains one of the leaves but not the other. First, take k large enough so that
2/k is smaller than the distance from F1 to F2. By density, we may find x ∈ X such that
B(x, 1/k) intersects F1; clearly, it can not intersect F2. This proves that the countably
family of partitions {V (x, k),M \ V (x, k)} generates the foliation. �

The lack of measurability of a partition can be just as interesting as the measurability.
A typically invoked example of a nonmeasurable partition is the partition of the 2-torus
into lines of irrational slope. More generally, the following is true:

Proposition 3.8. Let (ϕt)t be a µ-preserving flow on Z and O be the partition of Z into
flow lines. If the flow is ergodic and µ does not give full weight to a single orbit then O is
not measurable. If O is measurable, then µ-almost every orbit of the flow is periodic.
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Proof. Suppose measurable subsets Ej , j ≥ 1 as in (1) do exist. Each Ej coincides mod 0
with a union of partition atoms, that is, with a ϕt-invariant subset. Then, by ergodicity,
every Ej has either zero or full measures. This implies that some partition atom (that is,
some orbit) has full measure, contradicting the hypothesis. This proves the first statement.
Now, assume O is measurable and let {µO : O ∈ O} be a disintegration. Then almost
every µO is a probability measure supported on the orbit O and flow-invariant. Since there
are no flow-invariant finite measures on open orbits, it follows that almost every orbit is
closed, as stated. This completes the proof. �

In light of this, it is notable that it is possible to construct a foliation F with a dense
set of noncompact leaves that is a measurable partition with respect to volume.

Example 3.9. Let f : M → M be a perturbation of the time-one map of an Anosov flow
on a 3-manifold so that volume has atomic center disintegration along Wc

f . Consider the
product f × f . The disintegration of volume along Wc

f×f is again atomic, with atoms at

points (fk(x), f `(x)), where x is an atom for Wc
f and k, ` ∈ Z. Take any smooth foliation

of M ×M with 5-dimensional leaves and intersect with Wc
f×f . Typical choices should

be “irrational” with respect to the lattice of atoms and should give a one-dimensional
foliation with dense leaves and atomic disintegration. This is a measurable partition: just
take a sequence of partitions nesting to points; at stage n take all leaves in a partition
element whose atom is contained in that element.

3.5. Disintegration of measure along foliations with noncompact leaves. The
disintegration theorem of Rokhlin [29] does not apply directly when a foliation has a
positive measure set of noncompact leaves. Instead, one must consider disintegrations
into measures defined up to scaling, that is, equivalence classes where one identifies any
two (possibly infinite) measures that differ only by a constant factor. Here we present this
theory in a fairly general setting. See also [18, § 4] and [21, § 3].

Let M be a manifold of dimension d ≥ 2, and let m be a locally finite measure on M . Let
B be any (small) foliation box. By Rokhlin [29], there is a disintegration {mBx : x ∈ B} of
the restriction of m to the foliation box into conditional probabilities along the local leaves,
and this disintegration is essentially unique. The crucial observation is that conditional
measures corresponding to different foliation boxes coincide on the intersection, up to a
constant factor.

Lemma 3.10. [6, Lemma 3.2] For any foliation boxes B and B′ and for m-almost every

x ∈ B ∩ B′, the restrictions of mBx and mB
′

x to B ∩ B′ coincide up to a constant factor.

This implies that there exists a family {mx : x ∈M} where each mx is a measure defined
up to scaling with mx(M \ Fx) = 0, the function x 7→ mx is constant on the leaves of F ,
and the conditional probabilities mBx along the local leaves of any foliation box B coincide
almost everywhere with the normalized restrictions of the mx to the local leaves of B. It
is also clear from the arguments that such a family is essentially unique. We call it the
disintegration of m and refer to the mx as conditional classes of m along the leaves of F .
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3.6. Foliations whose leaves are fixed under a measure-preserving homeomor-
phism. Now suppose the foliation F is invariant under a homeomorphism f : M → M ,
meaning that f(Fx) = Ff(x) for every x ∈M . Take the measure m to be invariant under
f . Then, by essential uniqueness of the disintegration, f∗(mx) = mf(x) for almost every x.
We are especially interested in the case when f fixes every leaf, that is, when f(x) ∈ Fx
for all x ∈ M . Then f∗(mx) = mf(x) for almost every x, which means that every repre-
sentative mx of the conditional class mx is f -invariant up to rescaling: f∗(mx) = cmx for
some c > 0. Actually, the scaling factor c = 1:

Proposition 3.11. [6, Proposition 3.3] Suppose that m is invariant under a homeomor-
phism f : M → M that fixes all the leaves of F . Then, for almost all x ∈ M , any
representative mx of the conditional class mx is an f -invariant measure.

3.7. Absolute continuity. As above, let M be a Riemannian manifold. Let λΣ denote
the volume measure induced by the Riemann metric on a C1 submanifold Σ of M .

The classical definition of absolute continuity ([2, 3]) goes as follows. A foliation F on
M is absolutely continuous if every holonomy map hΣ,Σ′ between a pair of smooth cross-
sections Σ and Σ′ is absolutely continuous, meaning that, the push-forward (hΣ,Σ′)∗λΣ is
absolutely continuous with respect to λΣ′ . Reversing the roles of the cross-sections, one
sees that (hΣ,Σ′)∗λΣ is actually equivalent to λΣ′ .

Here it is convenient to introduce the following weaker notion. We say that F is leafwise
absolutely continuous ( or volume has Lebesgue disintegration along F-leaves) if given any
measurable set Y ⊂M then m(Y ) = 0 if and only if for m-almost every z ∈M the leaf L
through z meets Y in a zero λL-measure set. In other words, for almost every leaf L, the
conditional measure mL of m along the leaf is equivalent to the Riemann measure λL on
the leaf.

Lemma 3.12. [6, Lemma 3.4] If F is absolutely continuous then F is leafwise absolutely
continuous

The converse is false: one can destroy absolute continuity of holonomy at a single
transversal while keeping Lebesgue disintegration of volume (this is an exercise in Brin,
Stuck [10]).

Lemma 3.13. Let f : M →M be C2 and partially hyperbolic. The foliations Ws(f) and
Wu(f) are absolutely continuous and, hence, volume has Lebesgue disintegration along
Ws(f) and Wu(f)-leaves.

Proof. This is a classical fact going back to Brin, Pesin [9]. �

In the invariant ergodic case, leafwise absolute continuity is actually equivalent to
Lebesgue disintegration of volume:

Lemma 3.14. If F is leafwise absolutely continuous and invariant under an ergodic dif-
feomorphism f then mL and λL are equivalent for almost every leaf L.
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Proof. Suppose some set Y meets almost every leaf L on a zero λL-measure set. We may
suppose that Y is invariant because the restriction of f to leaves preserves the class of
zero measure sets, since f is smooth. If Y has full measure then its complement is a zero
m-measure that intersects leaves L in full λL-measure subsets, a contradiction. �

Remark 3.15. For partially hyperbolic diffeomorphisms whose center leaves are circles
with bounded length, the center foliation cannot be upper leafwise absolutely continuous
unless the center Lyapunov exponent vanishes at almost every point. This follows from
the observation in [32] that if the center Lyapunov exponent is nonzero on some set A,
then A meets m-almost every leaf L =Wc

x in a set of λL-measure zero.

In the remainder of this section we focus on invariant foliations of C2 partially hyperbolic
diffeomorphisms. Recall that Wu and Ws are always absolutely continuous, by [9].

Lemma 3.16. Suppose f is C2, partially hyperbolic, and dynamically coherent. If Wc is
leafwise absolutely continuous, then so are Wcu and Wcs.

Proof. Suppose that Wc is leafwise absolutely continuous. Let A be a zero measure set.
Since Ws is absolutely continuous, there is a set B of full measure so that Ws

x meets A in
a zero measure set, for every x ∈ B. Since Wc is absolutely continuous, there is a set C
of full measure so that Wc

y meets B in a set of full leaf measure, for every y ∈ C. Let y
be a point in C. We claim that Wcs

y meets A in a zero measure set. The reason is that
the restriction of Ws to Wcs

y is an absolutely continuous foliation in the leaf Riemannian
metric on Wcs

y . Hence if we unravel the definition of C and apply Fubini’s theorem, we
get that the leaf measure of A in Wcs

y is zero. �

Remark 3.17. Wc and Ws do not play symmetric roles in this argument. The reason the
restriction of Ws to Wcs leaves is absolutely continuous is dynamical, and does not follow
a priori from the fact that Ws is leafwise absolutely continuous.

Problem 3.18. It is observed in [27] that the center foliation is absolutely continuous if the
center stable and the center unstable foliations are.

(1) Is the converse true, that is, does absolute continuity of the center imply absolute
continuity of the center stable and the center unstable?

(2) Is the converse to Lemma 3.16 true, that is, does leafwise absolute continuity of
the center follow from leafwise absolute continuity of the center stable and the
center unstable?

Lemma 3.19. Let M be a compact Riemannian manifold of dimension d ≥ 3, and let

f ∈ P(M). Let mp be a measure on a local leaf Wc,loc
p , and let B be the neighborhood of

q (Wc foliation box) obtained by first applying local s-holonomy to Wc
p, and then applying

local u-holonomy. Let {mq}q∈B be the family of measures supported on local Wc leaves
given by pushing forward mp, first by local s holonomy and then by local u holonomy.

Suppose that {mq}q∈B is a disintegration of Lebesgue measure in B. Then Wc has
Lebesgue disintegration in B: for every q ∈ B, the conditional measure mq is equivalent to
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the Riemann measure λcq on Wc,loc
q , and the densities

dmq

dλcq

are positive, continuous on Wc
q ∩ B, and vary continuously with q.

Proof. Fix a continuous Riemannian metric inducing the Lebesgue measure on M , such
that the stable, unstable and center bundles are orthogonal. For q ∈ B, denote by D∗(q)

the intersection W∗,loc
q ∩ B.

We will show that

ρ(q) = lim
r→0

logmz(B
c(q, r))− log λcz(B

c(q, r))

exists and is uniformly continuous as a function of q ∈ B, as this implies that mq is
equivalent to λcq with

dmq

dλcq
(q) = eρ(q).

The open set U(q, r) in B formed by applying stable followed by unstable holonomy in B
to the center ball Bc(q, r) has volume proportional to mq(B

c(q, r)) by a constant that is
independent of q, r. On the other hand, it is also given by the formula∫

Bc(q,r)

∫
Ds(x)

Js,cx,y

∫
Du(y)

Ju,csy,z dλuy(z) dλsx(y) dλcz(x),

where Js,cx,y denotes the Jacobian of the stable holonomyWc,loc
x →Wc,loc

y and Ju,csy,z denotes

the Jacobian of the unstable holonomy Wcs,loc
y →Wcs,loc

z , calculated with with respect to
the fixed Riemannian structure. Since the Jacobians are uniformly continuous, this gives
that ρ is the uniformly continuous function:

q 7→ log

∫
Ds(q)

Js,cq,y

∫
Du(y)

Ju,csy,z dλuy(z) dλsq(y),

up to an additive constant. �

3.8. Smoothness of foliations. A foliation is Cr if there is a Cr foliation atlas. Note
that the leaves of a Cr foliation are uniformly Cr, but a foliation with Cr leaves is not
necessarily a Cr foliation.

A useful criterion for checking whether a foliation with Cr leaves is Cr is given by the
examining the holonomy maps. Here we describe a C∞ version of the ciriterion. The same
arguments yield a Cr version of the criterion, with some modifications. The main tool is
the following.

Theorem 3.20 (Journé [17]). Let F1 and F2 be transverse foliations of a manifold M
whose leaves are uniformly C∞. Let ψ : M → R be any continuous function such that the
restriction of ψ to the leaves of F1 is uniformly C∞ and the restriction of ψ to the leaves
of F2 is uniformly C∞. Then ψ is C∞.

This has the following corollary:
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Corollary 3.21 (see [26]). A local foliation with uniformly C∞ leaves and uniformly C∞

holonomies (with respect to a fixed C∞ transverse local foliation) is a C∞ local foliation.

Proof. Let F be a local foliation with uniformly C∞ leaves, and let T be a C∞ transverse
local foliation to F . By a C∞ change of coordinates, we may assume that T is the foliation
by vertical coordinate planes in Rn. Now, the standard rectification of F in Rn (via
holonomy between T -leaves) sends F-leaves to horizontal vertical planes. The assumption
that the leaves of F are uniformly C∞ implies that the rectification is C∞ along leaves of
F . The assumption that the holonomy maps between T -leaves are uniformly C∞ implies
that the rectification is uniformly C∞ along vertical planes. Journé’s Theorem implies
that the rectification is C∞, so that F is a C∞ foliation. This proves the corollary. �

A simple application of Corollary 3.21 gives the following criterion for smoothness,
which will be applied to local center-stable, and center-unstable foliations of a partially
hyperbolic diffeomorphism.

Proposition 3.22. Let G1 and G2 be local foliations whose leaves are C∞ and intersect
transversely in a local foliation F . Suppose there exist local foliations F1 and F2 with the
following properties

(1) F1 is transverse to G2 and F2 is transverse to G1,
(2) F1 C

∞ subfoliates the leaves of G1, and F2 C
∞ subfoliates the leaves of G2,

(3) F-holonomy between F1-leaves is uniformly C∞, and F-holonomy between F2-
leaves is uniformly C∞.

Then F is a C∞ foliation, as are the restrictions of F to G1 and G2.

Proof. Since the leaves of F are uniformly C∞, to prove the proposition, by Corollary 3.21,
it suffices to show that the F holonomy maps are uniformly C∞. To this end, fix a C∞

local foliation T transverse to F . Fix one leaf Tp and for q ∈ Fp, consider the associated
family of F holonomy maps ψp,q : Tp → Tq. We will use Theorem 3.20 to prove that ψp,q
is C∞, uniformly in q.

To do this, we first show that the restriction of F to the leaves of G1 is uniformly C∞,
and the restriction of F to the leaves of G2 is uniformly C∞. To see this, observe that by
assumption F1 is (uniformly) a C∞ subfoliation of G1, and the F-holonomy maps between
F1 leaves are uniformly C∞. The leaves F are uniformly C∞, since the leaves of G1 and G2

are. Corollary 3.21 then implies that the restriction of F to the leaves of G1 is uniformly
C∞. Similarly, the restriction of F to the leaves of G2 is uniformly C∞.

Intersecting the leaves of T with the leaves of G1, we obtain a foliation T1 with uniformly
C∞ leaves that subfoliates both T and G1. Restricting our attention to the leaves of G1,
since F is a C∞ subfoliation of G1, we obtain that the F-holonomy maps between T1

transversals are uniformly C∞. Similarly, intersecting the leaves of T with the leaves of
G2, we obtain foliation T2 with uniformly C∞ leaves that subfoliates both T and G2; the
F-holonomy maps between T2 transversals are uniformly C∞.
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The foliations T1 and T2 transversely subfoliate the leaves of T and have uniformly C∞

leaves. For a fixed q ∈M , we have just shown that the holonomy map ψp,q defined above
is uniformly C∞ along T1-leaves and uniformly C∞ along T2-leaves. Now Theorem 3.20
implies that ψp,q is C∞, uniformly in q, completing the proof of Proposition 3.22. �

3.9. Bunching and smoothness of stable and unstable holonomies. Our final set
of preliminaries concerns the regularity of stable and unstable holonomy maps and the
related spectral property of r-bunching. Let f be a partially hyperbolic diffeomorphism.
For r > 0, we say that f is r-bunched if there exists an integer k ≥ 1 such that for every
p ∈M :

‖Dpf
k|Es‖ · ‖(Dpf

k|Ec)−1‖r < 1 , ‖(Dpf
k|Eu)−1‖ · ‖Dpf

k|Ec‖r < 1 ,

‖Dpf
k|Es‖ · ‖(Dpf

k|Ec)−1‖ · ‖Dpf
k|Ec‖r < 1 , and

‖(Dpf
k|Eu)−1‖ · ‖Dpf

k|Ec‖ · ‖(Dpf
k|Ec)−1‖r < 1 .

Note that every partially hyperbolic diffeomorphism is r-bunched, for some r > 0. The
condition of 0-bunching is merely a restatement of partial hyperbolicity, and 1-bunching is
center bunching. The first pair of inequalities in this definition are r-normal hyperbolicity
conditions; when f is Cr and dynamically coherent, these inequalities ensure that the
leaves of Wcu, Wcs, and Wc are Cr. Combined with the first group of inequalities, the
second group of inequalities imply that Eu and Es are “Cr in the direction of Ec.” More
precisely, in the case that f is Cr+1 and dynamically coherent, the r-bunching inequalities
imply that the restriction of Eu to Wcu leaves is a Cr bundle, and the restriction of Es to
Wcs leaves is a Cr bundle. Hence, if such a system is r-bunched, then the local stable and
unstable holonomies h∗x,y are Cr local diffeomorphisms. See Pugh, Shub, Wilkinson [26,
33].

Lemma 3.23. Suppose f ∈ P(M) is such that Df |Ec is an isometry for some choice of
the Riemannian metric.

Then the leaves of Wc, Wcs, and Wcu are uniformly C∞ and the stable and unstable
holonomy maps between Wc-leaves are C∞.

Proof. The assumption implies that f is r-bunched, for any r ≥ 1. Now, as discussed
before, r-bunching contains r-normal hyperbolicity, which implies that the leaves of Wc,
Wcu, and Wcs are Cr. See [16]. Moreover, r-bunching implies that Ws Cr-subfoliates
Wcs and Wu Cr-subfoliates Wcu. See [26]. This gives the lemma. �

4. Lyapunov exponents and an invariance principle

In this section, we describe the main results we use concerning Lyapunov exponents
and invariant measures of diffeomorphism cocycles.

Let F : E → E be a continuous diffeomorphism cocycle over f , in the sense of [4,
5]. This means that π : E → M is a continuous fiber bundle with fibers modeled on
some Riemannian manifold and F is a continuous fiber bundle morphism over a Borel
measurable map f : M → M acting on the fibers by diffeomorphisms with uniformly
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bounded derivative. Let µ̂ be an F-invariant probability measure on E that projects to
an f -invariant measure µ. We denote by Ex the fiber π−1(x) and by Fx : Ex → Ef(x) the
induced diffeomorphism on fibers.

We say that a real number χ is a fiberwise exponent of F at ξ ∈ E if there exists a
nonzero vector v ∈ TξEπ(ξ) in the tangent space to the fiber at ξ such that

lim
n→∞

1

n
log ‖DξF

n(v)‖ = χ.

By Oseledec’s theorem, this limit χ(ξ, v) exists for µ̂-almost every ξ ∈ E and every nonzero
v ∈ TξEπ(ξ), and it takes finitely many values at each such ξ. Let

χ̄(ξ) = sup
‖v‖=1

χ(ξ, v) and χ(ξ) = inf
‖v‖=1

χ(ξ, v).

The following result follows almost immediately from Theorem II in [31] and uses no
assumptions on the base dynamics f : M →M other than invertibility. The hypothesis on
the fibers can be weakened, but the statement that follows is sufficient for our purposes.

Theorem 4.1. [31] Let F : E → E be a diffeomorphism cocycle over f . Assume that the
fibers of E are compact. Assume that F preserves an ergodic probability measure µ̂ that
projects to an (f -invariant, ergodic) probability µ on M and that f is invertible on a full
µ-measure set in M . Let X− be the set of ξ ∈ E such that χ̄(ξ) < 0 and X+ be the set of
ξ ∈ E such that χ̄(ξ) > 0.

Then both X− and X+ coincide up to zero µ̂-measure subsets with measurable sets that
intersect each fiber of E in finitely many points.

The next result, from [4, 5], treats the possibility that all fiberwise exponents vanish.
It admits more general formulations, but we state it in the context in which we will use
it, namely, when f is a partially hyperbolic diffeomorphism.

We say that F admits a ∗-holonomy for ∗ ∈ {s, u} if, for every pair of points x, y lying
in the same W∗-leaf, there exists a Hölder continuous homeomorphism H∗x,y : Ex → Ey
with uniform Hölder exponent, satisfying:

(i) H∗x,x = id,
(ii) H∗x,z = H∗y,z ◦H∗x,y,

(iii) Fy ◦H∗x,y = H∗f(x),f(y) ◦ Fx, and

(iv) (x, y) 7→ H∗x,y(ξ) is continuous on the space of pairs of points (x, y) in the same
local W∗-leaf, uniformly on ξ.

The existence of a ∗-holonomy is equivalent to the existence of an F-invariant foliation
(with potentially nonsmooth leaves) of E whose leaves project homeomorphically (in the
instrinsic leaf topology) to W∗-leaves in M .

A disintegration {µ̂x : x ∈ M} is ∗-invariant over a set X ⊂ M , ∗ ∈ {s, u} if the
homeomorphism H∗x,y pushes µ̂x forward to µ̂y for every x, y ∈ X with y ∈ W∗x. We call
a set X ⊂M ∗-saturated, ∗ ∈ {s, cs, c, cu, u} if it consists of entire leaves of W∗. Observe
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that f is accessible if and only if the only nonempty set in M that is both s-saturated and
u-saturated is M itself.

Theorem 4.2. [4, Theorem C] Let F be a diffeomorphism cocycle on π : E →M over the
C2, volume preserving, center bunched, partially hyperbolic diffeomorphism f : M → M .
Assume that f is accessible and that F preserves a probability measure m̂ that projects to
the volume m. Suppose that χ̄(ξ) = χ(ξ) = 0 for m̂-almost every ξ ∈ E.

Then there exists a continuous disintegration {m̂su
x : x ∈ M} of m̂ that is invariant

under both s-holonomy and u-holonomy.

A slight modification of the proof in [4] gives

Theorem 4.3. Let F be a diffeomorphism cocycle on π : E → M over the C2, volume
preserving, center bunched, partially hyperbolic diffeomorphism f : M →M . Assume that
f has an open accessibility class U 6= ∅, and let µ = m( : U) be the conditional volume on
U :

µ(A) := m(A : U) =
m(A ∩ U)

m(U)
.

Suppose that F preserves a probability measure µ̂ on E that projects to µ and that χ̄(ξ) =
χ(ξ) = 0 for µ̂-almost every ξ ∈ E.

Then there exists a continuous disintegration {µ̂sux : x ∈ U} of µ̂ that is invariant under
both s-holonomy and u-holonomy.

Proof. One observes that the proof of that part (a) of [4, Theorem D], which is stated for
µ in the same measure class as volume, extends to µ absolutely continuous with respect to
volume, provided that supp (µ) is bisaturated. This is the case here, because µ := m(· : U)
is supported on the closure of the accessibility class U , which is bisaturated. The conclusion
of (b) of [4, Theorem D] then holds if f is accessible on the support of µ.

To see this, the main thing to note is that [4, Theorem 6.1] makes no assumption on
whether f preserves volume. In the application of [4, Theorem 6.1] to prove [4, Theorem
D], the function Ψ is defined by Ψ(x) = mx, where mx is the disintegration of m̂ along
the fibers of E . In the case where µ is supported on an open accessibility class U , we fix
a disintegration of µ̂ along the fibers of E , and set

(2) Ψ(x) =

{
µ̂x if x ∈ U
0 otherwise.

Similarly, [4, Theorem 4.1] makes no assumptions on volume-preservation of f . Thus
Theorem 4.3 can be deduced from Theorems D and 4.1 in [4] in the same way that [4,
Theorem C] is deduced from Theorems D and 4.1 in [4], replacing the function Ψ there
with Ψ defined by (2). �
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5. A generalized invariance principle

In this section we prove an abstract criterion for holonomy invariance of probability
measures preserved by diffeomorphism cocycles with vanishing Lyapunov exponents. A
main novelty with respect to previous related results by Avila, Santamaria, Viana [4, 5]
is that we also deal with invariance under center holonomy, not only stable and unsta-
ble holonomies. Implications of this refined theory will be exploited in the forthcoming
sections.

5.1. c-holonomies. Let F : E → E be a continuous diffeomorphism cocycle over f . Recall
from Section 4 that F admits ∗ holonomy, for ∗ ∈ {s, u} if the foliation W∗ in M lifts

to an F-invariant foliation Ŵ∗ of E whose leaves are homeomorphic to the leaves of W∗.
If F admits a ∗-holonomy then for any two points x, y in the same W∗ leaf, there is a
well-defined holonomy map H∗x,y between the fibers Ex and Ey satisfying the conditions
(i-iv) described in Section 4, which gives an equivalent definition.

There is an analogous way to define c-holonomy, but a little more care must be taken
because the leaves ofWc, unlike those ofWs andWu, are not necessarily simply connected.
The notion of c-holonomy will be used to formulate a new version of Theorem 4.2 for
cocycles admitting s, u and c holonomies.

We say that F admits a c-holonomy if, for every path γ : [0, 1] → Wc(γ(0)) lying in a
Wc leaf, there exists a Hölder continuous homeomorphism Hc

γ : Eγ(0) → Eγ(1) with uniform
Hölder exponent, satisfying:

(i) Hc
ε = id, where ε is any constant path,

(ii) Hc
γ1·γ2 = Hc

γ2 ◦H
c
γ1 , where γ1 · γ2 denotes the concatenated path,

(iii) Hc
γ1 = Hc

γ2 whenever γ1 and γ2 are homotopic via an endpoint-fixing homotopy in
Wc(γ1(0)) (=Wc(γ2(0))),

(iv) Fγ(1) ◦Hc
γ = Hc

f◦γ ◦ Fγ(0), and

(v) γ 7→ Hc
γ(ξ) is continuous on the space of paths γ whose image lies in a fixed local

Wc-leaf, uniformly on ξ.

We say that the c-holonomy is product type if H∗γ depends only on the endpoints of
γ; when this is the case, we denote H∗γ by H∗γ(0),γ(1). In particular, if the leaves of Wc

are simply connected, then any c-holonomy is product type. Note that Hc holonomy is
always product type when restricted to paths in the localWc-foliation of anyWc-foliation

box B. We will denote by Hc,B
x,y the c-holonomy in B determined by a path from x to

y lying in the local leaf of Wc
x in B. For short, we will refer to “local c-holonomy” and

use the notation Hc
x,y, when x and y lie in the same local Wc-leaf. Properties (i) - (iii)

of c-holonomy imply that c-holonomy is determined by local c-holonomy. The existence
of c-holonomy is equivalent to the existence of an F-invariant foliation (with potentially
nonsmooth leaves) of E whose leaves project toWc leaves in M ; if the holonomy is product
type, the c-leaves for F project homeomorphically to c-leaves for f ; more generally, the
projection is a covering map.
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We now state our general invariance criterion. Let F : E → E be a continuous diffeo-
morphism cocycle on a fiber bundle E → M . For ∗ ∈ {s, u, c}, we say that F admits ∗
holonomies over X ⊂ M if it admits local ∗-holonomies H∗x,y for every pair x, y ∈ X.
Recall that a set X ⊂ M ∗-saturated, ∗ ∈ {s, cs, c, cu, u} if it consists of entire leaves of
W∗ and essentially ∗-saturated if X coincides with some ∗-saturated up to zero volume
sets. Fix ∗ ∈ {s, u} and suppose Xc∗ is a c∗-saturated set over which F admits both ∗
and c holonomies. We say that c-holonomy commutes with ∗-holonomy over Xc∗ if for any
Wc∗ foliation box B, and two points x, x′ ∈ B ∩Xc∗ lying in the same local Wc∗-leaf, we
have

(3) H∗y,x′ ◦Hc,B
x,y = Hc,B

y′,x′ ◦H
∗
x,y′

where y is the point in B ∩Xc∗ where the local Wc-leaf of x intersects the local W∗-leaf
of x′, and y′ is the point where the local W∗-leaf of x intersects the local Wc-leaf of x′.

Let m denote the normalized volume measure on M , and let m̂ be any probability
measure on E that projects down to m. A disintegration {m̂x : x ∈ M} of m along E
fibers is c-invariant over a c-saturated subset X ⊂ M if the homeomorphism Hc

γ pushes
mγ(0) forward to mγ(1) for every path γ : [0, 1]→Wc(γ(0)). When X has full m-measure
we call the disintegration essentially c-invariant. Properties (i)-(iii) above imply that
c-invariance is equivalent to invariance under local c-holonomy.

Theorem 5.1. Fix a diffeomorphism f ∈ P(M). Let E be a fiber bundle defined over a
full measure, c-saturated subset O ⊂M , and let F : E → E be a continuous diffeomorphism
cocycle over f |O. Assume that there exist c∗-saturated, full measure subsets Oc∗ ⊂ O, for
∗ ∈ {s, u} such that F admits commuting c and ∗ holonomies in Oc∗.

Let m̂ be an F-invariant measure projecting down to normalized Lebesgue measure. As-
sume that the center foliation of f is leafwise absolutely continuous and that the fiberwise
Lyapunov exponents of F vanish m̂-almost everywhere. Suppose that m̂ admits a disinte-
gration that is c-invariant over Oc = Ocs ∩Ocu.

Then m̂ admits a disintegration that is continuous and ∗-invariant over Oc for all
∗ ∈ {s, c, u}.

The conclusion means that (H∗x,y)∗m̂x = m̂x′ for every x ∈ Oc and x′ ∈ W∗(x) ∩Oc.

5.2. Proof of the invariance theorem. Let us prove Theorem 5.1.

Proof. Let {m̂c
x : x ∈ Oc} be a c-invariant disintegration of m̂ over the c-saturated set Oc.

Consider any ∗ ∈ {s, u}. Clearly, m̂ may be viewed as an Fc∗-invariant probability measure
on Ec∗, with Ec as a full measure subset. The hypothesis implies that the Lyapunov
exponents of Fc∗ vanish m̂-almost everywhere. Theorem 4.2 implies that m̂ admits a
disintegration {m̂∗x : x ∈ Oc∗} that is ∗-invariant over a full m-measure subset O∗ ⊂ Oc∗.
Since disintegrations are essentially unique, the set

Z = {x ∈ Oc : m̂c
x = m̂s

x = m̂u
x}

has full m-measure. We will combine this fact with the leafwise absolute continuity as-
sumption, to obtain the conclusion of the theorem.
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Let λcz, λ
cs
z , λcuz denote the Riemannian measures on the leaves ofWc,Wcs,Wcu through

any point z ∈M . All three foliations are leafwise absolutely continuous, by our assumption
and Lemma 3.16. Leafwise absolute continuity of Wc and Wcs implies that Z meets Wc

p

in a set of full λcp-measure and meets Wcs
p in a set of full λcsp -measure, for almost every

p ∈ Oc. Starting with the c-invariant family of measures m̂c
x on Wc,loc

p , we define a family

of measures νux on Wcs,loc
p by pushing m̂c

x around by (local) s-holonomy. This family is
s-invariant, of course, and the assumption that the Hc commutes with Hs ensures that it

is also c-invariant. Since m̂c
x = m̂s

x for λcp-almost every x ∈ Wc,loc
p and m̂s

x is s-invariant
and the restriction of Ws to Wcs

p is absolutely continuous, we also have νux = m̂s
x for

λcsp -almost everywhere x ∈ Wcs,loc
p . Then νux = m̂u

x for λcsp -almost every on x ∈ Wcs,loc
p

because Z intersects the center-stable leaf on a full measure subset. The intersection of
Ocu with the center-stable leaf also has full λcsp -measure, since Ocu is a u-saturated full m-
measure subset of M and Wu is absolutely continuous. Restricting νux to this intersection
and then pushing it around by u-holonomy we extend νux to a u-invariant family on a
whole neighborhood V u

p of the point p inside Ocu. The fact that Hc commutes with Hu

ensures that this extension remains c-invariant. Moreover, νux is continuous, because of
the continuity property (v) in the definition of holonomies. Finally, since νux = m̂u

x for
λcsp -almost every x ∈ Wcs

p and m̂u is u-invariant andWu is absolutely continuous, we have
νux = m̂u

x for m-almost every x ∈ V u. This also shows that νux defines a disintegration of
m̂ restricted to V u

p .

In just the same way, we construct a continuous, c-invariant, and s-invariant disinte-
gration νsx of the measure m̂ restricted to a neighborhood V s

p of p inside Ocs. Since dis-
integrations are essentially unique, these two continuous disintegrations νux and νsx must
coincide at every point in the intersection Vp of the domains. So,

m̂x = νux = νsx

defines a disintegration of m̂ as in the conclusion of Theorem 5.1 locally, on a neighborhood
Vp of p inside Oc. The global definition is obtained by covering Oc with such neighbor-
hoods. Continuity ensures that local definitions agree on the intersection of their domains.
The proof of the theorem is complete. �

5.3. An invariance theorem on open accessibility classes. There is an analogue of
Theorem 5.1 for us-saturated sets – that is, accessibility classes – in place of c-saturated
sets.

Theorem 5.2. Fix a diffeomorphism f ∈ P(M), and suppose that f has an open acces-
sibility class U 6= ∅. Let µ = m( : U), and fix ` ≥ 1 such that f `(U) = U .

Let π : E → M be a fiber bundle and let F : E → E be a continuous diffeomorphism
cocycle over f admitting commuting c and ∗ holonomies.

Let µ̂ be an F`-invariant measure projecting down to µ. Assume that

(1) µ has Lebesgue disintegration with respect to the partition

Wc ∩ U := {Wc
x ∩ U : x ∈ U},
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(2) the fiberwise Lyapunov exponents of F vanish µ̂-almost everywhere, and
(3) µ̂ admits a disintegration {µ̂x : x ∈ U} that is c-invariant over U , meaning that

for all x ∈ U and x′inWc
x,loc:

(Hc
x,x′)∗µ̂x = µ̂x′ .

Then µ̂ admits a disintegration that is continuous and ∗-invariant over U for all ∗ ∈
{s, c, u}.

Proof. The proof is the same, except we are in the simplified situation where O = M , and
we use Theorem 4.3 in place of Theorem 4.2. �

5.4. Center leaf fiber bundles. We describe a construction that will be used at some
key places in this paper. Let B be a topological space and N be a manifold. A continuous
fiber bundle with fiber N and base B is a continuous surjective map π : E → B together
with a family of homeomorphisms gα : Uα×N → π−1(Uα) (called a π-adapted atlas), where
{Uα} is some open cover of B and every π ◦ gα coincides with the canonical projection to
the first coordinate.

Proposition 5.3. Suppose that f ∈ P(M) admits global su-holonomy. Then there exists
a continuous fiber bundle π : Ec → M and a second projection map p : Ec → M with the
following properties:

(1) p sends each Ecx = π−1(x), x ∈M homeomorphically onto Wc
x;

(2) the fiber bundle Ec admits a canonical continuous section sending each x to p−1(x)∩
Ecx;

(3) there is a canonical continuous map F : Ec → Ec satisfying π ◦ F = f ◦ π and
p ◦ F = f ◦ p;

(4) the fiber bundle admits F-invariant stable, unstable and center foliations F∗, ∗ ∈
{s, u, c} projecting under π to the corresponding foliations W∗ in M . The u and s
holonomies are C1 and commute with c holonomy.

Proof. Let Ec = {(x, y) ⊂ M ×M : y ∈ Wc
x} and take π and p to be the first and second

coordinate projections. The topology on Ec is induced by the π-adapted atlas defined as
follows. Given any x ∈ M and w in a small neighborhood U of x in M , define y to be

the point in Ws,loc
x ∩Wcu,loc

w and z to be the point in Wu,loc
y ∩Wc,loc

w . Notice that y and z
depend continuously on w. Then hx,w = huy,z ◦ hsx,y is a homeomorphism from Wc

x to Wc
w

that depends continuously on w. It follows that

gx,U : U ×Wc
x → π−1(U), (w,w′) 7→ (w, hx,w(w′))

is a homeomorphism mapping each vertical {w} × Wc
x to π−1(w). This proves that Ec

is a continuous fiber bundle. It is clear that every fiber π−1(x) = {x} × Wc
x is mapped

homeomorphically to Wc
x by the second projection p, as claimed in (1). The diagonal

embedding M → E defines a section as in (2), and the map F := (f, f) : Ec → Ec is a lift
of f as in (3). For each fixed x ∈M and y ∈ Wc

x, the set

Fs(x,y) = {(x′, y′) | x′ ∈ Ws
x, y′ ∈ Ws

y ∩Wc
x′},
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is a continuous submanifold of Ec, and these submanifolds form an F-invariant stable
foliation that projects down to the stable foliation of f . Analogously, one obtains an
F-invariant unstable foliation Fu.

To obtain a center foliation we set, for (x, y) ∈ Ec:
Fc(x,y) = {(x′, y) | x′ ∈ Wc

x}.

Clearly the foliation Fc is F-invariant and the leaves of Fc project to the leaves of Wc.

The stable and unstable foliations of F define ∗-holonomy, of product type, for the
diffeomorphism cocycle:

H∗x,y : Ecx → Ecy , x and y in the same leaf of W∗

for either ∗ ∈ {s, u}. Furthermore, for every x and y in the same local center leaf, let
Hc
x,y : Ecx → Ecy be the map defined by p ◦ Hc

x,y = p, where p is the second projection
associated to F. It is clear that this c-holonomy is F-invariant and commutes with both
s-holonomy and u-holonomy. �

Lemma 3.5 implies that any f ∈ Pfib(M) admits global su-holonomy. In this context,
we obtain the following.

Theorem 5.4. Let M be a closed Riemannian manifold of dimension d ≥ 3, and let
f ∈ Pfib(M). Let π : Ec →M and projection p : Ec →M be given by Theorem 5.3.

Then for every subset U ⊆ M of positive measure, there exists a probability measure
m̂U on Ec with the property that for every measuable A ⊂M :

π∗m̂U (A) = m(A : U) =
m(U ∩A)

m(U)
,

and for m-almost every x ∈ U ,

p∗m̂x = mc
x( : U),

where {mc
x : x ∈M} is any disintegration of m along Wc leaves, and {(m̂c

U )x : x ∈M} is
any disintegration of m̂U along Ec fibers.

If U is f -invariant, then m̂U is F-invariant, and the Lyapunov exponents of the dif-
feomorphism cocycle F with respect to m̂U coincide almost everywhere with the center
Lyapunov exponents of f |U with respect to m.

Proof. Let {mc
x : x ∈ M} be a disintegration of m along center leaves, and let m̂ be the

measure defined on Ec by re-integration (recall p(Ecx) =Wc
x):

(4) m̂U (E) =

∫
X
mc
x(p(E) : U) dm(x : U) for every measurable set E ⊂ Ec.

In other words, m̂ projects down to m(· : U) under π and admits {mc
x(· : U) : x ∈M} as

a disintegration along the fibers of Ec.
It is also clear that m̂U is F-invariant if U is f -invariant and that the Lyapunov expo-

nents of the diffeomorphism cocycle F with respect to m̂U then coincide with the center
Lyapunov exponents of f �
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Theorem 5.5. Let M be a closed Riemannian manifold of dimension d ≥ 3, and let
f ∈ Pfib(M). Suppose that Wc is leafwise absolutely continuous and the center Lyapunov
exponents of f vanish m-almost everywhere. Then m admits some disintegration along
center leaves that is continuous and invariant under the holonomy maps of both the stable
foliation and the unstable foliation of f .

Proof. Let {mc
x : x ∈ M} be a disintegration of m along center leaves, and let m̂ be the

measure given by Theorem 5.4 with U = M . The Lyapunov exponents of the diffeomor-
phism cocycle F coincide with the center Lyapunov exponents of f and so, by assumption,
they vanish almost m̂-everywhere. Hence, we may use Theorem 5.1 (with O = M) to
conclude that m̂ admits some disintegration {m̂x : x ∈ M} along the fibers that is con-
tinuous and invariant under all three holonomies. By essential uniqueness, p∗m̂x = mc

x at
m-almost every point. Each m̂x is a probability on Ecx and the property of c-invariance just
means that x 7→ m̂x is constant on each center leaf. It follows that {mx := p∗m̂x : x ∈M}
defines a continuous disintegration of m along center leaves. Finally, s-invariance and
u-invariance of {m̂x : x ∈ M} translate to invariance of {mx : x ∈ M} under stable and
unstable holonomy maps. The proof of the theorem is complete. �

Remark 5.6. The leafwise absolute continuity hypothesis is actually necessary in Theo-
rem 5.5.

Since for one-dimensional center, absolute continuity implies zero central exponents,
the following statement is contained in Theorem 5.5:

Corollary 5.7. Let f : M →M be any element of P1
fib(M) whose center foliation is abso-

lutely continuous. Then m admits a disintegration along center leaves which is continuous
and invariant under the holonomy maps of both the stable foliation and the unstable foli-
ation.

The next result addresses the case where f ∈ Pfib(M) has a nontrivial open accessibility
class, in particular when f is accessible.

Theorem 5.8. Let M be a closed Riemannian manifold of dimension d ≥ 3, and let
f ∈ Pfib(M). Suppose that there exists an open accessibility class U 6= ∅ of f and that
the center Lyapunov exponents of f on U vanish, m-almost everywhere (equivalently, on
a positive measure subset of U). Fix ` ≥ 1 such that f `(U) = U . Let π, p : Ec → M , and
µ := m̂U be given by Theorem 5.4.

Then µ̂ admits a F`-invariant disintegration {µ̂sux : x ∈ U} along the fibers of Ec that is
invariant under s- and u-holonomies and continuous in x ∈ U .

Proof. Let µ = m( : U) = π∗µ̂, and note that f ` is ergodic with respect to µ. Let
{µcx : x ∈M} be a disintegration of µ along center leaves, and note that the disintegration
of µ̂ along Ec-fibers satisfies p ∗ µ̂x = µcx, for µ-almost every x ∈ U .

Note that the Lyapunov exponents of the diffeomorphism cocycle F` with respect to µ̂
coincide with the center Lyapunov exponents of f `|U , which by ergodicity are constant
µ-almost everywhere.



ABSOLUTE CONTINUITY, LYAPUNOV EXPONENTS AND RIGIDITY II 29

If the central exponent of f is zero on U , then the exponents of F` vanish µ̂- almost
everywhere. Theorem 4.3 then gives a continuous disintegration {µ̂sux : x ∈ U} of µ̂ over
U that is invariant under both s-holonomy and u-holonomy. �

We deduce a complete converse to Theorem 5.5, when the center leaves are compact and
have dimension 1 (the statement does not extend to higher dimensional center foliations):

Corollary 5.9. Let M be a compact Riemannian manifold of dimension d ≥ 3, and let
f ∈ P1

fib(M). Then the following are equivalent:

(1) Wc is leafwise absolutely continuous and the center Lyapunov exponent vanishes
m-almost everywhere;

(2) there exists a disintegration {mc
x : x ∈ M} along center leaves satisfying the con-

clusions of Theorem 5.5.
(3) for any disintegration {mx : x ∈ M} of m along center leaves, the measures mx

and λcx are equivalent for m-almost every x.

Proof. Theorem 5.5 states that (1) implies (2). Lemma 3.19 gives that (2) implies (3). To
prove the remaining claim, suppose that (3) holds. Let {mc

x : x ∈M} be a disintegration
of m along center leaves. The hypothesis that λcx is absolutely continuous with respect
to mc

x for µ-almost every x contains the conclusion that Wc is (lower) leafwise absolutely
continuous. It also contains upper leafwise absolute continuity and, as observed in Re-
mark 3.15, this implies the conclusion that the center Lyapunov exponent vanishes almost
everywhere. �

Corollary 5.10. Let M be a compact Riemannian manifold of dimension d ≥ 3, and let
f ∈ P1

fib(M). Then one of the following alternatives holds:

(1) Wc is leafwise absolutely continuous and the center Lyapunov exponent vanishes
m-almost everywhere;

(2) the center Lyapunov exponent vanishes m-almost everywhere, and there exist A,
Z ⊂ M with m(A) > 0 and m(Z) = 0, such that, for every x ∈ A, the leaf Wc

x

meets Z in a set of positive λcx-measure;
(3) the center Lyapunov exponent does not vanish m-almost everywhere, and there is

B ⊂M with m(B) > 0 that meets every leaf Wc
x in a set of λcx-measure zero.

When f is ergodic the sets A in (2) and B in (3) can be taken to have full measure.

Proof. The case when the center exponent vanishes almost everywhere and the center
foliation is leafwise absolutely continuous is alternative (1), of course. Suppose the center
exponent vanishes almost everywhere, but the center foliation is not leafwise absolutely
continuous. By definition, the latter means that there exists a zero volume measure set
Z that intersects Wc

x on a positive Lebesgue measure subset, for all x in some positive
volume measure set A. This gives (2). Next, let B be the set of points where the center
Lyapunov exponent is different from zero and suppose B has positive volume. As observed
in Remark 3.15, B must intersect every center leaf on a zero Lebesgue measure subset.
This gives alternative (3). Finally, up to replacing Z by the union of its iterates, we may
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assume right from the start that Z is invariant under f . Then the set A of points whose
center leaves intersect Z on a positive Lebesgue measure subset is also invariant. It is
clear from the definition that B is also invariant under f . This implies the statements for
the ergodic case. The proof of the corollary is complete. �

6. Homogeneity: a tool for establishing smoothness

Let P be a manifold without boundary. We say that a subset N ⊂ P is Cr homogeneous
in P if for any two points p, q ∈ N , there is a Cr local diffeomorphism of P sending p to
q and preserving N . C1-homogeneous subsets of a manifold have a remarkable property:

Theorem 6.1. ([28], see also [34]) Any locally compact subset N of a C1 manifold P that
is C1 homogeneous in P is a C1 submanifold of P .

For any integer k ≥ 2, any Ck homogeneous, C1 submanifold of a Ck manifold is a Ck

submanifold.

The following proposition is an easy corollary of Theorem 6.1.

Proposition 6.2. Let P be a manifold without boundary, and let F be a foliation of P .
Suppose that for some k ≥ 2 and every p, q ∈ P there exists a Ck diffeomorphism sending
p to q and preserving the leaves of F . Then F is a Ck−1 foliation with uniformly Ck

leaves.

Proof. Suppose that the leaves of f are m-dimensional. The hypotheses imply that the
tangent bundle TF , viewed as a section of the Grassmann bundle of m-planes over P , is
Ck−1 homogeneous. Theorem 6.1 implies that TF is Ck−1, which gives the conclusion. �

We state and prove our first application of Theorem 6.1 to fibered systems.

Proposition 6.3. Let M be a closed Riemannian manifold of dimension d ≥ 3, and let
f ∈ Pfib(M). Suppose that there exists an open accessibility class U 6= ∅ of f and that
the center Lyapunov exponents of f on U vanish on a positive measure subset of U . Let
µ = m( : U), and fix ` ≥ 1 such that f `(U) = U .

Let µ̂ := m̂U be given by Theorem 5.4, and let {µ̂sux : x ∈ U} be the F`-invariant,
su-holonomy invariant, disintegration of µ̂ given by Theorem 5.8.

Then for any x ∈ U , the set supp µ̂sux ∩ p−1(U) ⊂ Ecx ∩ p−1(U) is C1 homogeneous. In
particular, for any ξ, ξ′ ∈ p−1(U) ∩ Ecx, there is an orientation-preserving, C1 diffeomor-
phism Hξ,ξ′ : Ecx → Ecx (a composition of s, u and c holonomies in Ec) with the following
properties:

(1) Hξ,ξ′(ξ) = ξ′;
(2) (Hξ,ξ′)∗µ̂

su
x = µ̂sux ;

(3) if ξ, ξ′ ∈ supp µ̂sux , then Hξ,ξ′(supp µ̂sux ) = supp µ̂sux ;
(4) if f is r-bunched, then Hξ,ξ′ is a Cr diffeomorphism.
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Proof of Proposition 6.3. Note that p∗µ̂
su
y = µcx for every y ∈ suppµcx and µ-almost every

x, because p∗µ̂
su
x = µcx almost everywhere, µ̂sux is continuous in x, and µcx = mc

x( : U) is
constant on every center leaf.

Fix x ∈ U , and let z, z′ ∈ U be the p-projections of ξ, ξ′ ∈ p−1(U). Since U is an open
accessibility class, there is an su-path γ in U connecting z to z′. Since π maps leaves of
F∗ homeomorphically to leaves of W∗(f), for ∗ ∈ {s, u}, we can lift γ to an su-path in Ec
connecting η = (z, z) to η′ = (z′, z′). Let H : Ecx → Ecx′ be the su-holonomy map along this
su-path. Then H sends η to η′ and, since the disintegration {µ̂sux : x ∈ M} is invariant
under su-holonomy, it maps µ̂x to µ̂x′ .

Suppose first that x ∈ suppµcx (this holds µ-almost everywhere). Then the condition
ξ ∈ supp µ̂x ∩ p−1(U) means that z ∈ suppµcx ∩ U , which implies p∗µ̂z = µcx = p∗µ̂x.
Analogously, z′ ∈ suppµcx ∩ U and p∗µ̂z′ = µcx = p∗µ̂x. Identifying the fibers Ecz , Ecz′ to
Ecx through c-holonomy in Ec, we obtain a homeomorphism Hξ,ξ′ : Ex → Ex satisfying
properties (1)-(3).

The assumption on x is readily removed, as follows. Given any x ∈ U let x0 be any
point such that x0 ∈ suppµcx0 ∩ U , and let γ be an su-path in U connecting x to x0. The
su-holonomy H0 : Ex → Ex0 along the π-lift of γ maps supp µ̂x to supp µ̂x0 . Let ξ0, ξ

′
0 be

the images of ξ, ξ′ under H0. Conjugating Hξ0,ξ′0
by H0 we obtain a homeomorphism Hξ,ξ′

satisfying conclusions (1)-(3).

Since f is partially hyperbolic with 1-dimensional center it is center bunched, and so
the (globally defined) su-holonomy maps between Wc(f) leaves are C1. This implies that
Hξ,ξ′ is a C1 diffeomorphism. Moreover, if f is r-bunched, then so is f , and the leaves
of Wc(f) and all holonomies are Cr; in this case Hξ,ξ′ is a Cr diffeomorphism, verifying
property (4). �

Corollary 6.4. For f ∈ Pfib(M), U and {µsux : x ∈ U} as in Proposition 6.3, the set
Xx := supp µ̂sux ∩ p−1(U) is a C1 submanifold (possibly 0-dimensional) of Ecx ∩ p−1(U).
The connected components of Xx are diffeomorphic to each other, and for all x, y ∈ U ,
Xx is diffeomorphic to Xy.

Proof. Proposition 6.3 shows that for x ∈ U , the support of µ̂sux is C1 homogeneous in
U , and so Theorem 6.1 implies that it is a C1 submanifold. Since any two points in U
are connected by an su-path, for x, x′ ∈ U , the support of µ̂sux is C1 diffeomorphic to the
support of µ̂sux′ . �

We specialize to the 1-dimensional fiber case.

Theorem 6.5. For f ∈ P1
fib(M), U and {µsux : x ∈ U} as in Proposition 6.3, either the

disintegration of µ is atomic, or µ̂sux projects to a measure on M with continuous density
∆ on Wc ∩ U .

Proof. (See [6, Section 7.1]).

The support of µ̂sux is either finite for all x ∈ U or equal to p−1(U) ∩ Ecx. Suppose that
supp (µ̂sux ) = p−1(U) ∩ Ex, for all x ∈ U .
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For x ∈ M , denote by λx the Riemannian measure on the fiber Ex and denote by
B(ξ, r) the balll in Ecx centered at ξ of radius r, with respect to the p-pullback metric of
the Riemann structure on Wc(f)x.

Lemma 6.6. For each x ∈ U , the measure µ̂sux is equivalent to the restriction λx|p−1(U) ∩Wc
x.

The limit

∆x(ξ) = lim
r→0

µ̂x(B(ξ, r))

λx(B(ξ, r))

exists for every x ∈ U and ξ ∈ p−1(U) ∩ Ecx, is continuous in both x and ξ, and takes
values in (0,∞).

Proof. For x ∈ U and ξ ∈ Ecx ∩ p−1(U) let

∆x(ξ) = lim sup
r→0

µ̂x(B(ξ, r))

λx(B(ξ, r))
, ∆x(ξ) = lim inf

r→0

µ̂x(B(ξ, r))

λx(B(ξ, r))
.

For µ̂x-almost every ξ ∈ Ecx, we have

∆x(ξ) = ∆x(ξ) ∈ (0,∞].

Since supp (µ̂sux ) = p−1(U) ∩ Ecx, Proposition 6.3 implies that for any two points ξ, ξ′ ∈
U ∩ Ecx, there is a diffeomorphism Hξ,ξ′ : Ecx → Ecx preserving µ̂sux and sending ξ to ξ′.
Since C1 diffeomorphisms have continuous and positive Jacobians, it follows that for any
ξ, ξ′ ∈ p−1(U) ∩ Ecx:

∆x(ξ) = ∆x(ξ) ⇐⇒ ∆x(ξ′) = ∆x(ξ′).

Thus ∆x = ∆x everywhere on Ecx ∩ p−1(U); denote this function by ∆x.

Then µ̂sux has a singular part with respect to λx if and only if there is a positive µ̂sux -
measure set X ⊂ p−1(U)∩Ecx such that, for ξ ∈ X, ∆x(ξ) =∞. On the other hand, again
using the diffeomorphisms Hξ,ξ′ we see that for every ξ, ξ′ ∈ p−1(U) ∩ Ecx:

∆x(ξ) =∞ ⇐⇒ ∆x(ξ′) =∞.
Hence if µ̂sux had a singular part with respect to λx, this would imply that ∆x ≡ ∞ on
Ecx, contradicting the local finiteness of µ̂sux . Therefore µ̂sux is absolutely continuous with
respect to λx. Similarly, we see that λx is absolutely continuous with respect to µ̂sux , and
so the two measures are equivalent.

For x ∈ p−1(U), the function ∆: Ecx ∩ p−1(U) → (0,∞) is a pointwise limit of the
continuous functions

ξ 7→ µ̂sux (B(ξ, r))

λx(B(ξ, r))

and hence is a Baire class 1 function; it follows that ∆ has a point of continuity [23,
Theorem 7.3]. Again using Proposition 6.3, we see that every point in p−1(U) is a point
of continuity of ∆, and so ∆ is continuous on U . �

Recall that for almost every x ∈ M , we have p∗µ̂
su
x = µx, where µx is a representative

of the disintegration of µ = m( : U) on Wc(f)x. The previous lemma thus implies that
p∗µ̂

su
x is equivalent to Lebesgue measure on U ∩Wc(f)x, for almost every x.
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�

7. Circle bundles: proofs of Theorems C, D and E

7.1. Proof of Theorem E. Let M be a manifold of dimension d ≥ 3, and let f ∈ P1
fib(M).

We first prove part (1), which has no accessibility assumptions.

Proof of part (1) of Theorem E (Compare [6, Section 7.2]. Since Wc is absolutely
continuous and one dimensional, the center Lyapunov exponents for f vanish m-almost
everywhere [31]. Theorem 5.5 then gives a continuous disintegration {mc

x : x ∈ M} that
is invariant under s and u holonomy in M .

Let ψt be the continuous flow on M tangent to the leaves of Wc and uniquely defined
by the condition

mc
x ([y, ψt(y))c) = t mod 1,

for all x ∈ M , y ∈ Wc
x and t ∈ R, where [p, q)c denotes the oriented arc between p and q

on Wc
p. Note that ψt+1 = ψt, so ψ in fact defines an action of the circle R/Z on M .

The invariance properties of mc
x translate into invariance properties of the flow:

• ψt commutes with f , and
• ψt commutes with u, s and c holonomy.

Lemma 7.1. The flow ψ preserves the volume m.

Proof. Fix t ∈ R, and write dm = dmc
x dm̄(x), where m̄ is the projection of M to the leaf

space B = M/Wc Since ψ is tangent to the leaves of Wc, we have that (ψt)∗m̄ = m̄. For
any p, q ∈ Wc

x sufficiently close, we have:

mc
x ([p, ψt(p)]

c) +mc
x ([ψt(p), ψt(q)]

c) = mc
x ([p, q]c) +mc

x ([q, ψt(q)]
c) ;

from the definition of ψt, it follows that

mc
x ([ψt(p), ψt(q)]

c) = mc
x ([p, q]c) ,

so that (ψt)∗m
c
x = mc

x. Since dm = dmc
x dm̄(x), we obtain that ψt preserves m.

Fix t ∈ R. Since Wc(f) is leafwise absolutely continuous, and ψt is C1 along the leaves
of Wc(f), the map ψt preserves the measure class of m. Hence ψt has a Jacobian with
respect to volume:

Jac(ψt) =
d ((ψt)

∗m)

dm
.

Since ψt ◦ f = f ◦ψt, it follows that Jacψt(f(t)) = Jac(ψt). This immediately implies that
(ψt)∗m = m. �

Lemma 3.19 implies that the densities

∆(x) = dmc
x/dλ|Wc

x
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vary continuously in x. Thus we have a continuous vector field X on M given by

X(x) =
X0(x)

∆(x)
,

where X0 is the positively oriented unit speed vector field tangent to the Wc-fibers of M .
The vector field X generates the flow ψt, and so ψt is C1 along the fibers of Wc.

The analogous properties holds for the vector field X; in particular:

• X is preserved Df∗
• X is preserved by the derivative of u, s holonomy.

To show C∞ smoothness along the leaves of Wc(f) one first must establish that the
leaves of Wc(f) are C∞. A priori, these leaves have only finite smoothness determined
by the C1 distance from f to ϕ1. However in the case under consideration, in which
volume has Lebesgue disintegration along Wc(f) leaves, we have more information about
the action of f on center leaves.

In particular, since Df preserves a nonvanishing vector field X, it also preserves a
continuous Riemannian metric along the leaves ofWc. Lemma 3.23 implies that the leaves
ofWcs(f),Wcu(f) andWc(f) are C∞, and theWs(f)-holonomies andWu(f)-holonomies
between Wc(f)-leaves are also C∞.

Lemma 7.2. Assume that f is accessible. Then the function ∆ given by Lemma 6.6 is C∞

along leaves of Wc, with derivatives varying continuously from leaf to leaf. Consequently
X is C∞ along the leaves of Wc(f), as is the flow ψt.

Proof. Fix x ∈ M . For any y ∈ Wc
x and any diffeomorphism h of Wc

x preserving mc
x, we

have

(5) ∆x(h(y)) =
∆(y)

Jac(h)(y)
.

If h is C∞, then so is the Jacobian Jac(h). Consider the graph of ∆x:

graph(∆x) = {(y,∆(y)) : y ∈ Wc
x} ⊂ Wc

x × R.

Since the function ∆ is continuous, graph(∆v) is locally compact. If h is an mc
x-preserving

C∞ diffeomorphism, then (5) implies that the C∞ diffeomorphism

(y, t) 7→ (h(y),
t

Jac(h)(y)
)

preserves graph(∆x).

Combining this observation with accessibility of f and the fact that f admits global
su-holonomy, we obtain that for any pair of points q = (y,∆x(y)) and q′ = (y′,∆x(y′))
in graph(∆x), there is a C∞ diffeomorphism of Wc

x × R sending q to q′ and preserving
graph(∆x). That is, the locally compact set graph(∆x) is C∞ homogeneous. Theorem ??
implies that graph(∆x) is a C∞ submanifold of Wc

x × R. Thus ∆x is C∞ off of its
singularities (by “singularities,” we mean points where the projection of graph(∆x) onto
Wc
x fails to be a submersion). But if ∆x has any singularities, then it is easy to see that
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every point in Wc
x must be a singularity, which violates Sard’s theorem. Hence ∆x has no

singularities and therefore is C∞.

To see that the derivatives of ∆x vary continuously as a function of x, note that one
can move from the leaf Wc

x to any neighboring leaf by a composition of local u and s
holonomies. The derivatives of these holonomy maps very continuously with the fiber.
Equation (5) implies that the fiberwise derivatives vary continuously. �

Proof of part (2) of Theorem E

Proof. Let π, p : Ec →M , and µ := m̂U be given by Theorem 5.4. Denote by χc the central
exponent of F` with respect to µ̂.

The case of nonvanishing exponents Suppose that χc 6= 0. Let

X = {x ∈ U : χc(x) = χc},

which is a full measure subset of U . Let X = p−1(X), which is the set of ξ ∈ p−1(U)
where the fiberwise exponent of F is equal to χc.

Then [6, Theorem 4.1] implies that X coincides, up to zero µ̂-measure, with a measurable
set Y ⊂ Ec meeting almost every fiber Ecx, x ∈ U in finitely many points. Setting Y =
p(Y) ⊂ U , we obtain a full measure subset of U that meets Wx, for almost every x ∈ U ,
in finitely many points. Hence case 2a holds in Theorem E.

The case of vanishing exponents

If the central exponent of f is zero on U , then the exponents of Fk vanish µ̂- almost
everywhere. Theorem 4.3 then gives a continuous disintegration {µ̂sux : x ∈ U} of µ̂ over
U that is invariant under both s-holonomy and u-holonomy.

Theorem 6.5 implies that either the disintegration of µ is atomic or {µ̂sux : x ∈ U}
projects to a continuous disintegration {µcx := p∗(µ̂

su
x ) : x ∈ U} of µ. If the disintegration

of µ is atomic, then conclusion (a) holds.

In the latter case, arguing exactly as in the proof of part (1) of Theorem E, we define
a flow ψt on M such that

• ψt is supported in U and is tangent to the leaves of Wc,
• ψt is generated by a nonsingular vector field X,
• (ψt)∗µ

c
x = µcx, for all x ∈ U .

Now consider the action of ψt on a single leafWc
x. If U ∩Wc

x 6=Wc
x, then restricting ψt to a

connected component of U ∩Wc
x 6=Wc

x, we obtain an open interval I ⊂ Wc
x with µcx(I) < 1

with a µcx-preserving nonsingular flow. This is impossible, and hence U ∩Wc
x = Wc

x, for
all x ∈ U . Since f admits global su-holonomy, the accessibility class U must meet every
leaf Wc

x. We thus conclude that f is accessible, and so conclusion (b) holds. �
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Remark 7.3. Generically, the number of points should be 1: use independent su-loops in
the bases; some invariant point must exist, because of the definition of M̂ ; but there is no
reason to have any other one. We want to understand which point this is:

Lemma 7.4. If k = 1 then my = δy for every y ∈M .

Proof. Let mx = δφ(x). By definition mc
x = mx for m-almost every x, that is, for µ-almost

every leaf and mc
x-almost every point in the leaf. In particular, for µ-almost every leaf we

have mc
x = mx = δφ(x) for some point x in the leaf. Since mc

x is a disintegration, the point
x̄ = φ(x) depends only on the leaf. Then E = φ(M) is a full m-measure set, because it
has full mc

x-measure on almost every leaf, restricted to which my = δy. In particular, E is
dense, and so, by continuity, my = δy for every y. �

Lemma 7.5. There exists y 7→ (y1 = y, y2, . . . , yk) continuous with yi 6= yj for all i 6= j

such that my = 1
k

∑k
i=1 δyi for every y ∈M .

Proof. Let ψ : M →M be defined by ψ(y1) = y2 (cyclically). Then ψ is a homeomorphism,
it commutes with f , it fixes the center leaves, it preserves volume. Moreover, it is C1+α

on center leaves, because the uu-holonomy is C1+α on W cu leaves, and the ss-holonomy
is C1+α on W cs leaves. The graph of ψ is C1-homogeneous and is therefore C1. �

7.2. Proof of Theorem C. Assume the center is absolutely continuous. Then part (1)
of Theorem E, gives a flow ψt that is C1 along the leaves of Wc. We show ψt is smooth.
Note that we are not assuming accessibility here, but we will use in an essential way the
assumption that M is 3-dimensional.

The first step is to establish the smoothness of the foliation Wc.

Proposition 7.6. Let M be a 3-manifold, and let f ∈ Pfib(M). IfWc is leafwise absolutely
continuous and the center Lyapunov exponents of f vanish m-almost everywhere, then Wc

is C∞.

Proof. As noted above, since Df preserves the nonvanishing vector field X, Lemma 3.23
implies that the leaves of Wcs(f), Wcu(f) and Wc(f) are C∞, and the Ws(f)-holonomies
and Wu(f)-holonomies between Wc(f)-leaves are also C∞.

We next verify that the restriction of Wc to Wcs-leaves and to Wcu-leaves is C∞. Both
items will follow from the fact that Wc-holonomy preserves the disintegration of volume
along Wu and Ws leaves.

The following lemma is well-known (see formula (11.4) in [8]):

Lemma 7.7. For any foliation box B ⊂ M for Ws, there is a continuous disintegration
of m|B along leaves of Ws (defined at every point p ∈ B). These disintegrations are
equivalent to Riemannian measure in the Ws leaves. The densities of the disintegrations
are C∞ along leaves and transversely continuous. The same is true for Wu.

Lemma 7.8. For any foliation box B, any t ∈ R, and any p ∈ B, the time-t map ψt sends
the disintegration ms

p of m | B along Ws leaves at p to the disintegration ms
ψt(p)

of m|ψt(B)

along Ws leaves at ψt(p).
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Proof. Denote by {ms
p : p ∈ B} the disintegration of m along Ws(g) leaves inside the box

B. By Lemma 7.7, the map p 7→ ms
p is continuous.

Fix t ∈ R. Restricted to a Ws leaf, ψt is the Wc-holonomy map between that leaf and
its image. Since ψt preserves both m and the leaves of Ws , we obtain that

ψt∗m
s
p = ms

ψt(p)
,(6)

for m-almost every p ∈M , where the disintegration on the right hand side takes place in
the box ψt(B). Since p 7→ ms

p is continuous (on both sides of the equation) and ψt is a
homeomorphism, equation (6) holds everywhere.

Since t was arbitrary, this shows that between any two Ws-leaves, the Wc-holonomy
map preserves conditional densities. �

Lemma 7.9. For every t ∈ R, the map ψt is uniformly C∞ alongWs leaves and uniformly
C∞ along Wu leaves.

Proof. Lemma 7.8 implies that ψt satisfies an ordinary differential equation along Ws

leaves with C∞ coefficients, and so the solutions are C∞ and vary continuously with the
leaf. �

Returning to the proof of Proposition 7.6, we have just shown that the Wc-holonomy
maps between Ws-leaves and between Wu-leaves are uniformly C∞. Applying Proposi-
tion 3.22 completes the proof of Proposition 7.6. �

Remark 7.10. For a general f ∈ Pfib(M), it is possible to show by similar methods that
if Wc is leafwise absolutely continuous and the center Lyapunov exponents of f vanish,
then Wc satisfies the stronger property of being absolutely continuous with bounded Ja-
cobians: the center holonomy maps between any two smooth transversals have Jacobian
with respect to volume that is bounded above and below.

7.2.1. The conjugacy is as smooth as the foliation. Finally, we prove

Proposition 7.11. Let f ∈ P1
fib(M), where dimM = 3. If Wc is a C∞ foliation, then f

is C∞ conjugate to a circle extension of a volume preserving Anosov diffeomorphism.

Proof. the assumption thatWc is C∞ implies that the bundle projection M → B = M/Wc

is C∞. Using the C∞ flow ψt, we endow this bundle with a T-structure on the fibers in
which f acts as a translation on the fibers.

To this end, let {Uα} be an open cover of B, and let hα : Uα × S1 → π−1(Uα) be C∞

foliation charts for M → B. Define new charts ĥα : Uα × T→ π−1(Uα) by

ĥα(b, t) = ψt(hα(b, 0)).

Note that if Uα ∩ Uβ is non-empty then

ĥβ ◦ ĥ−1
α : (Uα ∩ Uβ)× T→ (Uα ∩ Uβ)× T
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is of the form hβ ◦ h−1
α (b, t) = (b, t + θα,β), which gives B the structure of a T bundle

over B. Since f commutes with ψt these charts, f acts by a translation on the T-fibers,
projecting to a diffeomorphism f̄ : B → B.

Write dm = mc
x dm̄(x), where {mc

x : x ∈ M/Wc} is the smooth disintegration of m
along Wc leaves, and m̄ is pushforward of m under M → B. Clearly the map f̄ is a C∞

Anosov diffeomorphism, preserving m̄, which is smooth measure on B. �

7.3. Proof of Theorem D. Theorem D follows immediately from case (ii) of Theorem E.

8. Higher center dimension: proof of Theorem F

Here we prove Theorem F.

Let f ∈ Pfib(M), and assume that f is accessible and that the center exponents of f
vanish. Let {mc

x} be a disintegration of volume along center leaves, let π : Ec → M , p,
and m̂ be a measure on Ec with π∗m̂ = m and p∗(m̂x) = mc

x for m-almost every x ∈ M ,
and any disintegration {m̂x : x ∈M} along fibers of Ec.

Let {m̂su
x : x ∈M} be the continuous, holonomy-invariant disintegration of m̂ given by

Theorem 5.8, and for x ∈ M , let Xx ⊂ Ecx be the support of m̂su
x . Theorem 6.4 implies

that Xx is a C1 submanifiold of Ecx, for every x ∈M and the connected components of Xx

are diffeomorphic to each other.

Lemma 8.1. For almost every x ∈M and every y ∈ p(Xx), we have p∗m̂
su
y = mc

x. That
is, p∗m̂

su
y is constant on p(Xx).

Proof. The proof is similar to that of Lemma ??. We start by noting that since m̂su
x is a

disintegration of m̂, we have that p∗m̂
su
x = mc

x and p(supp (m̂su
x )) = supp (mc

x) at m-almost
every point x ∈M . That is, for m-almost every x, and mc

x-almost every y ∈ Wc
x, we have

p∗m̂
su
y = mc

y = mc
x and p(Xy) = supp (mc

y) = supp (mc
x) and Hence for m-almost every

x and a dense set of y ∈ supp (mc
x), we have p∗m̂

su
y = mc

x and p(Xy) = supp (mc
x). The

left hand side of the latter equation depends continuously on y ∈ M , and the right hand
side is constant on Wc

x. Thus for m-almost every x and every y ∈ supp (mc
x) = P (Xx), we

have p∗m̂
su
y = mc

x (and p(Xy) = supp (mc
x)). The lemma is proved. �

Lemma 8.2. For x, x′ ∈M , p(Xx) and p(Xx′) are either disjoint or coincide.

Proof. Suppose that for some x, x′ ∈M , we have p(Xx) ∩ p(Xx′) 6= ∅. Using accessibility
and applying su-holonomy to Xx and Xx′ , we may assume that x is m-typical, and by
Lemma 8.1, in particular that for y ∈ p(Xx), we have p∗m̂

su
y = mc

x. Thus for y ∈ Xx∩Xx′ ,
p(Xy) = p(Xx). Reversing the roles of x, x′, we obtain that p(Xy) = p(Xx′), and so
p(Xx) = p(Xx′). �

The collection Wcc := {p(Xx) : x ∈ M} is a continuous family of compact, C∞ sub-
manifolds on M , tangent to the leaves of Wc, and preserved by both s and u holonomies.
It is thus a foliation of M that subfoliates Wc.
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Lemma 8.3. The foliation Wcc is leafwise absolutely continuous.

Proof. The proof is similar to the proof of Theorem 6.5.

For x ∈ M , denote by λx the Riemannian measure on Xx and denote by B(ξ, r) the
ball in Ecx centered at ξ of radius r, with respect to the p-pullback metric of the Riemann
structure on Wc(f)x.

Lemma 8.4. For each x ∈ M , the measure m̂su
x is equivalent to the restriction λx. The

limit

∆x(ξ) = lim
r→0

m̂x(B(ξ, r))

λx(B(ξ, r))

exists for every x ∈M and ξ ∈ Xx, is continuous in both x and ξ ∈ Xx, and takes values
in (0,∞).

Proof. For x ∈M and ξ ∈ Xx let

∆x(ξ) = lim sup
r→0

m̂x(B(ξ, r))

λx(B(ξ, r))
, ∆x(ξ) = lim inf

r→0

m̂x(B(ξ, r))

λx(B(ξ, r))
.

For m̂x-almost every ξ ∈ Xx, we have

∆x(ξ) = ∆x(ξ) ∈ (0,∞].

Since supp (m̂su
x ) = Xx, Proposition 6.3 implies that for any two points ξ, ξ′ ∈ Xx,

there is a diffeomorphism Hξ,ξ′ : Xx → Xx preserving m̂su
x and sending ξ to ξ′. Since C1

diffeomorphisms have continuous and positive Jacobians, it follows that for any ξ, ξ′ ∈ Xx:

∆x(ξ) = ∆x(ξ) ⇐⇒ ∆x(ξ′) = ∆x(ξ′).

Thus ∆x = ∆x everywhere on Xx; denote this function by ∆x.

Then m̂su
x has a singular part with respect to λx if and only if there is a positive m̂su

x -
measure set B ⊂ Xx such that, for ξ ∈ B, ∆x(ξ) = ∞. On the other hand, again using
the diffeomorphisms Hξ,ξ′ we see that for every ξ, ξ′ ∈ Xx:

∆x(ξ) =∞ ⇐⇒ ∆x(ξ′) =∞.

Hence if m̂su
x had a singular part with respect to λx, this would imply that ∆x ≡ ∞ on

Xx, contradicting the local finiteness of m̂su
x . Therefore m̂su

x is absolutely continuous with
respect to λx. Similarly, we see that λx is absolutely continuous with respect to m̂su

x , and
so the two measures are equivalent.

For x ∈ M , the function ∆x : Xx → (0,∞) is a pointwise limit of the continuous
functions

ξ 7→ m̂su
x (B(ξ, r))

λx(B(ξ, r))

and hence is a Baire class 1 function; it follows that ∆x has a point of continuity [23,
Theorem 7.3]. Again using Proposition 6.3, we see that every point in M is a point of
continuity of x 7→ ∆x, and so ∆ is continuous on M . �
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Now for almost every x ∈ M , we have p∗m̂
su
x = mc

x, and so Lemma 8.4 implies that
p∗m̂

su
x is equivalent to Lebesgue measure on p(Xx) =Wcc

x , for almost every x. Thus Wcc

is leafwise absolutely continuous. �

Lemma 8.5. If f is k-bunched, for some k ≥ 2, then the restriction of Wcc to Wc-leaves
is uniformly Ck−1.

Proof. Fix x ∈M and consider the leafWc
x. The restriction ofWcc toWc

x is a subfoliation
invariant under su-holonomy in M . Since f is k-bunched and accessible, the holonomy
acts Ck and transitively on Wc

x. Proposition 6.2 implies that Wcc is a Ck subfoliation of
Wc
x.

�

9. Systems with mostly compact leaves: proof of Theorem G

Let f be a C2 volume preserving, partially hyperbolic, dynamically coherent diffeomor-
phism on some compact manifold M .

Theorem 9.1. Assume the center foliation of f is leafwise absolutely continuous, the
center leaves are compact for all points in a dense Gδ, and the center Lyapunov exponents
vanish m-almost everywhere. Then all leaves are compact and have bounded Riemannian
volume.

Before proving Theorem 9.1 we discuss some preliminary facts about the leafwise prop-
erties of foliations.

9.1. Foliations with the generic leaf compact. Recall that if F is a foliation of a
manifold M , then we say that the generic leaf of F is compact if there exists a dense Gδ
subset C ⊂M such that for every x ∈ C, the leaf Fx is compact.

Lemma 9.2. Let F be a foliation of M with C1 leaves. If the generic leaf of F is compact,
then there exists an open and dense, F-saturated set O ⊂ M restricted to which F is a
fiber bundle.

Proof. Consider the function φ : x 7→ vol(Fx) assigning to each point the volume (pos-
sibly infinite) of the leaf through it. Since the leaves are a locally continuous family of
submanifolds, the function φ is lower semi-continuous:

lim inf vol(Fxn) ≥ vol(Fx)

for any sequence (xn)n converging to some point x ∈ M . Hence, there exists a residual
subset R of M such that every x ∈ R is a continuity point for φ. Notice that φ is constant
on F-leaves and the set of continuity points is F-saturated. So, we may take R to be
F-saturated. Intersecting with the dense Gδ in the statement, we may have assume that
every leaf through R is compact. Then F is a fiber bundle on an (open) neighborhood of
every leaf through R. The union of such neighborhoods is a set O as in the statement. �
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Proposition 9.3. If f is partially hyperbolic, volume preserving, and dynamically coher-
ent, and the generic leaf of Wc is compact, then the set O in Lemma 9.2 is f -invariant
and has full volume. Moreover, for almost every x ∈ M the stable and unstable leaves of
x are contained in O.

Proof. Invariance follows replacing O by its f -orbit, if necessary. Now let µ be an ergodic
component of the volume measure. The conditional probabilities along (local) unstable
leaves of the measure µ and of the volume measure itself coincide µ-almost everywhere.
This is because the σ-algebra of measurable invariant sets is contained in the σ-algebra of
measurable sets consisting of entire unstable leaves (cf. also [1, Lemma 6.2]). Since the
unstable foliation is absolutely continuous, it follows that for almost every ergodic compo-
nent µ its conditional probabilities along unstable leaves are equivalent to the Riemannian
measure on the leaf. In particular, the support of almost every ergodic component is u-
saturated and, by a dual argument, s-saturated. It follows that the ω-limit set of Lebesgue
almost every x ∈M contains some su-saturated set. Then the c-saturate of ω(x) has non-
empty interior, and so it intersects the dense set O. Since O is c-saturated, open, and
invariant, it follows that x ∈ O. This proves O that has full volume. Finally, since O
is open and invariant, we have that Ws

x and Wu
x are contained in O whenever x ∈ O is

recurrent. This completes the proof of the proposition. �

9.2. Foliations whose leaves have bounded volume. Let F be a foliation on some
manifold M and L be some compact leaf. Let Σ be a cross-section to the foliation at some
point p ∈ L. The holonomy group of L is the group of germs at p of the projections along
F-leaves from Σ back to itself. The choice of p and Σ is irrelevant because different choices
give rise to groups that are isomorphic. The following result is contained in Theorem 4.2
of Epstein [15]:

Theorem 9.4. Let F be a foliation of a manifold M whose leaves are all compact, with
bounded volume. Then every center leaf has finite holonomy group.

We use this to show

Theorem 9.5. Let f be a partially hyperbolic, dynamically coherent diffeomorphism with
dimEs = dimEu = 1 and whose center leaves are compact with uniformly bounded volume.

Then there exists a covering map π : M̃ →M (at most 4-to-1) such that the lift of the

center foliation to M̃ is a fiber bundle, and f lifts to a fibered diffeomorphism on M̃ .

Proof. By Theorem 9.4, the assumption implies that the holonomy group of every leaf is

finite. Let π : M̃ →M be the covering map that orients both the stable foliation and the

unstable foliation: each point of M̃ is a triple (x, εs, εu) with x ∈ M and εs and εu are
orientations of the stable and unstable directions, and π is just the projection to the first

coordinate. Endow M̃ with the smooth structure obtained from M by pull-back under π.

Then the natural lift f̃ : M̃ → M̃ of f is a diffeomorphism. The covering space M̃ needs
not be connected, if either the stable foliation or the unstable foliation are orientable.



42 A. AVILA, M. VIANA, AND A. WILKINSON

However, the connected components are canonically identified through diffeomorphisms

(7) (x, εs, εu) ∼ (x,±εs,±εu).

Thus, it is no restriction to suppose M̃ is connected: just replace it by any connected
component and replace f̃ by its composition with an appropriate identification map as

in (7). It is clear that the invariant foliations of f lift to f̃ -invariant foliations W̃c, W̃s,

W̃u, W̃cs, W̃cu on the covering space. Moreover, the leaves of W̃c are compact and the

leaves of W̃s and W̃u have dimension 1. Consider any leaf L̃ and let p̃ ∈ L̃. By dynamical
coherence, each element of the holonomy group defines a germ of orientation-preserving

homeomorphisms on the stable leaf W̃s
p̃ . Since the holonomy group is finite, this germ

must have finite order. In dimension 1 this implies that the germ is the identity. The
same argument proves that every element of the holonomy group is the identity along the

unstable leaf W̃u
p̃ . Hence, by product structure, the holonomy group is trivial, for every

leaf L̃ of W̃c. Equivalently, the center foliation W̃c is a fiber bundle, as we wanted to
prove. �

9.3. Proof of Theorem 9.1. Having made these preliminary observations, we now return
to the proof of Theorem 9.1.

Proof. Recall from Section 9.1 that there is an open and dense subset O ⊂M so that the
restriction of Wc to O is a fiber bundle.

The invariance principle (Theorem 5.1) with Oc = Ocs = Ocu = O implies that there
exists a continuous disintegration {mx : x ∈ O} of m into probabilities measures supported
in Wc

x with x ∈ O. Moreover, for each x ∈ O and y ∈ W∗(x), with ∗ ∈ {s, u}, we have
that mx is pushed forward by h∗x,y to my.

Lemma 9.6. For any x, y ∈ O, if x is connected to y by an su-path in M , then mx pushes
forward to my under the corresponding composition of holonomies.

Proof. The conclusion obviously holds if the corners of the su-path lie in O. But because O
is open and dense, any su-path can be approximated arbitrarily well by a path with corners
in O. Continuity of the disintegration then implies the result for arbitrary su-paths. �

Corollary 9.7. There exists a disintegration {mx : x ∈ M} of volume into measures mx

in M such that

(1) mx is constant on every center leaf and is absolutely continuous with respect to the
Riemannian measure along Wc

x;
(2) for any C > 0, there exists ε0 > 0 such that for any su-path of length ≤ C

from x to y, the corresponding holonomy h sends the restriction mx | Bc(x, ε0) to
my|h(Bc(x,ε0));

(3) mx depends continuously on x in the following local sense: for every ε sufficiently
small, the function x 7→ mx(Bε(x)) is continuous (Bε denotes the Riemannian ball
of radius ε);

(4) for every ε > 0 there exists δ > 0 such that for every center ball Bc ⊂ Wc
x of radius

ε, we have mx(Bε) > δ;
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(5) there exists δ > 0 such that δ ≤ mx(Wc
x) ≤ 1 for every x.

Proof. As O is open, dense and c-saturated, every point in M may be connected to a
point in O by a 2-leg su-path of arbitrarily small length. For any y ∈ Wc

x we define mx

on a small ball B(y) around y by connecting y to some z ∈ O by such a path and and
then pulling mz back under stable and unstable holonomies. Lemma 9.6 ensures that
this is consistent. By construction, mx is constant on the center leaf Wc

x. Moreover, it
is absolutely continuous, since mz is absolutely continuous and the stable and unstable
holonomies are absolutely continuous (indeed, C1 in the fiber bunched case at hand).

Claim (2) also follows from the construction.

Now we prove claim (3). Continuity in the center direction follows, simply, from the
fact that the boundary of Bε(x) has zero measure (because mx is absolutely continuous).
Then transverse continuity follows from the holonomy invariance in claim (2), using once
more that boundaries have zero measure.

Claim (4) follows from compactness, the continuity property in (3), and the fact that
the measure of balls never vanishes: otherwise, by holonomy invariance, it would vanish
on a whole open set, contradicting the fact that the mx are a disintegration of Lebesgue
measure.

Concerning claim (5), notice first that mx(Wc
x) ≤ 1 for every x ∈ M : If there existed

L ⊂ Wc
x with mx(L) then by considering a short two-leg su-path we could map this to

some L′ inside a leaf Wc
z ⊂ O, getting a contradiction. �

Parts (3) and (5) of Corollary 9.7 imply that the center leaves have bounded volume.
This completes the proof of Theorem 9.1. �

Finally, we prove Theorem G.

Proof of Theorem G. Suppose that f satisfies the hypotheses of Theorem G. By Theo-
rem 9.5, all center leaves are compact and they have bounded volume. Then, by Theo-
rem 9.4, every center leaf has finite holonomy. Moreover, if dimWs = dimWu = 1, we

can use Theorem 9.5: there exists π : M̃ →M such that the lift of the center foliation to
M̃ is a fiber bundle, and f lifts to a diffeomorphism on M̃ . This completes the proof of
Theorem G. �

10. Center fixing maps: proof of Theorem H

The proof is similar in structure to the proof of [6, Theorem A], where the same result
is shown for perturbations of the time-one map of the geodesic flow on a negatively curved
surface. The difficulty is constructing up a fiber bundle in which one can carry out the
arguments. We indicate where the appropriate modifications occur.
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10.1. Setting up a fiber bundle. As before, let f ∈ P(M) with leafwise absolutely
continuous center foliation, and let m denote the volume measure. Here we provide a
setup for the application of the invariance criterion in Theorem 5.1 under the assumption
that f ∈ P1

fix(M). Recall this means that the center is one-dimensional and all center
leaves are fixed by the diffeomorphism:

dimEcx = 1 and f(Wc
x) =Wc

f(x) for every x ∈M .

Each center leaf Wc
x is either a circle or an injectively immersed copy of the real line. In

the latter case, we denote by [y, z] the closed leaf segment determined by any two points
y, z ∈ Wc

x and similarly define the half-open segment [y, z) (here we do not assume that
Wc is orientable, but in the course of the proof, we will show this).

We now construct a circle bundle Ec over M admitting s, u and c holonomies, a diffeo-
morphism cocycle Fc : Ec → Ec covering f and an F-and c-invariant probability measure
m̂, covering m. Roughly, the fiber of Ec over x will correspond to Wc

x/f , and the condi-
tional measures mx will be the probability measures whose Wc-lifts are representatives of
the disintegration of Lebesgue. In practice, there are issues, such as closed Wc-leaves and
potential fixed points for f , that complicate the construction, which we now address.

Since the leaves of Wc can be both circles and lines, there is no global su-holonomy,
and the construction in Proposition 5.3 no longer produces a fiber bundle in the present
setting. We remedy this problem by working instead in the continuous line bundle Ec.

Regarding the fiber Ecx over x as the universal cover W̃c
x, we will construct a lift F̃ :

Ec → Ec of f and compatible holonomies on Ec. We will also construct a special bundle

map G on Ec, covering the identity, and commuting with F̃ and the holonomies. The
bundle Ec will be constructed as the quotient Ec/G.

For each x ∈ M , the manifold Wc
x carries an induced Riemannian structure and hence

has a “center exponential map” expcx : Ecx →Wc
x which is a covering map, sending 0 to x

and the point t ∈ Ecx ∼= R to the point a signed distance t from x on Wc
x (in the induced

metric). We define F̃ to be the lift of the action of f by expc; it is the unique continuous

map fixing the 0 section of Ec and satisfying (expcf(x))
−1 ◦ F̃x = f ◦ expcx at every x ∈ M

(note that this map is well-defined for points with compact center leaves, since every circle
homeomorphism has a unique lift to the universal cover once the image of a single point
– in this case, the image of 0 ∈ Ecx – is specified.)

We now address the issue of defining holonomies for F̃ and a special map G on Ec. Let
O ⊂ M be the set of points in M with open (i.e., noncompact) center leaves. The next
lemma implies that O is a dense, full-volume subset of M .

Lemma 10.1. For f ∈ P1
fix(M), the set of compact center leaves is countable, and so is

the set of center leaves containing fixed points.

Proof of Lemma 10.1. Let L0 be any compact center leaf, and suppose it is accumulated
by compact center leaves Ln with bounded length. Since L0 is normally hyperbolic, there
exists δ > 0 such that every Ln has some forward or backward iterate at distance ≥ δ
from L0. That cannot be, because every Ln is fixed under f . This contradiction proves
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that the set of compact leaves with length bounded by any large constant is discrete and,
hence, finite. Thus, the set of compact center leaves is countable, as stated in the first
part of the lemma.

The claim in the second part uses the same kind of argument. Let p0 be a fixed point
contained in some center leaf L0 and suppose it is accumulated by fixed points pn in center
leaves Ln distinct from L0. By normal hyperbolicity, each pn has some iterate at distance
≥ δ from p0, but that cannot be, because f(pn) = pn. This contradiction proves that any
fixed point close to p0 must be contained in the same local center leaf. It follows that at
most countably many leaves contain fixed pints, as claimed. �

The center exponential map gives a natural means to define c-holonomies on Ec. Let
γ be a path lying in the leaf Wc(γ(0)), and let γ̃ be the unique lift of γ to Ecγ(1) under

(expcγ(1))
−1 with γ̃(0) = 0. Setting Hc

γ(0) = γ̃(1) determines a unique continuous map

Hc
γ : Ecγ(0) → Ecγ(1) satisfying expcγ(1) : Hc

γ = expcγ(0). It is clear that this construction

depends only on the leafwise homotopy type of the path γ and that it is continuous. The
restriction of c-holonomy to O is of product type: for x ∈ O and y ∈ Wc

x, the map Hc
x,y is

just the diffeomorphism (expcy)
−1 ◦ expcx. Clearly c-holonomy is F̃-invariant on O; since O

is dense, this invariance extends to all of M .

We next define G. Since f is center fixing, for each x ∈ O, the restriction of f to
Wc
x lifts to a unique diffeomorphism Gx = (expcx)−1 ◦ f ◦ expcx : Ecx → Ecx. Note that

by construction Hc
x,x′ ◦ Gx = Gx ◦Hc

x,x′ for every x ∈ O. This defines a bundle map G,
covering the identity, over O. We use the next lemma to extend G to continuous bundle
over all of M . For x ∈ M , let `(x) denote the length of the central segment [x, f(x)],
which vanishes precisely when x is fixed by f . Note that ` is a continuous function on O.
We have:

Lemma 10.2. If f ∈ P1
fix(M), then there exists δ0 > 0 such that `(x) ≥ δ0, for every

x ∈ O.

Proof of Lemma 10.2. Recall that since Ec is one-dimensional, the local stable and un-
stable holonomy maps between center manifolds are uniformly C1. Hence there exists a

constant c0 ≥ 1 such that for ∗ ∈ {s, u}, and for any x, x′ with x′ ∈ W∗,loc
x , the derivative

of h∗x,x′ lies in [c−1
0 , c0].

There exist positive constants k ∈ N and R ∈ R such that for every x, y ∈M , there is a

sequence of points x0, x1, . . . xk with xi+1 ∈ Wai,loc
xi , for ai ∈ {s, u}, and xk ∈ Wc,R

y , where

Wc,R
y denotes the ball of radius R in Wc

y. Fix such k and R.

Since ` is not identically 0, there exists a point x0 ∈ M with Wc
x0 open, such that

`(x0) > 0; let `0 = `(x0). Let y be any point whose center leaf is open, and fix a sequence
{x0, . . . , xk = y} as above. Consider the arc [x0, f(x0)] of Wc

x0 connecting x0 to f(x0),
parametrized as a unit-speed path γ0. The image of γ0 under Wa1-holonomy haix0,x1 is a
nonsingular path γ1 in Wc

x1 from x1 to ha1x,x1(f(x)) = f(x1).
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Inductively, we set γi = haixi−1,xi ◦ γi−1. Then γk is a nonsingular path from xk to f(xk);

since the center leaf of y = xk is open, it follows that `(y) is equal to the length of γk. It

follows that if `0 is sufficiently small (for example `0 = O(c−k0 )), then the length of γk is
less than or equal to ck0`0. Since y was arbitrary, this implies that supy infWc,R

y
`(y) ≤ ck0`0.

Hence `0 cannot be arbitrarily small, for then every open center leaf in M would have a
fixed point for f , contradicting Lemma 10.1. By the same token, if ` vanishes on some
open center leaf, then every open center leaf in M has a fixed point for f . It follows that
` is bounded below on open center leaves. �

Since `(x) ≥ δ0 > 0 for all points with open center leaf, there is an orientation on the
open Wc leaves so that [x, f(x)) is positively oriented. This orientation is preserved by
f and by su-holonomy and so extends continuously to compact leaves and thus to the
bundle Ec. It follows that Gx(v)− v ≥ δ0 > 0, for all v ∈ Ecx and x ∈ O. Note also that G
is continuous over the set of points with open center leaves (though a priori not uniformly
continuous, as we have not shown that ` is bounded above). To extend G to M we use
the stable holonomy maps.

Let y be a point with compact center leaf. To define Gy, we note that for any such

y and any x ∈ Ws,loc
y different from y, the leaf Wc

x is open (since normal hyperbolicity
forbids one compact center leaf from lying in the local stable manifold of another compact
leaf). Fix such an x; since Wc

x is f -invariant, and x lies in the stable manifold of Wc
y, we

may assume that the positive arc [x,∞) of Wc
x lies in the local stable manifold of Wc

y;
then the stable holonomy hsx,y ontoWc

y is defined on [x,∞) and is a local homeomorphism.
The image of the interval [0,Gx(0)) under the covering map expcx is the path [x, f(x)) in
Wc
x. The image of this path under hsx,y is a path in Wc

y from y to f(y). We lift this path

by (expcy)
−1 to a path from 0 to t′ ∈ Ecy, and we set Gy(0) = t′. This choice of Gy(0)

determines a continuous map Gy on all of Ecy satisfying expcy Gy = f ◦ expcy, via the usual
lifting procedure. Observe that, since G is continuous over the set of points with open

center leaves, this definition of Gy does not depend on the choice of x ∈ Ws,loc
y and is

continuous at y along Ws
y .

Since G is continuous over the set of points with open center leaves, and G is continuous
along Ws-leaves, this defines a continuous bundle map G : Ec → Ec covering the identity
on M ; it has the two key properties that expcx ◦Gx = f ◦ expcx and Gx(v)− v ≥ δ0 > 0, for
all x ∈M and v ∈ Ec(x). In particular, it follows that

Ecx =
⊔
k∈Z

[Gk
y(0),Gk+1

y (0)),

for each x ∈ M . Since G is continuous and commutes with c-holonomy on the dense set
O, it commutes with c-holonomy everywhere on M .

We next describe how to define s- and u-holonomy maps on Ec, commuting with F̃ and

G and compatible with c-holonomy. Suppose x ∈ M and y ∈ W∗,loc
x , for ∗ ∈ {s, u}. We

define a map H∗x,y : Ecx → Ecy as follows. We first define H∗x,y on the interval [0,Gx(0)) in
Ecx. For t ∈ [0,Gx(0)), the image of [0, t) under the covering map expcx is a path in Wc

x0
from x to expcx(t). The image of this path under holonomy h∗x,y to Wc

y is a path from y
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to h∗x,y(expcx(t)). We lift this path by (expcy)
−1 to a path from 0 to t′ ∈ Ecy, and we set

Hs
x,y(t) = t′. Since f commutes with W∗ holonomy, which is a local homeomorphism, the

interval [0,Gx(0)) is mapped by H∗x,y homeomorphically onto the interval [0,Gy(0)).

We extend the definition of H∗x,y to all of Ecx =
⊔
k[G

k
x(0),Gk+1

x (0)) by setting H∗x,y =

Gk
y ◦H∗x,y ◦G−kx on [Gk

x(0),Gk+1
x (0)). Then H∗x,y is a homeomorphism onto⊔

k

[Gk
y(0),Gk+1

y (0)) = Ecy.

This defines H∗x,y, for ∗ ∈ {s, u}; by construction, H∗x,y commutes with F̃ and G and is
compatible with c-holonomy.

Now let Ec = Ec/G be the quotient of Ec under the action of G. Since G fixes the
fibers of Ec and has no fixed points, Ecs is still a fiber bundle over M , whose leaves are

all circles. We also get that F̃ projects down to a diffeomorphism cocycle F : Ec → Ec and

the holonomies of F̃ project down to compatible holonomies of F.

The next step is to construct a σ-finite measure mc on Ec whose restriction to a G
fundamental domain is a probability measure that projects down to m. The measure

mc is both F̃- invariant and c-invariant. Let {mx} be a disintegration of m along center
leaves, which is defined on a full volume c-saturated set which we denote by M c. For each
x ∈M c ∩O, choose a representative mx of the conditional class mx normalized by

(8) mx([x, f(x))) = 1.

This choice of normalization immediately implies that

(9) f∗mx = mf(x).

By Proposition 3.11, (8) implies that

(10) mx([y, f(y))) = 1 for every y ∈ Wc
x,

so that we have

(11) my = mx for every y ∈ Wc
x.

Pushing mx forward by expcx
−1 gives a measure mc

x on Ecx, and letting mc = mc
xdm(x) we

obtain an invariant (by (9)) and c-invariant (by (11)) measure for F̃.

By the choice of normalization in (8), mc is the lift of a probability measure m̂ on Ec
which is c- and F-invariant.

The induced Riemannian metric on Wc leaves pulls back via expcx to a Riemannian

metric on Ecx, with respect to which the Lyapunov exponent of any z ∈ Ecx under F̃
coincides with that of expcx(z) under f .

10.1.1. Application of the invariance principle.

Lemma 10.3. If the center Lyapunov exponent vanishes m-almost everywhere then there
is a continuous disintegration {m̂c

x : x ∈M} of mc along Ec fibers, which is cF -invariant,
and s, u and c-holonomy invariant.
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Proof. By assumption the center Lyapunov exponents of F̃ are zero for mc-a.e. z (by
construction of mc).

Let S ⊂ Ec be the “half-closed” set bounded by the zero-section of Ec and its image
under G, including the former and excluding the latter. Since S is precompact, the quotient
map Ec → Ec has bounded derivative at S, hence the Lyapunov exponents of m̂ (which
is the push-forward of mc|S by the quotient map) are also zero. Applying Theorem 5.1
now yields that there is a holonomy-invariant disintegration m̂x of m̂ along the fibers of
Ec over M . �

10.2. Proof of part (1) of Theorem H. We assume that Wc is leafwise absolutely
continuous, which implies as in [6] that the center Lyapunov exponents vanish m-almost
everywhere. Then Lemma 10.3 gives a holonomy-invariant disintegration m̂x of m̂ along
the fibers of Ec over M . This lifts to a family of Radon measures m̂c

x on Ec that is invariant
under F , G, and s, u and c holonomies.

Continuity of the foliationWc implies that a small enough interval (−ε, ε) in Ec projects
under expc to a local center manifold in M . The c-invariance of the measures m̂c

x implies
that there is a coherent projection to a continuous family of Radon measures mc

x on
the leaves of Wc invariant under f and su-holonomy. In any local folation chart, these
measures restrict to a disintegration of m, and for any open leaf of Wc, we have that
mc
x[x, f(x)) = 1.

As in Section 7.1 we define a local flow ψt on M via the relation

mx ([y, ψt(y))c) = t,

for t ∈ (−ε, ε). This extends to a global flow in the obvious way, and by construction
we have ψ1 = f . The proof now proceeds exactly as the proof of part (1) of Theorem E
in Section 7.1, where the arguments establishing the properties of ψt are entirely local in
nature (see also [6], where the same thing is proved assuming accessibility).

10.3. Proof of Part (2) of Theorem H. We prove part (2) of Theorem H. Suppose
U 6= ∅ is an open accessibility class for f ∈ P1

fix(M).

10.3.1. The case of nonvanishing exponents. Suppose that χc 6= 0. Let

X = {x ∈ U : χc(x) = χc},

which is a full measure subset of U . Let X = (expc)−1(X) ⊂ Ec, which is the set of
ξ ∈ (expc)−1(U) where the fiberwise exponent of F is equal to χc; it is clearly F and
G-invariant. Let X ′ be the projection of X to E . Then [6, Theorem 4.1] implies that X ′
coincides, up to zero µ̂-measure, with a measurable set Y ′ ⊂ Ec meeting almost every
fiber Ecx, x ∈ U in finitely many points. Pulling back to Ec, we obtain an F-invariant
measurable subset Y ⊂ Ec whose projection to M has full measure in U and that meets
each Ec fiber in finitely many G-orbits. Setting Y = exp(Y) ⊂ U , we obtain a full measure
subset of U that meets Wx, for almost every x ∈ U , in finitely many f -orbits. Hence
case 2a holds in Theorem H
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10.3.2. The case of vanishing exponents. As in the proof of part 2 of Theorem E, we
deduce that either the restriction of m to U is atomic, or there is a flow ψt supported in
U and nonsingular in U , tangent to the leaves of Wc and preserving the restriction m|U .
This implies that for every x ∈ U , we have Wc

x ∩ U = Wc
x. Thus U is c-saturated. But

U is an accessibility class, and so is u and s-saturated. It follows that U = M and f is
accessible.

11. Examples and questions

We have seen that there is a dichotomy for some conservative, accessible systems with
one-dimensional center: either the center is absolutely continuous or the disintegration
of Lebesgue measure along the center foliation is atomic. While these results are quite
general, some interesting questions remain, which we pose here.

11.1. Zero exponents and atomic disintegrations. Let us discuss an example of A.
Katok showing that the center foliation may fail to be absolutely continuous and, in fact,
the disintegration of Lebesgue measure along center leaves may be atomic even when the
center Lyapunov exponents vanish.

Let {ft : T2 → T2 : t ∈ R/Z} be a smooth family of area preserving Anosov diffeomor-
phisms with the following property: for all s, t ∈ R/Z with s 6= t, the diffeomorphisms
fs and ft are conjugate by a homeomorphism hs,t : T2 → T2 near the identity, but they
are not smoothly conjugate. One can obtain such a family by, for example, smoothly
perturbing a linear Anosov diffeomorphism in a neighborhood of a fixed point. It follows
from [14] that hs,t is not absolutely continuous, in fact there is no absolutely continuous
conjugacy between fs and ft, if s 6= t.

Define f : T2 × R/Z→ T2 × R/Z by f(x, t) = (ft(x), t). Then f is partially hyperbolic
and preserves the Lebesgue measure λ3 on T2 × R/Z. The leaf of the center foliation
through each (x, s) ∈ T2 × R/Z is the smooth curve

Wc
(x,s) = {(hs,t(x), t) : t ∈ R/Z}.

It is easy to see that the center Lyapunov exponent of f vanishes almost everywhere. Let
Z be the set of points (x, s) ∈ T2 × R/Z such that x is λ2-regular for the diffeomorphism
fs and the Lebesgue measure λ2 on T2. Observe that Z has full λ3-measure.

Lemma 11.1. The set Z meets each leaf of Wc in at most one point. Hence, any dis-
integration of m along the leaves of Wc is atomic, supported on a single point in each
leaf.

Proof. Let (x, s) ∈ Z, and fix t 6= s. The measures λ2 and (hs,t)∗(λ2) are both ergodic for
ft. Since hs,t is not absolutely continuous, these measures are therefore mutually singular.
Since x is regular for fs and the measure λ2, it follows that hs,t(x) is regular for ft and the
measure (hs,t)∗(λ2). So, hs,t(x) cannot be regular for ft and the measure λ2. This means
that (hs,t(x), t) /∈ Z, for all t 6= s or, in other words, Wc

(x,s) ∩ Z = {(x, s)}. This proves

the first statement in the lemma. The second one is a direct consequence, because the set
Z has full measure. �
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One can also give an explicit description of the disintegrations ms
x and mu

x that appeared
in the proof of the invariance theorem. Define Zs to be the set of (x, s) such that x is
a forward-regular point for fs and λ2, and define Zu to be the set of (x, s) such that x
is a backward-regular point for fs and λ2. Then Zs = Zu = Z mod 0, all three sets are
f -invariant, the set Zs is Ws-saturated, and the set Zu is Wuu-saturated. Arguing as in
the proof of Lemma 11.1, it is easy to see that Zs meets each leaf of Wc in at most one
point, as does Zu. Hence, for almost every point x ∈M/Wc, there exists p ∈M such that
Zs ∩ Wc

x = {p}; for such x, we set ms
x = δp. The measures mu

x are defined analogously.
Then x 7→ ms

x is s-invariant, and x 7→ mu
x is u-invariant. While the two functions coincide

almost everywhere, Lemma 3.19 implies that there is no disintegration x 7→ mx that is
simultaneously s-invariant and u-invariant (at all points, not just almost all). So, the
conclusion of Theorem 5.5 does not hold in this case.

11.2. Non-accessible ergodic cases. The preceding discussion leads us naturally to the
following question.

Problem 11.2. Let f : M → M be an ergodic (but not accessible), C2 volume preserving
perturbation of an Anosov skew product with circle fiber. Is it possible for the disintegra-
tion of Lebesgue along the center foliation to be continuous (i.e. nonatomic), but singular
with respect to Lebesgue measure on the leaves?

If such an example exists, it must have jointly integrable stable and unstable foliations:

Proposition 11.3. Let M be a manifold of dimension d ≥ 3, and let f ∈ P1
fib(M) or

f ∈ P1
fix(M). If the disintegration of Lebesgue along the center foliation is continuous

but singular with respect to Lebesgue, then the stable and unstable foliations are jointly
integrable.

Proof. The accessibility classes consist of either compact su-leaves or connected open sets
bounded by compact su-leaves. Suppose there is a nonempty open accessibility class. Then
part (2) of Theorems E and H imply that either the disintegration contains atoms, or f is
accessible and the center foliation is leafwise absolutely continuous. Since both possibilities
are excluded by the hypotheses, it follows that the stable and unstable foliations are jointly
integrable. �

Hence there is a natural class of examples in which to consider this question, which
are related to the example mentioned in Section 11.1. Let f : T2 → T2 be a C∞ Anosov
diffeomorphism. Then there is a neighborhood U of the identity in Diff∞m (T2) such that,
for any C∞ map φ : R/Z→ U :

(1) for each t ∈ R/Z, the map fφ,t := φt ◦ f is an area-preserving Anosov diffeomor-
phism, topologically conjugate to f ;

(2) for any α ∈ R/Z, the map gφ,α : T2 × R/Z→ T2 × R/Z given by:

gφ,α(x, t) = (fφ,t(x), t+ α)

is partially hyperbolic, dynamically coherent and topologically conjugate modulo
Wc(gφ,α) to f .
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For a fixed C∞ map φ : R/Z→ U , consider the family {gφ,α}α∈R/Z defined above; it is a
partially hyperbolic, volume preserving skew product over a rotation by α (in the second
factor). While singular continuous center decomposition of Lebesgue might occur in this
family of examples, it turns out that the generic example has Dirac disintegration:

Proposition 11.4. There is a residual subset R ⊂ C∞(R/Z,U) × R/Z such that for
(φ, α) ∈ R, the map gφ,α is ergodic (and nonaccessible), and the disintegration of Lebesgue
along center leaves of gφ,α is Dirac.

Proof. The strategy is to establish first that for the generic φ, and any rational p/q, the
disintegration of volume alongWc(gφ,p/q) leaves is Dirac; for generic φ, this property then
passes to a residual set of irrational α, for which gφ,α is also ergodic (though nonaccessible).

Lemma 11.5. For each p/q ∈ Q ∩ [0, 1] there is a residual subset Rp/q of the space
C∞(R/Z,U) such that for φ ∈ Rp/q, the disintegration of Lebesgue along center leaves of
gφ,p/q is Dirac.

Proof. For a fixed φ ∈ C∞(R/Z,U), and p/q ∈ Q, consider the map Gφ,p/q = gqφ,p/q: the

center foliation for this is the same as the center foliation for gφ,p/q. This map takes the
form Gφ,p/q(x, t) = (Fφ,p/q,t(x), t), where

Fφ,p/q,t = fφ,t+(q−1)p/q ◦ · · · fφ,t+p/q ◦ fφ,t.
Since Gφ,p/q(x, t) is partially hyperbolic, the maps Fφ,p/q,s are Anosov, for all s ∈ R/Z.
The leaf ofWc(Gφ,p/q) through (x, 0) is the curve (Hφ,p/q,t(x), t)t∈R/Z, where Hφ,p/q,t is the
conjugacy between Fφ,p/q,t and Fφ,p/q,t given by structural stability (unique the homotopy

class of the identity on T2).

Moreover, the disintegration of Lebesgue measure alongWc(Gφ,p/q) is Dirac if and only

if for almost every t ∈ R/Z and every s 6= t, the map Hφ,p/q,s,t := Hφ,p/q,t ◦H−1
φ,p/q,s is not

C1 (note that Hφ,p/q,s,t is the conjugacy between Fφ,p/q,s and Fφ,p/q,t).

Lemma 11.6. For any p/q ∈ Q, there is a residual subset R̂p/q ⊂ C∞(R/Z,U) such that

for every φ ∈ R̂p/q, for every s ∈ R/Z, if Hφ,p/q,s,t is C1, then t = s + kp/q, for some
0 ≤ k < q.

Proof. Fix p/q ∈ Q. To simplify notation, in the proof we suppress the p/q subscripts
in F , G and H. We first note that if Hφ,s,t is C1 for some φ ∈ C∞(R/Z,U), then the
eigenvalues of the derivatives of the maps Fφ,s and Fφ,t must coincide at all corresponding
periodic orbits. Let {xφ,k}k≥1 be an enumeration of the periodic points for Fφ,0 with
per(xφ,k) = mφ,k, and for t ∈ R/Z, let xφ,k,t = Hφ,t(xφ,k) be the corresponding periodic

orbit for Fφ,t. Denote by λφ,k,t the larger eigenvalue of Dxφ,k,tF
mφ,k
φ,t . If Hφ,s,t is C1, then

λφ,k,s = λφ,k,t, for all k ≥ 1.

Let K = {Ik}k≥1 be a sequence of compact intervals in R/Z with the following proper-
ties:

• diam(Ik)→ 0 as k →∞,
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•
⋃
k≥k0 Ik = R/Z, for all k0 ≥ 1.

For I, J ∈ K, and k ≥ 1, let EI,J,k ⊂ C∞(R/Z,U) be the set of all φ such that, for every

s ∈ I, and for every t ∈
⋃q−1
j=0(J + jp/q):

λφ,k,s 6= λφ,k,t.

The set EI,J,k is clearly open in C∞(R/Z,U). Let

D(I) = {J ∈ K : diam(J) < 1/q and I ∩
q−1⋃
j=0

(J + jp/q) = ∅}.

It is straightforward to check that for I ∈ K and J ∈ D(I), the set EI,J =
⋃
k≥1 EI,J,k is

open and dense in C∞(R/Z,U). Let

R̂p/q =
⋂
I∈K

⋂
J∈D(K)

EI,J .

Then R̂p/q is residual in C∞(R/Z,U). Suppose that φ ∈ R̂p/q. Fix s ∈ R/Z and t ∈
R/Z\

⋃q−1
j=0{s+ jp/q}. Then there exist intervals I ∈ K and J ∈ D(I) such that s ∈ I and

t ∈ J . Since φ ∈ R̂p/q ⊂ EI,J , there exists a k ≥ 1 such that λφ,k,s 6= λφ,k,t. Then Hφ,s,t is

not C1. �

Remark 11.7. The same type of argument shows that, for the generic φ, there is no C1

conjugacy at all between Fφ,s and Fφ,t, if t ∈ R/Z \
⋃q−1
j=0{s + jp/q}. We next treat the

case where t = s + jp/q, for some 0 < j ≤ q − 1; here, a C1 conjugacy between Fφ,s and
Fφ,t cannot be avoided: they are always conjugate by the map fs+(q−1)p/q ◦ · · · ◦ fφ,s+jp/q.
What can be avoided generically is a C1 conjugacy that is isotopic to the identity map on
T2, as the next lemma shows.

Lemma 11.8. For each p/q ∈ Q, there is a residual subset Rp/q ⊂ R̂p/q such that for

every s ∈ R/Z and 0 < k ≤ q − 1, there is no C1 conjugacy between Fφ,s and Fφ,s+kp/q
that is isotopic to the identity. In particular, for φ ∈ Rp/q, the conjugacy Hφ,s,t is not C1

for s 6= t.

Proof. The set D of Anosov diffeomorphisms of T2 with trivial centralizer is C∞-open and
dense; that is if F ∈ D and FG = GF , for some C∞ diffeomorphism G, then G = Fm, for
some integer m ∈ Z. See Palis and Yoccoz [24]. From this it follows easily that there is an
open and dense set Op/q ⊂ C∞(R/Z,U) such that for each φ ∈ Op/q, and each t ∈ R/Z,
the map Fφ,t has trivial centralizer.

Fix φ ∈ Op/q and suppose that for some s ∈ R/Z and t = s+ jp/q, with 0 ≤ j ≤ q − 1,

the map Hφ,s,t is C1. Then Hφ,s,t is in fact C∞ [14]. On the other hand, Fφ,s is conjugate

to Fφ,t by the map H ′φ,s,t = fs+(q−1)p/q ◦ · · · ◦ fφ,s+jp/q. Hence the C∞ map H ′φ,s,tH
−1
φ,s,t

commutes with the Anosov diffeomorphism Fφ,t.

Since φ ∈ Op/q, the map Fφ,t has trivial centralizer, and so there exists an integer m

such that H ′φ,s,tH
−1
φ,s,t = Fmφ,s. Since Fφ,s is isotopic to f q and H ′φ,s,tH

−1
φ,s,t is isotopic to



ABSOLUTE CONTINUITY, LYAPUNOV EXPONENTS AND RIGIDITY II 53

f q−j , this implies that j = 0, and so s = t. Hence Hφ,s,t is not C1 if s 6= t. We conclude

the proof by setting Rp/q = Op/q ∩ R̂p/q. �

This completes the proof of Lemma 11.5. �

Let R0 =
⋂
p/q∈QRp/q and notice it is a residual subset of C∞(R/Z,U). For φ ∈

C∞(R/Z,U), consider the map gφ,α, for some α ∈ R/Z. Condition 2. on U implies that
the quotient space T3/Wc(gφ,α) is the 2-torus T2. Denote by πφ,α : T3 → T2 the quotient
map. Let µφ,α = (πφ,α)∗m. The following lemma is easy to check:

Lemma 11.9. The disintegration of m along Wc(gφ,α) leaves is Dirac almost everywhere
if and only if ∆(φ, α) = 0, where

∆(φ, α) =

∫
T2

(∫
π−1
φ,α(p)×π−1

φ,α(p)
d(x, y) dmφ,α,p(x) dmφ,α,p(y)

)
dµφ,α(p),

and mφ,α,p is the disintegration of m on the leaf Wc(gφ,α) over p.

Let {Pn}n≥0 be a nested sequence of finite (mod 0) partitions of T2 into open sets,
generating the Borel σ-algebra. Consider the sequence of functions

{∆n : C∞(R/Z,U)× R/Z→ [0, 1]}n≥0

given by:

∆n(φ, α) =
∑
P∈Pn

µφ,α(P )−1

(∫
π−1
φ,α(P )×π−1

φ,α(P )
d(x, y) dm(x) dm(y)

)
.

We claim that ∆n is continuous and ∆n → ∆ pointwise. Continuity follows from the fact
that the foliation Wc(gφ,α) depends continuously on (φ, α). The pointwise convergence
follows from Rokhlin’s theorem: for µφ,α-almost every p ∈ T2, we have:

m(· | π−1
φ,α(Pn(p)))→ mφ,α,p

in the weak∗ topology, where Pn(p) denotes the atom of Pn containing p.

We conclude using the following lemma.

Lemma 11.10. Let X be a Baire space and let {∆n : X → [0, 1]}n≥0 be a sequence
of continuous functions such that ∆n → ∆ pointwise. Then ∆−1(0) is a Gδ. Hence, if
∆(x) = 0 for a dense set of x, then ∆−1(0) is residual in X.

Proof. Fix ε > 0 and for n ≥ 0 let

Unε = {x : ∆m(x) < ε, for some m ≥ n}.

Clearly Unε is open for each n, ε. The conclusion follows from the fact that ∆−1(0) =⋂
m,n>0 U

n
1/m.

�
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Since ∆ vanishes on the dense set R0 ×Q/Z, it follows that R = ∆−1(0) is residual in
C∞(R/Z,U) × R/Z. Lemma 11.9 then implies that for (φ, α) ∈ R, the disintegration of
m along Wc(gφ,α) leaves is Dirac. This completes the proof of Proposition 11.4. �

11.3. Generic accessible systems. Another relevant question concerns the number of
atoms that can occur in a generic accessible system with atomic disintegration along center
fibers.

Problem 11.11. Let f be an accessible, C2, volume preserving perturbation of an Anosov
skew product with circle fiber. Suppose that the center Lyapunov exponents are nonvan-
ishing (i.e. either positive almost everywhere or negative almost everywhere).

Is it possible for such a system to have Dirac disintegration, that is, exactly one atom
per (almost every) center leaf? Generically, is the disintegration Dirac?

Is the number of atoms per leaf unbounded in any neighborhood of the skew product?

Note that when the center exponents vanish in such an example, we generically have
Dirac disintegration. Also, it is possible to have more than one atom per leaf and non-
vanishing center exponents, at least when the example admits a smooth symmetry (see
[31] for an example). In dimension 3, if the center exponents vanish, then a disintegration
with one atom per leaf forces a smooth symmetry in the system. In higher dimensions,
there is a continuous, measure-preserving symmetry. More generally, we ask:

Problem 11.12. Let f : M → M be an accessible, C2, volume preserving perturbation of
an Anosov skew product with circle fiber. If the disintegration of Lebesgue on the center
foliation is atomic with k atoms, then must there exist a (continuous or even smooth) map
Φ : M →M , preserving Lebesgue, such that Φ ◦ f = f ◦ Φ and Φk = Id?
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358:75–165, 2013.

E-mail address: artur@math.sunysb.edu

URL: www.impa.br/~avila/

E-mail address: viana@impa.br

URL: www.impa.br/~viana/

E-mail address: wilkinson@math.northwestern.edu

URL: www.math.northwestern.edu/~wilkinson/


	1. Introduction
	2. Further results
	2.1. Fibered partially hyperbolic systems
	2.2. Systems with mostly compact leaves
	2.3. Center fixing dynamical systems
	2.4. Structure of the paper

	3. Background and preliminaries
	3.1. Topological preliminaries
	3.2. Local and global holonomy maps
	3.3. Measure-theoretic preliminaries
	3.4. Measurable partitions and disintegration of measure
	3.5. Disintegration of measure along foliations with noncompact leaves
	3.6. Foliations whose leaves are fixed under a measure-preserving homeomorphism
	3.7. Absolute continuity
	3.8. Smoothness of foliations
	3.9. Bunching and smoothness of stable and unstable holonomies

	4. Lyapunov exponents and an invariance principle
	5. A generalized invariance principle
	5.1. c-holonomies
	5.2. Proof of the invariance theorem
	5.3. An invariance theorem on open accessibility classes
	5.4. Center leaf fiber bundles

	6. Homogeneity: a tool for establishing smoothness
	7. Circle bundles: proofs of Theorems C, D and E
	7.1. Proof of Theorem E
	7.2. Proof of Theorem C
	7.3. Proof of Theorem D

	8. Higher center dimension: proof of Theorem F
	9. Systems with mostly compact leaves: proof of Theorem G
	9.1. Foliations with the generic leaf compact
	9.2. Foliations whose leaves have bounded volume
	9.3. Proof of Theorem 9.1

	10. Center fixing maps: proof of Theorem H
	10.1. Setting up a fiber bundle
	10.2. Proof of part (1) of Theorem H
	10.3. Proof of Part (2) of Theorem H

	11. Examples and questions
	11.1. Zero exponents and atomic disintegrations
	11.2. Non-accessible ergodic cases
	11.3. Generic accessible systems

	References

