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Abstract

We consider open sets of transformations in a manifold M , exhibiting non-
uniformly expanding behaviour in some forward invariant domain U ⊂ M . As-
suming that each transformation has a unique SRB measure in U , and some
general uniformity conditions, we prove that the SRB measure varies continu-
ously with the dynamics in the L

1-norm.
As an application we show that an open class of maps introduced in [V1]

fits this situation, thus proving that the SRB measures constructed in [A] vary
continuously with the map.

1 Introduction

In general terms, Dynamics has a twofold aim: to describe, for the majority of dynam-
ical systems, the typical behaviour of trajectories, specially as time goes to infinity;
to understand how this behaviour changes when the system is modified, and to what
extent it is stable under small modifications. In this work we are primarily concerned
with the latter problem.

A first fundamental concept of stability, structural stability , was formulated by
Andronov and Pontryagin [AP]. It requires that the whole orbit structure remain un-
changed under any small perturbation of the dynamical system: there exists a home-
omorphism of the ambient manifold mapping trajectories of the initial system onto
trajectories of the perturbed one, preserving the direction of time. In the early sixties,

∗J.F.A. was partially supported by IMPA/CNPq and Fundação Calouste Gulbenkian. M.V. was
partially supported by Pronex-Dynamical Systems, CNPq 001/2000, and Faperj.
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Smale introduced the notion of uniformly hyperbolic (or Axiom A ) system, having as
one of his main goals to obtain a characterization of structural stability. Such a char-
acterization was conjectured by Palis and Smale in [PS]: a diffeomorphism (or a flow)
is structurally stable if and only if it is uniformly hyperbolic and satisfies the so-called
strong transversality condition. Before that, structural stability had been proved for
certain classes of systems, including Anosov and Morse-Smale systems. The “if” part
of the conjecture was proved by Robbin, de Melo, Robinson in the mid-seventies. The
converse remained a major open problem for yet another decade, until it was settled by
Mañé for C1 diffeomorphisms (perturbations are small with respect to the C1 norm).
The flow case was recently solved by Hayashi, also in the C1 category. The Ck case,
k > 1, is still open both for diffeomorphisms and for flows. See e.g. the book of Palis
and Takens [PT] for precise definitions, references and a detailed historical account.

Despite these remarkable successes, structural stability proved to be too strong a
requirement for many applications. Several important models, including e.g. Lorenz
flows and Hénon maps, are not stable in the structural sense, yet key aspects of their
dynamical behaviour clearly persist after small modifications of the system. Weaker
notions of stability, with a similar topological flavour, were proposed throughout the
sixties and the seventies, but they all turned out to be too restrictive.

More recently, increasing emphasis has been put on expressing stability in terms
of persistence of statistical properties of the system. A natural formulation, the one
that concerns us most in this work, corresponds to continuous variation of physical
measures as a function of the dynamical system. Let us explain this in precise terms.
We consider discrete-time systems, namely, smooth transformations ϕ : M → M on
a manifold M . A Borel probability measure µ on M is a Sinai-Ruelle-Bowen (SRB)
measure (or a physical measure), if there exists a positive Lebesgue measure set of
points z ∈M for which

(1) lim
n→+∞

1

n

n−1∑

j=0

f(ϕj(z)) =

∫
f dµ

for any continuous function f : M → R. In other words, time averages of all continuous
functions are given by the corresponding spatial averages computed with respect to µ,
at least for a large set of initial states z ∈ M .

Let us suppose that ϕ admits a forward invariant region U ⊂ M , meaning that
ϕ(U) ⊂ U , and there exists a (unique) SRB measure µ = µϕ supported in U such that
(1) holds for Lebesgue almost every point z ∈ U . We say that ϕ is statistically stable
(restricted to U) if similar facts are true for any Ck nearby map ψ, for some k ≥ 1,
and the map ψ 7→ µψ, associating to each ψ its SRB measure µψ, is continuous at
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ψ = ϕ. For this definition, we consider in the space of Borel measures the usual weak∗

topology: two measures are close to each other if they assign close-by integrals to each
continuous function. Thus, this notion of stability really means that time averages of
continuous functions are only slightly affected when the system is perturbed.

Uniformly expanding smooth maps are well known to be statistically stable, and so
are Axiom A diffeomorphisms, restricted to the basin of each attractor. On the other
hand, not much is known in this regard outside the uniformly hyperbolic context. In
the present work we propose an approach to proving statistical stability for certain
robust (open) classes of non-uniformly expanding maps. Precise conditions will be
given in the next subsection. For the time being, we just mention that our maps ϕ
exhibit asymptotic expansion,

lim
n→+∞

1

n
log ‖Dϕn(z)v‖ > 0 for every v ∈ TzM,

at Lebesgue almost every point z in some forward invariant region U , but they are
not uniformly expanding. Moreover, they admit a unique SRB measure which is an
ergodic invariant measure absolutely continuous with respect to Lebesgue measure in
U . These properties remain valid in a neighborhood of the initial map, and we prove
that the SRB measure µϕ varies continuously with the mapping in this neighborhood.
In fact, our approach proves statistical stability in a strong sense: the density dµϕ/dm
of µϕ with respect to Lebesgue measure m varies continuously with ϕ as an L1-function.

To the best of our knowledge this is the first result of statistical stability for maps
with non-uniform expansion. An application, and the example we had in mind when
we started this work, are the maps with multidimensional non-uniform expansion in-
troduced in [V1], and whose SRB measures were constructed in [A]. Using a very
different approach, Dolgopyat [D] proved statistical stability and other ergodic prop-
erties for some open classes of diffeomorphisms having partially hyperbolic attractors
whose central direction is mostly contracting (negative Lyapunov exponents). In that
situation, cf. also Bonatti-Viana [BV], SRB measures are absolutely continuous with
respect to Lebesgue measure along the strong-unstable (uniformly expanding) folia-
tion of the attractor. Our systems in the present work are closer in spirit to partially
hyperbolic attractors with mostly expanding central direction, in the sense of Alves-
Bonatti-Viana [ABV]. Statistical stability for the latter systems has not yet been
proved.

Acknowledgements. Besides our own institutions, we are grateful to the Paul Erdős
Center in Budapest, where the final ideas of this work were put together.
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1.1 Statement of results

Let ϕ : M → M be a map from some d-dimensional manifold into itself, S be some
region in M , and φ : S → S be a return map for ϕ in S. That is, there exists a
countable partition R = {Ri}i of a full Lebesgue measure subset of S, and there exists
a function h : R → Z

+ such that

φ | R = ϕh(R) | R for each R ∈ R.
For simplicity, we will assume that S is diffeomorphic to some bounded region S̃ of R

d

(but similar arguments hold in general, using local charts). Then we can pretend that
S ⊂ R

d, through identifying it with S̃, and we do so.
We say that φ is a C2 piecewise expanding map if the following conditions hold:

• The boundary of each Ri is piecewise C2 (a countable union of C2 hypersurfaces)
and has finite (d− 1)-dimensional volume.

• Each φi ≡ φ | Ri is a C2 bijection from the interior of Ri onto its image, admitting
a C2 extension to the closure of Ri.

• There is 0 < σ < 1 such that ‖Dφ−1
i ‖ < σ for every i ≥ 1.

We say that φ has bounded distortion if:

• There is some K > 0 such that for every i ≥ 1
∥∥D
(
J ◦ φ−1

i

)∥∥
∣∣J ◦ φ−1

i

∣∣ < K,

where J is the Jacobian of φ.

Moreover, we say that φ has long branches if the images of the elements of the partition
R satisfy the following geometric condition:

• There are constants 1 ≥ β > σ/(1−σ) and ρ > 0 such that the boundary of each
φ(Ri) has a tubular neighborhood of size ρ inside φ(Ri), and the C2 components
of the boundary of each φ(Ri) meet at angles greater than arcsin(β) > 0.

It was shown in [A, Section 5] that every C2 piecewise expanding map with bounded
distortion and long branches has some invariant probability measure µ absolutely con-
tinuous with respect to Lebesgue measure on S (henceforth denoted m and assumed
to be normalized). Then

(2) µ∗ =

∞∑

j=0

ϕj∗ (µ | {h > j})
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is an absolutely continuous invariant measure for ϕ. Moreover, the density dµ/dm of
µ is in Lp(S) for p = d/d − 1. As a consequence, the measure µ∗ is finite, as long as
we have:

• The function h is in Lq(S) for q = d (this is taken so that 1/p+ 1/q = 1).

It was also observed in [A, Sections 5 and 6] that the absolutely continuous invariant
measure µ∗ may be taken ergodic (which implies that it is an SRB measure for ϕ) and,
moreover, ϕ has finitely many such ergodic measures.

Now we state our first main result. Let k ≥ 2 be fixed, and U be an open set
of Ck transformations on M admitting a forward invariant compact region U . We
endow U with the Ck topology. Assume that we may associate to each ϕ ∈ U a map
φϕ : S → S, a partition Rϕ of a full Lebesgue measure subset of S ⊂ U , and a function
hϕ : Rϕ → Z

+, such that φϕ is a C2 piecewise expanding map with bounded distortion
and long branches, and hϕ ∈ Lq(m). We consider elements ϕ0 of U satisfying the
following uniformity conditions:

(U1) Given any integer N ≥ 1 and any ǫ > 0, there is δ = δ(ǫ, N) > 0 such that for
j = 1, . . . , N

‖ϕ− ϕ0‖Ck < δ ⇒ m
(
{hϕ = j}∆{hϕ0

= j}
)
< ǫ,

where ∆ represents symmetric difference of two sets.

(U2) Given ǫ > 0, there are N ≥ 1 and δ = δ(ǫ, N) > 0 for which

‖ϕ− ϕ0‖Ck < δ ⇒
∥∥

∞∑

j=N

X{hϕ>j}
∥∥
q
< ǫ,

where X{hϕ>j} denotes the characteristic function of the set {hϕ > j}.

(U3) Constants σ, K, β, ρ as above may be chosen uniformly in a Ck neighborhood
of ϕ0 .

We also assume that the maps in a neighborhood of ϕ0 satisfy the following non-
degeneracy condition: given any ǫ > 0 there exists δ > 0 such that

(3) m(E) ≤ δ ⇒ m(ϕ−1(E)) ≤ ǫ

for any measurable subset E of S and any ϕ in U . This can often be enforced by
requiring some jet of order l ≤ k of ϕ0 to be everywhere non-degenerate.
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Theorem A. Let U be as above, and suppose that every ϕ ∈ U admits a unique SRB
measure µϕ in U . Then

1. µϕ is absolutely continuous with respect to the Lebesgue measure m;

2. if ϕ0 ∈ U satisfies (U1), (U2), (U3) then ϕ0 is statistically stable in a strong
sense: the map

U ∋ ϕ 7→ dµϕ
dm

is continuous, with respect to the L1-norm, at ϕ = ϕ0.

We observe that under assumption (U1), condition (U2) can be reformulated in
equivalent terms as:

(U2’) Given ǫ > 0, there is δ > 0 for which

‖ϕ− ϕ0‖Ck < δ ⇒ ‖hϕ − hϕ0
‖q < ǫ.

A proof of this equivalence will be given in Remark 3.5 at the end of Section 3.

Our next results state that the assumptions of Theorem A do correspond to robust
classes of smooth maps in some manifolds.

Theorem B. There exists a non-empty open set N in the space of C3 transformations
from S1×R into itself such that: every ϕ ∈ N admits a C2 piecewise expanding return
map φϕ with bounded distortion and long branches, the return time hϕ is in L2(m),
and conditions (U1)–(U3) are satisfied.

The open set N we exhibit for the proof of this result is the one constructed in
[V1]. As pointed out in that paper, the choice of the cylinder S1 ×R as ambient space
is rather arbitrary, the construction extends easily to more general manifolds. In what
follows we briefly describe the set N , referring the reader to [V1] and Section 4 for
more details.

Let d be some large integer: d ≥ 16 suffices, but is far from being optimal. Let
a0 ∈ (1, 2) be such that the critical point x = 0 is pre-periodic under iteration by
the quadratic map q(x) = a0 − x2 (again, this is far too strong a requirement on the
parameter a0). Let b : S1 → R be a Morse function, for instance, b(t) = sin(2πt). Note
that S1 = R/Z. For each α > 0, consider the map ϕα : S1 × R → S1 × R given by
ϕα(θ, x) = (ĝ(θ), f̂(θ, x)), where ĝ is the uniformly expanding map of the circle defined
by ĝ(θ) = dθ (mod Z), and f̂(θ, x) = a(θ) − x2 with a(θ) = a0 + αb(θ). We shall take
N to be a small C3 neighborhood of ϕα, for some (fixed) sufficiently small α.
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It is easy to check that for α small enough there is an interval I ⊂ (−2, 2) for which
ϕα(S

1 × I) is contained in the interior of S1 × I. Thus, any map ϕ uniformly close to
ϕα has U = S1 × I as a forward invariant region, and so ϕ has an attractor inside this
invariant region, which is precisely the set

Λ =
⋂

n≥0

ϕn(U).

Observe also that (3) holds in this context, as long as the neighborhood N is chosen
sufficiently small. Indeed, denoting Jϕ = detDϕ, we have

Jϕα = Dĝ
∂f̂

∂x
and

∂Jϕα
∂x

= Dĝ
∂2f̂

∂x2
.

Our assumptions give that the last expression is bounded away from zero. So, choosing
N small enough, there exists c1 > 0 such that |∂Jϕα/∂x| ≥ c1 for any ϕ ∈ N .
Consequently, m(ϕ−1(E)) ≤ constm(E)1/2 for any ϕ ∈ N and any measurable set E.

It was shown in [A] that the maps ϕ ∈ N admit (finitely many) SRB measures,
which are ergodic absolutely continuous invariant measures. To be able to apply The-
orem A to this open set N , we also have to show that the SRB measure is unique for
each ϕ ∈ N . This will follow from a stronger fact that we state in the next theorem.

We say that ϕ is topologically mixing if for every open set A ⊂ S1 × I there is
some n = n(A) ∈ Z

+ for which ϕn(A) = Λ. Moreover, ϕ is ergodic with respect to
Lebesgue measure if for every Borel subset B ⊂ S1 × I such that ϕ−1(B) = B, either
B or (S1 × I) \ B have Lebesgue measure equal to zero. Clearly, if ϕ is ergodic with
respect to Lebesgue measure then it has at most one SRB measure: any basin has full
Lebesgue measure in S1 × I.

Theorem C. Let N be as described above. Then the transformations ϕ ∈ N are
topologically mixing and ergodic with respect to Lebesgue measure.

This work is organized as follows. Theorem A is proved in Sections 2 and 3. The
proof of Theorem B occupies Sections 4 and 5. Finally, Theorem C is proved in Sections
6 and 7.

2 Absolute continuity

The proof of Theorem A uses the notion of variation for functions in any dimension.
For f ∈ L1(Rd) with compact support, the variation of f is

var(f) = sup

{∫

Rd

fdiv(g)dm : g ∈ C1
0(R

d,Rd), ‖g‖0 ≤ 1

}
,
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where C1
0(R

d,Rd) is the set of C1 maps from R
d to R

d with compact support, and ‖ ‖0

is the supremum norm in C1
0(R

d,Rd). If f is a C1 map, then var(f) coincides with∫
‖Df‖dm (see e.g. [G, Example 1.2]). We consider the space of bounded variation

functions
BV (Rd) =

{
f ∈ L1(Rd) : var(f) < +∞

}
.

The following general results about bounded variation functions are used in the sequel.

Proposition 2.1. Given f ∈ BV (Rd), there is a sequence (fn)n of C∞ maps such that

lim
n→∞

∫
|f − fn|dm = 0 and lim

n→∞

∫
‖Dfn‖dm = var(f).

Proof. See [G, Theorem 1.17].

Proposition 2.2. If (fk)k is a sequence of functions in BV (Rd) such that there is a
constant K0 > 0 for which

var(fk) ≤ K0 and

∫
|fk|dm ≤ K0 for every k,

then (fk)k has a subsequence converging in the L1-norm to an f0 with var(f0) ≤ K0.

Proof. See [G, Theorem 1.19].

Proposition 2.3. Let f ∈ BV (Rd) and take p = d/(d− 1). Then

‖f‖p ≤ K1 var(f),

where K1 > 0 is a constant depending only on d.

Proof. See [G, Theorem 1.28].

Let ϕ ∈ U and φ be as in the statement of Theorem A. We introduce the transfer
operator Lφ : L1(S) −→ L1(S) associated to φ, defined by

Lφf =
∞∑

i=1

f ◦ φ−1
i

|J ◦ φ−1
i |Xφ(Ri).

By change of variables

(4)

∫
(Lφf)gdm =

∫
f(g ◦ φ)dm,
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whenever the integrals make sense. In particular, each fixed point of Lφ is the density
of an absolutely continuous φ-invariant finite measure. We also use the fact that L
never expands L1 norms:

∫
|Lφf |dm ≤

∫
Lφ|f |dm =

∫
|f |dm,

The next lemma, a Lasota-Yorke type inequality for maps in BV (Rd), plays a
crucial role in the proof of the existence of fixed points for Lφ.

Lemma 2.4. For any ϕ ∈ U , there are constants 0 < λ < 1 and K2 > 0 such that

var(Lφf) ≤ λ var(f) +K2

∫
|f |dm

for every f ∈ BV (Rd). Moreover, λ and K2 may be chosen uniform in a neighborhood
of any ϕ0 ∈ U that satisfies (U3).

Proof. The first part is [A, Lemma 5.4]. The argument gives λ = σ(1 + 1/β) and
K2 = K + 1/(βρ) + Kβ. So both may be taken uniform in a whole neighborhood of
any map ϕ0 satisfying (U3).

Consider for each k ≥ 1 the function

fk =
1

k

k−1∑

j=0

Ljφ1.

Using (4) and the fact that fk ≥ 0 we have
∫
|fk|dm = 1 for k ≥ 1. By Lemma

2.4, var(fk) ≤ K3 for k ≥ 1, where K3 = var(XS) + K2

∑∞
k=0 λ

k + 1. It follows from
Proposition 2.2 that (fk)k has a subsequence converging in the L1-norm to some ρ
with var(ρ) ≤ K3. Hence, µφ = ρm is an absolutely continuous φ-invariant probability
measure. ¿From this it is deduced in [A, Section 6] that

(5) µ∗
ϕ =

∞∑

j=0

ϕj∗ (µφ | {hϕ > j})

is an absolutely continuous ϕ-invariant finite measure.

Lemma 2.5. Given any f ∈ L1(Rd), then the sequence 1/n
∑n−1

j=0 Ljφf has some accu-

mulation point in L1(Rd) that is a function with variation bounded by 4K2‖f‖1.
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Proof. Let f ∈ L1(Rd) and take a sequence (fn)n in BV (Rd) converging to f in the
L1-norm. It is no restriction to assume that ‖fn‖1 ≤ 2‖f‖1 for every n ≥ 1 and we do
it. For each n ≥ 1 we have

var(Ljφfn) ≤ λj var(fn) +K2‖fn‖1 ≤ 3K2‖f‖1

for large j. So, taking k large enough we have

var

(
1

k

k−1∑

j=0

Ljφfn
)

≤ 4K2‖f‖1.

Moreover
∥∥1

k

k−1∑

j=0

Ljφfn
∥∥

1
≤ 1

k

k−1∑

j=0

‖Ljφfn‖1 ≤ 2‖f‖1

for every j ≥ 1. It follows from Proposition 2.2 that there exists some f̂n ∈ BV (Rd)
and a sequence (ki)i for which

lim
i→∞

∥∥ 1

ki

ki−1∑

j=0

Ljφfn − f̂n
∥∥

1
= 0

and, moreover, var(f̂n) ≤ 4K2‖f‖1. Now we apply the same argument to the sequence
(f̂n)n in order to obtain a subsequence (nl)l such that (f̂nl

)l converges in the L1-norm

to some f̂ with var(f̂) ≤ 4K2‖f‖1. Since

∥∥1

k

k−1∑

j=0

Ljφfnl
− f̂

∥∥
1
≤
∥∥1

k

k−1∑

j=0

Ljφfnl
− f̂nl

∥∥
1
+ ‖f̂nl

− f̂‖1,

there is some sequence (kl)l for which

lim
l→∞

∥∥ 1

kl

kl−1∑

j=0

Ljφfnl
− f̂

∥∥
1

= 0.

On the other hand,

∥∥ 1

kl

kl−1∑

j=0

(
Ljφfnl

− Ljφf
)∥∥

1
≤ 1

kl

kl−1∑

j=0

‖fnl
− f‖1 = ‖fnl

− f‖1
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and this last term goes to 0 as l → ∞. Finally, this implies that

lim
l→∞

∥∥ 1

kl

kl−1∑

j=0

Ljφf − f̂
∥∥

1
= 0,

thus proving that f̂ is an accumulation point for the sequence 1/n
∑n−1

j=0 Ljφf .

Observe that any accumulation point f̂ of a sequence as in the lemma is a fixed
point for the transfer operator.

Corollary 2.6. Given any φ-invariant set A ⊂ S with positive Lebesgue measure,
there is an absolutely continuous φ-invariant probability measure µA = fAm for which
µA(A) = 1. Moreover, fA may be taken with var(fA) ≤ 4K2.

Proof. Let A ⊂ S be a φ-invariant set with positive Lebesgue measure. Considering in
the previous lemma f = XA ∈ L1(Rd), we find fA ∈ BV (Rd) and a sequence (kl)l for
which var(fA) ≤ 4K2‖XA‖1 ≤ 4K2 and

lim
l→∞

∥∥ 1

kl

kl−1∑

j=0

LjφXA − fA
∥∥

1
= 0.

In particular ‖fA‖1 = m(A) > 0. Then µA = (fA/m(A))m is a probability, and it is
φ-invariant because fA is a fixed point of Lφ. Since

m(A)µA(S \ A) = lim
l→∞

1

kl

kl−1∑

j=0

∫

S\A
LjφXA dm = lim

l→∞

1

kl

kl−1∑

j=0

∫

S

(X(S\A) ◦ φj)XA dm = 0

we have that µA gives full weight to A, thus concluding the proof of the result.

Corollary 2.7. There is a constant K̂(d) > 0 such that if A ⊂ S is a φ-invariant set

with positive Lebesgue measure, then m(A) ≥ K̂(d).

Proof. Let A ⊂ S be a φ-invariant set with positive Lebesgue measure and µA = fAm
a measure as in Corollary 2.6. Since fA ∈ BV (Rd) ⊂ Lp(Rd) (recall Proposition 2.3)
and µA gives full weight to A, it follows from Minkowski’s inequality that

1 =

∫

A

fAdm ≤ ‖fA‖p · ‖XA‖q ≤ K14K2 m(A)1/d.

We take K̂(d) = (K14K2)
−d.
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Lemma 2.8. There are ergodic absolutely continuous ϕ-invariant measures µ∗
1, . . . , µ

∗
r

supported in U , and positive numbers α1, . . . , αr, such that α1 + · · · + αr = 1 and
µ∗
ϕ = α1µ

∗
1 + · · ·+ αrµ

∗
r.

Proof. If µ∗
ϕ is ergodic, it is enough to take r = 1, α1 = 1, and µ∗

1 = µ∗
ϕ. Otherwise,

there exists some ϕ-invariant set A such that 0 < µ∗
ϕ(A) < 1. Let us observe that A∩S

is necessarily φ-invariant:

φ−1(A ∩ S) =
{
x ∈ S : φ(x) ∈ A

}
=
⋃

j≥1

(
ϕ−j(A) ∩ {hϕ = j}

)
= A ∩ S,

Because of the assumption µ∗
ϕ(A) > 0 and the definition of µ∗

ϕ in (5), there exists j ≥ 0
such that µφ(ϕ

−j(A)∩{h = j}) > 0. Then, µφ(A) = µφ(ϕ
−j(A)) is also positive. Since

µφ is supported in S, this is the same as saying that µφ(A∩S) > 0. Then, by absolute
continuity, m(A ∩ S) > 0. So, by Corollary 2.7, we have

(6) m(A ∩ S) ≥ K̂(d).

Now, either A is minimal, in the sense that there is no ϕ-invariant set B ⊂ A with
µ∗
ϕ(A) > µ∗

ϕ(B) > 0, or else we apply the same arguments as before, with B and A \B
in the place of A. Of course, all this can be said about the complement M \ A as
well. The important point is that at all stages we have an uniform lower bound as in
(6). Thus this subdivision must stop after a finite number of steps. That is, we find a
decomposition of M into a finite number of ϕ-invariant sets A1, . . . , Ar with positive
µϕ-measure, such that m(Ai ∩ S) ≥ K̂(d) for 1 ≤ i ≤ r and, most important, each Ai
is minimal in the above sense. Define αi = µ∗

ϕ(Ai) and µ∗
i to be the restriction of µ∗

ϕ to
Ai, divided by αi. Clearly, each µi is absolutely continuous and ϕ-invariant (because
Ai is ϕ-invariant). Moreover, µ∗

i is ergodic, because Ai was taken minimal.

The first part of Theorem A is contained in the following consequence of the previous
lemma.

Proposition 2.9. If ϕ ∈ U has a unique SRB measure µϕ supported in U , then
µ∗
ϕ = µϕ.

Proof. Each of the measures µ∗
i in Lemma 2.8 is an SRB measure supported in U .

Therefore, the assumption implies that r = 1 and µ∗
ϕ = µ∗

1 = µϕ.
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3 Statistical stability

Now we prove that under the assumptions of Theorem A the density of the measure
µ∗
ϕ varies continuously with the map ϕ, in the L1-norm. Let ϕ0 be some map in U

satisfying (U1), (U2), (U3), and (ϕn)n be a sequence of maps in U converging to ϕ0 in
the Ck topology. Let φ0 be the return map of ϕ0, with return time h0 (cf. the definition
of U). Let µ0 be an absolutely continuous φ0-invariant probability measure and µ∗

0 be
the ϕ0-invariant measure obtained from it as in (2). We represent by ρ0 the density of
µ0. Moreover, we denote by φn, hn, µn, µ

∗
n, ρn the corresponding objects for each ϕn.

Our goal is to prove that µ∗
n converges to µ∗

0 as n goes to infinity.
We begin by noting that, as a consequence of our construction,

var(ρn) ≤ K3 and

∫
ρndm ≤ 1

for every n ≥ 1 (recall Lemma 2.4). Thus, by Proposition 2.2, the sequence of densities
(ρn)n is relatively compact with respect to the L1 norm: any subsequence contains
another subsequence which is L1 convergent. This means that we only have to prove
that (µ∗

ni
)i converges to µ∗

0 for every subsequence (ni)i such that (ρni
)i converges in the

L1-norm to some function ρ∞.
Let (ρni

)i and ρ∞ be as above. The previous remark also gives var(ρ∞) ≤ K3. We
consider µ∞ = ρ∞m and define

µ∗
∞ =

∞∑

j=0

ϕj∗ (µ∞ | {h0 > j}) .

We want to show that the densities of µ∗
n with respect to the Lebesgue measure converge

in the L1-norm to the density of µ∗
∞ and, moreover, the measure µ∗

∞ coincides with µ∗
0.

We start with some auxiliary lemmas.

Lemma 3.1. There is K4 = K4(d) > 0 such that, for any f ∈ BV (Rd) and any C1

embedding ψ : D → R
d of a compact domain D ⊂ R

d,
∫

D

|f ◦ ψ − f |dm ≤ K4‖ψ − id‖d0 var(f).

Proof. We start by proving the result when f is a continuous piecewise affine map.
More precisely, we suppose that the support ∆ of f can be decomposed into a finite
number of domains ∆1, . . . ,∆N such that the gradient ∇f of f is constant on each ∆i.
We define

D1 = {(x, z) ∈ R
d+1 : x ∈ D and z ∈ [f(x), f(ψ(x))]}
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and let D2 be the horizontal ‖ψ − id‖0-neighborhood of the graph of f . That is,

D2 = {(x, z) ∈ R
d+1 : z = f(y) for some y ∈ R

d with ‖x− y‖ ≤ ‖ψ − id‖0}.

We claim that D1 ⊂ D2. Indeed, given (x, z) ∈ D1, and since z ∈ [f(x), f(ψ(x))], by
the continuity of f there is y in the straight line segment [x, ψ(x)] such that z = f(y).
Taking t = y − x we have ‖t‖ ≤ ‖ψ(x) − x‖, which proves the claim. Now

∫

D

|f ◦ ψ − f |dm =

∫

D

∫

[f(x),f(ψ(x))]

1 dzdm(x) = vol(D1) ≤ vol(D2).

For each i = 1, · · · , N , let Hi be the horizontal ‖ψ − id‖0-neighborhood of the graph
of f | ∆i. Clearly, D2 ⊂ H1 ∪ · · · ∪HN , and so

vol(D2) ≤
N∑

i=1

vol(Hi).

Letting ∇if denote the value of the gradient of f | ∆i, we have

vol(Hi) ≤ K4‖ψ − id‖d0 ‖∇if‖ vol(∆i),

where K4 > 0 is the volume of the unit ball in R
d. Consequently,

∫

D

|f ◦ ψ − f |dm ≤ K4‖ψ − id‖d0
N∑

i=1

‖∇if‖ vol(∆i).

Taking into account that in this case

N∑

i=1

‖∇if‖ vol(∆i) =

∫
‖∇f‖dm = var(f),

we obtain the result for any continuous piecewise affine map.
The next step is to deduce the result for any C1 map f . For this we take a sequence

(fn)n of continuous piecewise affine maps such that

‖f − fn‖0 → 0 and ‖Df −Dfn‖0 → 0 as n→ ∞

(the derivatives Dfn are defined only in the interior of the smoothness domains). For
instance, we may consider a sequence of triangulations Tn (of some cube covering the
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support of f), with diameters going to zero as n → ∞, and let fn be the unique
piecewise affine function that coincides with f on the vertices of Tn. Then

∫

D

|f ◦ ψ − f |dm = lim
n→∞

∫

D

|fn ◦ ψ − fn|dm

and

var(f) =

∫
‖Df‖dm = lim

n→∞

∫
‖Dfn‖dm = lim

n→∞
var(fn).

So, the previous case implies that the conclusion of the lemma holds also for f .
For the general case, we know by Proposition 2.1 that given f ∈ BV (Rd) there is a

sequence (fn)n of C1 maps for which

(7) lim
n→∞

∫
|f − fn|dm = 0 and lim

n→∞
var(fn) = var(f).

We have
∫

D

|f ◦ ψ − f |dm ≤
∫

D

|f ◦ ψ − fn ◦ ψ|dm+

∫

D

|fn ◦ ψ − fn|dm+

∫

D

|fn − f |dm.

Since
∫

D

|fn ◦ ψ − f ◦ ψ|dm =

∫

ψ(D)

|fn − f | · Ψdm ≤ ‖Ψ‖0

∫
|fn − f |dm

where Ψ = 1/| detDψ| ◦ ψ−1, the result for general f ∈ BV (Rd) follows from (7) and
the previous case.

At this point we also introduce the transfer operator Lϕ associated to ϕ ∈ U ,
defined for each f ∈ L1(Rd) as

(8) Lϕf(y) =
∑

x∈ϕ−1(y)

f(x)

| detDϕ(x)| .

The function Lϕf(y) fails to be defined only when y is a critical value of ϕ. We have

∫
(Lϕf)g dm =

∫
f(g ◦ ϕ) dm

for every f, g ∈ L1(Rd) such that integrals make sense.
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Lemma 3.2. Given ϕ0 ∈ U and ǫ > 0, there is δ > 0 such that for any ϕ ∈ U with
‖ϕ− ϕ0‖C1 < δ we have

∫
|Lϕf − Lϕ0

f |dm ≤ ǫ (var(f) + ‖f‖1) ,

for every f ∈ BV (Rd) with support contained in S.

Proof. Our assumptions, namely the existence of a piecewise expanding return map,
imply that the critical set of ϕ0 (the set of points where ϕ0 fails to be a local diffeo-
morphism) intersects S in a zero Lebesgue measure set. Given any ǫ1 > 0, define C(ǫ1)
as the ǫ1-neighborhood of this intersection. Clearly, m(ϕ(C(ǫ1))) ≤ constm(C(ǫ1)) for
some constant that may be taken uniform in a C1 neighborhood of ϕ0. So, using (3)
we may fix ǫ1 small enough so that

(9) m
(
ϕ−1

1 (ϕ2(C(ǫ1))
)
≤ 1

2

(
ǫ

8K1

)q
,

for every ϕ1 , ϕ2 in some neighborhood of ϕ0, where K1 is the constant in Proposition
2.3 and q = d. We decompose S \ C(ǫ1) into a finite collection D(ϕ0) of domains of
injectivity of ϕ0. Observe that if ϕ is close enough to ϕ0, in the C1 sense, then C(ǫ1) also
contains the critical set of ϕ. Hence, we may define a corresponding collection D(ϕ)
of domains of injectivity for ϕ in S \ C(ǫ1), and there is a natural bijection associating
to each D0 ∈ D(ϕ0) a unique D ∈ D(ϕ) such that the Lebesgue measure of D∆D0 is
small. Observe that Lϕ is supported in

ϕ(S) = ϕ(C(ǫ1)) ∪
⋃

D∈D(ϕ)

ϕ(D),

and analogously for ϕ0 . So,
∫

|Lϕf −Lϕ0
f |dm ≤

∫

ϕ0(C(ǫ1))∪ϕ(C(ǫ1))

(
|Lϕf | + |Lϕ0

f |
)
dm(10)

+
∑

D0∈D(ϕ0)

∫

ϕ0(D0)∩ϕ(D)

|Lϕf − Lϕ0
f |dm(11)

+
∑

D0∈D(ϕ0)

∫

ϕ0(D0)∆ϕ(D)

(
|Lϕf | + |Lϕf0|

)
dm,(12)

where D always denotes the element of D(ϕ) associated to each D0 ∈ D(ϕ0). Let us
estimate the expressions on the right hand side of this inequality.
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Let us start with (10). For notational simplicity, we write E = ϕ0(C(ǫ1))∪ϕ(C(ǫ1)).
Then ∫

E

|Lϕf |dm ≤
∫

XE

(
Lϕ|f |

)
dm =

∫
(XE ◦ ϕ)|f |dm.

It follows from Minkowski’s inequality, Proposition 2.3, and (9) that
∫

(XE ◦ ϕ)|f |dm ≤ m
(
ϕ−1(E)

)1/q‖f‖p ≤
ǫ

8K1
K1 var(f) =

ǫ

8
var(f).

The case ϕ = ϕ0 gives a similar bound for the second term in (10). So,

(13)

∫

ϕ0(C(ǫ1))∪ϕ(C(ǫ1))

(
|Lϕf | + |Lϕ0

f |
)
dm ≤ ǫ

4
var(f).

Making the change of variables y = ϕ0(x) in (11), we may rewrite it as

∫

bD0

∣∣∣∣
f

| detDϕ| ◦ (ϕ−1 ◦ ϕ0) −
f

| detDϕ0|

∣∣∣∣ · | detDϕ0|dm,

where D̂0 = ϕ−1
0

(
ϕ0(D0) ∩ ϕ(D)

)
= D0 ∩

(
ϕ−1

0 ◦ ϕ
)
(D). For notational simplicity, we

introduce ψ = ϕ−1 ◦ ϕ0. The previous expression is bounded by

∫

bD0

(
|f ◦ ψ − f | · | detDϕ0|

| detDϕ| ◦ ψ + |f | ·
∣∣∣∣

| detDϕ0|
| detDϕ| ◦ ψ − 1

∣∣∣∣

)
dm.

Choosing δ > 0 sufficiently small, the assumption ‖ϕ− ϕ0‖C1 < δ implies
∣∣∣∣

| detDϕ0|
| detDϕ| ◦ ψ − 1

∣∣∣∣ ≤ ǫ and so
| detDϕ0|

| detDϕ| ◦ ψ ≤ 2

on S \ C(ǫ1) (which contains D̂0). Hence, using Lemma 3.1,

∫

ϕ0(D0)∩ϕ(D)

|Lϕf − Lϕ0
f |dm ≤ 2

∫

bD0

|f ◦ ψ − f |dm+ ǫ

∫
|f |dm

≤ 2K4‖ψ − id‖d0 var(f) + ǫ

∫
|f |dm.

Reducing δ > 0, we can make ‖ψ − id‖d0 arbitrarily small, so that

(14)

∫

ϕ0(D0)∩ϕ(D)

|Lϕf −Lϕ0
f |dm ≤ ǫ

4
var(f) + ǫ‖f‖1.
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We estimate the terms in (12) in much the same way as we did for (10). For
each D0 let E be ϕ0(D0)∆ϕ(D). The properties of the transfer operator, followed by
Minkowski’s inequality, yield

∫

E

|Lϕf |dm ≤
∫

XE

(
Lϕ|f |

)
dm

=

∫
Xϕ−1(E)|f |dm ≤ m

(
ϕ−1(E)

)1/q‖f‖p .

Fix ǫ2 > 0 such that #D(ϕ0)4ǫ2 < ǫ. Taking δ sufficiently small, we may ensure that
the Lebesgue measure of all the sets

ϕ−1(E) = ϕ−1(ϕ0(D0)∆ϕ(D))

is small enough so that, using also Proposition 2.3, the right hand side is less than
ǫ2 var(f). In this way we get

(15)

∫

ϕ0(D0)∆ϕ(D)

(
|Lϕ0

f | + |Lϕf |
)
dm ≤ 2ǫ2 var(f)

(the second term on the left is estimated in the same way as the first one). Putting
(13), (14), (15) together, we obtain

∫
|Lϕf − Lϕ0

f |dm ≤
( ǫ
2

+ #D(ϕ0)2ǫ2
)
var(f) + ǫ‖f‖1

and this is smaller than ǫ(var(f) + ‖f‖1).

Proposition 3.3.
dµ∗

ni

dm
converges to

dµ∗
∞

dm
in the L1-norm.

Proof. We are going to prove that given ǫ > 0 there is δ > 0 for which

∥∥∥∥
dµ∗

ni

dm
− dµ∗

∞
dm

∥∥∥∥
1

< ǫ whenever ‖ϕni
− ϕ0‖C1 < δ.

We have

(16) µ∗
∞ =

∞∑

j=0

(ϕj0)∗ (µ∞ | {h0 > j}) and µ∗
ni

=
∞∑

j=0

(ϕjni
)∗ (µni

| {hni
> j}) .
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By (U2) there is an integer N ≥ 1 and δ = δ(ǫ, N) > 0 for which

(17) ‖ϕ− ϕ0‖C1 < δ ⇒
∥∥

∞∑

j=N

X{hϕ>j}
∥∥
q
<

ǫ

4K1K3
.

In what follows we take i ≥ 1 to be sufficiently large so that ‖ϕni
− ϕ0‖ < δ. We split

each one of the sums in (16) as

(18) µ∗
∞ =

N∑

j=0

ν∞,j + η∞,N and µ∗
ni

=
N∑

j=0

νni,j + ηni,N ,

where

ν∞,j = (ϕ0)
j
∗ (µ∞ | {h0 > j}) , η∞,N =

∞∑

j=N+1

(ϕ0)
j
∗ (µ∞ | {h0 > j}) ,

and νni,j and ηni,N are defined similarly, with ϕni
, µni

, hni
in the place of ϕ, µ∞ , h0 ,

respectively. We have

η∞,N(M) =
∞∑

j=N

µ∞({h0 > j}) =
∞∑

j=N

∫
ρ∞X{h0>j}dm ≤ ‖ρ∞‖p ·

∥∥
∞∑

j=N

X{h0>j}
∥∥
q
,

and, analogously,

ηni,N(M) ≤ ‖ρni
‖p ·

∥∥
∞∑

j=N

X{hni
>j}
∥∥
q

which together with Proposition 2.3 and (17) yield

(19)

∥∥∥∥
dηni,N

dm
− dη∞,N

dm

∥∥∥∥
1

≤ ηni,N(M) + η∞,N(M) < ǫ/2.

On the other hand, for j = 1, . . . , N

(20)

∥∥∥∥
dνni,j

dm
− dν∞,j

dm

∥∥∥∥
1

=
∥∥Lϕj

ni

(ρni
X{hni

>j}) −Lϕj
0

(ρ∞X{h0>j})
∥∥

1
.

Denote
A = ‖Lϕj

ni

(ρni
X{hni

>j}) − Lϕj
ni

(ρ∞X{h0>j})‖1
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and
B = ‖Lϕj

ni

(ρ∞X{h0>j}) − Lϕj
0

(ρ∞X{h0>j})‖1.

Here we also use the transfer operators for the iterated maps ϕjni
and ϕj0 defined in the

same way as for ϕ in (8). Then

A ≤ ‖ρni
X{hni

>j} − ρ∞X{h0>j}‖1

≤ ‖ρni
X{hni

>j} − ρ∞X{hni
>j}‖1 + ‖ρ∞X{hni

>j} − ρ∞X{h0>j}‖1

≤ ‖ρni
− ρ∞‖1 + ‖ρ∞(X{hni

>j} − X{h0>j})‖1

and the last term is bounded by ‖ρ∞‖p‖X{hni
>j} − X{h0>j}‖q . Taking into account

(U1), we get A ≤ ǫ/(4N) if i is sufficiently large. Using Proposition 3.2 we also get
B ≤ ǫ/(4N), for large i. It follows that (20) is less than A + B ≤ ǫ/(2N) for each
1 ≤ j ≤ N . Thus the sum over all these j’s is less than ǫ/2. Together with (19), this
completes the proof of the proposition.

Proposition 3.4. µ∗
∞ is a ϕ0-invariant measure.

Proof. It follows from Proposition 3.3 that (µ∗
ni

)i converges to µ∗
∞ in the weak* topol-

ogy. Hence, given any f : M → R continuous we have
∫
fdµ∗

ni
→
∫
fdµ∗

∞ when i→ ∞.

On the other hand, since µ∗
ni

is ϕni
-invariant we have

∫
fdµ∗

ni
=

∫
(f ◦ ϕni

)dµ∗
ni

for every i.

So, it suffices to prove that

(21)

∫
(f ◦ ϕni

)dµ∗
ni

→
∫

(f ◦ ϕ0)dµ
∗
∞ when i→ ∞.

We have
∣∣
∫

(f ◦ ϕni
)dµ∗

ni
−
∫

(f ◦ ϕ0)dµ
∗
∞
∣∣ ≤

∣∣
∫

(f ◦ ϕni
)dµ∗

ni
−
∫

(f ◦ ϕ0)dµ
∗
ni

∣∣ +
∣∣
∫

(f ◦ ϕ0)dµ
∗
ni
−
∫

(f ◦ ϕ0)dµ
∗
∞
∣∣.

Since f ◦ ϕni
− f ◦ ϕ0 is uniformly close to zero in the compact set U , when i is large,

the first term in the sum above is close to zero for i sufficiently large. On the other
hand, since (µ∗

ni
)i converges to µ∗

∞ in the weak* topology we also have that the second
term in the sum above is close to zero if i is large.
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It follows from this last result and the uniqueness of the absolutely continuous ϕ-
invariant measure that µ∗

∞ = µ∗
0. So, Proposition 3.3 really states that the measures

µ∗
ni

have densities converging in the L1-norm to the density of µ∗
0. This completes the

proof of Theorem A.

Remark 3.5. We also check that conditions (U2’) and (U2) are equivalent if we assume
(U1). First we prove that (U2’) implies (U2). Let ǫ > 0 be some small number and
take N ≥ 1 in such a way that ‖∑∞

j=N X{hϕ0
>j}‖q < ǫ/3. We have

∥∥
∞∑

j=N

X{hϕ>j}
∥∥
q

=
∥∥hϕ − hϕ0

+ hϕ0
−

N−1∑

j=0

X{hϕ0
>j} +

N−1∑

j=0

X{hϕ0
>j} −

N−1∑

j=0

X{hϕ>j}
∥∥
q

≤ ‖hϕ − hϕ0
‖q +

∥∥
∞∑

j=N

X{hϕ0
>j}
∥∥
q
+

N−1∑

j=0

∥∥X{hϕ0
>j} − X{hϕ>j}

∥∥
q
,

and so, if we take δ = δ(N, ǫ) > 0 sufficiently small then, under assumptions (U2’) and
(U1), the first and third terms in the sum above can be made smaller than ǫ/3. This
gives the conclusion of condition (U2).

For the converse, let ǫ > 0 be some small number, and N ≥ 1 and δ = δ(N, ǫ) > 0
be taken in such a way that the conclusion of (U2) holds for ǫ/3. We have

‖hϕ − hϕ0
‖q =

∥∥hϕ −
N−1∑

j=0

X{hϕ>j} +
N−1∑

j=0

(
X{hϕ>j} − X{hϕ0

>j}
)

+
N−1∑

j=0

X{hϕ0
>j} − hϕ0

∥∥
q

≤
∥∥

∞∑

j=N

X{hϕ>j}
∥∥
q
+

N−1∑

j=0

‖X{hϕ>j} − X{hϕ0
>j}‖q +

∥∥
∞∑

j=N

X{hϕ0
>j}
∥∥
q
.

By the choices of N and δ, the first and third terms in the last sum above are smaller
than ǫ/3. Moreover, by condition (U1), reducing δ we can make the second term also
smaller than ǫ/3, thus obtaining the conclusion of (U2’).

4 Return maps and hyperbolic returns

Now we start the proof of Theorem B. As mentioned before, the open class ϕ of systems
we consider at this points is the one described in [V1]. A suitable construction of a
return map φ for each ϕ ∈ N was given in [A]. On the other hand, for Theorem C we
shall need some features that do not follow directly from that construction, but may be
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obtained from a slight modification of it. In the present section, besides reviewing the
arguments in [A], we explain how it can be modified to yield those additional features
(Lemma 4.9 below). This is based on a notion of hyperbolic return, that we introduce
below.

For the sake of clarity, we start by assuming that the map ϕ has the special form

(22) ϕ(θ, x) = (g(θ), f(θ, x)), with ∂xf(θ, x) = 0 if and only if x = 0,

and describe how φ is obtained for each C2 map ϕ satisfying

(23) ‖ϕ− ϕα‖C2 ≤ α on S1 × I.

In Section 5 we explain how the conclusions extend to the general case, using the
existence of a central invariant foliation, and we verify conditions (U1), (U2), (U3).

Our estimates on the derivative rely on a statistical analysis of the returns of orbits
to the neighborhood S1×(−√

α,
√
α ) of the critical set {x = 0}. For this, we introduce

the partition Q of I (up to a zero Lebesgue measure set) into the following intervals:

Ir = (
√
αe−r,

√
αe−(r−1) ) for r ≥ 1, and Ir = −I−r for r ≤ −1,

I0+ =
(
I \ [−√

α,
√
α ]
)
∩ R

+ and I0− =
(
I \ [−√

α,
√
α ]
)
∩ R

−.

This induces corresponding partitions on each fiber {θ} × I, whose elements we also
denote as Ir and I0± , since this abuse of language never leads to ambiguity. In what
follows, α > 0 is a sufficiently small number independent of any other constant involved
in the arguments. Furthermore, we indicate which of the constants depend on α. Given
(θ, x) ∈ S1 × I and j ≥ 0 we define (θj , xj) = ϕj(θ, x).

Lemma 4.1. There are C1 > 1 and 0 < η < 1/4 such that for every small α there is
an integer N = N(α) satisfying

1. If |x| < 2
√
α, then

∏N−1
j=0 |∂xf(θj , xj)| ≥ |x|α−1+η.

2. If |x| < 2
√
α, then |xj | >

√
α for every j = 1, . . . , N .

3. C−1
1 log(1/α) ≤ N ≤ C1 log(1/α).

Proof. See [V1, Lemma 2.4] and [A, Lemma 2.1].

Lemma 4.2. There are τ > 1, C2 > 0 and δ > 0 such that for (θ, x) ∈ S1 × I and
k ≥ 1 the following holds:
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1. If |x0|, . . . , |xk−1| ≥
√
α, then

∏k−1
j=0 |∂xf(θj , xj)| ≥ C2

√
ατk.

2. If |x0|, . . . , |xk−1| ≥
√
α and |xk| < δ, then

∏k−1
j=0 |∂xf(θj , xj)| ≥ C2τ

k.

Proof. See [V1, Lemma 2.5].

The constants C1, η, τ , C2, and δ in these two lemmas depend only on the quadratic
map q, and so they may be taken uniform in the whole N .

Now, for each integer j ≥ 0 we define

(24) rj(θ, x) =

{
|r| if ϕj(θ, x) ∈ S1 × Ir with |r| ≥ 1;
0 if ϕj(θ, x) /∈ S1 × [−√

α,
√
α ].

We say that ν ≥ 0 is a return for (θ, x) if ϕν(θ, x) ∈ S1 × (−δ, δ). In particular,
rj(θ, x) = 0 unless j is a return for (θ, x). Let n ≥ 1 and 0 ≤ ν1 ≤ · · · ≤ νs ≤ n be the
returns of (θ, x) from time 0 to n. It follows from Lemma 4.1 that for each 1 ≤ i ≤ s

νi+N−1∏

j=νi

|∂xf(θj , xj)| ≥ e−rνi
(θ,x)α−1/2+η,

and from the second part of Lemma 4.2

ν1−1∏

j=0

|∂xf(θj , xj)| ≥ C2τ
ν1 and

νi+1−1∏

j=νi+N

|∂xf(θj , xj)| ≥ C2τ
νi+1−νi−N .

Assume n is a return, that is, νs = n. Then, putting the previous estimates together,
we get

(25)

n−1∏

j=0

|∂xf(θj , xj)| ≥ C−1
2 exp

(
4cn−

∑

j∈Gn(θ,x)

rj(θ, x)

)

where

(26) Gn(θ, x) =

{
1 ≤ νi ≤ n− 1 : rνi

(θ, x) ≥
(

1

2
− 2η

)
log

1

α

}
.

See e.g. [A, Section 2].
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A key fact in this construction is that the exponent on the right hand side of (25)
is positive, except for a set of initial points (θ, x) whose measure decreases very rapidly
with n. More precisely, let

(27) En =
{
(θ, x) ∈ S1 × I :

∑

j∈Gn(θ,x)

rj(θ, x) > 2cn
}
.

Then, cf. (16) and (17) in [V1, Section 2.4], there are constants C, γ > 0 such that

(28) m
(
En
)
≤ Ce−γ

√
n

for every sufficiently large n, only depending on α. Note that (25) gives

‖Dϕn(θ, x)(0, 1)‖ ≥ C−1
2 e2cn ≥ ecn

for any (θ, x) ∈ (S1 × I) \ En and n sufficiently large.

Following [A], we fix 0 < ǫ < c/2 and say that n ≥ 1 is a hyperbolic time for
(θ, x) ∈ S1 × I if

∑

i ∈ Gn(θ, x)
k ≤ i < n

ri(θ, x) < (c+ ǫ)(n− k) for every 0 ≤ k < n.

Let p ≥ 1 be some sufficiently large integer: the precise condition will be recalled in
a while, it involves only the expansion rates of the maps ĝ and f̂ . Let H be the set
of points that has at least one hyperbolic time greater or equal than p. Decompose
H = ∪n≥pHn, where each Hn is the set of points whose first hyperbolic time greater
or equal to p is n. By [A, Proposition 2.5], there is a positive integer n0 = n0(p, ǫ) ≥ p
such that

(29) (S1 × I) \ (Hp ∪ · · · ∪Hn) ⊂ En for every n ≥ n0 .

Starting from this, [A] constructed a special partition R of (a full Lebesgue measure
subset of) S1 × I into rectangles, whose elements are the domains of smoothness of
the corresponding return map φ. Let Q be the partition of I described above, and Pn,
n ≥ 1, be the sequence of Markov partitions of S1 defined as follows. Let S1 = R/Z
have the orientation induced by the usual order in R and θ0 be the fixed point of g
close to θ = 0. Define Pn by

• P1 = {[θj−1, θj) : 1 ≤ j ≤ d}, where θ0, θ1, . . . , θd = θ0 are the pre-images of θ0
under g (ordered according to the orientation of S1).
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• Pn+1 = {connected components of g−1(ω) : ω ∈ Pn} for each n ≥ 1.

[A, Section 3] explains how the elements of Pp×Q, any large p ≥ 1, can be successively
subdivided (according to the itineraries of points relative to the horizontal strips S1×I∗,
I∗ ∈ Q) to obtain a partition R of a full Lebesgue measure subset of S1 × I with the
following properties. R may be written as a union R = ∪n≥pRn satisfying

(30) Hn ⊂
⋃

R∈Rn

R and R ∩Hn 6= ∅ for every R ∈ Rn.

The elements of Rn, any p ≥ n, are rectangles of the form ω × J , with ω belonging to
Pn and J a subinterval of I∗ for some I∗ ∈ Q.

Now one defines h : R → Z
+, by setting h(R) = n ≥ p for each R ∈ Rn. Moreover,

φ(x) = ϕh(R)(x) for every x ∈ R and R ∈ Rn. It was shown in [A] that, as long as p is
chosen sufficiently large, φ is a C2 piecewise expanding map with bounded distortion
and long branches. In particular, cf. Proposition 3.8 in that paper, the images φ(R) of
the rectangles R ∈ R have sizes bounded away from zero by some constant depending
only on α.

For the proof of Theorem C we need a stronger form of this conclusion that, basi-
cally, corresponds to having this lower bound independent of α. The precise property
we need is stated in Lemma 4.9 below. In order to get it, we give an alternative con-
struction of a partition and a return map. This goes along the same lines as before,
except that hyperbolic times are replaced by the following notion. We say that n ≥ 1
is a hyperbolic return for (θ, x) ∈ S1 × I if n is both a hyperbolic time and a return for
(θ, x).

Corresponding to (28) and (29), we are going to prove that the Lebesgue measure
of the set of points that have no hyperbolic returns smaller than some large integer n
decays at least as fast as Ce−c

√
n. We use the following result, that is interesting by

itself.

Lemma 4.3. There exist constants Ĉ = Ĉ(α) > 0 and τ̂ = τ̂ (α) > 1 such that the
Lebesgue measure of the set of points (θ, x) that have no return up to time l is bounded
by Ĉτ̂−l, for all l ≥ 1.

Proof. Let θ ∈ S1 and J be any subinterval of I with length |J | ≥ δ/2. For each j ≥ 0,
we denote Jj the interval defined by ϕj({θ} × J) = {ĝj(θ)} × Jj . Let R ≥ 0 be the
smallest iterate for which JR intersects (−√

α,
√
α). By Lemma 4.2, the length of the

Jj grows exponentially fast up to time R. So, R is bounded from above by a constant
R0 that does not depend on the interval J , only on α and the lower bound δ/2 for
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the initial length. Then we can decompose JR into (at most) three subintervals J−,
J0, J+ as follows. If δ belongs to JR, we take J+ = JR ∩ {x > δ/2}. Otherwise J+

is the empty set. Analogously, J− = JR ∩ {x < −δ/2} if −δ belongs JR, and J− = ∅
otherwise. Finally J0 is the complement of J+ ∪ J− in JR. Therefore,

1. J0 is contained in (−δ, δ);

2. |J0| > δ/4 or else J0 is the whole JR ;

3. |J±| > δ/2 or else they are empty.

Property 1 means that R is a return for all the points falling in J0. Property 2 implies
that such points constitute a definite fraction of the initial interval J . Here we are
using the fact that the map fR(θ, ·) has bounded distortion on J . To see that this is
so, observe that the iterates f j(θ, ·), 1 ≤ j ≤ R, are uniformly expanding on J , by
Lemma 4.2. Moreover, these iterates remain outside a fixed neighborhood (−√

α,
√
α)

of the critical point 0. Since log ∂xf is Lipschitz continuous outside this neighborhood,
with uniform Lipschitz constants, the bounded distortion property follows along well-
known lines. So far, we have shown that a definite fraction τ0 > 0 of the initial interval
J attains a return in not more than R0 iterations. Furthermore, by property 3 above,
we may repeat the argument recurrently for each of the remaining intervals J±, with
θ replaced by ĝR(θ). Using the bounded distortion property for successive iterates, we
conclude that after jR0 iterates, any j ≥ 1, all but a fraction (1 − τ0)

j of the initial
interval J has already gone through at least one return. This proves the lemma.

Lemma 4.4. Given any sufficiently large n, then almost every (θ, x) ∈ (S1 × I) \ En
has some hyperbolic return. Moreover, Lebesgue almost every (θ, x) ∈ (S1 × I) has
infinitely many hyperbolic returns.

Proof. It was shown that [A, Proposition 2.5] that any (θ, x) ∈ (S1 × I) \En has some
hyperbolic time, as long as n is large enough. On the other hand, if n is a hyperbolic
time for (θ, x) and l > n is the next return for (θ, x) after n (recall the previous lemma)
then l is a hyperbolic return for (θ, x), since rj(θ, x) = 0 for j = n+ 1, · · · , l− 1. This
proves the first statement. The second one follows from the same argument, using
the Remark 2.6 in [A] that Lebesgue almost every point in S1 × I has infinitely many
hyperbolic times.

Similarly to what we have done before, let p ≥ 1 be some fixed large integer, and
define H∗ the set of points that has at least one hyperbolic return greater or equal
than p. We decompose H∗ = ∪n≥pH∗

n, where each H∗
n is the set of points whose first

hyperbolic return greater or equal than p is n.
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Proposition 4.5. There is an integer n1 = n1(p, ǫ) ≥ p and constants C0, γ0 > 0 such
that for each n ≥ n1

m
(
(S1 × I) \ (H∗

p ∪ · · · ∪H∗
n)
)
≤ C0e

−γ0
√
n.

Proof. Take n ≥ max{2p, n0} and let l = [n/2]. Let (θ, x) ∈ Hl be such that some
1 ≤ k ≤ l is a return for ϕl(θ, x). Let us take k minimum. Then, k + l is a return for
(θ, x) and, as observed already in the proof of Lemma 4.4, it is a hyperbolic return for
(θ, x). Our choices of l and k imply that p ≤ k + l ≤ n. So, we have shown that the
set of points (θ, x) ∈ Hl such that ϕl(θ, x) has some return prior to time l is contained
in H∗

p ∪ · · · ∪H∗
n. The same argument remains valid for any j between p and l. Hence,

defining

Bl =

l⋃

j=p

{(θ, x) ∈ Hj : ϕ
j(θ, x) has no returns from time 1 to l}

we have (Hp ∪ · · · ∪Hl) \Bl ⊂ (H∗
p ∪ · · · ∪H∗

n) and so

m
(
(S1 × I) \ (H∗

p ∪ · · · ∪H∗
n)
)
≤ m

(
(S1 × I) \ (Hp ∪ · · · ∪Hl)

)
+m(Bl),

Taking into account (29) and (28) above, it suffices to show that m(Bl) also decays
rapidly when n increases. We define, for each j ≥ p and Rj ∈ Rj ,

Rj(l) = {(θ, x) ∈ Rj : ϕ
j(θ, x) has no returns from time 1 to l}.

Using (30) we obtain

(31) m(Bl) ≤
l∑

j=p

∑

Rj∈Rj

m
(
Rj(l)

)
.

Fixing some Rj ∈ Rj and (θ0, x0) ∈ Rj we deduce from Proposition 4.7

m
(
ϕj
(
Rj(l)

))
=

∫

Rj(l)

|J(θ, x)| dm(θ, x) ≥ 1

∆
|J(θ0, x0)|m

(
Rj(l)

)
.

Similarly, m (ϕj(Rj)) ≤ ∆ |J(θ0, x0)|m(Rj). Hence

(32)
m
(
Rj(l)

)

m(Rj)
≤ ∆2m

(
ϕj
(
Rj(l)

))

m (ϕj(Rj))
.
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It follows from the fact that ϕj | Rj(l) is a diffeomorphism that the iterates of points
in ϕj

(
Rj(l)

)
do not hit the critical region S1 × [−√

α,
√
α] from time 1 to l. As a

consequence of Lemma 4.3

(33) m
(
ϕj
(
Rj(l)

))
≤ Ĉτ̂−l.

On the other hand, by [A, Proposition 3.8], there is some absolute constant δ > 0 such
that m

(
ϕj
(
Rj

))
≥ δ. Combining this with (32) and (33) we obtain

m
(
Rj(l)

)
≤ ∆2C

δ
τ−lm(Rj)

which together with (31) gives

m(Bl) ≤
l∑

j=p

∑

Rj∈Rj

∆2C

δ
τ−lm(Rj) ≤ (l − p)

∆2C

δ
τ−l ≤ n

∆2C

δ
τ−n/2.

Now we proceed just as in [A, Section 3], with theH∗
n in the role of the setsHn. That

is, we construct a new partition R∗ of a full Lebesgue measure subspace of S1 × I into
rectangles, using hyperbolic returns instead of hyperbolic times. This new partition
may also be written as a union R∗ = ∪n≥pR∗

n with the sets R∗
n defined inductively and

satisfying

H∗
n ⊂

⋃

R∈R∗
n

R and R ∩H∗
n 6= ∅ for every R ∈ R∗

n.

Furthermore, for each n ≥ p, rectangles in R∗
n also have the form ω×J , with ω belonging

to Pn and J a subinterval of I∗ for some I∗ ∈ Q. We define a map h∗ : R∗ → Z
+, by

putting h∗(R) = n ≥ p for each R ∈ R∗
n. This also gives a new return map φ∗ defined

by φ∗ | R = ϕh
∗(R) | R for every R ∈ R∗.

It follows from (22) that for each n ≥ 1 there is a map Fn : S1 × I → I such that
ϕn(θ, x) = (gn(θ), Fn(θ, x)) for every (θ, x) ∈ S1 × I. Let (θ, x) belong to R∗ ∈ R and
h = h∗(R). Then

Dϕh(θ, x) =

(
∂θg

h(θ) 0
∂θFh(θ, x) ∂xFh(θ, x)

)
.

By [A, Lemma 4.1], there is some constant C3 > 0 such that for every (θ, x) ∈ S1 × I
we have |∂θFh(θ, x)| ≤ C3|∂θgh(θ)|. Then

‖Dϕ−h(ϕh(θ, x))‖ ≤ max
{
|∂θgh(θ)|−1 + C3|∂xFh(θ, x)|−1, |∂xFh(θ, x)|−1

}
.
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Moreover, |∂θgh(θ)|−1 ≤ (d− α)−h and, from Lemma 4.9,

|∂xFh(θ, x)|−1 ≤ C2 exp(−(2c− ǫ)h).

Hence,

(34) ‖Dϕ−h(ϕh(θ, x))‖ ≤ (d− α)−h + (1 + C3)C2 exp(−(2c− ǫ)h),

At this point we can specify the choice of the integer p: we take p ≥ 1 large enough
so that the induced map φ∗ associated to ϕ is an expanding map in the sense of the
definition given in Subsection 1.1 (recall that h ≥ p).

Remark 4.6. The constants C0 and γ0 that we found in Proposition 4.5 depend on
C, γ, and the quadratic map q. Moreover, the integer n1 only depends on the previous
constants and the integer p ≥ 1. Note also that our choice of p only depends on the
expansion rates of the maps ĝ and f̂ . In particular, p may be taken independent of the
map ϕ ∈ N .

Proposition 4.7. There is some constant ∆ > 1 such that for every n ≥ p, R ∈ R∗
n

and (θ, x), (σ, y) ∈ R we have

1

∆
≤
∣∣∣∣
J(θ, x)

J(σ, y)

∣∣∣∣ ≤ ∆,

where J is the Jacobian of ϕn | R.

Proof. As in [A, Proposition 4.2],

∥∥D
(
log
∣∣J ◦ φ−1

∣∣)∥∥ =
‖D (J ◦ φ−1)‖
|(J ◦ φ−1)|

is bounded by some constant C1 that depends only on c, α, and bounds on the partial
derivatives of f and g of first and second order. Fix some R ∈ R∗

n with n ≥ p and let
φ = ϕn | R. We have

∣∣∣∣
J(θ, x)

J(σ, y)

∣∣∣∣ = exp
(
log
∣∣(J ◦ φ−1

)
(φ(θ, x))

∣∣− log
∣∣(J ◦ φ−1

)
(φ(σ, y))

∣∣)

and
∣∣log

∣∣(J ◦ φ−1
)
(φ(θ, x))

∣∣− log
∣∣(J ◦ φ−1

)
(φ(σ, y))

∣∣∣∣ ≤
∥∥D
(
log
∣∣J ◦ φ−1

∣∣) (τ, z)
∥∥ · C2

for some (τ, z) ∈ φ(S), where C2 > 0 depends only on the diameter of S1 × I. So, it
suffices to take ∆ = C1C2 .
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Remark 4.8. For future use, let us point out that the distortion bound ∆ given by
the proof does not depend on the choice of p.

Finally, we get the following result that is needed for the proof of Proposition 6.2.
The whole point is that we have the right to use (25), which comes from the second
statement of Lemma 4.2, because all the iterates ϕn in the definition of φ end at returns.

Lemma 4.9. Let (θ, x) ∈ R for some R ∈ R∗. Then for every j = 0, · · · , h∗(R) − 1
we have

h∗(R)−1∏

i=j

|∂xf(θi, xi)| ≥ C−1
2 exp

(
(2c− ǫ)(h(R) − j)

)
.

Proof. Analogous to [A, Lemma 3.7] with (25) in the place of (9) in [A].

5 Uniformity conditions

An important feature of this construction, cf. [V1, Section 2.5], is that it remains
valid for any map ψ close enough to ϕ, with uniform bounds on the measure of the
exceptional sets En(ψ):

m(En(ψ)) ≤ Ce−γ
√
n for every n ≥ 1

where C and γ may be taken uniform (that is, constant) in a whole C3 neighborhood
of ϕ. Let us explain this last point, since it is not explicitly addressed in the previous
papers. One consequence is that Proposition 4.5 holds in the whole open set N , with
uniform constants C0 and γ0 (recall Remark 4.6).

As explained in [V1, Section 2.5], it follows from the methods of [HPS] that any
map ψ sufficiently close to ϕ admits a unique invariant central foliation F c of S1 × I
by smooth curves uniformly close to vertical segments. This is because the vertical
foliation is invariant and normally expanding for the map ϕ. In addition, the space of
leaves of F c is homeomorphic to a circle, and the map induced by ψ in it is topologically
conjugate to ĝ. The previous analysis can then be carried out in terms of the expansion
of ψ along this central foliation F c. More precisely, |∂xf(θ, x)| is replaced by

|∂cf(θ, x)| ≡ |Dψ(θ, x)vc(θ, x)|,

where vc(θ, x) represents a norm 1 vector tangent to the foliation at (θ, x). The previous
observations imply that vc is uniformly close to (0, 1) if ψ is close to ϕ. Moreover, cf.
[V1, Section 2.5], it is no restriction to suppose |∂cf(θ, 0)| ≡ 0 (incidentally, this is
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the only place where we need our maps to be C3), so that ∂cf(θ, x) ≈ |x|, as in the
unperturbed case; recall (22). Defining rj(θ, x) and En = En(ψ) in the same way as
before, cf. (24), we obtain an analog of (25):

‖Dψn(θ, x)vc(θ, x)‖ =

n−1∏

j=0

|∂cf(θj, xj)| ≥ C−1
2 exp

(
4cn−

∑

j∈Gn(θ,x)

rj(θ, x)

)
,

for every (θ, x). We define En(ψ) in the same way as En = En(ϕ), recall (27), and then

‖Dψn(θ, x)vc(θ, x)‖ ≥ ecn for all (θ, x) ∈ (S1 × I) \ En.

The arguments in [V1, Section 2.4] apply with |∂cf | in the place of |∂xf |, proving
that the Lebesgue measure of En(ψ) satisfies the bound in (28). The constants C and
γ produced by these arguments depend only on α, which is fixed, and on estimates
obtained in the previous sections of that paper. So, to see that these constants are
indeed uniform in a neighborhood of ϕ, it suffices to check that the same is true for
those preparatory estimates. This is clear in the case of the results of Section 2.1
(Lemmas 2.1 and 2.2, and Corollary 2.3), because they only involve one iterate of the
map. Let us point out that the definition of admissible curve for ψ is just the same
as for the unperturbed map ϕ. A continuity argument can be applied also to Section
2.2, but it is more subtle. The key observation is that, although the statements of
Lemmas 2.4 and 2.5 involve an unbounded number of iterates, their proofs are based
on analyzing bounded stretches of orbits. Finally, the results in Section 2.4 (Lemmas
2.6 and 2.7), involve not more thanM ≈ log(1/α) iterates. So, once more by continuity,
their estimates remain valid in a neighborhood of ϕ. We have concluded the observation
that the bound (28) on the Lebesgue measure of the exceptional set En holds uniformly
in a neighborhood of the map.

Now we are able to show that conditions (U1)-(U3) are satisfied by every element
of N , as long as we take the open set N sufficiently small.

(U1) The construction of the partition that leads to the map hϕ is based on the
itineraries of points through the horizontal strips S1 × I∗ with I∗ ∈ Q, according
to the expanding behaviour of the iterates of ϕ at hyperbolic returns. Since these
hyperbolic returns depend only on a finite number of iterates of the map ϕ, by
continuity, we can perform the construction of the partition in such a way that
for some fixed integer N the Lebesgue measure of {hϕ = j} varies continuously
with the map ϕ for j ≤ N .
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(U2) For every ϕ ∈ N and any fixed large integer N ≥ 1,

∥∥
∑

j≥N
X{hϕ>j}

∥∥
q
≤
∑

j≥N
m
(
{hϕ > j}

)1/q ≤
∑

j≥N
C

1/q
0 e−(γ0/q)

√
n,

by Proposition 4.5. The right hand side can be made arbitrarily small by taking
N sufficiently large.

(U3) The proof of [A, Proposition 4.2] gives a distortion constant K which is uniform
in the whole N . The constant σ is given by (34), which may be taken uniformly
smaller than 1 for every ϕ ∈ N . By [A, Corollary 3.3] the constant β is uniformly
bounded away from zero, as long as α and the open set N are taken small enough.
Finally, the proof of [A, Proposition 3.8] shows that ρmay be taken bounded from
below by a constant only depending on α.

Remark 5.1. The following comments are to clarify the presentation of Lemma 2.6 in
[V1], they are not used in the present work. We refer the reader to [V1] for the setting
and notations. The conclusion of the lemma is contained in Corollary 2.3 of [V1], when
r is large enough so that |J(r − 2)| ≪ √

α. In particular, it is enough to consider the
case when r smaller than (1/2 + 2η) log(1/α) (and larger than (1/2− 2η) log(1/α), cf.
statement of the lemma). The function k(r) defined in page 73 of [V1] can not exceed
M ≈ log(1/α). So, the arguments at the end of that page actually prove that either
k(r) ≥ const r or k(r) ≈ M . However, under the above restriction on r, the latter
possibility also implies k(r) ≥ const r. In this way, the conclusion of the lemma follows
in all the cases.

6 Topological mixing

Now we start the proof of Theorem C. In this section we prove that the maps in N
are topologically mixing. This will then be used to show that these maps are ergodic
with respect to Lebesgue measure.

It is convenient to introduce a new coordinate system (σ, y) in S1 × I, related to
the original (θ, x) in the following way. As we have seen, every ϕ ∈ N admits an
invariant central foliation whose leaves are smooth submanifolds close to line segments
{θ = const}. It was also mentioned in the previous section that the critical set of ϕ
may be supposed to coincide with S1 × {0}. By definition, (σ, y) represents the point
where the central leaf through the point (θ = σ, x = 0) intersects the circle S1 × {y}.
Thus, central leaves correspond to vertical line segments {σ = const} in these new
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coordinates. Moreover, the map ϕ has the form ϕ(σ, y) = (g̃(σ), f̃σ(y)). Since the
central foliation is usually not transversely smooth, the map g̃(·) is only continuous,
and f̃σ depends only continuously on the variable σ. On the other hand, the leaves
themselves are at least C2 (initially they are C3, but the change of coordinates that
brings the critical set to {x = 0} is only C2). This ensures that every f̃σ(·) is a C2 map,
moreover, it is C2 close to the one-dimensional quadratic map q(·). Our arguments in
the sequel always refer to the coordinates (σ, y).

Recall that the attractor Λ of a map ϕ ∈ N is defined as the intersection of all
forward images of S1 × I:

Λ =
⋂

n≥0

ϕn(S1 × I).

Lemma 6.1. Λ coincides with ϕ2(S1 × I), if the interval I is properly chosen.

Proof. For the map q we have that the interval J = [q2(0), q(0)] is forward invariant,
and q3(0) is in the interior of J . Then we may take I ⊂ (−2, 2) slightly larger than J ,
so that q(I) is contained in the interior of I and q2(I) = J . We fix I once and for all,
and reason by perturbation. Using that every f̃σ is C2 close to q, and that its critical
point is located at y = 0, we conclude that the first image f̃σ(I) is contained in I, and
the second one f̃ 2

σ(I) coincides with the vertical segment

J(σ) = {g̃2(σ)} × [f̃ 2
σ(0), f̃g̃(σ)(0)].

By induction, it follows that f̃nσ (I) coincides with J(g̃n−2(σ)) for every n ≥ 2. Thus,
for any τ ∈ S1 and n ≥ 2,

ϕn(S1 × I) ∩ ({τ} × I) =
⋃

τ ′

J(τ ′) = ϕ2(S1 × I) ∩ ({τ} × I)

where the union is taken over all the τ ′ in S1 such that g̃2(τ ′) = τ . This proves that Λ
coincides with ϕ2(S1 × I).

The main result in this section is the following proposition. Here R∗ is the partition,
and h∗(·) is the function defined in the second part of Section 4.

Proposition 6.2. There is an integer M = M(α) such that for any S ∈ R∗,

∣∣ϕh∗(S)+M(S)
∣∣ = Λ.
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Proof. The proof is divided into four steps. First we prove that the height of ϕh
∗(S)(S)

(the length of its intersection with vertical lines {σ = const}) is larger than constα1−2η.
Then we show that a vertical segment of length constα1−2η becomes a vertical segment
with length const

√
α, after a finite number of iterates. In the third step we show that,

again after a finite number of iterates, the length of such segments becomes larger than
some constant independent of α. In the final step we use the fact that f̃ is close to q,
and the map q is topologically mixing, to obtain the result.

Step 1. There is a constant ∆1 > 0 such that for every S ∈ R∗ and σ ∈ π1(S),
∣∣ϕh∗(S)(Sσ)

∣∣ ≥ ∆1α
1−2η, where Sσ = S ∩ ({σ} × I).

Here π1(σ, y) = σ. The proof is analogous to [A, Proposition 3.8], using Lemma 4.9

above in the place of [A, Lemma 3.7]. It is at this point that we use the alternative
construction described in the second part of Section 4.

Step 2. There is a constant ∆2 > 0 and an integer M1 = M1(α) such that, given any
σ ∈ S1 and any interval J ⊂ I with |J | ≥ ∆1α

1−2η, there is n ≤M1 such that

|ϕn({σ} × J)| ≥ ∆2

√
α.

We take ∆2 = 1. Let R0 ≥ 0 be the first integer for which f̃R0

σ (J) intersects (−√
α,

√
α).

According to Lemma 4.2, the length of the iterates of J grows exponentially fast up
to time R0. In particular, since |J | is bounded from below by a power of α, we must
have R0 ≤ const log(1/α). If f̃R0

σ (J) is not contained in (−2
√
α, 2

√
α) then its length

is larger than
√
α, and we may take n = R0. Otherwise, if f̃R0

σ (J) ⊂ (−2
√
α, 2

√
α),

Lemma 4.2 gives
|f̃R0

σ (J)| ≥ C2τ
R0 |J | ≥ C2|J | ≥ C2∆1α

1−2η.

In particular, there exists a subinterval J1 of f̃R0

σ (J) such that

J1 ∩
(
− C2∆1

4
α1−2η,

C2∆1

4
α1−2η

)
= ∅ and |J1| ≥

C2

4
|J | .

Let σ1 = g̃(σ). Then, by Lemma 4.1, there exists N ≤ const log(1/α) such that

(35) |f̃Nσ1
(J1)| ≥

C2∆1

4
α1−2η α−1+η|J1| ≥

C2
2∆1

16
α−η|J | .

We assume that α is small enough so that the expression on the right hand side is larger
than 2|J |. Then we may repeat this procedure all over again, with σ2 = g̃R0+N(σ)
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in the place of σ, and J2 = f̃R0+N
σ in the place of J . In this way, we construct

sequences J0 = J, J2, . . . , J2l , of vertical segments, σ0 = σ, σ2, . . . , σ2l of points in S1,
and R0, R2, . . . , R2l−2 , of integers, such that

|J2i+2| > 2|J2i| and J2i+2 ⊂ f̃R2i+N
σ2i

(J2i)

for every 0 ≤ i < l. Because the lengths grow by a factor of 2 at each step, we must
eventually reach a situation where J2l+1 = f̃R2l

σ2l
(J2l) is not contained in (−2

√
α, 2

√
α).

Here R2l ≥ 0 is the first iterate so that J2l+1 intersects (−√
α,

√
α). Then the length of

J2l+1 is larger than
√
α, and so we may take n = R0 +N +R2 + · · ·+N +R2l . Observe

that l ≤ const log(1/|J |) ≤ const log(1/α), because the lengths grow exponentially fast.
Therefore, using that N and the Ri are also bounded by const log(1/α), we get that
n ≤ const log2(1/α). So, we may choose M1 = const log2(1/α).

Step 3. There is a constant ∆3 > 0 and an integer M2 = M2(α) such that, given any
σ ∈ S1 and any interval J ⊂ I with |J | ≥ ∆2

√
α, there exists n ≤M2 such that

|ϕn({σ} × J)| ≥ ∆3.

Arguing as in Step 2 we obtain an analog of (35)

|f̃R0+N
σ (J)| ≥ ∆2C2

4

√
αα−1+η C2|J |

4
≥ C2

2∆2
2

16
αη.

Let R1 ≥ 1 be the first integer for which f̃R0+N+R1

σ (J) intersects (−√
α,

√
α). We fix

small constants 0 < δ1 < δ0 < δ, independent of α, according to conditions that will
appear in a little while. If f̃R0+N+R1

σ (J) is not contained in (−δ1, δ1) then its length
is larger than δ1 −

√
α > δ1/2, and our claim is proved. Otherwise, it is contained in

(−δ, δ), and so we may use Lemma 4.2 to conclude that

|f̃R0+N+R1

σ (J)| ≥ C2τ
R1
C2

2∆2
2

16
αη ≥ 4C3α

η,

with C3 = C3
2∆2

2/64. Then there is some connected component J̄ of the difference
f̃R0+N+R1

σ (J) \ (−√
α, α) such that the length of J̄ is larger than 2C3α

η −√
α > C3α

η

(α is small and η < 1/2). In what follows, σ̄ = g̃R0+N+R1(σ). Let us outline how we
obtain the claim in the only remaining case, that is, when J̄ is contained in (−δ1, δ1).
The detailed argument will follow.

Recall that q was chosen so that the critical point 0 is pre-periodic. Let l ≥ 1 be the
smallest integer for which z = ql(0) is a periodic point of q. By [S], this periodic point
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must be repelling. We take δ1 much smaller than δ0, so that ql(−δ1, δ1) is contained
in the (δ0/2)-neighborhood of z. Then, assuming α is small, f̃ lσ̄(J̄) is contained in the
δ0-neighborhood of z. The key observation is that

(36) |f̃ lσ̄(J̄)| ≥ constαη whereas dist(z, f̃ lσ̄(J̄)) ≤ constα.

The last inequality follows from the fact that J̄ has ±√
α as a boundary point, which

implies that the distance from f̃σ̄(J) to the critical value f̃σ̄(0) is bounded by constα.
Since αη is much larger than α, (36) means that f̃ lσ̄(J̄) contains several fundamental
domains associated to the periodic point z of q. This property being preserved under
iteration, the first iterate of f̃ lσ̄(J̄) that is not completely inside the δ0-neighborhood
of z must contain at least one fundamental domain with some boundary point of that
neighborhood in it. Now, the length of such a fundamental domain is of order δ0 . So,
at this point J and J̄ have become larger than some constant independent of α, as
claimed.

Now we give the details. Let k ≥ 1 be the period of z, and ρk = |(qk)′(z)|. As
already mentioned, by [S] we must have ρ > 1. Fix ρ1, ρ2 > 0 with ρ1 < ρ < ρ2 and

ρ1 > ρ
1−η/2
2 , and take δ0 > 0 small enough that

ρk1 < |Df̃kτ (y)| < ρk2, whenever |y − z| < δ0

for any τ ∈ S1, and assuming α is sufficiently small. Observe that qj(0) is never zero,
for any j > 0. Thus, fixing δ1 sufficiently small right from the start, we ensure that
f̃ jσ(y) remains outside a fixed neighborhood of zero, for all 0 ≤ j ≤ l and y ∈ J̄ . Then,

(37) |Df̃ lσ̄(y)| ≥ const |y|,

for all y ∈ J̄ . Consequently, for some y ∈ J̄ ,

|f̃ lσ̄(J̄)| = |Df̃ lσ̄(y)| |J̄| ≥ const |y|C3α
η ≥ constα1/2+η.

For any y ∈ J̄ and i ≥ 0, let di = |yl+ki − z|, where (σj , yj) = ϕ(σ̄, y). As already
mentioned, we suppose δ1 > 0 and α sufficiently small so that

|y| < δ1 ⇒ d0 ≤ Cy2 + Cα < δ0.

If (σ, y) and i ≥ 1 are such that |y| < δ1 and d0, . . . , di−1 < δ0, then di ≤ ρk2di−1 + Cα
and so, inductively,

di ≤ (1 + ρk2 + · · ·+ ρ
k(i−1)
2 )Cα+ ρki2 d0 ≤ ρki2 (Cα + Cy2).
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In particular, for y = ±√
α we have di ≤ ρki2 Cα. Let N0 ≥ 1 be the smallest integer

for which ρkN0

2 Cα ≥ δ0/2, where C is as in the previous inequality. This choice of N0

implies

(38) di < δ0/2 for i = 0, . . . , N0 − 1.

Now we consider the following alternative cases:

1. Suppose f̃ l+kiσ̄ (J̄) ⊂ (z − δ0, z + δ0) for every i ∈ {0, · · · , N0 − 1}.
This implies that (recall that η < 1/4)

|f̃ l+kN0

σ̄ (J̄)| ≥ ρkN0

1 |f̃ lσ̄(J̄)| ≥ const ρ
(1−η/2)kN0

2 α1/2+η

≥ constα−1+η/2α1/2+η ≥ constα−1/8 ≫ 1.

So this case can not really happen.

2. There is i ∈ {0, · · · , N0 − 1} such that f̃ l+kiσ̄ (J̄) 6⊂ (z − δ0, z + δ0).

Since di ≤ δ0/2, it follows that

|f̃ l+kiσ̄ (J̄)| ≥ δ0 − δ0/2 > δ1/2.

Therefore, have shown that we may take ∆3 = δ1/2, n = R0 + N + R1 + l + ki, and
M2 = R0 +N +R1 + l + kN0 . Moreover, M2 ≤ const log(1/α).

Step 4. There is an integer M3 such that if J ⊂ I is an interval with |J | ≥ ∆3 then,
for every σ ∈ S1,

|ϕM3({σ} × J)| = ({g̃M3(σ)} × I) ∩ Λ.

Since the quadratic map q is such that the critical point is pre-periodic, the pre-

orbit of the repelling fixed point P is dense in I (this is because q has no wandering
intervals, see [MS]). Then there is some integer n1 ≥ 1 such that q−n1(P ) intersects
every interval of length ∆3/3. It follows that for every interval J ⊂ I with |J | ≥ ∆3

the image qn1(J) contains a neighborhood of P with a definite size, depending only
on ∆3. After a finite number of iterates n2 ≥ 1 this neighborhood becomes the whole
interval q2(I) = [q2(0), q(0)]. Let M3 = n1 + n2 + 1. Then, by continuity,

ϕM3({σ} × J) = {g̃M3(σ)} × J(g̃M3−2(σ)) = ({g̃M3(σ)} × I) ∩ Λ.

where J(τ) = [f̃ 2
τ (0), f̃g̃(τ)(0)], as in the proof of Lemma 6.1.

So, it suffices to take M(α) = M1(α) + M2(α) + M3 to complete the proof of
Proposition 6.2.
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Now we may prove that the maps ϕ ∈ N are topologically mixing. The idea is
to apply the previous proposition to a sequence of partitions with diameters going to
zero. Recall that in the definition of R∗ we started by fixing a large integer p, then all
the return times h∗(·) were taken larger than p. By (34), the diameter

diam(R∗) = sup {diam(R) : R ∈ R∗},

can be made arbitrarily small by increasing p. Thus, now we allow p to vary, and
for each value of p we denote by R∗(p) the partition and by h∗p(·) the return time
corresponding to each p.

Then, let A be an arbitrary open subset of S1 × I. Since the diameter of R∗(p)
converges to zero when p goes to infinity, we may find p ≥ 1 and S ∈ R∗(p) such
that S ⊂ A. Fix p and S, then take M as in Proposition 6.2. We get that there is
n ≤ h∗p(S) +M such that ϕn(A) = Λ. This proves the topological mixing property.

7 Ergodicity

Now we prove that the maps ϕ ∈ N are ergodic with respect to Lebesgue measure.
We start by proving a few auxiliary results.

Lemma 7.1. Let B be a Borel subset of S1 × I such that ϕ−1(B) = B.

1. If m(B ∩ Λ) = 0 then m(B) = 0.

2. If ϕn(R) = Λ for some n ≥ 1 and R ⊂ S1 × I, then B ∩ Λ ⊂ ϕn(B ∩ R).

Proof. We have B = ϕ−2(B) = ϕ−2 (B ∩ ϕ2(S1 × I)) = ϕ−2 (B ∩ Λ), because the
attractor Λ = ϕ2(S1 × I). Since the pre-image of a zero Lebesgue measure set also has
zero Lebesgue measure, the first claim is an immediate consequence.

Now suppose ϕn(R) = Λ and let x ∈ B ∩ Λ. Then there is some z ∈ R for which
ϕn(z) = x. Moreover, z is in ϕ−n(B) = B. Hence x ∈ ϕn(B ∩ R).

Lemma 7.2. Let µ be a finite measure on a metric space X, and P = {P1, . . . , Pr} be
a partition of X into Borel subsets. Assume that (Sn)n≥1 are partitions of X such that
diam (Sn) → 0 when n → ∞. Then, for each n ≥ 1 there is a partition {Qn

1 , . . . , Q
n
r }

of X such that for i = 1, . . . , r

1. Qn
i is a union of atoms of Sn.

2. limn→∞ µ(Qn
i△Pi) = 0.
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Proof. Take an arbitrary ǫ > 0. Since µ is a regular measure, there are compact sets
K1, . . . , Kr ⊂ X with

Ki ⊂ Pi and µ(Pi \Ki) < ǫ

for i = 1, . . . , m. Let
δ = inf

i6=j
d(Ki, Kj) > 0

and take n0 ≥ 1 such that diam(Sn) < δ/2 for n ≥ n0. For n < n0 the Qn
i are totally

arbitrary. ¿From now on we suppose n ≥ n0.
Note that each S ∈ Sn intersects at most one Ki. We let Qn

i be the union of all the
elements of Sn that intersect Ki for each i. Those S ∈ Sn that do not intersect any of
the Ki are distributed among the Qn

i , in an arbitrary way. We have

µ(Qn
i△Pi) = µ(Qn

i \ Pi) + µ(Pi \Qn
i )

≤ µ(X \ ∪ri=1Ki) + µ(Pi \Ki) ≤ (r + 1)ǫ.

Since ǫ > 0 is arbitrary and r is fixed, we have proved the result.

Corollary 7.3. Let µ and Sn , n ≥ 1, be as in Lemma 7.2, and B be a Borel subset of
X with µ(B) > 0. Then, for every ǫ > 0 there is an integer nǫ ≥ 1 such that for each
n ≥ nǫ there is some S ∈ Sn with

µ(Bc ∩ S) < ǫµ(S).

Proof. Assume by contradiction that there are ǫ0 > 0 and a sequence of integers (nk)k≥1

going to +∞ such that

(39) µ(Bc ∩ Snk
) ≥ ǫ0µ(Snk

).

for all k ≥ 1 and all Snk
∈ Snk

. We know, from Lemma 7.2, that for every k ≥ 1 there
is a partition {Qnk

1 , Q
nk

2 } of X such that Qnk

1 , Qnk

2 are unions of atoms of Snk
, and

lim
k→+∞

µ(Qnk

1 △B) = 0 and lim
k→+∞

µ(Qnk

2 △Bc) = 0.

Take ǫ = ǫ0µ(B)/(1 + ǫ0) and k0 ≥ 1 sufficiently large so that

(40) µ(Q
nk0

1 △B) < ǫ and µ(Q
nk0

2 △Bc) = ǫ.

Writing Snk0
= {Si}i∈N , then there is some I ⊂ N for which

Q
nk0

1 =
⋃

i∈I

Si and Q
nk0

2 =
⋃

i∈N \I

Si .
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¿From (39) we have, in particular, µ(Bc ∩ Si) ≥ ǫ0µ(Si) for every i ∈ I. So, summing
over all i ∈ I, we find

(41) µ(Bc ∩Qnk0

1 ) ≥ ǫ0µ(Q
nk0

1 ).

Finally, from (40) and (41) we get

ǫ > µ(Bc ∩Qnk0

1 ) ≥ ǫ0µ(Q
nk0

1 ) ≥ ǫ0
(
µ(B) − µ(B \Qnk0

1 )
)
> ǫ0(µ(B) − ǫ),

which contradict our choice of ǫ.

Now we are in a position to prove the ergodicity of the maps ϕ ∈ N with respect to
the Lebesgue measure. Let B be a Borel subset of S1×I with ϕ−1(B) = B and positive
Lebesgue measure. We need to prove that the Lebesgue measure of Bc = (S1×I)\B is
equal to zero. By the first part of Lemma 7.1, it suffices to prove that m(Bc ∩Λ) = 0.
We use the partitions (R∗(p))p introduced in the previous section. Recall that the
diameter of R∗(p) goes to zero as p → ∞. Take any ǫ > 0 small. By Corollary 7.3,
there are p ≥ 1 and S ∈ R(p) for which

m(Bc ∩ S) < ǫm(S).

Let p and S be fixed and h = h∗p(S). According to Proposition 6.2, we have ϕh+M(S) =
Λ. Thus, using the second part of Lemma 7.1,

m(Bc ∩ Λ) ≤ m
(
ϕh+M(Bc ∩ S)

)
.

By Proposition 4.7, we have

m
(
ϕh(Bc ∩ S)

)
=

∫

Bc∩S
|J(θ, x)| dm(θ, x) ≤ ∆ |Jnǫ

(θ0, x0)|m (Bc ∩ S) ,

for any (θ0, x0) ∈ S. Recall, from Remark 4.8, that the distortion bound ∆ does not
depend on p. Similarly,

m
(
ϕh(S)

)
≥ 1

∆
|J(θ0, x0)|m (S) .

Hence

m
(
ϕh(Bc ∩ S)

)
≤ m

(
ϕh(Bc ∩ S)

)

m (ϕh(S))
≤ ∆2m (Bc ∩ S)

m (S)
≤ ∆2ǫ.

On the other hand,

m
(
ϕh+M(Bc ∩ S)

)
≤ 4M(d+ α)Mm

(
ϕh(Bc ∩ S)

)
.

Altogether, this shows that m(Bc ∩ Λ) ≤ 4M(d + α)M∆2ǫ. Since M is fixed and ǫ is
arbitrarily small, m(Bc ∩ Λ) must be zero. So the proof of Theorem C is complete.
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