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Abstract

We consider volume-preserving perturbations of the time-one map of the geodesic
flow of a compact surface with negative curvature. We show that if the Liouville mea-
sure has Lebesgue disintegration along the center foliation then the perturbation is
itself the time-one map of a smooth volume-preserving flow, and that otherwise the
disintegration is necessarily atomic.
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1 Introduction

If F is a foliation with C1 leaves of a compact manifoldM , then for any Borel probability
measure µ on M , there is a unique disintegration {[µx] : x ∈M} of µ along the leaves of
F . The elements [µx] are projective measures (that is, equivalence classes of measures up
to scaling) and are defined over a full µ-measure set of x ∈ M . Each representative µx is
supported on the leaf Fx of the foliation through x. Locally, a representative measure µx
can be described as follows. One fixes a foliation box B for F with its foliation by local
leaves {F loc

x : x ∈ B}. In this box, µx is simply the conditional measure of µ relative to
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F loc, evaluated at x. The conditional measures {µx : x ∈ B} are probability measures
satisfying

µ(A) =

∫
B
µx(A) dµ(x).

for any Borel set A ⊂ B, and they are essentially uniquely defined.
The opposing notions of Lebesgue disintegration and atomic disintegration are both

well-defined; µ has Lebesgue disintegration along F if for µ-almost every x, any repre-
sentative of [µx] is equivalent to (i.e. has the same zero sets as) Riemannian volume on Fx,
and µ has atomic disintegration if [µx] is an atomic class, for µ-almost every x. Through-
out this paper, we restrict to the case where µ is a volume measure on M , which we
will always denote by m. If F is a C1 foliation, then any volume measure has Lebesgue
disintegrations along F , but the converse is false. A weaker condition than C1 that im-
plies Lebesgue disintegration of volume is absolute continuity: a foliation is absolutely
continuous if holonomy maps between smooth transversals send zero volume sets to zero
volume sets.

Lebesgue disintegration and in particular absolute continuity have long played a cen-
tral role in smooth ergodic theory. Anosov and Sinai [1, 2] proved in the 60’s that the stable
and unstable foliations of globally hyperbolic (or Anosov) systems are absolutely contin-
uous, even though they fail to be C1 in general. This was a key ingredient in Anosov’s
celebrated proof [1] that the geodesic flow for any compact, negatively curved manifold
is ergodic.

1.1 Perturbations of the time-one map of a geodesic flow

Let φt : T 1S → T 1S be the geodesic flow on the unit tangent bundle to a closed, neg-
atively curved surface S. We consider a discretization of this flow, namely its time-one
map φ1, and examine the properties of all diffeomorphisms f that are C1-close to φ1.

It follows from the work of Hirsch, Pugh, and Shub [28] that for any such perturbation
f of φ1, there exists an f -invariant center foliation Wc = Wc(f) with smooth leaves,
that is homeomorphic to the orbit foliation O of φt. Moreover, the homeomorphism h :

T 1S → T 1S sending Wc to O can be chosen close the identity.
The original orbit foliation O of φt is smooth, and hence volume has Lebesgue dis-

integration along O-leaves. If the perturbation f happens to be the time-one map of a
smooth flow, then Wc is the orbit foliation for that flow, and volume has Lebesgue disin-
tegration along Wc. In general, however, a perturbation f of φ1 has no reason to embed
in a smooth flow, and one can ask whether the disintegration of volume along Wc-leaves
is Lebesgue, atomic, or neither. We obtain a complete answer to this question when f
preserves volume.
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Main Theorem 1. Let φt : T 1S → T 1S be the geodesic flow for a closed negatively
curved surface S and let m be the φt-invariant Liouville probability measure.

There is a C1-open neighborhood U of φ1 in the space Diff∞
m (T 1S) of m-preserving

diffeomorphisms of T 1S such that for each f ∈ U :

1. there exists k ≥ 1 and a full m-measure set Z ⊂ T 1S that intersects every center
leaf in exactly k orbits of f ,

2. or f is the time-one map of an m-preserving C∞ flow.

In case (1) m has atomic disintegration, and in case (2) it has Lebesgue disintegration
along the center foliation Wc(f).

Theorem 1 gives conditions under which one can recover the action of a Lie group (in
this case R) from that of a discrete subgroup (in this case Z). These themes have arisen
in the related context of measure-rigidity for algebraic partially hyperbolic actions by
Einsiedler, Katok, Lindenstrauss [21]. It would be interesting to understand more deeply
the connections between these works. Results of a similar flavor to Theorem 1 but for the
stable and unstable foliations of Anosov diffeomorphisms and flows have been proved by
Benoist, Foulon and Labourie [6, 7].

1.2 Lyapunov exponents and absolute continuity

The hidden player in Theorem 1 is the concept of center Lyapunov exponents. A real
number χ is a center Lyapunov exponent of the partially hyperbolic diffeomorphism f :

M →M at x ∈M if there exists a nonzero vector v ∈ Ec
x such that

lim
n→∞

1

n
log ∥Dfn(v)∥ = χ. (1.1)

If f preserves m, then Oseledec’s theorem implies that the limit in (1.1) exists for each
v ∈ Ec

x, for m-almost every x. When the dimension of Ec(f) is 1, the limit in (1.1)
depends only on x, and if in addition f is ergodic with respect to m, then the limit takes
a single value m-almost-everywhere. When we refer to a a center exponent with respect
to volume, we mean a value in (1.1) assumed on a positive volume set, and by the center
exponent with respect to volume we mean a (the) value assumed almost everywhere. Deep
connections between Lyapunov exponents and geometric properties of invariant measures
have long been understood [39, 40, 33, 35, 36, 30, 5]. In the context of partially hyperbolic
systems, some of these connections have come to light more recently.

Absolute continuity holds in great generality for the stable and unstable foliations
of partially hyperbolic systems [11, 41], and for Pesin stable and unstable laminations of
non-uniformly hyperbolic systems [39] (see also Pugh, Shub [42] for the non-conservative
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case). On the other hand, and in sharp contrast, Shub, Wilkinson [50] showed that cen-
ter foliations of partially hyperbolic systems are, often, not absolutely continuous. What
is more, Ruelle, Wilkinson [49] showed that, in a similar setting, the disintegration of
volume along center leaves is atomic, supported on finitely many points.

The mechanism behind these results is nonvanishing center exponents: for each f in
the open set of ergodic diffeomorphisms V ⊂ Diff∞

ω (T3) constructed in [50], the center
Lyapunov exponent with respect to volume is nonzero. The examples in V are obtained by
perturbing the trivial extension of a hyperbolic automorphism of T2 on T3 = T2 × R/Z.
By [28], the center foliation Wc(f) for each f ∈ V is homeomorphic to the trivial R/Z
fibration of T3 = T2 × R/Z; in particular, the center leaves are all compact. The almost
everywhere exponential growth associated with nonzero center exponents is incompati-
ble with the compactness of the center foliation, and so the full volume set with positive
center exponent must meet almost every leaf in a zero set (in fact a finite set) for these
examples. In general, for conservative systems with compact one-dimensional leaves, ab-
solute continuity cannot occur unless the center Lyapunov exponent vanishes, and this is
a kind of codimension-one condition. Absolute continuity is much more common among
dissipative systems, as observed by Viana, Yang [52].

Similar results hold for perturbations of the time-one map of volume-preserving Anosov
flows: there exist opens sets of perturbations with nonvanishing center exponents (Dolgo-
pyat [19]), and the results in [49] also imply that volume must have atomic disintegration
for these examples.

The heart of understanding the general perturbation of these and similar examples,
then, is to see what happens when the center Lyapunov exponents vanish. For this, we
use tools that originate in the study of random matrix products. The general theme of this
work, summarized by Ledrappier in [34] is that “entropy is smaller than exponents, and
entropy zero implies deterministic.” Original results concerning the Lyapunov exponents
of random matrix products, due to Furstenberg, Kesten [23, 22], Ledrappier [34], and
others, have been extended in the past decade to deterministic products of linear cocycles
over hyperbolic systems by Bonatti, Gomez-Mont, Viana [9, 10, 51]. The Bernoulli and
Markov measures associated to random products in those earlier works are replaced in the
newer results by invariant measures for the hyperbolic system carrying a suitable product
structure.

Recent work of Avila, Viana [4] extends this hyperbolic theory from linear to smooth
(diffeomorphism) cocycles, and we use these results in a central way. Also important for
our proofs here are the results of Avila, Santamaria, Viana [3] for cocycles over volume-
preserving partially hyperbolic systems, both linear and smooth.

The ideas introduced in this work have already given rise to further applications in dis-
tinct settings: the study of measures of maximal entropy [24] and physical measures [52]
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for partially hyperbolic diffeomorphisms with compact 1-dimensional center foliations.

2 Preliminaries

We start by recalling a few useful facts concerning foliations and partially hyperbolic
diffeomorphisms.

2.1 Foliations

Let M be a manifold of dimension d ≥ 2. A foliation (with Cr leaves) is a partition
F of the manifold M into Cr submanifolds of dimension k, for some 0 < k < d and
1 ≤ r ≤ ∞, such that for every p ∈M there exists a continuous local chart

Φ : Bk
1 ×Bd−k

1 →M (Bm
1 denotes the unit ball in Rm)

with Φ(0, 0) = p and such that the restriction to every horizontal Bk
1 × {η} is a Cr

embedding depending continuously on η and whose image is contained in some F-leaf.
The image of such a chart Φ is a foliation box and the Φ(Bk

1 ×{η}) are the corresponding
local leaves.

2.2 Partially hyperbolic diffeomorphisms

We say that a diffeomorphism f : M → M of a compact Riemannian manifold M is
partially hyperbolic if there exists a continuous, Df -invariant splitting TM = Eu⊕Ec⊕
Es, into nonzero bundles, and a positive integer k such that for every x ∈M ,

∥(Dfk | Eu(x))−1∥−1 >1 > ∥Dfk | Es(x)∥ ,
∥(Dfk | Eu(x))−1∥−1 >∥Dfk | Ec(x)∥ ≥

≥∥(Dfk | Ec(x))−1∥−1 > ∥Dfk | Es(x)∥ .

The time-one map of an Anosov flow is partially hyperbolic and, since partial hyperbolic-
ity is a C1-open property, so are its perturbations. Since the geodesic flow for any closed,
negatively-curved manifold is Anosov, the maps considered in this paper are all partially
hyperbolic. For a discussion of partial hyperbolicity, with examples and open questions,
see [14, 44, 26].

The stable and unstable bundles Es and Eu of a partially hyperbolic diffeomorphism
are always uniquely integrable, tangent to stable and unstable foliations, Ws and Wu re-
spectively. The center bundleEc is not always integrable (see [25]), but in many examples
of interest, such as the time-one map of an Anosov flow and its perturbations, Ec is tan-
gent to a foliation Wc, as are the bundles Ecs = Ec⊕Es and Ecu = Ec⊕Eu. We say that
a partially hyperbolic diffeomorphism f is dynamically coherent if there exist f -invariant
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center stable and center unstable foliations Wcs and Wcu, tangent to the bundles Ecs and
Ecu, respectively; intersecting their leaves one obtains an invariant center foliation Wc as
well. Most of the facts here are proved in [28]. More detailed discussions can be found in
[8], [16] and [17]. It is not known whether every perturbation of a dynamically coherent
diffeomorphism is dynamically coherent, but this does hold for systems that are plaque
expansive.

The notion of plaque expansiveness was introduced by Hirsch, Pugh, and Shub [28],
who proved among other things that any perturbation of a plaque expansive diffeomor-
phism is dynamically coherent. Roughly, f is plaque expansive if pseudo orbits that re-
spect local leaves of the center foliation cannot shadow each other too closely (in the case
of Anosov diffeomorphisms, plaque expansiveness is the same as expansiveness, which
is automatic). Plaque expansiveness holds in a variety of natural settings; in particular if
f is dynamically coherent, and either Wc is a C1 foliation or the restriction of f to Wc

leaves is an isometry, then f is plaque expansive, and so every C1 perturbation of f is dy-
namically coherent. Moreover, plaque expansive systems enjoy the previously mentioned
stability property: the center foliations of any two perturbations are homeomorphic via a
map that intertwines the dynamics on the space of center leaves.

Because they are uniformly contracted/expanded by the dynamics, the leaves of stable
and unstable foliations are always contractible; this is not the case for center foliations.
One illustration is the previously mentioned example of the time-one map of an Anosov
flow, for which the center foliation O has both compact leaves (corresponding to periodic
orbits of the flow) and non-compact ones.

If f is dynamically coherent, then each leaf of Wcs is simultaneously subfoliated by
the leaves of Wc and by the leaves of Ws. Similarly Wcu is subfoliated by Wc and Wu.
This implies that for any two points x, y ∈ M with y ∈ Ws

x there is a neighborhood
Ux of x in the leaf Wc

x and a homeomorphism hsx,y : Ux → Wc
y with the property that

hsx,y(x) = y and in general

hsx,y(z) ∈ Ws
z ∩Wc

loc,y.

We refer to hsx,y as a (local) stable holonomy map. We similarly define unstable holonomy
maps between local center leaves. We note that, because the leaves of stable and unstable
foliation are contractible, the local holonomy maps h∗x,y for ∗ ∈ {s, u} are well-defined
and are uniquely defined as germs by the endpoints x, y.

We say that f admits global stable holonomy maps if for every x, y ∈M with y ∈ Ws
x

there exists a homeomorphism hsx,y : Wc
x → Wc

y with the property that hsx,y(x) = y and
in general hsx,y(z) ∈ Ws

z ∩ Wc
y . Since global stable holonomy maps must agree locally

with local stable holonomy, we use the same notation hsx,y for both local and global.
We similarly define global unstable holonomy maps and say that f admits global su-
holonomy maps if it admits both global stable and unstable holonomy. Note that if f
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admits global su-holonomy, then all leaves of Wc are homeomorphic.
Given r > 0, we say that f is r-bunched if there exists k ≥ 1 such that:

sup
p

∥Dpf
k | Es∥ ∥(Dpf

k | Ec)−1∥r < 1,

sup
p

∥(Dpf
k | Eu)−1∥ ∥Dpf

k | Ec∥r < 1,

sup
p

∥Dpf
k | Es∥ ∥(Dpf

k | Ec)−1∥ ∥Dpf
k | Ec∥r < 1,

sup
p

∥(Dpf
k | Eu)−1∥ ∥Dpf

k | Ec∥ ∥(Dpf
k | Ec)−1∥r < 1.

(2.1)

When f is Cr and dynamically coherent, these inequalities ensure that the leaves of Wcs,
Wcu, and Wc are Cr. If f is Cr+1 and dynamically coherent they also imply that the lo-
cal stable and local unstable holonomies are Cr local diffeomorphisms. See Pugh, Shub,
Wilkinson [45, 53]. We say that f is center bunched if it is 1-bunched. If Ec is one-
dimensional, then f is automatically center bunched. For a fixed r, the r-bunching prop-
erty is C1 open: any sufficiently C1 small perturbation of an r-bunched diffeomorphism
is r-bunched.

The ergodic theoretic properties of center bunched partially hyperbolic diffeomor-
phisms are in many ways well understood. The state of the art is the following result.

Theorem 2.1. [17] Let f be C2, volume preserving, partially hyperbolic and center
bunched. If f is (essentially) accessible, then f is ergodic with respect to the volume
measure.

A partially hyperbolic diffeomorphism is called accessible if any two points in the
ambient manifold may be joined by an su-path, that is, a piecewise smooth path such that
every leg is contained in a single leaf of Ws or a single leaf of Wu. More generally, the
diffeomorphism is essentially accessible if, given any two sets with positive volume, one
can join some point of one to some point of the other by an su-path. Pugh and Shub [43]
have conjectured that accessibility holds for a Cr open and dense subset of the partially
hyperbolic diffeomorphisms, volume-preserving or not.

Concerning the conjecture, it was shown by Dolgopyat, Wilkinson [20] that accessi-
bility holds for a C1-open and dense subset of all partially hyperbolic diffeomorphisms,
volume preserving or not. Moreover, Didier [18] proved that accessibility is C1-open
for systems with 1-dimensional center bundle; that is accessibility implies stable acces-
sibility for such systems. More recently, Rodriguez Hertz, Rodriguez Hertz, Ures [27]
checked the complete conjecture for conservative systems whose center bundle is one-
dimensional: accessibility is Cr-dense among Cr partially hyperbolic diffeomorphisms,
for any r ≥ 1. A version of this statement for non-conservative diffeomorphisms was
obtained in [13]. It remains open whether Cr-density still holds when dimEc > 1.
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Returning to the context of this paper, stable accessibility has been shown to hold for
the time-one map of any geodesic flow in negative curvature [31] and more generally
for the time-one map of any mixing Anosov flow [15]. Hence the map φ1 in Theorem A
– and in fact any C1 small perturbation of φ1 – is accessible. Combining this fact with
Theorem 2.1, we see φ1 is stably ergodic: any C2, volume preserving diffeomorphism
that is sufficiently C1 close to φ1 is ergodic with respect to the volume measure.

3 Disintegration of measure

We begin with a general discussion of disintegration of measures.

3.1 Measurable partitions and disintegration of measure

Let Z be a polish metric space, let µ be a finite Borel measure on Z, and let P be a
partition of Z into measurable sets. Denote by µ̂ the induced measure on the σ-algebra
generated by P , which may be naturally regarded as a measure on P .

A system of conditional measures (or a disintegration) of µ with respect to P is a
family {µP}P∈P of probability measures on Z such that

1. µP (P ) = 1 for µ-almost every P ∈ P;

2. Given any continuous function ψ : Z → R, the function P 7→
∫
ψ dµP is measur-

able, and ∫
M

ψ dµ =

∫
P

(∫
ψ dµP

)
dµ̂(P ).

It is not always possible to disintegrate a probability measure with respect to a parti-
tion – we discuss examples below – but disintegration is always possible if P is a measur-
able partition. We say that P is a measurable partition if there exist measurable subsets
E1, E2, . . . , En . . . of Z such that

P = {E1, Z \ E1} ∨ {E2, Z \ E2} ∨ · · · mod 0. (3.1)

In other words, there exists a full µ-measure subset F0 ⊂ Z such that, for any atom P of
P , we have

P ∩ F0 = E∗
1 ∩ E∗

2 ∩ · · · ∩ F0

where E∗
i is either Ei or Z \ Ei, for i ≥ 1. Our interest in measurability of a partition

derives from the following fundamental result.

Theorem 3.1 (Rokhlin [48]). If P is a measurable partition, then there exists a system
of conditional measures relative to P . It is essentially unique in the sense that two such
systems coincide in a set of full µ̂-measure.
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3.2 Disintegration of measure along foliations with noncompact leaves

The disintegration theorem of Rokhlin [48] does not apply directly when a foliation has
a positive measure set of noncompact leaves. Instead, one must consider disintegrations
into measures defined up to scaling, that is, equivalence classes where one identifies any
two (possibly infinite) measures that differ only by a constant factor. Here we present this
theory in a fairly general setting. See also [32, § 4] and [37, § 3].

Let M be a manifold of dimension d ≥ 2, and let m be a locally finite measure
on M . Let B be any (small) foliation box. By Rokhlin [48], there is a disintegration
{mB

x : x ∈ B} of the restriction of m to the foliation box into conditional probabilities
along the local leaves, and this disintegration is essentially unique. The crucial observation
is that conditional measures corresponding to different foliation boxes coincide on the
intersection, up to a constant factor.

Lemma 3.2. For any foliation boxes B and B′ and for m-almost every x ∈ B ∩ B′, the
restrictions of mB

x and mB′
x to B ∩ B′ coincide up to a constant factor.

Proof. Let Σ be a cross-section to B, that is, a submanifold of dimension d−k intersecting
every local leaf at exactly one point. Let µB be the measure on Σ obtained by projecting
(m | B) along the local leaves. Consider any C ⊂ B and let µC be the image of (m | C)
under the projection along the local leaves. The Radon-Nikodym derivative

dµC

dµB
∈ (0, 1] at µC-almost every point.

For any measurable set E ⊂ C,

m(E) =

∫
Σ

mB
ξ (E) dµB(ξ) =

∫
Σ

mB
ξ (E)

dµB

dµC
(ξ) dµC(ξ)

By essential uniqueness, this proves that the disintegration of (m | C) along the local
leaves is given by

mC
x =

dµB

dµC
(ξ)(mB

x | C) for m-almost every x ∈ C (3.2)

where ξ is the point where the local leaf through x intersects Σ. Now we take C = B∩B′.
Using (3.2) twice we get

dµB

dµC
(ξ)(mB

x | C) = dµ′
B

dµC
(ξ)(mB′

x | C)

for m-almost every x. This proves the lemma.

This implies that there exists a family {mx : x ∈ M} where each mx is a measure
defined up to scaling with mx(M \ Fx) = 0, the function x 7→ mx is constant on the
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leaves of F , and the conditional probabilities mB
x along the local leaves of any foliation

box B coincide almost everywhere with the normalized restrictions of the mx to the local
leaves of B. It is also clear from the arguments that such a family is essentially unique.
We call it the disintegration of m and refer to the mx as conditional classes of m along the
leaves of F .

3.3 Foliations whose leaves are fixed under a measure-preserving home-
omorphism

Now suppose the foliation F is invariant under a homeomorphism f :M →M , meaning
that f(Fx) = Ff(x) for every x ∈ M . Take the measure m to be invariant under f . Then,
by essential uniqueness of the disintegration, f∗(mx) = mf(x) for almost every x. We are
especially interested in the case when f fixes every leaf, that is, when f(x) ∈ Fx for all
x ∈ M . Then f∗(mx) = mf(x) for almost every x, which means that every representative
mx of the conditional class mx is f -invariant up to rescaling: f∗(mx) = cmx for some
c > 0. Actually, the scaling factor c = 1:

Proposition 3.3. Suppose that m is invariant under a homeomorphism f : M → M

that fixes all the leaves of F . Then, for almost all x ∈ M , any representative mx of the
conditional class mx is an f -invariant measure.

Proof. Fix x0 ∈ M and let B be a foliation box containing both x0 and f(x0). Let Σ be
a cross-section to B and let µB be the image of (m | B) under the projection p : B → Σ

along the local leaves. Choose representatives mx of the conditional classes scaled so that
the restriction of mx to the local leaf FB

x through every x ∈ B is a probability. Then

mB
x = (mx | FB

x ). (3.3)

Now let B0 be a foliation box containing x0, small enough that B0 and B1 = f(B0) are
both contained in B. Note that (m | B1) = f∗(m | B0), because m is invariant, and
p ◦ f = p, because all the leaves are fixed by f . Thus, p∗(m | B0) = p∗(m | B1). We
denote this measure by ν. By (3.2) and (3.3),

mB0
x =

dµB

dν
(ξ)(mx | FB0

x ) and mB1
y =

dµB

dν
(η)(my | FB1

y )

for almost every x ∈ B0 and y ∈ B1, where ξ = p(x) and η = p(y). On the other hand,
since f maps local leaves of B0 to local leaves of B1, the images of themB0

x under f define
a disintegration of m | B1 along the leaves. By essential uniqueness, it follows that

dµB

dν
(η)(my | FB1

y ) = mB1
y = f∗(m

B0
x ) =

dµB

dν
(ξ)f∗(mx | FB0

x )
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for almost every x ∈ B0, where y = f(x). Since mx = my and ξ = η, it follows that
(mx | FB1

f(x)) = f∗(mx | FB0
x ) for almost every x ∈ B0. This proves that mx is indeed

invariant (the scaling factor is 1) for almost every point in B0. Covering M with such
foliation boxes one gets the conclusion of the proposition.

3.4 Absolute continuity

This is analyzed in a lot more detail in [46]. Here we just present a few facts that are
useful for what follows. As above, let M be a Riemannian manifold. Let λΣ denote the
volume measure induced by the Riemann metric on a C1 submanifold Σ of M .

The classical definition of absolute continuity ([1, 2]) goes as follows. A foliation F on
M is absolutely continuous if every holonomy map hΣ,Σ′ between a pair of smooth cross-
sections Σ and Σ′ is absolutely continuous, meaning that, the push-forward (hΣ,Σ′)∗λΣ is
absolutely continuous with respect to λΣ′ . Reversing the roles of the cross-sections, one
sees that (hΣ,Σ′)∗λΣ is actually equivalent to λΣ′ .

Here it is convenient to introduce the following weaker notion. We say that volume
has Lebesgue disintegration along F-leaves if given any measurable set Y ⊂ M then
m(Y ) = 0 if and only if for m-almost every z ∈ M the leaf L through z meets Y in a
zero λL-measure set. In other words, for almost every leaf L, the conditional measure mL

of m along the leaf is equivalent to the Riemann measure λL on the leaf.

Lemma 3.4. If F is absolutely continuous then volume has Lebesgue disintegration along
F-leaves.

Proof. Fixing a smooth foliation transverse to F , and using the fact that the holonomies
are absolutely continuous, one defines a local change of coordinates

(x, y) 7→ (x, h(0, x)(y))

that rectifies the leaves of F and transforms m to a measure of the form J(x, y)dxdy with
J > 0. Lebesgue disintegration is clear in these coordinates.

The converse is false: one can destroy absolute continuity of holonomy at a single
transversal while keeping Lebesgue disintegration of volume (this is an exercise in Brin,
Stuck [12]).

Lemma 3.5. Let f : M → M be C2 and partially hyperbolic. The foliations Ws(f) and
Wu(f) are absolutely continuous and, hence, volume has Lebesgue disintegration along
Ws(f) and Wu(f)-leaves.

Proof. This is a classical fact going back to Brin, Pesin [11].
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4 Lyapunov exponents and an Invariance Principle

In this section, we describe the main results we use concerning Lyapunov exponents and
invariant measures of smooth cocycles.

Let F : E → E be a continuous smooth cocycle over f , in the sense of [3, 4]. This
means that π : E →M is a continuous fiber bundle with fibers modeled on some Rieman-
nian manifold and F is a continuous fiber bundle morphism over a Borel measurable map
f : M →M acting on the fibers by diffeomorphisms with uniformly bounded derivative.
Let µ̂ be an F-invariant probability measure on E that projects to an f -invariant measure
µ. We denote by Ex the fiber π−1(x) and by Fx : Ex → Ef(x) the induced diffeomorphism
on fibers.

We say that a real number χ is a fiberwise exponent of F at ξ ∈ E if there exists a
nonzero vector v ∈ TξEπ(ξ) in the tangent space to the fiber at ξ such that

lim
n→∞

1

n
log ∥DξF

n(v)∥ = χ.

By Oseledec’s theorem, this limit χ(ξ, v) exists for µ̂-almost every ξ ∈ E and every
nonzero v ∈ TξEπ(ξ), and it takes finitely many values at each such ξ. Let

χ̄(ξ) = sup
∥v∥=1

χ(ξ, v) and χ(ξ) = inf
∥v∥=1

χ(ξ, v).

The following result follows almost immediately from Theorem II in [49] and uses no
assumptions on the base dynamics f : M → M other than invertibility. The hypothesis
on the fibers can be weakened, but the statement that follows is sufficient for our purposes.

Theorem 4.1. [49] Let F : E → E be a smooth cocycle over f . Assume that the fibers of
E are compact. Assume that F preserves an ergodic probability measure µ̂ that projects to
an (f -invariant, ergodic) probability µ on M and that f is invertible on a full µ-measure
set. Let X− be the set of ξ ∈ E such that χ̄(ξ) < 0 and X+ be the set of ξ ∈ E such that
χ̄(ξ) > 0.

Then both X− and X+ coincide up to zero µ̂-measure subsets with measurable sets
that intersect each fiber of E in finitely many points.

The next result, from [3, 4], treats the possibility that all fiberwise exponents vanish.
It admits more general formulations, but we state it in the context in which we will use it,
namely, when f is a partially hyperbolic diffeomorphism.

We say that F admits a ∗-holonomy for ∗ ∈ {s, u} if, for every pair of points x, y lying
in the same W∗-leaf, there exists a Hölder continuous homeomorphism H∗

x,y : Ex → Ey
with uniform Hölder exponent, satisfying:

(i) H∗
x,x = id,
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(ii) H∗
x,z = H∗

y,z ◦H∗
x,y,

(iii) Fy ◦H∗
x,y = H∗

f(x),f(y) ◦ Fx, and

(iv) (x, y) 7→ H∗
x,y(ξ) is continuous on the space of pairs of points (x, y) in the same

local W∗-leaf, uniformly on ξ.

The existence of a ∗-holonomy is equivalent to the existence of an F-invariant foliation
(with potentially nonsmooth leaves) of E whose leaves project homeomorphically (in the
instrinsic leaf topology) to W∗-leaves in M .

A disintegration {µ̂x : x ∈ M} is ∗-invariant over a set X ⊂ M , ∗ ∈ {s, u} if the
homeomorphismH∗

x,y pushes µ̂x forward to µ̂y for every x, y ∈ X with y ∈ W∗
x . We call a

set X ⊂M ∗-saturated, ∗ ∈ {s, cs, c, cu, u} if it consists of entire leaves of W∗. Observe
that f is accessible if and only if the only nonempty set in M that is both s-saturated and
u-saturated is M itself.

Theorem 4.2. [3, Theorem C] Let F be a smooth cocycle over the C2, volume preserving
partially hyperbolic diffeomorphism f . Assume that f is center bunched and accessible
and that F preserves a probability measure m̂ that projects to the volume m. Suppose that
χ̄(ξ) = χ(ξ) = 0 for m̂-almost every ξ ∈ E .

Then there exists a continuous disintegration {m̂su
x : x ∈ M} of m̂ that is invariant

under both s-holonomy and u-holonomy.

Notice that the hypotheses on f in Theorem 4.2 coincide with the hypotheses of the
ergodicity criterion in Theorem 2.1; they are satisfied by all maps considered in this paper.

5 Starting the proof of Theorem A

The proof of Theorem A runs through this and the next two sections. Here we construct,
over every diffeomorphism close to the time-one map, a certain smooth cocycle F : E →
E with su-holonomy, endowed with an invariant measure mE , whose fiberwise Lyapunov
exponent coincides with the center Lyapunov exponent of the diffeomorphism.

Let S be a negatively curved surface and φt : M → M be the geodesic flow on the
unit tangent bundle M = T 1S, whose orbits are lifts to M of geodesics in S. The unit
tangent bundle M̃ = T 1S̃ of the universal cover S̃ is a cover (though not the universal
cover) of M and the geodesic flow φ̃t : M̃ → M̃ covers φt. Since S is negatively curved,
the Cartan-Hadamard Theorem implies that S̃ is contractible and the exponential map
expp : TpS̃ → S̃ is a diffeomorphism for each p ∈ M . In particular, the orbits of φ̃t are
all open, diffeomorphic to R.

Consider the time-1 mapφ1, and note that φ̃1 is a lift ofφ1. As explained in Section 2.2,
the map φ1 is partially hyperbolic, center bunched and stably accessible. Theorem 2.1
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implies that φ1 is stably ergodic. The foliation Wc(φ̃1) by φ̃-orbits is clearly φ̃1-invariant,
and φ̃1 acts as a translation by 1 in each Wc(φ̃1) - leaf. The foliation Wc(φ̃1) is also
normally hyperbolic and, being smooth, plaque expansive. The projection of Wc(φ̃1) to
M is the center foliation Wc(φ1). It has a natural orientation determined by the vector
field φ̇.

Let f : M → M be a C∞ volume-preserving diffeomorphism C1-close to φ1. Then
f is partially hyperbolic, center bunched, accessible and ergodic. In addition, f is dy-
namically coherent. Let f̃ : M̃ → M̃ be the lift of f that is C1 close to φ̃1. The lifted
foliations W∗(f̃) are homeomorphic to W∗(φ̃1), for ∗ ∈ {c, cu, cs}. The action of f̃ on
each leaf of Wc(f̃) is uniformly close to a translation by 1 and, therefore, is topologically
conjugate to a translation. The leaves of Wcs(f̃) are bifoliated by the leaves of Wc(f̃)

and Ws(f̃). Before perturbation, the Ws(φ̃1)-holonomy maps between center leaves are
orientation-preserving isometries: this follows from the fact that the flow φt preserves the
stable foliation.

Lemma 5.1. The map f̃ admits global su-holonomy.

Proof. To check that f̃ admits global stable holonomy maps, we must show that for every
v, v′ ∈ M̃ with v′ ∈ Ws(f̃)v, and for any w ∈ Wc(f̃)v, there is a unique point w′ in the
intersection Ws(f̃)w ∩Wc(f̃)v′ . Since f̃ acts on center leaves close to a translation by 1,
and uniformly contracts stable leaves, it suffices to prove this claim for w lying a distance
≤ 2 from v and v′ a fixed small distance from v. But the claim clearly holds in this case,
since the stable holonomy for f̃ between center leaves at a distance ≤ ϵ is uniformly close
to the stable holonomy of φ1, which is an isometry. This proves that f̃ has global stable
holonomy. The proof for unstable holonomy is analogous.

The fact that f̃ admits global su-holonomy allows us to construct a fiber bundle Ẽ over
M̃ whose fibers are leaves of the center foliation Wc(f̃), as follows. For v, w ∈ M̃ and
∗ ∈ {s, c, u}, we write v ∼∗ w if v ∈ W∗(f̃)w. Let

Ẽ = {(v, w) ∈ M̃2 | v ∼c w}

and let p̃1, p̃2 : Ẽ → M̃ be the coordinate projections onto the first and second M̃ factor,
respectively.

Lemma 5.2. The projection p̃1 : Ẽ → M̃ defines a fiber bundle with the following prop-
erties:

1. p̃2 sends each fiber Ẽv = (p̃1)
−1(v), v ∈ M̃ homeomorphically onto the center leaf

Wc(f̃)v;

2. Ẽ admits a canonical continuous “diagonal” section sending each v ∈ M̃ to
(v, v) = (p̃2)

−1(v) ∩ Ẽv.
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We remark that the conclusions of this lemma hold with the roles of p̃1 and p̃2 switched.
When we refer to the “fiber bundle Ẽ” it is with respect to the first projection p̃1.

Proof. Given any v ∈ M̃ and v′ in a small neighborhood U of v in M̃ , define w to be the
point in Ws

loc(f̃)v ∩Wcu
loc(f̃)v′ and w′ to be the point in Wu

loc(f̃)w ∩Wc
loc(f̃)v′ . Notice that

w and w′ depend continuously on v′. Then hv,v′ = huw,w′ ◦hsv,w is a homeomorphism from
Wc(f̃)v to Wc(f̃)v′ that depends continuously on v′. It follows that

gv,U : U ×Wc(f̃)v → π−1(U), (v′, η) 7→ (v′, hv,v′(η))

is a homeomorphism mapping each vertical {v′} × Wc(f̃)v to (p̃1)
−1(v′). This defines

on Ẽ the structure of a continuous fiber bundle. It is clear that every fiber (p̃1)−1(v) =

{v} × Wc(f̃)v is mapped homeomorphically to Wc(f̃)v by the second projection p̃2, as
claimed in (1). The diagonal embedding M̃ → Ẽ defines a section as in (2).

The fundamental group π1(S) acts on M̃ by isometries preserving the ∼∗ equivalence
relations:

v ∼∗ w =⇒ γv ∼∗ γw, for all γ ∈ π1(S), v, w ∈ M̃ and ∗ ∈ {s, u, c}.

Consider the induced diagonal action of π1(S) on M̃2. Since this action preserves the ∼c

relation and the product structure, it preserves the fiber bundle Ẽ . The stabilizer of each
fiber of Ẽ under this action is trivial.

There is also a Z× Z-action ρ̃ on M̃2 commuting with the π1(S)-action, defined by

ρ̃(m,n)(x, y) = (f̃n(x), f̃m(y)).

Then ρ̃ also preserves the ∼∗ equivalence relations and in particular defines an action on
Ẽ . The action of ρ̃(1, 0) on each p̃1-fiber is topologically conjugate to a translation, and
the action of ρ̃(0, 1) on each p̃2-fiber is also conjugate to a translation. Let F̃ = ρ̃(1, 1)

and G̃ = ρ̃(0, 1). Note that

p̃1 ◦ F̃ = f̃ ◦ p̃1, p̃2 ◦ F̃ = f̃ ◦ p̃2, p̃1 ◦ G̃ = p̃1, and p̃2 ◦ G̃ = f̃ ◦ p̃2.

Let E be the quotient of Ẽ by the diagonal π1(S)-action. Denote by pi : E → M ,
i = 1, 2 the quotient projections. The fibers of p1 : E → M are homeomorphic to R, and
for any v ∈M ,

p2 ◦ p−1
1 (v) = p1 ◦ p−1

2 (v) = Wc(f)v.

Since ρ̃ commutes with the π1(S)-action on Ẽ , it also induces an action on the bundle E ,
which we denote by ρ. Let F = ρ(1, 1) and G = ρ(0, 1). Then

p1 ◦ F = f ◦ p1, p2 ◦ F = f ◦ p2, p1 ◦G = p1, and p2 ◦G = f ◦ p2.
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The fiber Ev of E over v ∈ M is naturally identified with the leaf Wc(f̃)v′ through
any lift v′ of v to M̃ . The action of G on this fiber is then naturally identified with the
action of f̃ on this leaf. For almost every (for all but countably many) v ∈ M , the leaf
Wc(f)v is noncompact and hence is canonically identified with any lift to M̃ . For such v,
we identify Ev with Wc(f)v and the action of G on Ev with the action of f .

We define F̃-invariant foliations F̃∗ of the bundle Ẽ whose leaves project homeomor-
phically under p̃1 to leaves of W∗(f̃), as follows:

F̃∗
(v,w) = {(v′, w′) ∈ Ẽ | v′ ∼∗ v and w′ ∼∗ w}

for ∗ ∈ {s, u} (recall Lemma 5.1) and

F̃ c
(v,w) = {(v′, w) ∈ Ẽ | v′ ∼c v} = {(v′, w) ∈ Ẽ | v′ ∼c w} = (p̃2)

−1(w).

It follows from the construction that F̃∗ is invariant under the action ρ̃. Notice that for
∗ ∈ {s, u}, the leaves of F̃∗ also project homeomorphically under p̃2 to leaves of W∗(f̃).

Let F∗ be the induced quotient foliations of E . Those foliations are clearly F-invariant.
By definition, for each ∗ ∈ {s, u} and every v, v′ lying in the same W∗-leaf in M , there
exists a holonomy map

H∗
v,v′ : Ev → Ev′ (5.1)

sending ξ ∈ Ev to the unique point H∗
v,v′(ξ) in the intersection F∗(ξ) ∩ Ev′ . Invariance of

the foliations F∗ under F implies that for ∗ ∈ {s, u}, we have:

F ◦H∗
v,v′ = H∗

f(v),f(v′) ◦ F. (5.2)

In other words, the cocycle F : E → E admits su-holonomy. It will also be useful to
consider the c-holonomy

Hc
v,v′ : Ev → Ev′ , (5.3)

which is given by (v, w) 7→ (v′, w) for every v, v′ in the same Wc-leaf in M . The invari-
ance property (5.2) remains valid for the c-holonomy.

5.1 Constructing a measure on E

Denote by m̃ the π1(S)-invariant lift ofm to M̃ . It is a σ-finite, f̃ -invariant measure whose
restriction to any π1(S) fundamental domain is a probability measure that projects to m
on M . We next construct a Radon measure m̃Ẽ on Ẽ that projects to m̃, whose restriction
to a ⟨G̃, π1(S)⟩ fundamental domain is a probability measure and which is ρ̃-invariant and
π1(S)-invariant.

For v and w lying in the same Wc(f̃)-leaf, we denote by [v, w) the positively oriented
arc in Wc(f̃)v from v to w. Let {m̃v} be a disintegration of m̃ along Wc(f̃)-leaves. For
each v ∈ M̃ , choose a representative m̃v of the conditional class m̃v normalized by

m̃v

(
[v, f̃(v))

)
= 1. (5.4)
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(By f̃ invariance, the class m̃v is nonvanishing over a fundamental domain of the action
of f̃ on Wc(f̃)v, for m̃-almost every v, so that (5.4) does make sense.) This choice of a
normalization immediately implies that

f̃∗m̃v = m̃f̃(v). (5.5)

Moreover, using Proposition 3.3,

m̃v

(
[w, f̃(w))

)
= m̃v

(
[v, f̃(v))

)
= 1 for every w ∈ Wc(f̃)v,

so that we have
m̃w = m̃v for every w ∈ Wc(f̃)v. (5.6)

Then m̃Ẽ = m̃vdm̃(v) defines a Radon measure on Ẽ that is F̃-invariant, by the choice of
normalization (5.4), G̃-invariant, because of property (5.5), and π1(S)-invariant, since m̃
is.

The measure m̃Ẽ projects to a measure mE on E ; writing mE = mvdm(v), the con-
ditional measure mv of mE on each fiber Ev is naturally identified with the measure m̃v′ ,
where v′ is any lift of v to M̃ . In particular,

mw = mv for every w ∈ Wc(f)v and (5.7)

f∗mv = mf(v) = mv for every v ∈M. (5.8)

Property (5.7) may be rewritten as (Hc
v,w)∗mv = mw for every v, w in the same center leaf;

we say that the family {mv} is invariant under c-holonomy. For those v ∈ M for which
the center leaf is noncompact, the measure mv can be naturally regarded as a measure on
Wc(f)v via the push forward under p2 | Ev.

Let Σ̃ ⊂ Ẽ be the “half-closed” set bounded by the diagonal section of Ẽ and its image
under G̃, including the former and excluding the latter. Notice that Σ̃ is F̃-invariant and
π1(S)-invariant. We denote by m̃Σ̃ the restriction of the measure m̃Ẽ to Σ̃. Then m̃Σ̃ is
also F̃-invariant and π1(S)-invariant.

Lemma 5.3. (p̃1)∗m̃Σ̃ = m̃ = (p̃2)∗m̃Σ̃.

Proof. The first equality is a direct consequence of the normalization (5.4). To prove the
second one, begin by noting that

(i) (p̃2)∗m̃Σ̃ is the π1(S)-invariant lift of a probability measure on M .

Indeed m̃Σ̃ is π1(S)-invariant, and if Σ̃0 ⊂ Σ̃ is a fundamental domain for the π1(S)-
action on Ẽ then m̃Ẽ(Σ̃0) = 1, since (p̃1)∗(m̃Ẽ | Σ̃) = m̃. Moreover,

(ii) (p̃2)∗m̃Σ̃ is f̃ -invariant.
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That is because m̃Σ̃ is F̃-invariant. Furthermore,

(iii) (p̃2)∗m̃Σ̃ is absolutely continuous with respect to m̃.

Indeed if a Borel set X ⊂ M̃ has zero m̃-measure, then m̃v(X) = 0 for m̃-almost
every v ∈ M̃ , and then the definition of m̃Ẽ gives m̃Ẽ((p̃2)

−1(X)) = 0. Since f is m-
ergodic, m̃ is the unique measure on M̃ satisfying properties (i)-(iii). So, (p̃2)∗m̃Σ̃ = m̃

as claimed.

Let Σ be the projection of Σ̃ to E ; equivalently, Σ is the “half-closed” set bounded by
the diagonal section of E and its image under G, including the former and excluding the
latter. Let mΣ be the probability measure on E induced by m̃Σ̃. Note that mΣ gives zero
measure to the complement of Σ, and hence it is supported on the closure of Σ. Moreover,
mΣ is F-invariant and satisfies

(p1)∗mΣ = m = (p2)∗mΣ. (5.9)

Recalling that almost every fiber Ev is naturally identified with Wc(f)v, we can write
mΣ = (mv | [v, f(v))) dm(v).

5.2 Lyapunov exponents

Let χc(v) denote the center Lyapunov exponent of f at a point v ∈M , that is

χc(v) = lim
n→∞

1

n
log ∥Dfn | Ec

v∥.

By ergodicity, there exists χc ∈ R such that χc(v) = χc for m-almost every v ∈M . Since
Ec is 1-dimensional, the ergodic theorem ensures that χc can be expressed as an integral

χc =

∫
M

log ∥Df | Ec
v∥ dm(v),

with respect to any fixed Riemann structure on M .

Lemma 5.4. The fiberwise exponent of the cocycle F exists at a point ξ ∈ E if and only if
the center Lyapunov exponent for f exists at p2(ξ), and then the two are equal:

lim
n→∞

1

n
log ∥DξF

n∥ = χc(p2(ξ)).

In particular, the fiberwise exponent of the cocycle F is equal to χc almost everywhere
with respect to mΣ.
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Proof. Note that the F-orbit of any ξ ∈ E is precompact (indeed, {Gk(Σ)}k∈Z is a parti-
tion of E into precompact F-invariant sets), and so the existence and value of the fibered
Lyapunov exponent at ξ do not depend on a particular choice of a fiberwise Riemannian
metric. Since p2 restricts to an immersion on each fiber of E , a particular choice of fiber-
wise Riemannian metric can be obtained by pulling back the Riemannian metric on M
under p2. With respect to this metric, we have the identity ∥DξF∥ = ∥Df | Ec

p2(ξ)
∥ (where

the derivative of F is taken along the fibers of E). The conclusion follows.

6 The atomic case

At this point there are two very different cases in our analysis: χc ̸= 0 and χc = 0. The first
is handled easily by existing methods and implies that Wc(f) has atomic disintegration
of volume. In handling the second case, we will introduce the meat of the arguments in
this paper.

6.1 The case of nonvanishing center exponents

Suppose that χc ̸= 0. Let X = {v ∈ M | χc(v) = χc}, which is a full measure subset
of M . Let X = p−1

2 (X) ∩ Σ; Lemma 5.4 implies that X is the set of ξ ∈ Σ where the
fiberwise exponent of F is equal to χc. We want to use Theorem 4.1 to conclude that X
coincides, up to zero mΣ-measure, with a measurable set Y ⊂ Σ meeting almost every
fiber of E in finitely many points.

Strictly speaking, the theorem does not apply directly to the fiber bundle Σ → M ,
because its fibers are not compact. However, this can be turned into a fiber bundle Σ →M

with compact fibers: just take Σ to be the quotient of E by G, so that the quotient map
restricts to a continuous bijection P : Σ → Σ. The map F goes down to the quotient
to define a smooth cocycle F on Σ, which admits an invariant measure P∗(mΣ | Σ). Fix
an arbitrary Riemannian metric on the fibers of Σ depending continuously on the base
point; any two such metrics are uniformly equivalent, since Σ is compact. Notice that the
restriction of P to each fiber is smooth, with derivative uniformly bounded away from
zero and infinity, and so the fibered Lyapunov exponent of F with respect to P∗(mΣ | Σ)
is the same as the Lyapunov exponent of F with respect to mΣ | Σ. Thus, we can apply
Theorem 4.1 in Σ, and then take the preimage under P to obtain the conclusion in Σ.

By construction, the family {mv | [v, f(v)) : v ∈ M} is a disintegration of mΣ along
E fibers. Since Y has full mΣ-measure, its intersection with almost every fiber has full
conditional measure on the fiber. This implies that mv | [v, f(v)) is atomic, with finitely
many atoms, form-almost every v. The function that assigns to each v ∈M the number of
atoms is a measurable, f -invariant function. So, ergodicity of f implies that this number
is m-almost everywhere constant. Let k ≥ 1 be this constant. Then there exists some full
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mΣ-measure set Z ⊂ Σ whose intersection with almost every fiber Ev coincides with the
support of mv | [v, f(v)) and contains exactly k points.

The projection p2(Z) is a full m-measure subset of M , by property (5.9). Moreover,
p2(Z) is f -invariant, because mv is f -invariant; recall (5.8) and (5.7). Since [v, f(v)) is
a fundamental domain for the action of f on any noncompact center leaf, it follows that
the intersection of p2(Z) with almost every Wc(f)v consists of exactly k orbits, whose
points are the atoms of the corresponding measure mv. Then p2(Z) coincides, up to zero
m-measure, with some measurable set that intersects every center leaf in exactly k orbits.
So, alternative (1) of Theorem A holds in the case where χc ̸= 0.

6.2 Vanishing center exponents: using the invariance principle

Now let us suppose that χc = 0. Using the invariance principle stated in Theorem 4.2, we
prove:

Lemma 6.1. There is a continuous3 family {m̂v : v ∈ M} of Radon measures on the
fibers of E with the following properties:

1. m̂v = mv for m-almost every v ∈M ;

2. the family is ρ-invariant; in particular,

F∗m̂v = m̂f(v) and G∗m̂v = m̂v for all v ∈M ;

3. the family is invariant under su-holonomy:

(Hs
v,v′)∗m̂v = m̂v′ and (Hu

w,w′)∗m̂w = m̂w′

for all v′ ∈ Ws(f)v and w′ ∈ Wu(f)w.

Proof. Note that f satisfies the hypotheses of Theorem 4.2: it is partially hyperbolic,
volume-preserving, center bunched (since Ec is 1-dimensional) and accessible (since φ1

is stably accessible). As we have seen, the bundle E admits su-holonomy, and the prob-
ability measure mΣ on E projects to the volume m and is invariant under the smooth
cocycle F. We are in the case where χc = 0, which by Lemma 5.4 implies that the fiber-
wise Lyapunov exponent for F vanishes mΣ-almost everywhere. Applying Theorem 4.2,
we conclude that there is a continuous F-invariant and su-holonomy invariant family of
probability measures supported on the fibers of Σ and agreeingm-almost everywhere with
the disintegration {mv | [v, f(v))} of mΣ. Since [v, f(v)) is a fundamental domain for
the action of G on the fiber Ev, we can extend this continuous family of probabilities to a

3We recall that the space of Radon measures on E can be seen as a cone in the dual of the space of
compactly supported continuous functions on E , and hence inherits a natural weak-∗ topology.
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continuous family of σ-finite measures m̂v supported on the fibers of E . By construction,
this family is invariant under ρ and under su-holonomy. Moreover, it agrees m-almost
everywhere with the family {mv}.

The family of measures {m̂v : v ∈ M} given by Lemma 6.1 is a disintegration of
mE and shares some properties with the family {mv : v ∈M}, for example ρ-invariance.
The family {m̂v : v ∈ M} has the extra properties of continuity and invariance under
su-holonomy. On the other hand, the family {mv : v ∈ M} has one extra property that
is not a priori enjoyed by {m̂v : v ∈ M}: invariance under c-holonomy. This reflects the
fact that {mv : v ∈ M} comes from a disintegration of m along local Wc(f)-leaves, and
is not just an arbitrary disintegration of mE along E fibers.

We can characterize whether {m̂v : v ∈M} is invariant under c-holonomy by looking
at the supports supp m̂v of these measures on the fibers. To this end we show:

Lemma 6.2. Either

(i) there exists k ∈ N such that #supp m̂v ∩ Σ = k for all v ∈M

(ii) or supp m̂v = Ev for all v ∈M .

The key ingredient in the proof of Lemma 6.2 is the following lemma, which shows
that the measures m̂v have a strong homogeneity property under holonomy maps.

Lemma 6.3. For any v ∈ M and for any ξ, ξ′ ∈ supp m̂v, there is an orientation-
preserving C1 diffeomorphism Hξ,ξ′ : Ev → Ev (a composition of s, u and c holonomies in
E) with the following properties:

1. Hξ,ξ′(ξ) = ξ′;

2. (Hξ,ξ′)∗m̂v = m̂v;

3. if ξ, ξ′ ∈ supp m̂v, then Hξ,ξ′(supp m̂v) = supp m̂v;

4. if f is r-bunched, then Hξ,ξ′ is a Cr diffeomorphism.

Proof of Lemma 6.3. Note that m̂w = mv for every w ∈ suppmv and almost every v,
because m̂v = mv almost everywhere, m̂v is continuous in v, and mv is constant on every
center leaf.

Let w,w′ be the p2-projections of ξ, ξ′. By accessibility of f , there is an su-path γ in
M connectingw tow′. Since p1 maps leaves of F∗ homeomorphically to leaves of W∗(f),
for ∗ ∈ {s, u}, we can lift γ to an su-path in E connecting η = (w,w) to η′ = (w′, w′).
Let H : Ew → Ew′ be the su-holonomy map along this su-path. Then H sends η to η′

and, since the disintegration {m̂u : u ∈ M} is invariant under su-holonomy, it maps m̂w

to m̂w′ .
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Suppose first that v ∈ suppmv (this holds m-almost everywhere). Then the condition
ξ ∈ supp m̂v means that w ∈ suppmv, which implies m̂w = mv = m̂v. Analogously,
w′ ∈ suppmv and m̂w′ = mv = m̂v. Identifying the fibers Ew, Ew′ to Ev through c-
holonomy in E , we obtain a homeomorphism Hξ,ξ′ : Ev → Ev satisfying properties (1)-
(3).

The assumption on v is readily removed, as follows. Given any v ∈ M let v0 be any
point such that v0 ∈ suppmv0 and let γ be an su-path in M connecting v to v0. The su-
holonomy H0 : Ev → Ev0 along the lift of γ maps supp m̂v to supp m̂v0 . Let ξ0, ξ′0 be the
images of ξ, ξ′ under H0. Conjugating Hξ0,ξ′0

by H0 we obtain a homeomorphism Hξ,ξ′

satisfying conclusions (1)-(3).

Since f̃ is partially hyperbolic with 1-dimensional center it is center bunched, and so
the (globally defined) su-holonomy maps between Wc(f̃) leaves areC1. This implies that
Hξ,ξ′ is a C1 diffeomorphism. Moreover, if f is r-bunched, then so is f̃ , and the leaves
of Wc(f̃) and all holonomies are Cr; in this case Hξ,ξ′ is a Cr diffeomorphism, verifying
property (4).

Proof of Lemma 6.2. The support of each m̂v is a locally compact subset of the fiber
Ev. If supp m̂v has bilateral accumulation points for some (and hence all) v ∈ M , then
Lemma 6.3 implies that supp m̂v = Ev: otherwise one would have an interval in the
complement of supp m̂v whose boundary points would fail to be bilateral accumulation
points. This means that conclusion (ii) holds.

If supp m̂v has no bilateral accumulation points then it is countable; since it is locally
compact, it therefore contains (and hence consists of) isolated points. Hence, the support
of every m̂v | [v, f(v)) is finite. But mΣ = (m̂v | [v, f(v))) dm(v) is F-invariant, and
so #supp (m̂v | [v, f(v))) is an f -invariant positive measurable function. By ergodicity
of f , there exists k ≥ 1 such that #supp (m̂v | [v, f(v))) = k for m-almost all v.
Conclusion (i) follows, using the continuity of m̂v.

We call alternative (i) of Lemma 6.2 the atomic case, and alternative (ii) the continuous
case. Let us consider the atomic case first. Then, for every v in some full m-measure
subset, suppmv | [v, f(v)) = supp m̂v | [v, f(v)) consists of exactly k points. Since
[v, f(v)) is a fundamental domain for the action of f on Wc(f)v, assuming the center leaf
is non-compact, it follows that the support of mv consists of exactly k orbits, for every v
in some full m-measure Borel set M0 ⊂ M . We may further assume that m̂v = mv for
v ∈M0. Taking the unions of the supports

∪
v∈M0

suppmv = p2

( ∪
v∈M0

supp m̂v

)
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we obtain a full measure set4 meeting almost every Wc(f)-leaf in exactly k orbits of f .
Then there exists a full measure set such that this happens for every center leaf, as claimed
in alternative (1) of Theorem A.

Finally, observe that in the atomic case the family {m̂v : v ∈M} is not invariant under
c-holonomy. Indeed, consider any v such that v ∈ suppmv and letw ∈ Wc(f)v\suppmv.
Then v ∈ supp m̂v and, using accessibility, w ∈ supp m̂w. The latter implies that m̂w ̸=
mv = m̂v.

7 The continuous case

One case remains in the proof of Theorem A, in which the fiberwise exponent χc vanishes
and the family of measures {m̂v : v ∈M} has full support on the fibers of E . We shall see
that in this case the family {m̂v : v ∈M} is invariant under c-holonomy and can be used
to define a continuous disintegration of volume along center leaves. The existence of this
disintegration leads to alternative (2) in Theorem A: the existence of a smooth vector field
in which f embeds. Then the center foliation is smooth and, in particular, has Lebesgue
disintegration. The first step is to establish c-invariance of the measures {m̂v : v ∈M}.

Lemma 7.1. The family {m̂v : v ∈M} is invariant under c-holonomy of F : E → E .

Proof. The fact that supp m̂v = Ev for every v implies that every set of full m̂-measure
must be dense in almost every fiber. Recall that m̂v = mv almost everywhere and {mv :

v ∈ M} is invariant under c-holonomy of E . This implies that {m̂v : v ∈M} is invariant
under c-holonomy restricted to a dense set of points in a dense set of center leaves. Since
the family {m̂v : v ∈ M} is continuous, it follows that is invariant under c-holonomy on
the whole of E .

7.1 Absolute continuity of Wc(f)

For v ∈ M , denote by λv the Riemannian measure on the fiber and denote by I(ξ, r)
the interval in Ev centered at ξ of radius r, with respect to the p2-pullback metric of the
Riemann structure on Wc(f̃)v.

Lemma 7.2. For each v ∈ M , the measure m̂v is equivalent to Lebesgue measure λv.
The limit

∆v(ξ) = lim
r→0

m̂v(I(ξ, r))

λv(I(ξ, r))

exists everywhere, is continuous, and takes values in (0,∞).

4Note that
∪

v∈M0
supp m̂v is a Borel subset (by continuity of m̂v), hence its image under p2 is analytic,

and hence Lebesgue measurable.
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Proof. For v ∈M and ξ ∈ Ev let

∆v(ξ) = lim sup
r→0

m̂v(I(ξ, r))

λv(I(ξ, r))
, ∆v(ξ) = lim inf

r→0

m̂v(I(ξ, r))

λv(I(ξ, r))
.

For m̂v-almost every ξ ∈ Ev, we have

∆v(ξ) = ∆v(ξ) ∈ (0,∞].

Since supp m̂v = Ev, Lemma 6.3 implies that for any two points ξ, ξ′ ∈ Ev, there is a
diffeomorphism Hξ,ξ′ : Ev → Ev preserving m̂v and sending ξ to ξ′. Since C1 diffeomor-
phisms have continuous and positive Jacobians, it follows that for any ξ, ξ′:

∆v(ξ) = ∆v(ξ) ⇐⇒ ∆v(ξ
′) = ∆v(ξ

′).

Thus ∆v = ∆v everywhere on Ev; denote this function by ∆v.
Then m̂v has a singular part with respect to λv if and only if there is a positive m̂v-

measure set X ⊂ Ev such that, for ξ ∈ X , ∆v(ξ) = ∞. On the other hand, again using
the diffeomorphisms Hξ,ξ′ we see that for every ξ, ξ′:

∆v(ξ) = ∞ ⇐⇒ ∆v(ξ
′) = ∞.

Hence if m̂v had a singular part with respect to λv, this would imply that ∆v ≡ ∞ on
Ev, contradicting the local finiteness of m̂v. Therefore m̂v is absolutely continuous with
respect to λv. Similarly, we see that λv is absolutely continuous with respect to m̂v, and
so the two measures are equivalent.

The function ∆ is a pointwise limit of the continuous functions

ξ 7→ m̂v(I(ξ, r))

λv(I(ξ, r))

and hence is a Baire class 1 function; it follows that ∆ has a point of continuity [38,
Theorem 7.3]. Again using Lemma 6.3, we see that every point in E is a point of continuity
of ∆, and so ∆ is continuous.

Recall that for almost every v ∈ M , we have m̂v = mv, where mv is a representative
of the disintegration of volume on the (noncompact) leaf Wc(f)v. The previous lemma
thus implies that mv is equivalent to Lebesgue measure on Wc(f)v, for almost every v.
We conclude:

Lemma 7.3. Wc(f) is leafwise absolutely continuous.
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7.2 Embedding f̃ in a continuous flow

Consider the continuous vector field Z on E given by

Z(ξ) =
Z0(ξ)

∆(ξ)
,

where Z0 is the positively oriented unit speed vector field tangent to the fibers of E (with
respect to the p2-pullback metric). Since ∆v = dm̂v/dλv, it follows that Z generates a
flow ϕt on E satisfying

m̂v ([ξ, ϕt(ξ))) = t,

for all v ∈ M , ξ ∈ Ev and t ∈ R. Since m̂v[ξ,G(ξ)) = 1, it follows that ϕ1(ξ) = G(ξ),
for all ξ.

The invariance properties of m̂v translate into invariance properties of the flow:

• ϕt commutes with the ρ-action on E ;

• ϕt commutes with u, s and c holonomy.

The analogous properties holds for the vector field Z; in particular:

• Z is preserved by the ρ-action on E :

• Z is preserved by u, s and c holonomy.

The c-invariance of Z implies that Z projects under p2 to a well-defined continuous vector
field X on M tangent to the leaves of Wc(f). The G-invariance of Z implies that f∗X =

X . Let ψt be the flow generated by X; it satisfies ϕt ◦ p2 = p2 ◦ψt for all t. Since ϕ1 = G

and p2 ◦G = f ◦ p2, we have that ψ1 = f ; in other words, f embeds in the flow ψt.

Lemma 7.4. The flow ψ preserves the volume m.

Proof. Fix t ∈ R. Since Wc(f) is leafwise absolutely continuous and ψt is C1 along the
leaves of Wc(f), the map ψt preserves the measure class of m. Hence ψt has a Jacobian
with respect to volume:

Jac(ψt) =
d ((ψt)

∗m)

dm
.

Since ψt ◦ f = f ◦ ψt, it follows that Jacψt(f(t)) = Jac(ψt). Ergodicity of f implies
that Jac(ψt) is almost everywhere constant, and hence almost everywhere equal to 1. This
immediately implies that (ψt)∗m = m.
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7.3 Showing that the flow is smooth

Let ψ be the volume-preserving flow on M satisfying f = ψ1 that we have just con-
structed. Our remaining task is to prove that the flow ψ is C∞. This is accomplished in
two steps. In the first step, we show that ψt is C∞ along the leaves of Wc(f). In the sec-
ond step we show that ψt is C∞ along the leaves of Wu(f) and Ws(f). A straightforward
application of a result of Journé then shows that the flow ψ is C∞.

To show C∞ smoothness along the leaves of Wc(f) one first must establish that the
leaves of Wc(f) are C∞. A priori, these leaves have only finite smoothness determined by
the C1 distance from f to φ1. However in the case under consideration, in which volume
has Lebesgue disintegration along Wc(f) leaves, we have more information about the
action of f on center leaves.

In particular, since f preserves a continuous vector field X tangent to Wc(f)-leaves,
the derivatives (Dfk | Ec), k ∈ Z of its iterates along the central direction are uni-
formly bounded. This implies that f is r-bunched for every r > 0; recall (2.1). Hence, the
leaves of Wcs(f), Wcu(f) and Wc(f) are C∞, and the Ws(f)-holonomies and Wu(f)-
holonomies between Wc(f)-leaves are also C∞.

This in turn implies that the fibers of E and the diffeomorphisms Hξ,ξ′ given by
Lemma 6.3 are C∞. We will use this information to conclude that the function ∆ is C∞

along the fibers of E , which implies that X is C∞ along the leaves of Wc(f).

Lemma 7.5. The function ∆ given by Lemma 7.2 is C∞ along the fibers of E , with deriva-
tives varying continuously from fiber to fiber. Consequently X is C∞ along the leaves of
Wc(f), uniformly in the leaves, as is the flow ψt.

Proof. Fix v ∈ M . For any ξ ∈ Ev and any diffeomorphism H of Ev preserving m̂v, we
have

∆v(H(ξ)) =
∆(ξ)

Jac(H)(ξ)
. (7.1)

If H is C∞, then so is the Jacobian Jac(H). Consider the graph of ∆v:

graph(∆v) = {(ξ,∆(ξ)) : ξ ∈ Ev} ⊂ Ev × R.

Since the function ∆ is continuous, graph(∆v) is locally compact. IfH is an m̂v-preserving
C∞ diffeomorphism, then (7.1) implies that the C∞ diffeomorphism

(ξ, t) 7→ (H(ξ),
t

Jac(H)(ξ)
)

preserves graph(∆v).
Combining this observation with Lemma 6.3, we obtain that for any pair of points

q = (ξ,∆v(ξ)) and q′ = (ξ′,∆v(ξ
′)) in graph(∆v), there is a C∞ diffeomorphism
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of Ev × R sending q to q′ and preserving graph(∆v). That is, the locally compact set
graph(∆v) is C∞ homogeneous. A result of Repovš, Skopenkov and Ščepin [47] implies
that graph(∆v) is a C∞ submanifold of Ev × R (see also [53]). Thus ∆v is C∞ off of its
singularities (by “singularities,” we mean points where the projection of graph(∆v) onto
Ev fails to be a submersion). But if ∆v has any singularities, then it is easy to see that
every point in Ev must be a singularity, which violates Sard’s theorem. Hence ∆v has no
singularities and therefore is C∞.

To see that the derivatives of ∆v vary continuously as a function of v, note that one
can move from the fiber over v to any neighboring fiber by a composition of local u, s and
c-holonomies. The derivatives of these holonomy maps very continuously with the fiber.
Equation (7.1) implies that the fiberwise derivatives vary continuously.

Our next step is to establish the C∞ smoothness ofX along Ws(f) and Wu(f) leaves.
Note first that because ψt ◦ f = f ◦ ψt for all t, it follows that ψt preserves the foliations
Ws(f) and Wu(f). To see this, observe that, since f preserves a nonvanishing continuous
vector field, the leaf of Ws(f) through v is uniquely characterized as the set of points w
such that

lim
n→∞

d(fn(v), fn(w)) = 0;

since ψt commutes with f , then for such v, w, we will also have

lim
n→∞

d(fn(ψt(v)), f
n(ψt(w))) = lim

n→∞
d(ψt(f

n(v)), ψt(f
n(w))) = 0;

and so ψt(w) ∈ Ws(f)ψt(v).
We first show that for every t the restriction of ψt to the leaves of Ws(f) is uniformly

C∞. Here we use the property that ψt preserves volume. The basic idea is that ψt must
also preserves the disintegration of volume along Ws(f) leaves in a foliation box, up to
a constant scaling factor along each leaf. But these disintegrations are C∞ along Ws(f)

leaves; when the leaves are one-dimensional, this forces ψt to be C∞ along the leaves as
well.

The following lemma is well-known (see formula (11.4) in [8]):

Lemma 7.6. Let f : M → M be any C∞ partially hyperbolic diffeomorphism. For any
foliation box B ⊂ M for Ws(f), there is a continuous disintegration of m | B along
leaves of Ws(f) (defined at every point p ∈ B). These disintegrations are equivalent to
Riemannian measure in the Ws(f) leaves. The densities of the disintegrations are C∞

along leaves and transversely continuous. The same is true for Wu(f).

Lemma 7.7. For any Ws(f) foliation box B, any t ∈ R, and any v ∈ B, the map ψt sends
the disintegration ms

v of m | B along Ws(f) leaves at v to the disintegration ms
ψt(v)

of
m|ψt(B) along Ws(f) leaves at ψt(v). The same is true for Wu(f).
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Proof. Denote by {ms
v : v ∈ B} the disintegration of m along Ws(f) leaves inside the

box B. By Lemma 7.6, the map v 7→ ms
v is continuous.

Fix t ∈ R. Since ψt preserves both m and the leaves of Ws(f) , we obtain that

ψt∗m
s
v = ms

ψt(v), (7.2)

for m-almost every v ∈ B, where the disintegration on the right hand side takes place in
the box ψt(B). Since v 7→ ms

v is continuous (on both sides of the equation) and ψt is a
homeomorphism, equation (7.2) holds everywhere.

Lemma 7.8. For every t ∈ ψt, the map ψt is uniformly C∞ along Ws(f) leaves and
uniformly C∞ along Wu(f) leaves.

Proof. Lemma 7.7 implies that ψt satisfies an ordinary differential equation along Ws(f)

leaves with C∞ (and transversely continuous) coefficients, and so the solutions are C∞

and vary continuously with the leaf.

At this point, we have shown that for every t ∈ R and v ∈M :

1. the restriction of ψt to Wc(f)v is C∞ (Lemma 7.5 );

2. the restriction of ψt to Ws(f)v and Wu(f)v are C∞ (Lemma 7.8);

3. the map t 7→ ψt(v) is C∞ (Lemma 7.5).

Moreover, these statements hold uniformly in t and v.
Our final tool is the so-called “Journé Lemma” which allows us to deduce smoothness

of a function by checking along leaves of two transverse foliations with smooth leaves:

Theorem 7.9 (Journé [29]). Let F1 and F2 be transverse foliations of a manifold M

whose leaves are uniformly C∞. Let ψ : M → R be any continuous function such that
the restriction of ψ to the leaves of F1 is uniformly C∞ and the restriction of ψ to the
leaves of F2 is uniformly C∞. Then ψ is uniformly C∞.

Let us use this result to finish the proof of Theorem A. To show that the flow ψ is C∞,
we must show that it is C∞ on M × R. Fix t and v, and consider the restriction of ψt to
the leaf Wcs(f)v. This leaf is uniformly subfoliated by the foliations Wc(f) and Ws(f).
The map ψt is uniformly C∞ when restricted to the leaves of each of these foliations.
Theorem 7.9 implies that ψt is uniformly C∞ along leaves of Wcs(f). But the restriction
of ψt to leaves of Wu(f) is also uniformly C∞. Applying Theorem 7.9 again, we obtain
that for each t, the map ψt is C∞ onM , uniformly in t. Since t 7→ ψt(v) is C∞, uniformly
in v, a final application of Theorem 7.9 gives that ψ is C∞ on M × R.
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[45] C. Pugh, M. Shub, and A. Wilkinson. Hölder foliations. Duke Math. J., 86:517–546, 1997.



Absolute continuity, Lyapunov exponents and rigidity 31

[46] C. Pugh, M. Viana, and A. Wilkinson. Absolute continuity of foliations. In preparation.
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