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Résumé. — Un cocycle lisse est un produit gauche qui agit par des difféomorphismes
dans les fibres. Si les exposants de Lyapounov extremaux du cocycle coincident
alors les fibres possèdent certaines structures qui sont invariantes, à la fois, par
la dynamique et par un pseudo-groupe canonique de transformations d’holonomie.
Nous démontrons ce principe d’ invariance pour les cocycles lisses au dessus des
difféomorphismes conservatifs partiellement hyperboliques, et nous en donnons des
applications aux cocycles linéaires et aux dynamiques partiellement hyperboliques.

Skew-products that act by diffeomorphisms on the fibers are called smooth co-
cycles. If the extremal Lyapunov exponents of a smooth cocycle coincide then the
fibers carry quite a lot of structure that is invariant under the dynamics and under a
canonical pseudo-group of holonomy maps. We state and prove this invariance prin-
ciple for cocycles over partially hyperbolic volume preserving diffeomorphisms. It has
several applications, e.g. to linear cocycles and to partially hyperbolic dynamics.
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1. Introduction

Lyapunov exponents measure the asymptotic rates of contraction and expansion, in
different directions, of smooth dynamical systems such as diffeomorphisms, cocycles,
or their continuous-time counterparts. These numbers are well defined on a full
measure subset of phase-space, relative to any finite invariant measure. Systems whose
Lyapunov exponents are distinct/non-vanishing exhibit a wealth of geometric and
dynamical structure (invariant laminations, entropy formula, abundance of periodic
orbits, dimension of invariant measures) on which one can build to describe their
evolution. The main theme we are interested in is that systems for which the Lyapunov
exponents are not distinct are also special, in that they satisfy a very strong invariance
principle. Thus, a detailed theory can be achieved also in this case, if only using very
different ingredients.

In the special case of linear systems, the invariance principle can be traced back
to the classical results on random matrices by Furstenberg [11], Ledrappier [18], and
others. Moreover, it has been refined in more recent works by Bonatti, Gomez-Mont,
Viana [6], Bonatti, Viana [7], Viana [23] and Avila, Viana [1, 2]. An explicit and
much more general formulation, that applies to smooth (possibly non-linear) systems,
is proposed in Avila, Viana [3] and the present paper: while [3] deals with extensions
of hyperbolic transformations, here we handle the case when the base dynamics is just
partially hyperbolic and volume preserving. The two papers are contemporary and
closely related: in particular, Theorem A of [3] relies on a version of the invariance
principle proved in here, more precisely, Theorem B below.

As an illustration of the reach of our methods, let us state the following application
in the realm of partially hyperbolic dynamics. Let f : M →M be a C2 partially hy-
perbolic, dynamically coherent, volume preserving, accessible diffeomorphism whose
center bundle Ec has dimension 2. If the center Lyapunov exponents vanish almost
everywhere then f admits

(a) either an invariant continuous conformal structure on Ec,
(b) or an invariant continuous field of directions r ⊂ Ec,
(c) or an invariant continuous field of pairs of directions r1 ∪ r2 ⊂ Ec.

Sometimes, one can exclude all three alternatives a priori. That is the case, for
instance, if f is known to have periodic points p and q that are, respectively, elliptic
and hyperbolic along the center bundle Ec (more precisely: the center eigenvalues of
p are neither real nor pure imaginary, and the center eigenvalues of q are real and
distinct). Then it follows that some center Lyapunov exponent is non-zero. When
f is symplectic, this implies that both center Lyapunov exponents are different from
zero; compare Theorem A in [3].

Precise statements of our results, including the definitions of the objects involved,
will appear in the next section. Right now, let us observe that important applications
of the methods developed in here have been obtained by several authors: a Livšic
theory of partially hyperbolic diffeomorphism, by Wilkinson [25]; existence and prop-
erties of physical measures, by Viana, Yang [24]; construction of measures of maximal
entropy, by Hertz, Hertz, Tahzibi, Ures [13].
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2. Preliminaries and statements

2.1. Partially hyperbolic diffeomorphisms. — Throughout the paper, unless
stated otherwise, f : M →M is a partially hyperbolic diffeomorphism on a compact
manifold M and µ is a probability measure in the Lebesgue class of M . In this section
we define these and other related notions. See [8, 14, 15, 22] for more information.

A diffeomorphism f : M → M of a compact manifold M is partially hyperbolic if
there exists a nontrivial splitting of the tangent bundle

(2.1) TM = Es ⊕ Ec ⊕ Eu

invariant under the derivative Df , a Riemannian metric ‖ · ‖ on M , and positive
continuous functions ν, ν̂, γ, γ̂ with ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 such that, for
any unit vector v ∈ TpM ,

‖Df(p)v‖ < ν(p) if v ∈ Es(p),(2.2)

γ(p) <‖Df(p)v‖ < γ̂(p)
−1

if v ∈ Ec(p),(2.3)

ν̂(p)
−1

<‖Df(p)v‖ if v ∈ Eu(p).(2.4)

All three subbundles Es, Ec, Eu are assumed to have positive dimension. However, in
some cases (cf. Remarks 3.12 and 4.2) one may let either dimEs = 0 or dimEu = 0.

We take M to be endowed with the distance dist associated to such a Riemannian
structure. The Lebesgue class is the measure class of the volume induced by this (or
any other) Riemannian metric on M . These notions extend to any submanifold of M ,
just considering the restriction of the Riemannian metric to the submanifold. We say
that f is volume preserving if it preserves some probability measure in the Lebesgue
class of M .

Suppose that f : M →M is partially hyperbolic. The stable and unstable bundles
Es and Eu are uniquely integrable and their integral manifolds form two transverse
continuous foliations Ws and Wu, whose leaves are immersed submanifolds of the
same class of differentiability as f . These foliations are referred to as the strong-
stable and strong-unstable foliations. They are invariant under f , in the sense that

f(Ws(x)) =Ws(f(x)) and f(Wu(x)) =Wu(f(x)),

where Ws(x) and Ws(x) denote the leaves of Ws and Wu, respectively, passing
through any x ∈ M . These foliations are, usually, not transversely smooth: the
holonomy maps between any pair of cross-sections are not even Lipschitz continuous,
in general, although they are always γ-Hölder continuous for some γ > 0. Moreover,
if f is C2 then these foliations are absolutely continuous, meaning that the holonomy
maps preserve the class of zero Lebesgue measure sets. Let us explain this key fact
more precisely.

Let d = dimM and F be a continuous foliation of M with k-dimensional smooth
leaves, 0 < k < d. Let F(p) be the leaf through a point p ∈ M and F(p,R) ⊂ F(p)
be the neighborhood of radius R > 0 around p, relative to the distance defined by the
Riemannian metric restricted to F(p). A foliation box for F at p is the image of an
embedding

Φ : F(p,R)× R
d−k →M



4 ARTUR AVILA, JIMMY SANTAMARIA, MARCELO VIANA

such that Φ(·, 0) = id, every Φ(·, y) is a diffeomorphism from F(p,R) to some sub-
set of a leaf of F (we call the image a horizontal slice), and these diffeomorphisms
vary continuously with y ∈ R

d−k. Foliation boxes exist at every p ∈ M , by defini-
tion of continuous foliation with smooth leaves. A cross-section to F is a smooth
codimension-k disk inside a foliation box that intersects each horizontal slice exactly
once, transversely and with angle uniformly bounded from zero.

Then, for any pair of cross-sections Σ and Σ′, there is a well defined holonomy
map Σ→ Σ′, assigning to each x ∈ Σ the unique point of intersection of Σ′ with the
horizontal slice through x. The foliation is absolutely continuous if all these home-
omorphisms map zero Lebesgue measure sets to zero Lebesgue measure sets. That
holds, in particular, for the strong-stable and strong-unstable foliations of partially
hyperbolic C2 diffeomorphisms and, in fact, the Jacobians of all holonomy maps are
bounded by a uniform constant.

A measurable subset of M is s-saturated (orWs-saturated) if it is a union of entire
strong-stable leaves, u-saturated (or Wu-saturated) if it is a union of entire strong-
unstable leaves, and bi-saturated if it is both s-saturated and u-saturated. We say
that f is accessible if ∅ and M are the only bi-saturated sets, and essentially accessible
if every bi-saturated set has either zero or full measure, relative to any probability
measure in the Lebesgue class. A measurable set X ⊂M is essentially s-saturated if
there exists an s-saturated set Xs ⊂ M such that X∆Xs has measure zero, for any
probability measure in the Lebesgue class. Essentially u-saturated sets are defined
analogously. Moreover,X is bi-essentially saturated if it is both essentially s-saturated
and essentially u-saturated.

Pugh, Shub conjectured in [19] that essential accessibility implies ergodicity, for
a C2 partially hyperbolic, volume preserving diffeomorphism. In [20] they showed
that this does hold under a few additional assumptions, called dynamical coherence
and center bunching. To date, the best result in this direction is due to Burns,
Wilkinson [9], who proved the Pugh-Shub conjecture assuming only the following
mild form of center bunching:

Definition 2.1. — A C2 partially hyperbolic diffeomorphism is center bunched if
the functions ν, ν̂, γ, γ̂ in (2.2)–(2.4) may be chosen to satisfy

(2.5) ν < γγ̂ and ν̂ < γγ̂.

When the diffeomorphism is just C1+α, for some α > 0, the arguments of Burns,
Wilkinson [9] can still be carried out, as long as one assumes what they call strong
center bunching (see [9, Theorem 0.3]). All our results extend to this setting.

2.2. Fiber bundles. — In this paper we deal with a few different types of fiber
bundles over the manifold M . The more general type we consider are continuous fiber
bundles π : E → M modeled on some topological space N . By this we mean that E
is a topological space and there is a family of homeomorphisms (local charts)

(2.6) φU : U ×N → π−1(U),
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indexed by the elements U of some finite open cover U of M , such that π ◦ φU is the
canonical projection U ×N → U for every U ∈ U . Then each φU,x : ξ 7→ φU (x, ξ) is
a homeomorphism between N and the fiber Ex = π−1(x).

An important role will be played by the class of fiber bundles with smooth fibers,
that is, continuous fiber bundles whose fibers are manifolds endowed with a contin-
uous Riemannian metric. More precisely, take N to be a Riemannian manifold, not
necessarily complete, and assume that all coordinate changes φ−1

V ◦φU have the form

(2.7) φ−1
V ◦ φU : (U ∩ V )×N → (U ∩ V )×N, (x, ξ) 7→ (x, gx(ξ))

where:

(i) gx : N → N is a C1 diffeomorphism and the map x 7→ gx is continuous, relative

to the uniform C1 distance on Diff1(N) (the uniform C1 distance is defined by
distC1(gx, gy) = sup{|gx(ξ)− gy(ξ)|, ‖Dgx(ξ) −Dgy(ξ)‖ : ξ ∈ N});

(ii) the derivatives Dgx(ξ) are Dg−1
x (ξ) are uniformly continuous and uniformly

bounded in norm.

Endow each Ex with the manifold structure that makes φU,x a diffeomorphism.
Condition (i) ensures that this does not depend on the choice of U ∈ U containing x.
Moreover, consider on each Ex the Riemannian metric γx =

∑
U∈U ρU (x)γU,x, where

γU,x is the Riemannian metric transported from N by the diffeomorphism φU,x and
{ρU : U ∈ U} is a partition of unit subordinate to U . It is clear that γx depends
continuously on x. Condition (ii) ensures that different choices of the partition of
unit give rise to Riemannian metrics γx that differ by a bounded factor only.

Restricting even further, we call π : E → M a continuous vector bundle of dimen-
sion d ≥ 1 if N = Kd, with K = R or K = C, and every gx is a linear isomorphism,
depending continuously on x and such that ‖g±1

x ‖ are uniformly bounded. Then each
fiber Ex is isomorphic to K

d and is equipped with a scalar product (and, hence, a
norm) which is canonical up to a bounded factor.

We also need to consider more regular vector bundles. Given r ∈ {0, 1, . . . , k, . . . }
and α ∈ [0, 1], we say that π : E → M is a Cr,α vector bundle if, for any U , V ∈ U
with non-empty intersection, the map

(2.8) U ∩ V → GL(d,K), x 7→ gx

is of class Cr,α, that is, it is r times differentiable and the derivative of order r is
α-Hölder continuous.

2.3. Linear cocycles. — Let π : V → M be a continuous vector bundle of di-
mension d ≥ 1. A linear cocycle over f : M → M is a continuous transformation
F : V → V satisfying π ◦F = f ◦π and acting by linear isomorphisms Fx : Vx → Vf(x)

on the fibers. By Furstenberg, Kesten [12], the extremal Lyapunov exponents

λ+(F, x) = lim
n→∞

1

n
log ‖Fn

x ‖ and λ−(F, x) = lim
n→∞

1

n
log ‖(Fn

x )−1‖−1

exist at µ-almost every x ∈ M , relative to any f -invariant probability measure µ.
If (f, µ) is ergodic then they are constant on a full µ-measure set. It is clear that
λ−(F, x) ≤ λ+(F, x) whenever they are defined. We study conditions under which
these two numbers coincide.
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Suppose that π : V →M is a Cr,α vector bundle, for some fixed r and α, and f is
also of class Cr,α (this is contained in our standing assumptions if r + α ≤ 2). Then
we call F : V → V a Cr,α linear cocycle if its expression in local coordinates

(2.9) φ−1
U1
◦ F ◦ φU0 : (U0 ∩ f−1(U1))×K

d → U1 ×K
d, (x, v) 7→ (f(x), A(x)v)

is such that the function x 7→ A(x) is r times differentiable and the derivative of order
r is bounded and α-Hölder continuous. The assumption on the vector bundle ensures
that this condition does not depend on the choice of local charts.

The set Gr,α(V , f) of all Cr,α linear cocycles F : V → V over f : M → M is a
K-vector space and carries a natural Cr,α norm:

(2.10) ‖F‖r,α = sup
U,V ∈U

(
sup

0≤i≤r
sup

x∈U∩f−1(V )

‖DiA(x)‖ + sup
x 6=y

‖DrA(x) −DrA(y)‖
dist(x, y)α

)

(for α = 0 one may omit the last term). We always assume that r + α > 0. Then
every F ∈ Gr,α(V , f) is β-Hölder continuous, with

(2.11) β =

{
α if r = 0
1 if r ≥ 1.

Definition 2.2. — We say that a cocycle F ∈ Gr,α(V , f) is fiber bunched if

(2.12) ‖Fx‖ ‖(Fx)−1‖ ν(x)β < 1 and ‖Fx‖ ‖(Fx)−1‖ ν̂(x)β < 1,

for every x ∈M , where β > 0 is given by (2.11) and ν, ν̂ are functions as in (2.2)–(2.4),
fixed once and for all.

Remark 2.3. — This notion appeared in [6, 7, 23], where it was called domination.
The present terminology seems preferable, on more than one account. To begin with,
there is the analogy with the notion of center bunching in Definition 2.1. Perhaps
more important, the natural notion of domination for smooth cocycles, that we are
going to introduce in Definition 3.9, corresponds to a rather different condition. The
relation between the two is explained in Remark 3.13: if a linear cocycle is fiber
bunched then the associated projective cocycle is dominated. Finally, a notion of
fiber bunching can be defined for smooth cocycles as well (see [3]), similar to (2.12)
and stronger than domination.

Theorem A. — Let f : M → M be a C2 partially hyperbolic, volume preserving,
center bunched, accessible diffeomorphism and let µ be an invariant probability in the
Lebesgue class. Assume that F ∈ Gr,α(V , f) is fiber bunched.

Then F is approximated, in the Cr,α norm, by open sets of cocycles G ∈ Gr,α(V , f)
such that λ−(G, x) < λ+(G, x) almost everywhere. Moreover, the set of F ∈ Gr,α(V , f)
for which the extremal Lyapunov exponents do coincide has infinite codimension in the
fiber bunched domain: locally, it is contained in finite unions of closed submanifolds
with arbitrarily high codimension.

Notice that the Lyapunov exponents are constant on a full measure subset of M ,
because (cf. [9]) the hypothesis implies that f is ergodic.

There is an analogous statement in the space of SL(d,K)-cocycles, that is, such
that the functions x 7→ gx and x 7→ A(x) in (2.8) and (2.9), respectively, take values
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in SL(d,K). In fact, our proof of Theorem A deals with the projectivization of the
cocycle, and so it treats both cases, GL(d,K) and SL(d,K), on the same footing. It
would be interesting to investigate the case of G-valued cocycles for more general
subgroups of GL(d,K), for instance the symplectic group.

2.4. Smooth cocycles - invariant holonomies. — Let π : E → M be a fiber
bundle with smooth fibers modeled on some Riemannian manifold N . A smooth
cocycle over f : M → M is a continuous transformation F : E → E such that
π ◦ F = f ◦ π, every Fx : Ex → Ef(x) is a C1 diffeomorphism depending continuously

on x, relative to the uniform C1 distance in the space of C1 diffeomorphisms on the
fibers, and the norms of the derivative DFx(ξ) and its inverse are uniformly bounded.
In particular, the functions

(x, ξ) 7→ log ‖DFx(ξ)‖ and (x, ξ) 7→ log ‖DFx(ξ)−1‖
are bounded. Then (Kingman [17]), given any F-invariant probability m on E , the
extremal Lyapunov exponents of F

λ+(F, x, ξ) = lim
n→∞

1

n
log ‖DFn

x(ξ)‖ and λ−(F, x, ξ) = lim
n→∞

1

n
log ‖DFn

x(ξ)−1‖−1.

are well defined at m-almost every (x, ξ) ∈ E . Clearly, λ−(F, x, ξ) ≤ λ+(F, x, ξ).
Notice that if m is F-invariant then its projection µ = π∗m is f -invariant. Most
of the times we will be interested in measures m for which the projection is in the
Lebesgue class of M .

Let R > 0 be fixed. The local strong-stable leaf Ws
loc(p) of a point p ∈ M is

the neighborhood of radius R around p inside Ws(p). The local strong-unstable leaf
Wu

loc(p) is defined analogously. The choice ofR is very much arbitrary, but in Section 5
we will be a bit more specific.

Definition 2.4. — We call invariant stable holonomy for F a family Hs of homeo-
morphisms Hs

x,y : Ex → Ey, defined for all x and y in the same strong-stable leaf of f
and satisfying

(a) Hs
y,z ◦Hs

x,y = Hs
x,z and Hs

x,x = id;

(b) Fy ◦Hs
x,y = Hs

f(x),f(y) ◦ Fx;

(c) (x, y, ξ) 7→ Hs
x,y(ξ) is continuous when (x, y) varies in the set of pairs of points

in the same local strong-stable leaf;
(d) there are C > 0 and γ > 0 such that Hs

x,y is (C, γ)-Hölder continuous for every
x and y in the same local strong-stable leaf.

Invariant unstable holonomy is defined analogously, for pairs of points in the same
strong-unstable leaf.

Condition (c) in Definition 2.4 means that, given any ε > 0 and any (x, y, ξ)
with y ∈ Ws

loc(x), there exists δ > 0 such that dist(Hs
x,y(ξ), Hs

x′,y′(ξ′)) < ε for every

(x′, y′, ξ′) with y′ ∈ Ws
loc(x

′) and dist(x, x′) < δ and dist(y, y′) < δ and dist(ξ, ξ′) < δ;
for this to make sense, take the fiber bundle to be trivialized in the neighborhoods
of Ex and Ey. Condition (d), together with the invariance property (b), implies that
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Hs
x,y is γ-Hölder continuous for every x and y in the same strong-stable leaf (the

multiplicative Hölder constant C may not be uniform over global leaves).

Remark 2.5. — Uniformity of the multiplicative Hölder constant C on local strong-
stable leaves is missing in the related definition in [3, Section 2.4], but is assumed in

[3, Section 4.4] when arguing that the transformation G̃ is a deformation of G.

Example 2.6. — The projective bundle associated to a vector bundle V →M is the
continuous fiber bundle P(V) → M whose fibers are the projective quotients of the
fibers of V . Clearly, this is a fiber bundle with smooth leaves modeled on N = P(Kd).
The projective cocycle associated to a linear cocycle F : V → V is the smooth cocycle
F : P(V) → P(V) whose action Fx : P(Vx) → P(Vf(x)) on the fibers is given by the
projectivization of Fx : Vx → Vf(x):

Fx(ξ) =
Fx(ξ)

‖Fx(ξ)‖ for each ξ ∈ P(Vx) and x ∈M

(on the right hand side of the equality, think of ξ as a unit vector in K
d). Then

Fn
x(ξ) = Fn

x (ξ)/‖Fn
x (ξ)‖ for every ξ, x and n. It follows that,

DFn
x(ξ)ξ̇ =

projF n
x (ξ)

(
Fn

x (ξ̇)
)

‖Fn
x (ξ)‖ ,

where projw v = v−w(w · v)/(w ·w) is the projection of a vector v to the orthogonal
complement of w. This implies that

(2.13) ‖DFn
x(ξ)‖ ≤ ‖Fn

x ‖/‖Fn
x (ξ)‖ ≤ ‖Fn

x ‖‖(Fn
x )−1‖

for every ξ, x and n. Analogously, replacing each F by its inverse,

(2.14) ‖DFn
x(ξ)−1‖ ≤ ‖(Fn

x )−1‖‖Fn
x ‖

for every ξ, x and n. These two inequalities imply

λ+(F, x, ξ) ≤ λ+(F, x) − λ−(F, x) and λ−(F, x, ξ) ≥ λ−(F, x) − λ+(F, x)

whenever these exponents are defined. We will observe in Remark 3.13 that if F is
fiber bunched then both F and F admit invariant stable and unstable holonomies.

Example 2.7. — Suppose that the partially hyperbolic diffeomorphism f : M →M
is dynamically coherent, that is, there exist invariant foliations Wcs and Wcu with
smooth leaves tangent to Ec ⊕Es and Ec ⊕ Eu, respectively. Intersecting the leaves
of Wcs and Wcu one obtains a center foliation Wc whose leaves are tangent to the
center subbundle Ec at every point. Let E be the disjoint union of the leaves of Wc.
In many cases (see Avila, Viana, Wilkinson [4]), the natural projection π : E → M
given by π | Wc(x) ≡ x is a fiber bundle with smooth fibers. Also, the map f induces
a smooth cocycle F : E → E , mapping each y ∈ Wc(x) to f(y) ∈ Wc(f(x)). Moreover,
the cocycle F admits invariant stable and unstable holonomies: for x close to y the
image Hs

x,y(ξ) is the point where the local strong-stable leaf through ξ ∈ Wc(x)
intersects the center leaf Wc(y), and analogously for the unstable holonomy. This
kind of construction, combined with Theorem 6.1 below, is used by Wilkinson [25] in
her recent development of a Livšic theory for partially hyperbolic diffeomorphisms.
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2.5. Lyapunov exponents and rigidity. — Theorem A will be deduced, in Sec-
tion 8, from certain perturbation arguments together with an invariance principle for
cocycles whose extremal Lyapunov exponents coincide. Here we state this invariance
principle.

Let F : E → E be a smooth cocycle that admits invariant stable holonomy. Let m
be a probability measure on E , let µ = π∗m be its projection, and let {mx : x ∈ M}
be a disintegration of m into conditional probabilities along the fibers, that is, a
measurable family of probability measures {mx : x ∈ M} such that mx(Ex) = 1 for
µ-almost every x ∈M and

m(U) =

∫
mx(Ex ∩ U) dµ(x)

for every measurable set U ⊂ E . Such a family exists and is essentially unique,
meaning that any two coincide on a full measure subset. See Rokhlin [21].

Definition 2.8. — A disintegration {mx : x ∈M} is s-invariant if

(2.15) (Hs
x,y)∗mx = my for every x and y in the same strong-stable leaf.

One speaks of essential s-invariance if this holds for x and y in some full µ-measure
subset ofM . The definitions of u-invariance and essential u-invariance are analogous.
The disintegration is bi-invariant if it is both s-invariant and u-invariant and we call it
bi-essentially invariant if it is both essentially s-invariant and essentially u-invariant.

First, we state the invariance principle in the special case of linear cocycles:

Theorem B. — Let f : M → M be a C2 partially hyperbolic, volume preserving,
center bunched diffeomorphism and µ be an invariant probability in the Lebesgue class.
Let F ∈ Gr,α(V , f) be fiber bunched and suppose that λ−(F, x) = λ+(F, x) at µ-almost
every point.

Then every P(F )-invariant probability m on the projective fiber bundle P(V) with
π∗m = µ admits a disintegration {m̃x : x ∈M} along the fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set MF ⊂M ;
(b) if f is accessible then MF = M and the conditional probabilities m̃x depend

continuously on the base point x ∈M , relative to the weak∗ topology.

Invariant probability measuresm that project down to µ always exist in this setting,
because P(F ) is continuous and the domain P(V) is compact. The statement of
Theorem B extends to smooth cocycles:

Theorem C. — Let f : M → M be a C2 partially hyperbolic, volume preserving,
center bunched diffeomorphism and µ be an invariant probability in the Lebesgue class.
Let F be a smooth cocycle over f admitting invariant stable and unstable holonomies.
Let m be an F-invariant probability measure on E with π∗m = µ, and suppose that
λ−(F, x, ξ) = 0 = λ+(F, x, ξ) at m-almost every point.

Then m admits a disintegration {m̃x : x ∈ M} into conditional probabilities along
the fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set MF ⊂M ;
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(b) if f is accessible then MF = M and the conditional probabilities m̃x depend
continuously on the base point x ∈M , relative to the weak∗ topology.

It is clear from the observations in Example 2.6 that Theorem B is contained in
Theorem C. The proof of Theorem C is given in Sections 4 through 7. There are two
main stages.

The first one, that will be stated as Theorem 4.1, is to show that every disinte-
gration of m is essentially s-invariant and essentially u-invariant. This is based on
a non-linear extension of an abstract criterion of Ledrappier [18] for linear cocycles,
proposed in Avila, Viana [3] and quoted here as Theorem 4.4. At this stage we only
need f to be a C1 partially hyperbolic diffeomorphism (volume preserving, center
bunching and accessibility are not needed) and µ can be any invariant probability,
not necessarily in the Lebesgue class.

The second stage, that we state in Theorem D below, is to prove that any disin-
tegration essentially s-invariant and essentially u-invariant is, in fact, fully invariant
under both the stable holonomy and the unstable holonomy; moreover, it is contin-
uous if f is accessible. This is a different kind of argument, that is more suitably
presented in the following framework.

2.6. Sections of continuous fiber bundles. — Let π : X →M be a continuous
fiber bundle with fibers modeled on some topological space P . The next definition
refers to the strong-stable and strong-unstable foliations of the partially hyperbolic
diffeomorphism f : M →M .

Definition 2.9. — A stable holonomy on X is a family hs
x,y : Xx → Xy of γ-Hölder

homeomorphisms, with uniform Hölder constant γ > 0, defined for all x, y in the
same strong-stable leaf and satisfying

(α) hs
y,z ◦ hs

x,y = hs
x,z and hs

x,x = id
(β) the map (x, y, ξ) 7→ hs

x,y(ξ) is continuous when (x, y) varies in the set of pairs
of points in the same local strong-stable leaf.

Unstable holonomy is defined analogously, for pairs of points in the same strong-
unstable leaf.

The special case we have in mind are the invariant stable and unstable holonomies
of smooth cocycles on fiber bundles with smooth leaves. Clearly, conditions (α) and
(β) in Definition 2.9 correspond to conditions (a) and (c) in Definition 2.4. Notice,
however, that there is no analogue to the invariance condition (b); indeed, cocycles
are not mentioned at all in this section. We also have no analogue to condition (d)
in Definition 2.4.

In what follows µ is a probability measure in the Lebesgue class of M , not neces-
sarily invariant under f : here we do not assume f to be volume preserving. The next
definition is a straightforward extension of Definition 2.8 to the present setting:

Definition 2.10. — Let π : X → P be a continuous fiber bundle admitting stable
holonomy. A measurable section Ψ : M → X is s-invariant if

hs
x,y(Ψ(x)) = Ψ(y) for every x, y in the same strong-stable leaf
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and essentially s-invariant if this relation holds restricted to some full µ-measure sub-
set. The definitions of u-invariant and essentially u-invariant functions are analogous,
assuming that π : X →M admits unstable holonomy and considering strong-unstable
leaves instead. We call Ψ bi-invariant if it is both s-invariant and u-invariant, and
we call it bi-essentially invariant if it is both essentially s-invariant and essentially
u-invariant.

These notions extend, immediately, to measurable sections of X whose domain is
just a bi-saturated subset ofM . A measurable section Ψ is essentially bi-invariant if it
coincides almost everywhere with a bi-invariant section defined on some full measure
bi-saturated set.

Definition 2.11. — A (Hausdorff) topological space P is refinable if there exists
an increasing sequence of finite or countable partitions Q1 ≺ · · · ≺ Qn ≺ · · · into
Borel subsets such that any sequence (Qn)n with Qn ∈ Qn for every n and ∩nQn 6= ∅
converges to some point η ∈ P , in the sense that every neighborhood of η contains
Qn for all large n. (Then, clearly, η is unique and ∩nQn = {η}.)

Notice that every Hausdorff space with a countable basis {Un : n ∈ N} of open sets
is refinable: just take Qn to be the partition generated by {U1, . . . , Un}.

Theorem D. — Let f : M →M be a C2 partially hyperbolic, center bunched diffeo-
morphism and µ be any probability measure in the Lebesgue class. Let π : X → M
be a continuous fiber bundle with stable and unstable holonomies and assume that the
fiber P is refinable. Then,

(a) every bi-essentially invariant section Ψ : M → X coincides µ-almost everywhere

with a bi-invariant section Ψ̃ defined on a full measure bi-saturated set MΨ ⊂M ;
(b) if f is accessible then MΨ = M and Ψ̃ is continuous.

The proof of part (a) is given in Section 6 (see Theorem 6.1), based on ideas of
Burns, Wilkinson [9] that we recall in Section 5 (see Proposition 5.13). Concerning
part (b), we should point out that the measure µ plays no role in it: if f is accessible
then any non-empty bi-saturated set coincides with M and then one only has to check
that bi-invariance implies continuity. That is done in Section 7 and uses neither center
bunching nor refinability.

Actually, in Section 7 we prove a stronger fact: bi-continuity implies continuity,
when f is accessible. The notion of bi-continuity is defined as follows:

Definition 2.12. — A measurable section Ψ : M → X of the continuous fiber
bundle π : X → M is s-continuous if the map (x, y,Ψ(x)) 7→ Ψ(y) is continuous on
the set of pairs of points (x, y) in the same local strong-stable leaf. The notion of
u-continuity is analogous, considering strong-unstable leaves instead. Finally, Ψ is
bi-continuous if it is both s-continuous and u-continuous.

More explicitly, a measurable section Ψ is s-continuous if for every ε > 0 and
every (x, y) with y ∈ Ws

loc(x) there exists δ > 0 such that dist(Ψ(y),Ψ(y′)) < ε
for every (x′, y′) with y′ ∈ Ws

loc(x
′) and dist(x, x′) < δ and dist(y, y′) < δ and
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dist(Ψ(x),Ψ(x′)) < δ; it is implicit in this formulation that the fiber bundle has been
trivialized in the neighborhoods of the fibers Xx and Xy.

Remark 2.13. — If a section Ψ : M → X is s-invariant then it is s-continuous:

(x, y,Ψ(x)) 7→ Ψ(y) = hs
x,y(Ψ(x))

is continuous on the set of pairs of points in the same local strong-stable leaf. More-
over, s-continuity ensures that the section Ψ is continuous on every strong-stable
leaf: taking x = x′ = y in the definition, we get that dist(Ψ(y),Ψ(y′)) < ε for every
y′ ∈ Ws

loc(y) with dist(y, y′) < δ. Analogously, u-invariance implies u-continuity and
that implies continuity on every strong-unstable leaf.

Thus, part (b) of Theorem D is a direct consequence of the following result:

Theorem E. — Let f : M → M be a C1 partially hyperbolic, accessible diffeomor-
phism. Let π : X →M be a continuous fiber bundle. Then every bi-continuous section
Ψ : M → X is continuous in M .

The proof of this theorem is given in Section 7. Notice that we make no assumptions
on the continuous fiber bundle: at this stage we do not need stable and unstable
holonomies, and the fibers need not be refinable either.

The logical connections between our main results can be summarized as follows:

Thm B(a) ← Thm C(a) ← Thm D(a) ← Thm 6.1
ւ ↑ ↑

Thm A ← Prop 8.2 Thm 4.1 ← Thm 4.4 Prop 5.13
տ ↓

Thm B(b) ← Thm C(b) ← Thm D(b) ← Thm E

Acknowledgements. — We are most grateful to Amie Wilkinson for explanations
on the use of the methods of [9] in connection with the proof of Theorem D and
for useful comments on earlier versions of this paper. The referee has thoroughly
revised the text and provided several comments that helped improve the presentation.
In particular, Theorem 4.1 is now stronger than previously. This work was partly
conducted during the period A. A. served as a Clay Research Fellow. J. S. was
supported by a CNPq doctoral scholarship. M. V. was partially supported by CNPq,
FAPERJ, and PRONEX-Dynamical Systems.

3. Cocycles with holonomies

First, we explore the notions of domination and fiber bunching for linear cocycles.
In Section 3.1 we prove that if a linear cocycle is fiber bunched then it admits invari-
ant stable and unstable holonomies, and so does its projectivization. Moreover, in
Section 3.2 we check that these invariant holonomies depend smoothly on the cocycle.
Then, in Section 3.3, we discuss corresponding facts for smooth cocycles.
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We will often use the following notational convention: given a continuous function
τ : M → R+, we denote

τn(p) = τ(p)τ(f(p)) · · · τ(fn−1(p)) for any n ≥ 1.

3.1. Fiber bunched linear cocycles. — For simplicity of the presentation, we will
focus on the case when the vector bundle π : V →M is trivial, that is, V = M ×Kd

and π : M ×Kd →M is the canonical projection. The general case is treated in the
same way, using local charts (but the notations become rather cumbersome).

In the trivial bundle case, every linear cocycle F : V → V may be written in the
form F (x, v) = (f(x), A(x)v) for some continuous A : M → GL(d,K). Notice that
Fn(x, v) = (fn(x), An(x)v) for each n ∈ Z, with

An(x) = A(fn−1(x)) · · ·A(x) and A−n(x) = A(f−1(x))−1 · · ·A(fn(x))−1

for n 6= 0 and A0(x) = id. Notice also that F ∈ Gr,α(V , f) if, and only, if A belongs
to the space Gr,α(M,d,K) of Cr,α maps from M to GL(d,K). The Cr,α norm in
Gr,α(M,d,K) is defined by

(3.1) ‖A‖r,α = sup
0≤i≤r

sup
x∈M
‖DiA(x)‖ + sup

x 6=y

‖DrA(x) −DrA(y)‖
dist(x, y)α

.

Recall that we assume that r + α > 0 and take β = α if r = 0 and β = 1 if r ≥ 1.
Then every A ∈ Gr,α(M,dK) is β-Hölder continuous. By the definition (2.12), the
cocycle F is fiber bunched if

(3.2) ‖A(x)‖ ‖A(x)
−1‖ ν(x)β < 1 and ‖A(x)‖ ‖A(x)

−1‖ ν̂(x)β < 1

for every x in M . In this case we also say that the function A is fiber bunched.
Up to suitable adjustments, all our arguments in the sequel hold under the weaker
assumption that (3.2) holds for some power Aℓ, ℓ ≥ 1.

Notice that fiber bunching is an open condition: if A is fiber bunched then so is
every B in a neighborhood, just because M is compact. Even more, still by compact-
ness, if A is fiber bunched then there exists m < 1 such that

(3.3) ‖B(x)‖ ‖B(x)
−1‖ν(x)βm < 1 and ‖B(x)‖ ‖B(x)

−1‖ν̂(x)βm < 1

for every x ∈ M and every B in a C0 neighborhood of A. It is in this form that the
definition will be used in the proofs.

Lemma 3.1. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there is
C > 0 such that

‖An(y)‖ ‖An(z)−1‖ ≤ Cνn(x)−βm

for all y, z ∈ Ws
loc(x), x ∈ M , and n ≥ 1. Moreover, the constant C may be taken

uniform on a neighborhood of A.

Proof. — Since A ∈ Gr,α(M,d,K) is β-Hölder continuous, there exists L1 > 0 such
that

‖A(f j(y))‖/‖A(f j(x))‖ ≤ exp(L1 dist(f j(x), f j(y))β)

≤ exp(L1ν
j(x)β dist(x, y)β)
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and similarly for ‖A(f j(z))−1‖/‖A(f j(x))−1‖. By sub-multiplicativity of the norm

‖An(y)‖ ‖An(z)−1‖ ≤
n−1∏

j=0

‖A(f j(y))‖ ‖A(f j(z))−1‖.

In view of the previous observations, the right hand side is bounded by

exp
[
L1

n−1∑

j=0

νj(x)β(dist(x, y)β + dist(x, z)β)
] n−1∏

j=0

‖A(f j(x))‖ ‖A(f j(x))−1‖

Since ν(·) is bounded away from 1, the first factor is bounded by some C > 0. By
fiber bunching (3.3), the second factor is bounded by νn(x)−βm. It is clear from the
construction that L1 and C may be chosen uniform on a neighborhood.

Proposition 3.2. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there
is L > 0 such that for every pair of points x, y in the same leaf of the strong-stable
foliation Ws,

(a) Hs
x,y = limn→∞An(y)

−1
An(x) exists (a linear isomorphism of K

d)

(b) Hs
fj(x),fj(y) = Aj(y) ◦Hs

x,y ◦Aj(x)−1 for every j ≥ 1

(c) Hs
x,x = id and Hs

x,y = Hs
z,y ◦Hs

x,z

(d) ‖Hs
x,y − id ‖ ≤ L dist(x, y)β whenever y ∈ Ws

loc(x).

(e) Given a > 0 there is Γ(a) > 0 such that ‖Hs
x,y‖ < Γ(a) for any x, y ∈ M with

y ∈ Ws(x) and distWs(x, y) < a.

Moreover, L and the function Γ(·) may be taken uniform on a neighborhood of A.

Proof. — In order to prove claim (a), it is sufficient to consider the case y ∈ Ws
loc(x)

because An+j(y)−1An+j(x) = Aj(y)−1An(f j(y))−1An(f j(x))Aj(x). Furthermore,
once this is done, claim (2) follows immediately from this same relation. Each differ-
ence ‖An+1(y)−1An+1(x) −An(y)−1An(x)‖ is bounded by

‖An(y)−1‖ ‖A(fn(y))−1A(fn(x)) − id ‖ ‖An(x)‖.
Since A is β-Hölder continuous, there is L2 > 0 such that the middle factor in this
expression is bounded by

L2 dist(fn(x), fn(y))β ≤ L2

[
νn(x) dist(x, y)

]β
.

Using Lemma 3.1 to bound the product of the other factors, we obtain

(3.4) ‖An+1(y)−1An+1(x)−An(y)−1An(x)‖ ≤ CL2

[
νn(x)(1−m) dist(x, y)

]β
.

The sequence νn(x)β(1−m) is uniformly summable, since ν(·) is bounded away from
1. Let K > 0 be an upper bound for the sum. It follows that An(y)−1An(x) is a
Cauchy sequence, and so it does converge. This finishes the proof of claims (a) and
(b). Claim (c) is a direct consequence.

Moreover, adding the last inequality over all n, we also get ‖Hs
x,y − id ‖ ≤

L dist(x, y)β with L = CL2K. This proves claim (d). As a consequence, we also get
that there exists γ > 0 such that ‖Hs

x,y‖ < γ for any points x, y in the same local
strong-stable leaf. To deduce claim (e), notice that for any x, y in the same (global)
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strong-stable leaf there exist points z0, . . . , zn, where n depends only on an upper
bound for the distance between x and y along the leaf, such that z0 = x, zn = y,
and each zi belongs to the local strong-stable leaf of zi−1 for every i = 1, . . . , n.
Together with (c), this implies ‖Hs

x,y‖ < γn. It is clear from the construction that
L2 and Γ(·) may be taken uniform on a neighborhood. The proof of the proposition
is complete.

To show that the family of maps Hs
x,y given by this proposition is an invariant

stable holonomy for F (we also say that it is an invariant stable holonomy for A) we
also need to check that these maps vary continuously with the base points. That is a
consequence of the next proposition:

Proposition 3.3. — Suppose that A ∈ Cr,α(M,d,K) is fiber bunched. Then the
map

(x, y) 7→ Hs
x,y

is continuous on W s
N = {(x, y) ∈M ×M : fN (y) ∈ Ws

loc(f
N (x))}, for every N ≥ 0.

Proof. — Notice that dist(x, y) ≤ 2R for all (x, y) ∈ W s
0 , by our definition of local

strong-stable leaves. So, the Cauchy estimate in (3.4)

(3.5)
‖An+1(y)−1An+1(x) −An(y)−1An(x)‖ ≤ CL2

[
νn(x)(1−m) dist(x, y)

]β
.

≤ CL2(2R)βνn(x)β(1−m)

is uniform on W s
0 . This implies that the limit in part (a) of Proposition 3.2 is uniform

on W s
0 . That implies case N = 0 of the present proposition. The general case follows

immediately, using property (b) in Proposition 3.2.

Remark 3.4. — Since the constants C and L2 are uniform on some neighborhood of
A, the Cauchy estimate (3.5) is also locally uniform on A. Thus, the limit in part (a)
of Proposition 3.2 is locally uniform on A as well. Consequently, the stable holonomy
also depends continuously on the cocycle, in the sense that

(A, x, y) 7→ Hs
A,x,y is continuous on Gr,α(M,d,K)×W s

0 .

Using property (b) in Proposition 3.2 we may even replace W s
0 by any W s

N .

Dually, one finds an invariant unstable holonomy (x, y) 7→ Hu
x,y for A (or the

cocycle F ), given by

Hu
x,y = lim

n→−∞
An(y)−1An(x)

whenever x and y are on the same strong-unstable leaf, and it is continuous on
Wu

N = {(x, y) ∈M ×M : f−N (y) ∈ Ws
loc(f

−N (x))}, for every N ≥ 0. Even more,

(A, x, y) 7→ Hu
A,x,y is continuous on every Gr,α(M,d,K)×Wu

N .
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3.2. Differentiability of holonomies. — Now we study the differentiability of
stable holonomies Hs

A,x,y as functions of A ∈ Gr,α(M,d,K). Notice that Gr,α(M,d,K)
is an open subset of the Banach space of Cr,α maps from M to the space of all d× d
matrices and so the tangent space at each point of Gr,α(M,d,K) is naturally identified
with that Banach space. The next proposition is similar to Lemma 2.9 in [23], but
our proof is neater: the previous argument used a stronger fiber bunching condition.

Proposition 3.5. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there
exists a neighborhood U ⊂ Gr,α(M,d,K) of A such that, for any x ∈ M and any y,
z ∈ Ws(x), the map B 7→ Hs

B,y,z is of class C1 on U , with derivative

(3.6) ∂BH
s
B,y,z : Ḃ 7→

∞∑

i=0

Bi(z)−1
[
Hs

B,f i(y),f i(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hs
B,f i(y),fi(z)

]
Bi(y).

Proof. — There are three main steps. Recall that fiber bunching is an open condition
and the constants in Lemma 3.1 and Proposition 3.2 may be taken uniform on some
neighborhood U of A. First, we suppose that y, z are in the local strong-stable leaf
of x, and prove that the expression ∂BH

s
B,y,z Ḃ is well defined for every B ∈ U and

every Ḃ in TBGr,α(M,d,K). Next, still in the local case, we show that this expression
indeed gives the derivative of our map with respect to the cocycle. Finally, we extend
the conclusion to arbitrary points on the global strong-stable leaf of x.

Step 1. For each i ≥ 0, write

(3.7) Hs
B,f i(y),fi(z)B(f i(y))−1Ḃ(f i(y))−B(f i(z))−1Ḃ(f i(z))Hs

B,f i(y),fi(z)

as the following sum

(Hs
B,f i(y),fi(z) − id)B(f i(y))−1Ḃ(f i(y)) +B(f i(z))−1Ḃ(f i(z))(id−Hs

B,f i(y),fi(z))

+ [B(f i(y))−1Ḃ(f i(y))−B(f i(z))−1Ḃ(f i(z))].

By property (d) in Proposition 3.2, the first term is bounded by

(3.8) L ‖B(f i(y))−1‖ ‖Ḃ(f i(y))‖ dist(f i(y), f i(z))β

≤ L ‖B−1‖0,0 ‖Ḃ‖0,0

[
νi(x) dist(y, z)

]β

and analogously for the second one. The third term may be written as

B(f i(y))−1[Ḃ(f i(y))− Ḃ(f i(z))] + [B(f i(y))−1 − B(f i(z))−1]Ḃ(f i(z)).

Using the triangle inequality, we conclude that this is bounded by

(3.9)
(
‖B(f i(y))−1‖Hβ(Ḃ) +Hβ(B−1) ‖Ḃ(f i(z))‖

)
dist(f i(y), f i(z))β .

≤ ‖B−1‖0,β ‖Ḃ‖0,β

[
νi(x) dist(y, z)

]β
,
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where Hβ(φ) means the smallest C ≥ 0 such that ‖φ(z) − φ(w)‖ ≤ C dist(z, w)β for
all z, w ∈M . Notice, from the definition (3.1), that

(3.10) ‖φ‖0,0 +Hβ(φ) = ‖φ‖0,β ≤ ‖φ‖r,α for any function φ.

Let C1 = sup
{
‖B−1‖0,β : B ∈ U

}
. Replacing (3.8) and (3.9) in the expression pre-

ceding them, we find that the norm of (3.7) is bounded by

(2L+ 1)C1 ν
i(x)β dist(y, z)β‖Ḃ‖0,β

Hence, the norm of the ith term in the expression of ∂BH
s
B,y,z Ḃ is bounded by

(3.11) 2(L+ 1)C1 ν
i(x)β‖Bi(z)−1‖ ‖Bi(y)‖ dist(y, z)β‖Ḃ‖0,β

≤ C2 ν
i(x)β(1−m) dist(y, z)β‖Ḃ‖0,β

where C2 = 2C(L+ 1)C1 and C is the constant in Lemma 3.1. In this way we find,

(3.12) ‖∂BH
s
B,y,z(Ḃ)‖ ≤ C2

∞∑

i=0

νi(x)β(1−m) dist(y, z)β‖Ḃ‖0,β

for any x ∈ M and y, z ∈ Ws
loc(x). This shows that the series defining ∂BH

s
B,y,z(Ḃ)

does converge at such points.
Step 2. By part (a) of Proposition 3.2 together with Remark 3.4, the map Hs

B,y,z

is the uniform limit Hn
B,y,z = Bn(z)−1Bn(y) when n→∞. Clearly, every Hn

B,y,z is a
differentiable function of B, with derivative

∂BH
n
B,y,z(Ḃ) =

n−1∑

i=0

Bi(z)−1
[
Hn−i

B,f i(y),fi(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hn−i
B,f i(y),fi(z)

]
Bi(y).

So, to prove that ∂BH
s
B,y,z is indeed the derivative of the holonomy with respect to

B, it suffices to show that ∂Hn
B,y,z converges uniformly to ∂Hs

B,y,z when n→∞.

Write 1−m = 2τ . From (3.4) and the fact that ν(·) is strictly smaller than 1,

‖Hn
B,y,z −Hs

B,y,z‖ ≤ CL2

∞∑

j=n

νj(x)β(1−m) dist(y, z)β

≤ C3ν
n(x)2βτ dist(y, z)β ≤ C3ν

n(x)βτ dist(y, z)β

for some uniform constant C3 (the last inequality is trivial, but it will allow us to
come out with a positive exponent for νi(x) in (3.13) below). More generally, and for
the same reasons,

‖Hn−i
B,f i(y),f i(z) −Hs

B,f i(y),fi(z)‖ ≤ C3ν
n−i(f i(x))βτ dist(f i(y), f i(z))β

≤ C3ν
n−i(f i(x))βτνi(x)β dist(y, z)β

= C3ν
n(x)βτνi(x)β(1−τ) dist(y, z)β
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for all 0 ≤ i ≤ n, and all y, z in the same local strong-stable leaf. It follows, using also
Lemma 3.1, that the norm of the difference between the ith terms in the expressions
of ∂BH

n
B,y,z and ∂BH

s
B,y,z is bounded by

(3.13) C3ν
n(x)βτνi(x)β(1−τ) dist(y, z)β‖Bi(z)−1‖ ‖Bi(y)‖

≤ CC3ν
n(x)βτνi(x)βτ dist(y, z)β .

Combining this with (3.11), we find that ‖∂BH
n
B,y,z − ∂BH

s
B,y,z‖ is bounded by

CC3

n−1∑

i=0

νi(x)βτνn(x)βτ dist(y, z)β + C2

∞∑

i=n

νi(x)2βτ dist(y, z)β.

Since νi(x) is bounded away from 1, the sum is bounded by C4ν
n(x)βτ dist(y, z)β ,

for some uniform constant C4. This latter expression tends to zero uniformly when
n→∞, and so the argument is complete.

Step 3. From property (b) in Proposition 3.2, we find that if Hs
B,f(y),f(z) is

differentiable on B then so is Hs
B,y,z and the derivative is determined by

(3.14) Ḃ(z)Hs
B,y,z +B(z) · ∂BH

s
B,y,z(Ḃ) = Hs

B,y,z · Ḃ(y) + ∂BH
s
B,y,z(Ḃ) ·B(y).

Combining this observation with the previous two steps, we conclude that Hs
B,y,z

is differentiable on B for any pair of points y, z in the same (global) strong-stable
leaf: just note that fn(y), fn(z) are in the same local strong-stable leaf for large n.
Moreover, a straightforward calculation shows that the expression in (3.6) satisfies
the relation (3.14). Therefore, (3.6) is the expression of the derivative for all points
y, z in the same strong-stable leaf. The proof of the proposition is now complete.

Corollary 3.6. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there
exists θ < 1 and a neighborhood U of A and, for each a > 0, there exists C5(a) > 0
such that

(3.15) ‖
∞∑

i=k

Bi(z)−1
[
Hs

B,f i(y),f i(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hs
B,f i(y),fi(z)

]
Bi(y)‖ ≤ C5(a) θ

k ‖Ḃ‖0,β

for any B ∈ U , k ≥ 0, x ∈M , and y, z ∈ Ws(x) with distWs(y, z) < a.

Proof. — Let θ < 1 be an upper bound for ν(·)β(1−m). Begin by supposing that
distWs(y, z) < R. Then y, z are in the same local strong-stable leaf, and we may use
(3.11) to get that the expression in (3.15) is bounded above by

C2

∞∑

i=k

νi(x)β(1−m) dist(y, z)β‖Ḃ‖0,β ≤ C′
5 θ

k ‖Ḃ‖0,β

for some uniform constant C′
5. This settles the case a ≤ R, with C5(a) = C′

5.
In general, there is l ≥ 0 such that distWs(y, z) < a implies distWs(f l(y), f l(z)) <

R. Suppose first that k ≥ l. Clearly, the expression in (3.15) does not change if we
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replace y, z by f l(y), f l(z) and replace k by k− l. Then, by the previous special case,
(3.15) is bounded above by

C′
5 θ

k−l ‖Ḃ‖0,β

and so it suffices to choose C5(a) ≥ C′
5θ

−l. If k < l then begin by splitting (3.15)
into two sums, respectively, over k ≤ i < l and over i ≥ l. The first sum is bounded
by C′′

5 (a)‖Ḃ‖0,β for some constant C′′
5 (a) > 0 that depends only on a (and l, which

is itself a function of a). The second one is bounded by C′
5 ‖Ḃ‖0,β, as we have just

seen. The conclusion follows, assuming we choose C5(a) ≥ C′
5θ

−l + C′′
5 (a)θ−l.

For future reference, let us state the analogues of Proposition 3.5 and Corollary 3.6
for invariant unstable holonomies:

Proposition 3.7. — Suppose that A ∈ Gr,α(M,d,K) is fiber bunched. Then there
exists a neighborhood U ⊂ Gr,α(M,d,K) of A such that, for any x ∈ M and any
y, z ∈ Wu(x), the map B 7→ Hu

B,y,z is of class C1 on U with derivative

(3.16) ∂BH
u
B,y,z : Ḃ 7→ −

∞∑

i=1

B−i(z)−1
[
Hu

B,f−i(y),f−i(z)B(f−i(y))−1Ḃ(f−i(y))

−B(f−i(z))−1Ḃ(f−i(z))Hu
B,f−i(y),f−i(z)

]
B−i(y).

Corollary 3.8. — In the same setting as Proposition 3.7,

(3.17) ‖
∞∑

i=k

B−i(z)−1
[
Hu

B,f−i(y),f−i(z)B(f−i(y))−1Ḃ(f−i(y))

−B(f−i(z))−1Ḃ(f−i(z))Hu
B,f−i(y),f−i(z)

]
B−i(y)‖ ≤ C5(a) θ

k ‖Ḃ‖0,β.

for any B ∈ U , k ≥ 0, x ∈M , and y, z ∈ Wu(x) with distWu(y, z) < a.

3.3. Dominated smooth cocycles. — Now we introduce a concept of domination
for smooth cocycles, related to the notion of fiber bunching in the linear setting.
We observe that dominated smooth cocycles admit invariant stable and unstable
holonomies, and these holonomies vary continuously with the cocycle. These facts
are included to make the analogy to the linear case more apparent but, otherwise,
they are not used in the present paper: whenever dealing with smooth cocycles we
just assume that invariant stable and unstable holonomies do exist. In this section
we do not consider any invariant measure.

Let β > 0 be fixed. A fiber bundle with smooth leaves π : E →M is called β-Hölder
if there exists C > 0 such that the coordinate changes (2.7) satisfy

(3.18) distC1(g±1
x , g±1

y ) ≤ C dist(x, y)β for every x and y.

Then we say that a smooth cocycle F : E → E is β-Hölder if its local expressions
φ−1

U1
◦ F ◦ φU0 : (U0 ∩ f−1(U1))×N → U1 ×N , (x, ξ) 7→ (f(x),FU

x (ξ)) satisfy

(3.19) distC1(FU
x ,F

U
y ) ≤ CU dist(x, y)β for some CU > 0 and every x and y.
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This does not depend on the choice of the local charts. Indeed, any other local
expression has the form FV

x = g′f(x) ◦ FU
x ◦ g−1

x on the intersection of the domains of

definition. Then, a straightforward use of the triangle inequality gives

distC1(FV
x ,F

V
y ) ≤ CV dist(x, y)β for every x and y,

where CV depends on β, C, CU and upper bounds for the norms of DFU
x , Dg′y, Dg−1

x

and Df .

Definition 3.9. — Denote by Cβ(f, E) the space of cocycles F that are β-Hölder
continuous. A cocycle F ∈ Cβ(f, E) is s-dominated if there is θ < 1 such that

(3.20) ‖DFx(ξ)−1‖ ν(x)β ≤ θ for all (x, ξ) ∈ E
and it is u-dominated if there is θ < 1 such that

(3.21) ‖DFx(ξ)‖ ν̂(x)β ≤ θ for all (x, ξ) ∈ E .
We say that F is dominated if it is both s-dominated and u-dominated.

In geometric terms, (3.20) means that the contractions of F along the fibers are
strictly weaker than the contractions of f along strong-stable leaves and (3.21) ex-
presses a similar property for the expansions of F. These conditions are designed so
that the usual graph transform argument yields a “strong-stable” lamination and a
“strong-unstable” lamination for the map F, as we are going to see. Then the holon-
omy maps for these laminations constitute invariant stable and unstable holonomies
for the cocycle.

Observe that both conditions (3.20)–(3.21) become stronger as β decreases to zero;
this may be seen as a sort of compensation for the decreasing regularity (Hölder
continuity) of the cocycle. The observations that follow extend, up to straightforward
adjustments, to the case when these conditions hold for some iterate Fℓ, ℓ ≥ 1.

Proposition 3.10. — Let F ∈ Cβ(f, E) be s-dominated. Then there exists a unique
partition Ws = {Ws(x, ξ) : (x, ξ) ∈ E} of E and there exists C > 0 such that

(a) every Ws(x, ξ) is a (C, β)-Hölder continuous graph over Ws(x);

(b) the partition is invariant: F(Ws(x, ξ)) ⊂ Ws(F(x, ξ)) for all (x, ξ) ∈ E.
Consider the family of maps Hs

x,y : Ex → Ey defined by (y,Hs
x,y(ξ)) ∈ Ws(x, ξ) for

each y ∈ Ws(x). Then, for every x, y and z in the same strong-stable leaf,

(c) Hs
y,z ◦Hs

x,y = Hs
x,z and Hs

x,x = id

(d) Fy ◦Hs
x,y = Hs

f(x),f(y) ◦ Fx

(e) Hs
x,y : Ex → Ey is the uniform limit of (Fn

y )−1 ◦ Fn
x as n→∞;

(f) Hs
x,y : Ex → Ey is γ-Hölder continuous, where γ > 0 depends only on F, and

Hs
x,y is (C, γ)-Hölder continuous if x and y are in the same strong-stable leaf;

(g) (x, y, ξ) 7→ Hs
x,y(ξ) is continuous when (x, y) varies in the set of pairs of points

in the same local strong-stable leaf.

Moreover, there are dual statements for strong-unstable leaves, assuming that F is
u-dominated.
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Outline of the proof. — This follows from the same normal hyperbolicity methods
(Hirsch, Pugh, Shub [15]) that were used in the previous section for linear cocycles.
Existence (a) and invariance (b) of the family Ws follow from a standard application
of the graph transform argument (see Chapter 5 of [22]). The pseudo-group property
(c) is a direct consequence of the definition of Hs

x,y. The invariance property (d) is a
restatement of (b). To prove (e), notice that

Hs
x,y = (Fn

y )−1 ◦Hs
fn(x),fn(y) ◦ Fn

x ,

because the laminationWs is invariant under F. Also, by (a), the uniform C0 distance
from Hs

fn(x),fn(y) to the identity is bounded by

C dist(fn(x), fn(y))β ≤ C
[
νn(x) dist(x, y)

]β
.

Putting these two observations together, we find that

distC0(Hs
x,y, (F

n
y )−1 ◦ Fn

x) ≤ Lip
(
(Fn

y )−1
)

distC0(Hs
fn(x),fn(y), id)

≤ C sup
ξ
‖DFn

y (ξ)−1‖ νn(x)β dist(x, y)β .

So, by the domination condition (3.20),

(3.22) distC0(Hs
x,y, (F

n
y )−1 ◦ Fn

x) ≤ Cθn dist(x, y)β .

This proves (e). For pairs (x, y) in the same local strong-stable leaf, the right hand
side of (3.22) is uniformly bounded by CRβθn. Since this converges to zero, we also
get that the limit map (x, y, ξ) 7→ Hs

x,y(ξ) is continuous, as stated in (g).
The Hölder continuity property is another by-product of normal hyperbolicity the-

ory. In this instance it can be derived as follows. In view of the invariance property
(d), it suffices to consider the case when x and y are in the same local strong-stable leaf.
Given nearby points ξ, η ∈ Ex, let ξ′, η′ be their images under the holonomy mapHs

x,y.
The domination hypothesis (3.20) ensures that there exists n ≤ −c1 log dist(ξ′, η′)
(where c1 > 0 is a uniform constant) such that the distance dist(fn(x), fn(y)) be-
tween the fibers is much smaller than the distance dist(Fn

x(ξ′),Fx(η′)) along the fiber,
in such a way that,

dist(Fn
x(ξ),Fn

x(η)) ≥ 1

2
dist(Fn

y (ξ′),Fn
y (η′)).

Let c2 > 0 be an upper bound for log ‖DF±1
w ‖ over all w ∈M . Then

dist(ξ′, η′)

dist(ξ, η)
≤ e2c2n

dist(Fn
y (ξ′),Fn

y (η′))

dist(Fn
x(ξ),Fn

x(η))
≤ 2e2c2n ≤ 2d(ξ′, η′)−2c1c2 .

This gives dist(ξ′, η′) ≤ 2γ dist(ξ, η)γ with γ = 1/(1 + 2c1c2).

Next, let Ds,β(f, E) ⊂ Cβ(f, E) be the subset of s-dominated cocycles. It is clear
from the definition that Ds,β(f, E) is an open subset, relative to the uniform C1

distance

distC1(F,G) = sup{distC1(Fx,Gx) : x ∈M}.
We are going to see that invariant stable holonomies vary continuously with the
cocycle inside Ds,β(f, E), relative to this distance. Analogously, invariant unstable
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holonomies vary continuously with the cocycle inside the subset Du,β(f, E) ⊂ Cβ(f, E)
of u-dominated cocycles. We also denote by Dβ(f, E) ⊂ Cβ(f, E) the (open) subset of
dominated cocycles.

Let Ws(G) = {Ws(G, x, ξ) : (x, ξ) ∈ E} denote the strong-stable lamination of a
dominated cocycle G, as in Proposition 3.10, and Hs

G = Hs
G,x,y be the corresponding

stable holonomy:

(3.23) (y,Hs
G,x,y(ξ)) ∈ Ws(G, x, ξ).

Recall that Ws(G, x, ξ) is a graph over Ws(x). We also denote by Ws
loc(G, x, ξ) the

subset of points (y,Hs
G,x,y(ξ)) with y ∈ Ws

loc(x).

Proposition 3.11. — Let (Fk)k be a sequence of cocycles converging to F in
Ds,β(f, E). Then, for every x ∈M , y ∈ Ws(x), and ξ ∈ Ex,

(a) Ws(Fk, x, ξ) is a β-Hölder graph; restricted to local strong-stable leaves, the
multiplicative Hölder constant is uniform on (k, x, ξ);

(b) the sequence (uk)k of functions defined by Ws
loc(Fk, x, ξ) = graphuk converges

uniformly to the function u defined by Ws
loc(F, x, ξ) = graphu; this convergence

is uniform on (x, ξ);
(c) Hs

Fk,x,y converges uniformly to Hs
F,x,y; this convergence is uniform on (x, y),

restricted to the set of pairs of points in the same local strong-stable leaf.

Moreover, there are dual statements for invariant unstable holonomies, in the space
of u-dominated cocycles.

Outline of the proof. — This is another standard consequence of the graph transform
argument [15]. Indeed, the assumptions imply that the graph transform of Fk con-
verges to the graph transform of F in an appropriate sense, so that the corresponding
fixed points converge as well. This yields (a) and (b). When y ∈ Ws

loc(x), claim (c) is
a direct consequence of (b) and the definition (3.23). The general statement follows,
using the invariance property in Proposition 3.10:

Hs
Fk,x,y = (Fn

k,y)−1 ◦HFk,fn(x),fn(y) ◦ Fn
k,x.

Related facts were proved in [23, Section 4] for linear cocycles, along these lines.

Remark 3.12. — The previous observations do not need the full strength of partial
hyperbolicity. Indeed, the definition of s-dominated cocycle still makes sense if one
allows the subbundle Eu in (2.1) to have dimension zero; moreover, all the statements
about invariant stable holonomies in Propositions 3.10 and 3.11 remain valid in this
case. Analogously, for defining u-domination and for the statements about invariant
unstable holonomies one may allow Es to have dimension zero.

Remark 3.13. — It follows from (2.13)-(2.14) that if a linear cocycle F is fiber
bunched then the associated projective cocycle F = P(F ) is dominated. Thus, we
could use Proposition 3.10 to conclude that F admits invariant stable and unstable
holonomies. On the other hand, it is easy to exhibit these holonomies explicitly: if
Hs

x,y and Hu
x,y are invariant holonomies for F then P(Hs

x,y) and P(Hu
x,y) are invariant

holonomies for F.
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4. Invariant measures of smooth cocycles

In this section we prove the following result and we use it to obtain Theorem C:

Theorem 4.1. — Let f be a C1 partially hyperbolic diffeomorphism, F be a smooth
cocycle over f , µ be an f -invariant probability, and m be an F-invariant probability
on E such that π∗m = µ.

(a) If F admits invariant stable holonomies and λ−(F, x, ξ) ≥ 0 at m-almost every
point (x, ξ) ∈ E then, for any disintegration {mx : x ∈M} of m into conditional
probabilities along the fibers, there exists a full µ-measure subset M s such that
mz = (Hs

y,z)∗my for every y, z ∈M s in the same strong-stable leaf.
(b) If F admits invariant unstable holonomies and λ+(F, x, ξ) ≤ 0 at m-almost every

point (x, ξ) ∈ E then, for any disintegration {mx : x ∈M} of m into conditional
probabilities along the fibers, there exists a full µ-measure subset Mu such that
mz = (Hu

y,z)∗my for every y, z ∈Mu in the same strong-unstable leaf.

Remark 4.2. — Theorem 4.1 does not require full partial hyperbolicity. Indeed, the
proof of part (a) that we will present in the sequel remains valid when dimEu = 0.
Analogously, part (b) remains true when dimEs = 0.

Theorem C can be readily deduced from Theorem 4.1 and Theorem D, as follows.
Given any disintegration {mx : x ∈ M} of the probability m, define Ψ(x) = mx at
every point. According to Theorem 4.1, the function Ψ is essentially s-invariant and
essentially u-invariant. By Theorem D, there exists a bi-invariant function Ψ̃ defined
on some bi-saturated full measure set M̃ and coinciding with Ψ almost everywhere.
Then we get a new disintegration {m̃x : x ∈ M} by setting m̃x = Ψ̃(x) when x ∈
M̃ and extending the definition arbitrarily to the complement. The conclusion of
Theorem D means that this new disintegration is both s-invariant and u-invariant on
M̃ . Moreover, it is continuous if f is accessible.

The proof of Theorem 4.1 is given in Sections 4.1 through 4.4. Theorem D will be
proved in Sections 6 and 7.

4.1. Abstract invariance principle. — Let (M∗,M∗, µ∗) be a Lebesgue space,
that is, a complete separable probability space. Every Lebesgue space is isomorphic
mod 0 to the union of an interval, endowed with the Lebesgue measure, and a finite
or countable set of atoms. See Rokhlin [21, § 2]. Let T : M∗ → M∗ be an invertible
measurable transformation. A σ-algebra B ⊂ M∗ is generating if its iterates T n(B),
n ∈ Z generate the wholeM∗ mod 0: for every E ∈M∗ there exists E′ in the smallest
σ-algebra that contains all the T n(B) such that µ∗(E∆E′) = 0.

Theorem 4.3 (Ledrappier [18]). — Let B : M∗ → GL(d,K) be a measurable map
such that the functions x 7→ log ‖B(x)±1‖ are µ∗-integrable. Let B ⊂M∗ be a gener-
ating σ-algebra such that both T and B are B-measurable mod 0.

If λ−(B, x) = λ+(B, x) at µ∗-almost every x ∈ M∗ then, for any P(FB)-invariant
probability m that projects down to µ∗, any disintegration x 7→ mx of m along the
fibers is B-measurable mod 0.
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The proof of Theorem 4.1 is based on an extension of this result to smooth cocy-
cles that was recently proved by Avila, Viana [3]. For the statement one needs to
introduce the following notion. A deformation of a smooth cocycle F is a measurable
transformation F̃ : E → E which is conjugated to F,

F̃ = H ◦ F ◦ H−1,

by some invertible measurable map H : E → E of the form H(x, ξ) = (x,Hx(ξ)), such
that all the H−1

x : Ex → Ex are Hölder continuous, with uniform Hölder constants:
there exist positive constants γ and Γ such that

dist(ξ, η) ≤ Γ dist(Hx(ξ),Hx(η))γ for every x ∈M and ξ, η ∈ Ex.

To each F-invariant probability m corresponds an F̃-invariant probability m̃ = H∗m.

Theorem 4.4 (Avila, Viana [3]). — Let F̃ be a deformation of a smooth cocycle F.

Let B ⊂M∗ be a generating σ-algebra such that both T and x 7→ F̃x are B-measurable
mod 0. Let m̃ be an F̃-invariant probability that projects down to µ∗.

If λ−(F, x, ξ) ≥ 0 for m-almost every (x, ξ) ∈ E then any disintegration x 7→ m̃x of
m̃ along the fibers is B-measurable mod 0.

4.2. Global essential invariance. — For proving Theorem 4.1 it suffices to con-
sider the claim (a): then claim (b) is obtained just by reversing time. In this section
we reduce the general case to a local version of the claim (Proposition 4.5 below),
whose proof is postponed until Section 4.4.

For each symbol ∗ ∈ {s, u} and r > 0, denote by W∗(x, r) the neighborhood of
radius r around x inside the leaf W∗(x). Recall that we write W∗

loc(x) =W∗(x,R).

Proposition 4.5. — Consider the setting of Theorem 4.1(a). Let Σ be a cross-
section to the strong-stable foliation Ws of f and let δ ∈ (0, R/2). Denote

N (Σ, δ) =
⋃

z∈Σ

Ws(z, δ)

Then there exists a full µ-measure subset N s of N (Σ, δ) such that my = (Hs
x,y)∗mx

for every x, y ∈ N s in the same Ws(z, δ), z ∈ Σ.

Fix any δ ∈ (0, R/2). For each p ∈ M , consider a cross-section Σ(p) such that
N (Σ(p), δ) contains p in its interior and let N s(p) ⊂ N (Σ(p), δ) be a full mea-
sure subset as in Proposition 4.5. By compactness, we may find ε ≪ δ and points
p1, . . . , pN such that the ball of radius ε around every point of M is contained in some
N (Σ(pj), δ). Since the measure m is invariant under F, there exists an f -invariant set
Mm ⊂M with full µ-measure such that mf(x) = (Fx)∗mx for every x ∈Mm. Take

M s = {x ∈Mm : fn(x) /∈ N (Σ(pj), δ) \ N s(pj) for all n ≥ 0 and j = 1, . . . , N .}
Given any pair of points x, y ∈M s in the same strong-stable leaf, take n ≥ 0 large

enough so that the distance from fn(x) to fn(y) along the corresponding strong-
stable leaf is less than ε. Next, fix j such that N (Σ(pj), δ) contains the ball of radius
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ε around fn(x). Since x, y ∈M s, both points fn(x), fn(y) belong to N s(pj). So, by
Proposition 4.5,

(4.1) mfn(y) = (Hs
fn(x),fn(y))∗mfn(x).

Since x, y ∈Mm, we also have that mfn(x) = (Fn
x)∗mx and analogously for y. Then,

using the invariance relation Hs
fn(x),fn(y) ◦ Fn

x = Fn
y ◦ Hs

x,y, the equality in (4.1)

becomes my = (Hs
x,y)∗mx.

This proves claim (a) in Theorem 4.1. Claim (b) is analogous, up to time reversion.
Thus, we have reduced the proof of Theorem 4.1 to proving Proposition 4.5.

4.3. A local Markov construction. — The proof of Proposition 4.5 can be out-
lined as follows. The assumption that the cocycle admits stable holonomy allows
us to construct a special deformation F̃ of the smooth cocycle F which is measur-
able mod 0 with respect to a certain σ-algebra B. Applying Theorem 4.4 we get
that the disintegration of m̃ is also B-measurable mod 0, where m̃ is the F̃-invariant
measure corresponding to m. When translated back to the original setting, this B-
measurability property means that the disintegration of m is essentially invariant on
the domain N (Σ, δ), as stated in Proposition 4.5.

In this section we construct F̃ and B. The next proposition is the main tool. It is
essentially taken from Proposition 3.3 in [23], so here we just outline the construction.

Proposition 4.6. — Let Σ be a cross-section to the strong-stable foliation Ws and
δ ∈ (0, R/2). Then there exists N ≥ 1 and a measurable family of sets {S(z) : z ∈ Σ}
such that

(a) Ws(z, δ) ⊂ S(z) ⊂ Ws
loc(z) for all z ∈ Σ;

(b) for all l ≥ 1 and z, ζ ∈ Σ, if f lN (S(ζ)) ∩ S(z) 6= ∅ then f lN (S(ζ)) ⊂ S(z).

Outline of the proof. — Fix N big enough so that νN (x) < 1/4 for all x ∈ M , and
denote g = fN . For each z ∈ Σ define S0 =Ws(z, δ) and

(4.2) Sn+1(z) = S0(z) ∪
⋃

(j,w)∈Zn(z)

gj(Sn(w))

where Zn(z) =
{
(j, w) ∈ N× Σ : gj(Sn(w)) ∩ S0(z) 6= ∅

}
. Clearly, S0(z) ⊂ S1(z) and

Z0(z) ⊂ Z1(z). Notice that if Sn−1(z) ⊂ Sn(z) and Zn−1(z) ⊂ Zn(z) for every z ∈ Σ,
then, ⋃

(j,w)∈Zn−1(z)

gj(Sn−1(w)) ⊂
⋃

(j,w)∈Zn(z)

gj(Sn(w)).

Therefore, by induction, Sn(z) ⊂ Sn+1(z) and Zn(z) ⊂ Zn+1(z) for every n ≥ 0.
Define

S∞(z) =
∞⋃

n=0

Sn(z) and Z∞(z) =
∞⋃

n=0

Zn(z).

Then Z∞(z) is the set of (j, w) ∈ N× Σ such that gj(S∞(w)) intersects S0(z), and

S∞(z) = S0(z) ∪
⋃

(j,w)∈Z∞(z)

gj(S∞(w)).
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The choice of N ensures that S∞(z) ⊂ Ws(z, 2δ). Finally, define

S(z) = S∞(z) \
⋃

(k,ξ)∈V (z)

gk(S∞(ξ))

where V (z) =
{
(k, ξ) ∈ N× Σ : gk(S∞(ξ)) 6⊂ S∞(z)

}
. This family of sets satisfies the

conclusion of the proposition.

Since the conclusion of Proposition 4.5 is not affected when f and F are replaced
by its iterates fN and FN , we may take the integer N in Proposition 4.6 to be equal
to 1. Let M∗ = M and T = f . LetM∗ be the µ-completion of the Borel σ-algebra of
M and µ∗ be the canonical extension of µ to M∗. Then (M∗,M∗, µ∗) is a Lebesgue
space and T is an automorphism in it.

For each z ∈ Σ, let r(z) ≥ 0 be the largest integer (possibly infinite) such that
f j(S(z)) does not intersect any of the S(w), w ∈ Σ for all 0 < j ≤ r(z). Let B be the
σ-algebra of sets E ∈ M∗ such that, for every z and j, either E contains f j(S(z))
or is disjoint from it. Notice that an M-measurable function on M is B-measurable
precisely if it is constant on every f j(S(z)). Define F̃ : E → E to be F̃ = H ◦ F ◦H−1,
where

Hx =

{
Hs

x,fj(z) if x ∈ f j(S(z)) for some z ∈ Σ and 0 ≤ j ≤ r(z)
id otherwise.

Recall that S(z) ⊂ Ws
loc(z) for every z, by construction. Reducing δ if necessary,

we may assume that f j(S(z)) ⊂ Ws
loc(f

j(z)) for every z and every j ≥ 0. Then
condition (d) in Definition 2.9 ensures that the family {Hx : x ∈M} is uniformly
Hölder continuous. The definition implies that

(4.3) F̃x = Hs
f(x),fj+1(z) ◦ Fx ◦Hs

fj(z),x = Ffj(z)

if x ∈ f j(S(z)) for some z ∈ Σ and 0 ≤ j < r(z). Moreover,

(4.4) F̃x = Hs
f(x),w ◦ Fx ◦Hs

fr(z)(z),x

if x ∈ f r(z)(S(z)) for some z ∈ Σ, where w ∈ Σ is given by f r(z)+1(S(z)) ⊂ S(w). In

all other cases, F̃x = Fx.

Lemma 4.7. — The following properties hold

(a) T = f and x 7→ F̃x are B-measurable
(b) distC0(Hx, id) is uniformly bounded
(c) {T n(B) : n ∈ N} generates M∗ mod 0.

Proof. — The relations (4.3) and (4.4) show that F̃x is constant on f j(S(z)) for every

z ∈ Σ and 0 ≤ j ≤ r(z). Thus, x 7→ F̃x is B-measurable. B-measurability of f is
a simple consequence of the Markov property in Proposition 4.6. Indeed, let E ∈ B
and let z ∈ Σ and 0 ≤ j ≤ r(z) be such that f−1(E) intersects f j(S(z)). Then E
intersects f j+1(S(z)). We claim that E contains f j+1(S(z)). When j + 1 ≤ r(z) this
follows immediately from E ∈ B. When j = r(z), notice that f j+1(S(z)) ⊂ S(w)
for some w ∈ S(z), and E ∈ B must contain S(w). So the claim holds in all cases.
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It follows that f−1(E) contains f j(S(z)). This proves that f−1(E) ∈ B, and so the
proof of part (a) is complete. To prove part (b), observe that

diam f j(S(z)) ≤ diamWs S(z) ≤ R,
for all z ∈ Σ and j ≥ 0, and so

sup
x∈M

distC0(Hx, id) ≤ sup
dist(a,b)≤R

distC0(Hs
a,b, id).

The right hand side is uniformly bounded, since the stable holonomy depends con-
tinuously on the base points, and the space of (a, b) ∈ M ×M with dist(a, b) ≤ R is
compact. This proves part (b). To prove the last claim, observe that fn(B) is the
σ-algebra of sets E ∈ M∗ such that every f j+n(S(z)) either is contained in E or is
disjoint from E. Observe that the diameter of f j+n(S(z)) goes to zero, uniformly,
when n goes to ∞. It follows that every open set can be written as a union of sets
En ∈ fn(B) and, hence, belongs to the σ-algebra generated by {fn(B) : n ∈ N}. This
proves that the latter σ-algebra coincides mod 0 with the completionM∗ of the Borel
σ-algebra, as stated in (c).

4.4. Local essential invariance. — Next, we deduce Proposition 4.5. By assump-
tion, λ−(F, x, ξ) ≥ 0 at m-almost every point. Lemma 4.7 ensures that all the other
assumptions of Theorem 4.4 are fulfilled as well. We conclude from the theorem that
the disintegration {m̃x : x ∈M} of the measure m̃ = H∗m is measurable mod 0 with
respect to the σ-algebra B. Then, there exists a full µ-measure set Xs ⊂M such that
this restriction of the disintegration to Xs is constant on every f j(S(z)) with z ∈ Σ
and 0 ≤ j ≤ r(z). The disintegrations of m and m̃ are related to one another by

m̃x =
(
Hx)∗mx =

{
(Hs

x,fj(z))∗mx if x ∈ f j(S(z)) for z ∈ Σ and 0 ≤ j ≤ r(z)
mx otherwise.

Define N s = Xs ∩N (Σ, δ). Recall that W(z, δ) ⊂ S(z) for all z ∈ Σ. Then, for every
x, y ∈ N s in the same W(z, δ),

(Hs
x,z)∗mx = m̃x = m̃y = (Hs

y,z)∗my,

and so my = (Hs
y,z)

−1
∗ (Hs

x,z)∗mx = (Hx,y)∗mx. This proves Proposition 4.5. The
proof of Theorem 4.1 is now complete.

5. Density points

In this section we recall some ideas of Burns, Wilkinson [9] that will be impor-
tant in Section 6. The conclusions that interest us more directly are collected in
Proposition 5.13.

Let us start with a few preparatory remarks. Recall that we take M to carry a
Riemannian metric adapted to f : M →M , meaning that properties (2.2)-(2.4) hold.
Clearly, these properties are not affected by rescaling. At a few steps in the course of
the arguments that follow we do allow for the Riemannian metric to be multiplied by
some large constant.
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Recall that we write W∗
loc(x) =W∗(x,R) for every x ∈M and ∗ ∈ {s, u}, where is

R a fixed constant. In the sequel we suppose that R > 1. Up to rescaling the metric,
we may assume that the Riemannian ball B(p,R) is contained in foliation boxes for
both Ws and Wu, for every p ∈ M . By further rescaling the metric, we may ensure
that, given any p ∈M and x, y ∈ B(p,R),

y ∈ Ws
loc(x) implies dist(f(x), f(y)) ≤ ν(p) dist(x, y) and,

y ∈ Wu
loc(x) implies dist(f−1(x), f−1(y)) ≤ ν̂(f−1(p)) dist(x, y).

As a consequence, given any p, x, y ∈M ,

(I) f(Ws
loc(x)) ⊂ Ws

loc(f(x)) and f−1(Wu
loc(x)) ⊂ Wu

loc(f
−1(x)).

(II) If f j(x) ∈ B(f j(p), R) for 0 ≤ j < n, and y ∈ Ws
loc(x), then

dist(fn(x), fn(y)) ≤ νn(p) dist(x, y);

(III) If f−j(x) ∈ B(f−j(p), R) for 0 ≤ j < n, and y ∈ Wu
loc(x), then

dist(f−n(x), f−n(y)) ≤ ν̂−n(p) dist(x, y).

These properties of the strong-stable and strong-unstable foliations of f are useful
guidelines to the notion of fake foliations, that we are going to recall in Section 5.2.

5.1. Density sequences. — Let λ be the volume associated to the (adapted) Rie-
mannian metric onM . We denote by λS the volume of the Riemannian metric induced
on any immersed submanifold S. Given a continuous foliation F of M with smooth
leaves, we denote by λF (A) the volume of a measurable subset A of some leaf F ,
relative to the Riemannian metric λF induced on that leaf.

By definition, λ and the invariant volume µ have the same zero measure sets. More
important for our proposes, they have the same Lebesgue density points. Recall that
x ∈M is a Lebesgue density point of a set X ⊂M if

lim
δ→0

λ(X : B(x, δ)) = 1

where λ(A : B) = λ(A ∩B)/λ(B) is defined for general subsets A, B with λ(B) > 0.
The Lebesgue Density Theorem asserts that λ(X ∆ DP(X)) = 0 for any measurable
set X , where DP(X) is the set of Lebesgue density points of X .

Balls may be replaced in the definition by other, but not arbitrary, families of
neighborhoods of the point.

Definition 5.1. — A sequence of measurable sets (Yn)n is a Lebesgue density se-
quence at x ∈M if

(a) (Yn)n nests at the point x: Yn ⊃ Yn+1 for every n and ∩nYn = {x}
(b) (Yn)n is regular : there is δ > 0 such that λ(Yn+1) ≥ δλ(Yn) for every n
(c) x is a Lebesgue density point of an arbitrary measurable set X if and only if

limn→∞ λ(X : Yn) = 1.

Some of the sequences we are going to mention satisfy these conditions for special
classes of sets only. In particular, we say that (Yn)n is a Lebesgue density sequence at
x for bi-essentially saturated sets if (c) holds for every bi-essentially saturated set X
(this notion was defined in Section 2.1).
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Burns, Wilkinson [9] propose two main techniques for defining new Lebesgue den-
sity sequences: internested sequences and Cavalieri’s principle. The first one is quite
simple and applies to general measurable sets. Two sequences (Yn)n and (Zn)n that
nest at x are said to be internested if there is k ≥ 1 such that

Yn+k ⊆ Zn and Zn+k ⊆ Yn for all n ≥ 0.

Lemma 5.2 (Lemma 2.1 in [9]). — If (Yn)n and (Zn)n are internested then one
sequence is regular if and only if the other one is. Moreover,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λ(X : Zn) = 1,

for any measurable set X ⊂M .

Consequently, if two sequences are internested then one is a Lebesgue density
sequence (respectively, a Lebesgue density sequence for bi-essentially saturated sets)
if and only if the other is.

The second technique (Cavalieri’s principle) is a lot more subtle and is specific to
subsets essentially saturated by some absolutely continuous foliation F (with bounded
Jacobians). Let U be a foliation box for F and Σ be a cross-section to F in U . The
fiber of a set Y ⊂ U over a point q ∈ Σ is the intersection of Y with the local leaf
of F in U containing q. The base of Y ⊂ U is the set ΣY of points q ∈ Σ whose
fiber Y (q) is a measurable set and has positive λF -measure. The absolute continuity
of F ensures that the base is a measurable set. We say that Y fibers over some set
Z ⊂ Σ if the basis ΣY equals Z. Given c ≥ 1, a sequence of sets Yn contained in U
has c-uniform fibers if

(5.1) c−1 ≤ λF (Yn(q1))

λF (Yn(q2))
≤ c for all q1, q2 ∈ ΣYn

and every n ≥ 0.

Proposition 5.3 (Proposition 2.7 in [9]). — Let (Yn)n be a sequence of measur-
able sets in U with c-uniform fibers, for some c. Then, for any locally F-saturated
measurable set X ⊂ U ,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λΣ(ΣX : ΣYn
) = 1.

By locally F-saturated we mean that the set is a union of local leaves of F in the
foliation box U . Sets that differ from a locally F -saturated one by zero Lebesgue
measure subsets are called essentially locally F-saturated.

Proposition 5.4 (Proposition 2.5 in [9]). — Let (Yn)n and (Zn)n be two se-
quences of measurable subsets of U with c-uniform fibers, for some c, and ΣYn

= ΣZn

for all n. Then, for any essentially locally F-saturated set X ⊂ U ,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λ(X : Zn) = 1.
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5.2. Fake foliations and juliennes. — Juliennes were proposed by Pugh,
Shub [19] as density sequences particularly suited for partially hyperbolic dynam-
ical systems. These are sets constructed by means of invariant foliations that are
assumed to exist (dynamical coherence) tangent to the invariant subbundles Es,
Eu, Ecs = Ec ⊕ Es, Ecu = Ec ⊕ Eu, and Ec, and they have nice properties of
invariance under iteration and under the holonomy maps of the strong-stable and
strong-unstable foliations. As mentioned before, strong-stable and strong-unstable
foliations (tangent to the subbundles Es and Eu, respectively) always exist in the
partially hyperbolic setting. However, that is not always true about the center,
center-stable, center-unstable subbundles Ec, Ecs, Ecu.

One main novelty in Burns, Wilkinson [9] was that, for the first time, the authors
avoided the dynamical coherence assumption. A version of the julienne construction
is still important in their approach, but now the definition is in terms of certain
“approximations” to the (possibly nonexistent) invariant foliations, that they call
fake foliations. We will not need to use fake foliations nor fake juliennes directly in
this paper but, for the reader’s convenience, we briefly describe their main features.

5.2.1. Fake foliations. — The central result about fake foliations is Proposition 3.1
in [9]: for any ε > 0 there exist constants 0 < ρ < r < R such that the ball of radius
r around every point admits foliations

Ŵu
p , Ŵs

p , Ŵc
p, Ŵcu

p , Ŵcs
p .

with the following properties, for any ∗ ∈ {u, s, c, cs, cu}:
(i) For every x ∈ B(p, ρ), the leaf Ŵ∗

p (x) is C1 and the tangent space TxŴ∗
p (x) is

contained in the cone of radius ε around E∗
x.

(ii) For every x ∈ B(p, ρ),

f(Ŵ∗
p (x, ρ)) ⊂ Ŵ∗

f(p)(f(x)) and f−1(Ŵ∗
p (x, ρ)) ⊂ Ŵ∗

f−1(p)(f
−1(x)).

(iii) Given x ∈ B(p, ρ) and n ≥ 1 such that f j(x) ∈ B(f j(p), r) for 0 ≤ j < n, if

y ∈ Ŵs
p(x, ρ) then fn(y) ∈ Ŵs

fn(p)(f
n(x), ρ) and

dist(fn(x), fn(y)) ≤ νn(p) dist(x, y).

Similarly for Ŵu, with f replaced by its inverse.
(iv) Given x ∈ B(p, ρ) and n ≥ 1 such that f j(x) ∈ B(f j(p), r) for 0 ≤ j < n, if

f j(y) ∈ Ŵcs
p (f j(q), ρ) for 0 ≤ j < n then fn(y) ∈ Ŵcs

fn(p)(f
n(x)) and

dist(fn(x), fn(y)) ≤ γ̂n(p)−1 dist(x, y).

Similarly for Ŵcu, with f replaced by its inverse.

(v) Ŵu
p and Ŵc

p sub-foliate Ŵcu
p , and Ŵs

p and Ŵc
p sub-foliate Ŵcs

p .

(vi) Ŵs
p(p) =Ws(p, r) and Ŵu

p (p) =Wu(p, r).

(vii) All the fake foliations Ŵ∗, ∗ ∈ {u, s, c, cs, cu} are Hölder continuous, and so are
their tangent distributions.

(viii) Assuming f is center bunched, every leaf of Ŵcs
p is C1 foliated by leaves of Ŵs

p

and every leaf of Ŵcu
p is C1 foliated by leaves of Ŵu

p .
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Properties (i) and (vi) are what we mean by “approximations”. Concerning the
latter, let us emphasize that the fake strong-stable and strong-unstable foliations need
not coincide with the genuine ones, Ws and Wu, at points other than p. The local
invariance property (ii) and the exponential bounds (iii) and (iv) should be compared
to the corresponding properties (I), (II), (III) of, stated at the beginning of Section 5.
The regularity properties (vi) and (vii) hold uniformly in p ∈M .

5.2.2. Juliennes. — Another direct use of the center bunching condition, besides the
smoothness property (viii) above, is in the definition of juliennes. In view of the first
center bunching condition, ν < γγ̂ (there is a dual construction starting from ν̂ < γγ̂
instead), we may find continuous functions τ and σ such that

ν < τ < σγ and σ < min{γ̂, 1}.
Let p ∈M be fixed. For any x ∈ Ws(p, 1) and n ≥ 0, define

B̂c
n(x) = Ŵc

p(x, σn(p)) and Sn(p) =
⋃

x∈Ws(p,1)

B̂c
n(x).

The (fake) center-unstable julienne of order n ≥ 0 centered at x ∈ Ws(p, 1) is defined
by

Ĵcu
n (x) =

⋃

y∈ bBc
n(x)

Ĵu
n (y), where Ĵu

n (y) = f−n(Ŵu
fn(p)(f

n(y), τn(p))).

The latter is the (fake) unstable julienne of order n ≥ 0 centered at y, and is defined
for every y ∈ Sn(p). See Figure 1.

Sn(p)

Ws(p, 1)

xx

y

bBc

n
(x)bBc

n
(x)

bJu

n
(y)

Ĵcu
n (x)

Figure 1.

Observe that Ĵcu
n (x) is contained in the smooth submanifold Ŵcu

p (x), by the coher-

ence property (v) of fake foliations. Moreover, Ĵcu
n (x) has positive measure relative

to the Riemannian volume λccu defined by the restriction of the Riemannian metric

to Ŵcu
p (x). Notice also that fake center-unstable leaves are transverse to the strong-

stable foliation, as a consequence of property (i) of fake foliations. One key feature
of center-unstable juliennes is that, unlike balls for instance, they are approximately
preserved by the holonomy maps of the strong-stable foliation:
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Proposition 5.5 (Proposition 5.3 in [9]). — For any x, x′ ∈ Ws(p, 1), the se-

quences hs(Ĵcu
n (x)) and Ĵcu

n (x′) are internested, where hs : Ŵcu
p (x)→ Ŵcu

p (x′) is the
holonomy map induced by the strong-stable foliation Ws.

5.3. Lebesgue and julienne density points. — Let S be a locally s-saturated
set in a neighborhood of p. For notational simplicity, we write

λccu(S : Ĵcu
n (x)) = λccu(S ∩ Ŵcu

p (x) : Ĵcu
n (x)).

Notice that S ∩ Ŵcu
p (x) coincides with the base of S over Ŵcu

p (x).

Definition 5.6. — We call x ∈ Ws(p, 1) a cu-julienne density point of S if

lim
n→∞

λccu(S : Ĵcu
n (x)) = 1.

Another crucial property of center-unstable juliennes is

Proposition 5.7 (Proposition 5.5 in [9]). — Let X be a measurable set that is
both s-saturated and essentially u-saturated. Then x ∈ Ws(p) is a Lebesgue density
point of X if and only if x is a cu-julienne density point of X.

We can not use this proposition directly, because the saturation hypotheses are not
fully satisfied by the sets we deal with. However, we can rearrange the arguments in
the proof of the proposition to obtain a statement that does suit our purposes. For
this, let us recall the main steps in the proof of Proposition 5.7. They involve several
nesting sequences Bn(x), Cn(x), Dn(x), Gn(x), that we introduce along the way.

By definition, Bn(x) is just the Riemannian ball of radius σn(p) centered at x:

Bn(x) = B(x, σn(p)).

Lemma 5.8. — Let S ⊂ M be any measurable set. Then, x is a Lebesgue density
point of S if and only if limn→∞ λ(S : Bn(x)) = 1.

Proof. — This follows from the fact that the ratio σn+1(p)/σn(p) = σ(fn(p)) of
successive radii is less than 1, and is uniformly bounded away from both 0 and 1.

Next, for x ∈ Ws(p, 1), let

Cn(x) =
⋃

q∈Dcs
n (x)

Wu(q, σn(p)) and Dn(x) =
⋃

q∈Dcs
n (x)

f−n(Wu(fn(q), τn(p))).

Notice that these two nesting sequences fiber over the same sequence of bases

Dcs
n (x) =

⋃

y∈cWs
p(x,σn(p))

B̂c
n(y) =

⋃

y∈cWs
p(x,σn(p))

Ŵc
p(y, σn(p)).

Also, by the coherence property (v) of fake foliations, each set Dcs
n (x) is contained in

the submanifold Ŵcs(x).

Lemma 5.9. — Let S ⊂M be any measurable set. Then,

lim
n→∞

λ(S : Bn(x)) = 1⇐⇒ lim
n→∞

λ(S : Cn(x)) = 1.
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Proof. — Continuity and transversality of the fake foliations Ŵc
p and Ŵs

p imply that

the sequences Dcs
n (x) and Ŵcs(x, σn(p)) are internested. Then, similarly, continuity

and transversality of the foliations Wu and Ŵcs
p imply that the sequences Cn(x) and

Bn(x) are internested. So, the claim follows from Lemma 5.2.

Lemma 5.10. — Let S ⊂M be locally essentially u-saturated. Then,

lim
n→∞

λ(S : Cn(x)) = 1⇐⇒ lim
n→∞

λ(S : Dn(x)) = 1.

Proof. — By definition, Cn(x) and Dn(x) both fiber over Dcs
n (x), with fibers con-

tained in strong-unstable leaves. The fibers of Cn(x) are uniform, in the sense of
(5.1), because they are all comparable to balls of fixed radius σn(p) inside strong-
unstable leaves. Proposition 5.4 in [9] gives that the fibers of Dn(x) are uniform as
well. Thus, the claim follows from Proposition 5.4 above.

Finally, define

Gn(x) =
⋃

q∈ bJcu
n (x)

Ws(q, σn(p)).

Lemma 5.11. — Let S ⊂M any measurable set. Then,

lim
n→∞

λ(S : Dn(x)) = 1⇐⇒ lim
n→∞

λ(S : Gn(x)) = 1.

Proof. — The sequences Dn(x) and Gn(x) are internested, according to Lemma 8.1
and Lemma 8.2 in [9]. So, the claim follows from Lemma 5.2.

Lemma 5.12. — Let S ⊂M be locally s-saturated. Then,

lim
n→∞

λ(S : Gn(x)) = 1⇐⇒ lim
n→∞

λccu(S : Ĵcu
n (x)) = 1.

Proof. — By definition, Gn(x) fibers over Ĵcu
n (x). The fibers are uniform, in the

sense of (5.1), because they are all comparable to balls of fixed radius σn(p) inside
strong-stable leaves. Then the claim follows from Proposition 5.3 above.

Proposition 5.7 was obtained in [9] by concatenating Lemmas 5.8 through 5.12. A
variation of these arguments yields:

Proposition 5.13. — Let x ∈ Ws(p, 1) and δ > 0.

(a) Let X ⊂ M be a locally essentially u-saturated set in B(x, δ) and let Y be its
local s-saturation inside B(x, δ). If x is a Lebesgue density point of X then x is
a cu-julienne density point of Y .

(b) Let X ⊂ M be a locally essentially s-saturated set in B(x, δ) and let Y be its
local u-saturation inside B(x, δ). If x is a cu-julienne density point of X then
x is a Lebesgue density point of Y .

(c) Let S ⊂M be any measurable set. If x is a cu-julienne density point of S then
so is every x′ ∈ Ws(p, 1).
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Proof. — Applying Lemmas 5.8 through 5.11 to S = X , we get that

lim
n→∞

λ(X : Gn(x)) = 1

(Lemma 5.10 uses the assumption that X is essentially u-saturated). It follows that

lim
n→∞

λ(Y : Gn(x)) = 1,

because Y ⊃ X . Thus, applying Lemma 5.12 to S = Y , we get that x is a cu-julienne
density point of Y , as claimed in part (a) of the proposition.

Next, we prove part (b). Given an essentially s-saturated set X in B(x, δ), we may
use Lemmas 5.12 and 5.11 with S = X to conclude that

lim
n→∞

λ(X : Dn(x)) = 1

(Lemma 5.12 uses the assumption that X is essentially s-saturated). It follows that

lim
n→∞

λ(Y : Dn(x)) = 1,

because Y ⊃ X . Then Lemmas 5.10 through 5.8, with S = Y , to conclude that x is
a Lebesgue density point of Y , as claimed.

Finally, absolute continuity (with bounded Jacobians) of the strong-stable foliation
gives that

lim
n→∞

λccu(S : Ĵcu
n (x)) = 1 ⇒ lim

n→∞
λccu(S : hs(Ĵcu

n (x))) = 1.

By Proposition 5.5, the sequences hs(Ĵcu
n (x)) and Ĵcu

n (x′) are internested. Hence, by
Lemma 5.2,

lim
n→∞

λccu(S : hs(Ĵcu
n (x))) = 1 ⇒ lim

n→∞
λccu(S : Ĵcu

n (x′)) = 1.

This proves part (c) of the theorem.

6. Bi-essential invariance implies essential bi-invariance

We call a continuous fiber bundle X refinable if the fibers Xx, x ∈M are refinable.

Theorem 6.1. — Let f : M → M be a C2 partially hyperbolic center bunched dif-
feomorphism and X be a refinable fiber bundle with stable and unstable holonomies.
Then, given any bi-essentially invariant section Ψ : M → X , there exists a bi-
saturated set MΨ with full measure, and a bi-invariant section Ψ̃ : MΨ → X that
coincides with Ψ at almost every point.

Theorem D(a) is a particular case of this result, as we are going to explain. Indeed,
let P be the space of probability measures on N , endowed with the weak∗ topology,
that is, the smallest topology for which the integration operator

P → R, η 7→
∫
ϕdη

is continuous, for every bounded continuous function ϕ : N → R. It is well known
(see [5, Section 6]) that this topology is separable and metrizable, because N is a
separable metric space (if we were to assume that N is complete then the weak∗
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topology would also be complete). In particular, P admits a countable basis of open
sets and so it is refinable.

Associated to π : E → M , we have a new fiber bundle Π : X → M , whose fiber
over a point x ∈ M is the space of probability measures on the corresponding Ex. It
is easy to see that this is a continuous fiber bundle with leaves modeled on the space
P we have just introduced: if π−1(U)→ U ×N , v 7→ (π(v), ψπ(v)(v)) is a continuous
local chart for E then

Π−1(U)→ U × P, η 7→ (Π(η), (ψΠ(η))∗(η))

is a continuous local chart for X . The cocycle F : E → E induces a cocycle on X , by
push-forward, but this will not be needed here.

More important for our purposes, the stable and unstable holonomies of F induce
homeomorphisms

hs
x,y = (Hs

x,y)∗ : Xx → Xy and hu
x,y = (Hu

x,y)∗ : Xx → Xy

for points x, y in the same strong-stable leaf or the same strong-unstable leaf, respec-
tively. These homeomorphisms form stable and unstable holonomies on X . Indeed,
the group property (α) in Definition 2.9 is an immediate consequence of property (a)
in Definition 2.4, and the continuity property (β) can be verified as follows. Since the
statement is local, we may pretend that the fiber bundle is trivial and the holonomies
Hs

x,y are homeomorphisms of N . Consider any sequence (xk, yk, νk) in X converging
to (x, y, ν) ∈ X , with yk ∈ Ws

loc(xk) and y ∈ Ws
loc(x). Property (c) in Definition 2.4

implies that Hs
xk,yk

converges to Hs
x,y uniformly on compact subsets. On its turn,

this implies that (Hs
xk,yk

)∗νk converges to (Hs
x,y)∗ν in the weak∗ topology.

Now it is clear that Theorem D(a) corresponds to the statement of Theorem 6.1
in the special case of the section Ψ(x) = mx of the fiber bundle X we have defined.
In the remainder of this section we prove Theorem 6.1.

6.1. Lebesgue densities. — Let Ψ : M → P be a measurable function with values
in a refinable space.

Definition 6.2. — We say that x ∈ M is a point of measurable continuity of Ψ if
there is υ ∈ P such that x is a Lebesgue density point of Ψ−1(V ) for every neighbor-
hood V ⊂ P of υ. Then υ is called the density value of Ψ at x.

Clearly, the density value at x is unique, when it exists. Let MC(Ψ) denote the set

of measurable continuity points of Ψ. The function Ψ̃ : MC(Ψ)→ P assigning to each

point x of measurable continuity its density value Ψ̃(x) is called Lebesgue density of
Ψ. Recall that DP(X) denotes the set of density points of a set X . The hypothesis
that P is refinable is used in the next lemma:

Lemma 6.3. — For any measurable function Ψ : M → P , the set MC(Ψ) has full

Lebesgue measure and Ψ = Ψ̃ almost everywhere.
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Proof. — Let Q1 ≺ · · · ≺ Qn ≺ · · · be a sequence of partitions of the space P as in
Definition 2.11. Let

M̃ =
⋂

n≥1

⋃

Q∈Qn

Ψ−1(Q) ∩DP(Ψ−1(Q)).

Since Ψ−1(Q) ∩ DP(Ψ−1(Q)) has full measure in Ψ−1(Q), and
{
Ψ−1(Q) : Q ∈ Qn

}

is a partition of M for every n, the set on the right hand side has full measure in M
for every n. This proves that M̃ is a full measure subset of M . Next, we check that
M̃ is contained in the set of points of measurable continuity of Ψ. Indeed, given any
point x ∈ M̃ , let Qn ∈ Qn be the sequence of atoms such that x ∈ Ψ−1(Qn). Then x

is a density point of Ψ−1(Qn) for every n ≥ 1, in view of the definition of M̃ . Notice
that ∩nQn is non-empty, since it contains Ψ(x). Then, according to Definition 2.11,
there exists υ ∈ X such that every neighborhood V contains some Qn. It follows that
x is a density point of Ψ−1(V ) for any neighborhood V ⊂ X of υ, that is, υ is the

density value for Ψ at x. This shows that x ∈ MC(Ψ) with Ψ̃(x) = υ. Moreover, υ
must coincide with Ψ(x), since the intersection of all Qn contains exactly one point.

In other words, Ψ̃(x) = Ψ(x) for every x ∈ M̃ .

More generally, let Ψ : M → X be a measurable section of a refinable fiber bundle
X . Let x ∈M be fixed and U be a small neighborhood. Using a local chart, one may
view Ψ | U as a function with values in Xx. Two such local expressions Ψ1 : U → Xx

and Ψ2 : U → Xx of the section Ψ are related by

Ψ1(z) = hz(Ψ2(z)),

where (z, ξ) 7→ (z, hz(ξ)) is a homeomorphism from U × Xx to itself, with hx = id.
So, a point υ ∈ Xx is the density value of Ψ1 at x if and only if it is the density value
of Ψ2 at x. More generally, given any point y ∈ U , the corresponding local expression
Ψ3 : U → Xy of the section Ψ is related to Ψ1 : U → Xx by

Ψ1(z) = gz(Ψ3(z)),

where (z, ξ) 7→ (z, gz(ξ)) is a homeomorphism from U × Xy to U × Xx. So, a point
z is a point of measurable continuity for Ψ3 if and only if it is a point of measurable
continuity for Ψ1.

These observations allow us to extend Definition 6.2 to sections of refinable fiber
bundles, as follows. We call υ ∈ Xx a density value of the section Ψ : M → X at the
point x if it is the density value for some (and, hence, any) local expression U 7→ Xx

as before. We call x a point of measurable continuity of the section Ψ if it admits
a density value or, equivalently, if it is a point of measurable continuity for some
(and, hence, any) local expression of Ψ. The subset MC(Ψ) of points of measurable
continuity has full Lebesgue measure in M , since it intersects every domain U of local
chart on a full Lebesgue measure subset. Recall Lemma 6.3. Finally, the Lebesgue
density of Ψ is the section MC(Ψ) → X assigning to each point x of measurable
continuity its density value.
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6.2. Proof of bi-invariance. — Now Theorem 6.1 is a direct consequence of the
next proposition: it suffices to take MΨ = MC(Ψ) and Ψ̃ = the Lebesgue density of
Ψ, and apply the following proposition together with Lemma 6.3.

Proposition 6.4. — Let f : M → M be a C2 partially hyperbolic center bunched
diffeomorphism and X be a refinable fiber bundle with stable and unstable holonomies.
For any bi-essentially invariant section Ψ : M → X , the set MC(Ψ) is bi-saturated

and the Lebesgue density Ψ̃ : MC(Ψ)→ X is bi-invariant on MC(Ψ).

Proof. — For any x ∈ MC(Ψ) and y ∈ Ws(x, 1), we are going to prove hs
x,y(Ψ̃(x)) is

the density value of Ψ at y. It will follow that y ∈ MC(Ψ) and Ψ̃(y) = hs
x,y(Ψ̃(x)).

Analogously, one gets that if x ∈ MC(Ψ) and y ∈ Wu(x, 1) then y ∈ MC(Ψ) and

Ψ̃(y) = hu
x,y(Ψ̃(x)). The proposition is an immediate consequence of these facts.

It is convenient to think of π : X → M as a trivial bundle on neighborhoods
Ux of x and Uy of y, identifying π−1(Ux) ≈ Ux × P and π−1(Uy) ≈ Uy × P via
local coordinates, and we do so in what follows. Let V ⊂ P be a neighborhood of
hs

x,y(Ψ̃(x)). We are going to show that y is a density point of Ψ−1(V ).
By the continuity property (β) in Definition 2.9, we can find ε > 0 and a neigh-

borhood W ⊂ V of hs
x,y(Ψ̃(x)) such that

(6.1) hu
w1,w2

(W ) ⊂ V for all w1, w2 ∈ B(y, ε) with w1 ∈ Wu
loc(w2).

Similarly, up to reducing ε > 0, there exists a neighborhood U ⊂ P of Ψ̃(x) such that

(6.2) hs
z,w(U) ⊂W for every z ∈ B(x, ε) and w ∈ B(y, ε) with z ∈ Ws

loc(w).

The assumption that Ψ is bi-essentially invariant (Definition 2.10) implies that there
exists a full measure set Ssu such that

(6.3)
hs

ξ,η(Ψ(ξ)) = Ψ(η) for any ξ, η ∈ Ssu in the same strong-stable leaf

hu
ξ,η(Ψ(ξ)) = Ψ(η) for any ξ, η ∈ Ssu in the same strong-unstable leaf.

Lemma 6.5. — Let x ∈ Ws(p, 1) be a point of measurable continuity of Ψ. Then

for any open neighborhood U of the point Ψ̃(x) ∈ P there exist δ > 0 and L ⊂ B(x, δ)
such that

(a) Ψ(L ∩ Ssu) ⊂ U .
(b) L is a union of local strong-stable leaves inside B(x, δ).
(c) Each of these local leaves contains some point of Ssu.

(d) x is a cu-julienne density point of L: limn→∞ λccu(L : Ĵcu
n (x)) = 1.

Proof. — By the continuity property (β) in Definition 2.9, there exists δ2 > 0 and a

neighborhood U2 ⊂ U of Ψ̃(x) such that

(hs
z1,z2

)(U2) ⊂ U if z1, z2 ∈ B(x, δ2) are in the same local strong-stable leaf.

and there exists δ1 > 0 and a neighborhood U1 ⊂ U2 of Ψ̃(x) such that

(hu
z1,z2

)(U1) ⊂ U2 if z1, z2 ∈ B(x, δ1) are in the same local strong-unstable leaf.

Let δ = min {1, δ1, δ2}. Since x is a point of measurable continuity of Ψ, it is a
Lebesgue density point of Ψ−1(U1). Then, x is also a density point of L1 = Ψ−1(U1)∩
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Ssu, because Ssu has full Lebesgue measure. Let Lu
1 be the local u-saturate of L1

inside B(x, δ) and let L2 = Lu
1∩Ssu. Then x is a Lebesgue density point of Lu

1 , because
Lu

1 ⊃ L1, and so it is also a density point of L2, because Ssu has full measure. Take
L to be the local s-saturate of L2 inside B(x, δ).

Consider any point z ∈ L∩Ssu. By definition, there exist z1 ∈ Ψ−1(U1)∩Ssu and
z2 ∈ Lu

1 ∩ Ssu such that z1 is in the local strong-unstable leaf of z2, and z2 in the
local strong-stable leaf of z. Consequently, in view of our choices of U1 and U2,

Ψ(z2) = hu
z1,z2

(Ψ(z1)) ∈ U2 and then Ψ(z) = hs
z2,z(Ψ(z2)) ∈ U.

This proves claim (a) in the lemma. Claims (b) and (c) are clear from the construction:
L is a local s-saturate of a subset of Ssu. Finally, applying Proposition 5.13(a) to
X = L2 we get that x is a cu-julienne density point of Y = L. This gives claim (d),
and completes the proof of the lemma.

x y

z w

b

Ws
loc(x)

L L̃

B(x, δ) B(y, ε)

Figure 2.

Let L and δ be as in Lemma 6.5. Of course, we may suppose δ < ε. We extend
the local leaves in L along Ws

loc(x), long enough so as to cross B(y, ε). Let L̃ denote
this extended set. See Figure 2. As we have seen in Proposition 5.13(c), cu-julienne
density points of locally s-saturated sets are preserved by stable holonomy. Hence,
Lemma 6.5(d) ensures that y is a cu-julienne density point of L̃. Then, clearly, y

is also a cu-julienne density point of X = L̃ ∩ Ssu ∩ B(y, ε). Let Y be the local u-
saturation of X inside B(y, ε). Since X is locally essentially s-saturated, we may use
Proposition 5.13(b) to conclude that y is a Lebesgue density point of Y and, hence,
also of B = Ssu ∩ Y . Thus, to prove that y is a Lebesgue density point of Ψ−1(V ),
as we claimed, it suffices to show that Ψ(B) ⊂ V .

Consider any point b ∈ Y . By definition, b ∈ Ssu ∩ B(y, ε) and there exists some
w ∈ X such that b and w are in the same local strong-unstable leaf. By part (c)
of Lemma 6.5, there exists z ∈ L ∩ Ssu in the same local strong-stable leaf as w.
By part (a) of Lemma 6.5, we have that Ψ(z) ∈ U . So, (6.3) and (6.2) imply that
Ψ(w) = hs

z,w(Ψ(z)) ∈ W . Then (6.3) and (6.1) imply that Ψ(b) = hu
w,b(Ψ(w)) ∈ V ,

as we wanted to prove. This proves Proposition 6.4.

Now the proof of Theorem 6.1 is complete.
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Remark 6.6. — Let us say that a section Ψ : M → X is essentially s-continuous
if the s-continuity property (Definition 2.12) holds on some full measure subset M s,
uniformly on the neighborhood of every point. In formal terms: given any p, q ∈ M
and η ∈ P , there exists ρ > 0 such that for any ε > 0 there exists δ > 0 such that
(trivialize the fiber bundle near p and q), given any x, x′ ∈ B(p, ρ) ∩ M s and y,
y′ ∈ B(q, ρ) ∩M s with Ψ(x), Ψ(x′) ∈ B(η, ρ) and y ∈ Ws

loc(x) and y′ ∈ Ws
loc(x

′),

dist(x, x′) < δ, dist(y, y′) < δ, dist(Ψ(x),Ψ(x′)) < δ ⇒ dist(Ψ(y),Ψ(y′)) < ε.

Essential u-continuity is defined analogously. Moreover, Ψ is bi-essentially continuous
if it is both essentially s-continuous and essentially u-continuous. A variation of
the previous arguments yields the following statement (compare Proposition 6.4): If
f : M → M is a C2 partially hyperbolic center bunched diffeomorphism and X be
a refinable fiber bundle then, for any bi-essentially continuous section Ψ : M → X ,
the set of points of measurable continuity is bi-saturated and the Lebesgue density
Ψ̃ : MC(Ψ)→ X is bi-continuous.

7. Accessibility and continuity

Now we prove Theorem E. The main step is to show that small open sets can
be reached by “nearby” su-paths starting from a fixed point in M . For the precise
statement, to be given in Proposition 7.2, we need the following notion:

Definition 7.1. — Let z, w ∈ M . An access sequence connecting z to w is a finite
sequence of points [y0, y1, . . . , yn] such that y0 = z and yj ∈ W∗(yj−1) for 1 ≤ j ≤ n,
where each ∗ ∈ {s, u}, and yn = w.

Proposition 7.2. — Given x0 ∈M , there is w ∈M and there is an access sequence
[y0(w), . . . , yN(w)] connecting x0 to w and satisfying the following property: for any
ε > 0 there exist δ > 0 and L > 0 such that for every z ∈ B(w, δ) there exists an
access sequence [y0(z), y1(z), . . . , yN (z)] connecting x0 to z and such that

dist(yj(z), yj(w)) < ε and distW∗(yj−1(z), yj(z)) < L for j = 1, . . . , N

where distW∗ denotes the distance along the strong (either stable or unstable) leaf
common to the two points.

Let us deduce Theorem E from this proposition. Since the section Ψ is assumed
to be bi-continuous, it suffices to prove it is continuous at some point in order to
conclude that it is continuous everywhere. Fix x0 ∈ M and then let w ∈ M and
[y0(w), y1(w), . . . , yN(w)] be an access sequence connecting x0 to w as in Proposi-
tion 7.2. We are going to prove that Ψ is continuous at w. Take the fiber bundle
π : X → M to be trivialized on the neighborhood of every node yj(w), via local
coordinates. Let V ⊂ P be any neighborhood of Ψ(w) = Ψ(yN(w)). Since Ψ is
bi-continuous, we may find numbers εj > 0 and neighborhoods Vj of Ψ(yj(w)) such
that VN = V and

(7.1)
x ∈ B(yj−1(w), εj), y ∈ B(yj(w), εj), y ∈ W∗j (x),

and Ψ(x) ∈ Vj−1 ⇒ Ψ(y) ∈ Vj
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for every j = 1, . . . , N . Let ε = min {εj : 1 ≤ j ≤ N}.
Using Proposition 7.2 we find δ > 0 and, for each z ∈ B(w, δ), an access sequence

[y0(z), y1(z), . . . , yN (z)] connecting x0 to z, with

(7.2) yj(z) ∈ B(yj(w), ε) ⊂ B(yj(w), εj) for j = 1, . . . , N.

It is no restriction to suppose that δ < ε. Consider any z ∈ B(w, δ). Clearly,
Ψ(x) = Ψ(y0(z)) ∈ V0. Hence, we may use (7.1)-(7.2) inductively to conclude that
Ψ(yj(z)) ∈ Vj for every j = 1, . . . , N . The last case, j = N , gives Ψ(z) ∈ V . We have
shown that Ψ(B(w, δ)) ⊂ V . This proves that Ψ is continuous at w, as claimed.

In this way, we reduced the proof of Theorem E to proving Proposition 7.2.

7.1. Non-injective parametrizations. — In this section we prepare the proof
of Proposition 7.2, that will be given in the next section. Roughly speaking, here
we construct a kind of continuous parametrization of the space of su-paths with any
given number of legs.

7.1.1. Exhaustion of accessibility classes. — Fix any point x0 ∈M . For each r ∈ N,
we consider the following sequence of sets Kr,n, n ∈ N:

Kr,1 = {y ∈ Ws(x0) : distWs(x0, y) ≤ r} and

Kr,n =
⋃

x∈Kr,n−1

{y ∈ W∗(x) : distW∗(x, y) ≤ r} , for n ≥ 2,

where ∗ = s when n is odd, and ∗ = u when n is even. That is, Kr,n is the set of
points that can be reached from x0 using an access sequence with n legs whose lengths
do not exceed r.

Lemma 7.3. — Every Kr,n is closed in M and, hence, compact.

Proof. — It is clear from the definition that Kr,1 is closed. The general case follows
by induction. Suppose Kr,n−1 is closed, and let z belong to the complement of Kr,n.
Then, by definition,

Z = {y ∈ W∗(z) : distW∗(x, y) ≤ r}
does not intersect the closed set Kr,n−1. It follows that U ∩ Kr,n = ∅ for some
neighborhood U of the set Z. By continuity of the strong-stable and strong-unstable
foliations, and their induced Riemannian metrics, for every point w in a neighborhood
of z,

{y ∈ W∗(z) : distW∗(x, y) ≤ r} ⊂ U
and hence, the set on the left hand side is disjoint from Kr,n−1. This proves that
points w in that neighborhood of z do not belong to Kr,n either. Thus, Kr,n is indeed
closed.

By definition, the union of Kr,n over all (r, n) is the accessibility class of x0. Since
we are assuming that f is accessible, this union is the whole manifold:

M =
⋃

r,n∈N

Kr,n.
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Since M is a Baire space, it follows that Kr,n has non-empty interior for some r and n,
that we consider fixed from now on. Our immediate goal is to define a (non-injective)
continuous “parametrization”

(7.3) Ψn : Kr,n → Kr,n

of the set Kr,n by a convenient compact subspace Kr,n of a Euclidean space, that
we are going to introduce in the sequel. Let ds and du denote the dimensions of
the strong-stable leaves and the strong-unstable leaves, respectively. This Euclidean
space will be the alternating product of Rds and Rdu, with n factors, each of which
parametrizing one leg of the access sequence. The case n = 2 is described in Figure 3.

Φ

Rdu

Rds0 x0

Ws(x0)

Wu

Figure 3.

7.1.2. Fiber bundles induced by local strong leaves. — The following lemma will be
useful in the construction of (7.3). The whole point with the statement is that U
does not need to be small. The diffeomorphisms in the statement are as regular as
the partially hyperbolic diffeomorphism f itself.

Lemma 7.4. — For any contractible space A, any continuous function Ψ : A→M ,
and any symbol ∗ ∈ {s, u}, there exists a homeomorphism

Θ : A× R
d∗ → {(a, y) : a ∈ A and y ∈ W∗

loc(Ψ(a))}
mapping each {a}×Rd∗ diffeomorphically to {a}×W∗

loc(Ψ(a)) with Θ(a, 0) = (a,Ψ(a))
for all a ∈ A.

Proof. — We consider the case ∗ = s. SinceWs is a continuous foliation with smooth
leaves, for each p ∈M we may find a neighborhood Up and a continuous map

Φp : Up × R
ds →M

such that Φp(x, 0) = x and Φp(x, ·) maps Rds diffeomorphically to Ws
loc(x), for every

x ∈ Up. Using these maps we may endow the set

Fs = {(x, y) : x ∈M and y ∈ Ws
loc(x)}

with the structure of a fiber bundle with smooth fibers, with local charts

Up × R
ds → {(x, y) : x ∈ Up and y ∈ Ws

loc(x)} (x, v) 7→ (x,Φp(x, v)).
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Then F s
Ψ = {(a, y) : a ∈ A and y ∈ Ws

loc(Ψ(a))} also has a fiber bundle structure,
with local coordinates

Θp : Ψ−1(Up)× R
ds → {(a, y) : Ψ(a) ∈ Up and y ∈ Ws

loc(Ψ(a))}
given by Θp(a, v) = (a,Φp(Ψ(a), v)). This fiber bundle admits the space of diffeomor-
phisms of Rds that fix the origin as a structural group: all coordinate changes along
the fibers belong to this group.

The core of the proof is the general fact (see [16, Chapter 4, Theorem 9.9]) that,
for any topological group G, any fiber bundle over a contractible paracompact space
that has G as a structural group is G-trivial. When applied to F s

Ψ this result means
that there exists a global chart

Θ : A× R
ds → {(a, y) : a ∈ A and y ∈ Ws

loc(Ψ(a))} , Θ(a, v) = (a,Φ(a, v))

such that every Φ(a, ·) maps Rds to the strong-stable leaf through Ψ(a), and every
Φ(a, ·)−1 ◦ Φp(Ψ(a), ·) is a diffeomorphism that fixes the origin of Rds . The latter
gives that Φ(a, 0) = Φp(Ψ(a), 0) = Ψ(a) for all a ∈ A.

7.1.3. Construction of non-injective parametrizations. — We are ready to construct
Kr,n and Ψ as in (7.3). Let l ≥ 1 be fixed such that, for any x ∈M ,

{y ∈ Ws(x) : distWs(x, y) ≤ 2r} ⊂ f−l
(
Ws

loc(f
l(x))

)

{y ∈ Wu(x) : distWu(x, y) ≤ 2r} ⊂ f l
(
Ws

loc(f
−l(x))

)
.

(7.4)

Our argument is somewhat more transparent when l = 0, and so the reader should
find it convenient to keep that case in mind throughout the construction.

Define E1 = {y ∈M : f l(y) ∈ Ws
loc(f

l(x0))} and Φ1 : E1 →M to be the inclusion.
Notice that E1 is contractible and Φ1(E1) contains Kr,1. Since E1 is a smooth disc,
there exists an diffeomorphism Θ1 : R

ds → E1 with Θ1(0) = x0. Then

Ψ1 = Φ1 ◦Θ1 : R
ds →M

is a continuous function whose image contains Kr,1. Notice that the pre-image Kr,1 =

Ψ−1
1 (Kr,1) is compact: Kr,1 = {y ∈ Ws(x0) : distWs(x0, y) ≤ r} and we have a factor

2 in (7.4). Next, define

E2 =
{
(a, y) : a ∈ R

ds and f−l(y) ∈ Wu
loc(f

−l(Ψ1(a)))
}

and Φ2 : E2 →M , Φ2(a, y) = y. Notice that Φ2(E2) contains Kr,2. Using Lemma 7.4
with A = R

ds , Ψ = f−l ◦Ψ1, and ∗ = u, we find a homeomorphism

Θ2 : R
ds × R

du → {(a, y) : a ∈ R
ds and y ∈ Wu

loc(f
−l(Ψ1(a)))}

that maps each {a} × Rdu diffeomorphically to {a} ×Wu
loc(f

−l(Ψ1(a))) and satisfies
Θ2(a, 0) = (a, f−l(Ψ1(a))). Clearly, the map

Γ2 : {(a, y) : a ∈ R
ds and y ∈ Wu

loc(f
−l(Ψ1(a)))} → E2, Γ2(a, y) = (a, f l(y))

is a homeomorphism, and Γ2(Θ2(a, 0)) = (a,Ψ1(a)). Then

Ψ2 = Φ2 ◦ Γ2 ◦Θ2 : R
ds × R

du →M
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is a continuous map whose image contains Kr,2. Moreover, Ψ2 may be viewed as a
continuous extension of Ψ1, because

Ψ2(a, 0) = Φ2(Γ2(Θ2(a, 0))) = Φ2(a,Ψ1(a)) = Ψ1(a)

for all a ∈ Rds . In general, Ψ−1
2 (Kr,2) needs not be compact. However,

Kr,2 =
{
(a, b) ∈ R

ds × R
du : a ∈ Kr,1 and distWu(Ψ2(a, 0),Ψ2(a, b)) ≤ r

}

is compact and satisfies Ψ2(Kr,2) = Kr,2. Repeating this procedure, we construct
continuous maps

Ψj : R
ds × R

du × · · · × R
d∗ →M

(there are j factors, and so ∗ = u if j is even and ∗ = s if j is odd), contractible
sets Ej , and compact sets Kr,j such that each Ψj is a continuous extension of Ψj−1,
in the previous sense, and Ψj(Kr,j) = Kr,j. We stop this procedure for j = n. The
corresponding map Ψn is the parametrization announced in (7.3).

7.2. Selection of nearby access sequences. — Now we prove Proposition 7.2.
We need the following general fact about regular values of continuous functions.

Definition 7.5. — Let Φ : A → B be a map between topological spaces A and B. A
point x ∈ A is regular for Φ, if for every neighborhood V of x we have Φ(x) ∈ Φ(V)◦.
A point y ∈ B is a regular value of Φ if every point of Φ−1(y) is regular.

Proposition 7.6. — Let A be a compact metrizable space and B a locally compact
Hausdorff space. If Φ : A → B is continuous then the set of regular values of Φ is
residual.

Proof. — We are going to prove that the image of the set of non-regular points is
meager. The assumptions imply that A admits a countable base T of open sets, and
the map Φ is closed. If x is a non-regular point of Φ, then there exists V ∈ T such
that Φ(x) does not belong to the interior of Φ(V). Therefore, Φ(x) belongs to the
closed set ∂Φ(V), which has empty interior because Φ(V) is closed. Then, the image
of non-regular points is a subset of the meager set

⋃{
∂Φ(V) : V ∈ T

}
.

We apply this proposition to the continuous map Ψn : Kr,n → Kr,n. Recall that,
by construction, the image Kr,n has non empty interior. Then, in particular, Ψn has
some regular value w ∈ Kr,n. Let (a1, . . . , an) ∈ Kr,n be any point in Kr,n such that
Ψn(a1, . . . , an) = w. Let ε > 0 be as in the statement of the proposition. Since the
functions Ψ1, Ψ2, . . . , Ψn are continuous, there exists ρ > 0 such that if |aj − bj| < ρ,
for j = 1, . . . , n, then

(7.5) dist(Ψj(a1, . . . , aj),Ψj(b1, . . . , bj)) < ε

for all j = 1, . . . , n. Using that the point (a1, . . . , an) is regular (Definition 7.5), we
get that the image Ψn(V ) of the neighborhood

V = Kr,n ∩ {(b1, . . . , bn) : |aj − bj | < ρ, for j = 1, . . . , n}
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has w in its interior. In other words, there exists δ > 0 such that B(w, δ) ⊂ Ψn(V ).
Consider any point z ∈ B(w, δ). Then there exists (b1(z), . . . , bn(z)) ∈ V such that
z = Ψn(b1(z), . . . , bn(z)). Define

yj(z) = Ψj(b1(z)), . . . , yj(z))

for j = 1, . . . , n, and y0(z) = w. Then [y1(z), . . . , yn(z)] is an access sequence con-
necting x0 to z. The inequalities (7.5) mean that

dist(yj(z), yj(w)) < ε for j = 1, . . . , n.

Moreover, since Ψn(b1(z), . . . , bn(z)) ∈ Kr,n, the distance between every yj−1(z) and
yj(z) along their common strong (stable or unstable) leaf does not exceed r. Propo-
sition 7.2 follows taking L = r and N = n.

8. Generic linear cocycles over partially hyperbolic maps

In this section we prove Theorem A. We will take the vector bundle π : V → M
to be trivial, that is, such that V = M × Kd and π : M × Kd → M is the canonical
projection. This simplifies the presentation substantially, but is not really necessary
for our arguments, which are local in nature: for obtaining the conclusion we consider
modifications of the cocycle supported in a neighborhood of certain special points
(the pivots, see Proposition 8.8), where triviality holds anyway, by definition.

Let us begin by giving an outline of the proof. Let Kx = {x}×Kd be the fiber of V
and P(Kx) = {x} × P(K) be the fiber of the projective bundle P(V) over the point x.
We call loop of f : M →M at x ∈M any access sequence γ = [y0, . . . , yn] connecting
a point x ∈M to itself, that is, such that y0 = yn = x. Then we denote

Hγ = H∗n
yn−1,yn

◦ · · · ◦H∗j
yj−1,yj

◦H∗1
y0,y1

: P(Kx)→ P(Kx)

where ∗j ∈ {s, u} is the symbol of the strong leaf common to the nodes yj−1 and yj .
Theorem B implies that if λ+(F ) = λ−(F ) then any F -invariant probability measure
m that projects down to µ admits a disintegration {mz : z ∈M} such that

(8.1) (Hγ)∗mx = mx for any loop γ.

We consider loops with slow recurrence, for which some node yr, that we call pivot,
is slowly accumulated by the orbits of all the nodes including its own. Using pertur-
bations of the cocycle supported on a small neighborhood of the pivot, we prove that
the map F 7→ Hγ assigning to each cocycle the corresponding holonomy over the loop
is a submersion. In fact, we are able to consider several independent loops with slow
recurrence, γ1, . . . , γm, and prove that the map

F 7→ (Hγ1 , . . . , Hγm
)

is a submersion. Consequently, for typical cocycles, the matrices Hγi
are in general

position, and so they have no common invariant probability in the projective space.
This shows that for typical cocycles the condition (8.1) fails and, hence, the extremal
Lyapunov exponents are distinct.
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8.1. Accessibility with slow recurrence. — An important step is to prove that
loops with slow recurrence do exist. Beforehand, let us give the precise definition.

Definition 8.1. — A family {γ1, . . . , γm} of loops γi = [yi
0, . . . , y

i
n(i)] has slow re-

currence if there exists c > 0 and for each 1 ≤ i ≤ m there exists 0 < r(i) < n(i) such
that, for all i, l = 1, . . . ,m, all 0 ≤ j ≤ n(i), and all k ∈ Z,

dist
(
fk(yi

j), y
l
r(l)

)
≥ c/(1 + k2)

with the exception of k = 0 when (i, j) = (l, r(l)).

It is convenient to distinguish access sequences [y0, y1, . . . , yn] according to the
nature of the last leg: we speak of accessibility s-sequence if yn−1 and yn belong to
the same strong-stable leaf, and we speak of accessibility u-sequence if yn−1 and yn

belong to the same strong-unstable leaf. Let ds and du be the dimensions of the
strong-stable leaves and strong-unstable leaves, respectively.

Proposition 8.2. — For any m ≥ 1 and any (x1, . . . , xm) ∈ Mm, there exists a
family γi of loops with slow recurrence, where each γi is a loop at xi.

The proof of this proposition requires a number of preparatory results.

Lemma 8.3. — Given any finite set {w1, . . . , wn} ⊂M , any y ∈M , and any symbol
∗ ∈ {s, u}, there exists a full Lebesgue measure subset of points w ∈ W∗

loc(y) such that

(8.2) dist(fk(wj), w) ≥ c/(1 + k2)

for some c > 0 and for all 1 ≤ j ≤ n and all k ∈ Z.

Proof. — Consider ∗ = s: the case ∗ = u is analogous. Since local strong-stable
leaves are a continuous family of C2 embedded disks, there exists a constant D1 > 0
such that

λWs
loc(y)

(
Ws

loc(y) ∩B(z, c/(1 + k2))
)
≤ D1(c/(1 + k2))ds

for any z ∈M . Thus, the Lebesgue measure of the subset of points w ∈ Ws
loc(y) not

satisfying inequality (8.2) for some fixed c > 0 is bounded by

n∑

j=1

∑

k∈Z

D1c
ds(1 + k2)−ds ≤ D2 c

ds with D2 = nD1

∑

k∈Z

(1 + k2)−ds <∞.

Making c → 0, we conclude that the inequality (8.2) is indeed satisfied by Lebesgue
almost every point in Ws

loc(y).

Corollary 8.4. — Given any m ≥ 1, any (x1, . . . , xm) ∈ Mm, and any ∗ ∈ {s, u},
then for every (z1, . . . , zm) in a full Lebesgue measure subset of Mm there exist c > 0
and accessibility ∗-sequences [yi

0, . . . , y
i
n(i)] connecting xi to zi such that

dist(fk(yi
j), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m, all 0 ≤ j < n(i), and all k ∈ Z.
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Proof. — Consider ∗ = s: the case ∗ = u is analogous. Since the strong-stable
foliation is absolutely continuous, it suffices to prove that, given any points yi ∈ M ,
1 ≤ i ≤ m, the conclusion holds on a full Lebesgue measure subset of points zi ∈
Ws

loc(yi), 1 ≤ i ≤ m. Now, by the accessibility assumption, there exist accessibility
sequences [yi

0, . . . , y
i
r(i)] connecting xi to yi. Consider each zi in the full Lebesgue

measure subset of Ws(yi) given by Lemma 8.3, applied to the finite set
{
yi

j : 1 ≤ i ≤ m and 0 ≤ j ≤ r(i)
}
.

and the point y = yi. Then the accessibility s-sequences [yi
0, . . . , y

i
k(i), zi] satisfy the

conditions in the conclusion. In view of the observation at the beginning, this proves
the corollary.

Lemma 8.5. — For any m ≥ 1 and any (y1, . . . , ym) ∈ Mm, there exists a full
Lebesgue measure subset of (z1, . . . , zm) ∈ Ws

loc(y1)× · · · ×Ws
loc(ym) such that

dist(fk(zi), zl) ≥ c/(1 + k2)

for some c > 0 and for all i, l = 1, . . . ,m and all k ≥ 0, except k = 0 when i = l. The
statement remains true if one replaces Ws

loc by Wu
loc and k ≥ 0 by k ≤ 0.

Proof. — It is clear that each strong-stable leaf contains at most one periodic point.
As an easy consequence we get that, that given any κ ≥ 1, there exists a full Lebesgue
measure subset of (z1, . . . , zm) ∈ Ws

loc(y1)× · · · ×Ws
loc(ym) such that fk(zi) 6= zl for

all i, l = 1, . . . ,m and all 0 ≤ k < κ, except k = 0 when i = l. Then the condition in
the statement holds, for some c > 0, restricted to iterates 0 ≤ k < κ. Let us focus on
k ≥ κ. For each i, l = 1, . . . ,m, define

Ek
i,l =

{
zl ∈ Ws

loc(yl) : dist(fk(zi), zl) < 1/(1 + k2) for some zi ∈ Ws
loc(yi)

}
.

The diameter of fk(Ws
loc(yi)) is bounded by C1θ

k, where C1 > 0 is some uniform
constant and θ < 1 is an upper bound for the contraction function ν(x) in (2.2).
Consequently,

diam(Ek
i,l) ≤ C1θ

k + 2/(1 + k2) ≤ C2/(1 + k2)

for another uniform constant C2 > 0. It follows that

λWs
loc(yl)

( m⋃

i=1

∞⋃

k=κ

Ek
i,l

)
≤ m

∞∑

k=κ

C2(1 + k2)−ds .

On the one hand, the right hand side of this expression goes to 0 when κ goes to
infinity. On the other hand, in view of our previous observations, for any κ ≥ 1,
Lebesgue almost every (z1, . . . , zm) ∈ Ws

loc(y1)× · · · ×Ws
loc(ym) with

zl /∈
m⋃

i=1

∞⋃

k=κ

Ek
i,l

satisfies the conclusion of the lemma for some c ∈ (0, 1). This proves that the subset
of (z1, . . . , zm) for which the conclusion of the lemma does not hold has zero Lebesgue
measure, as claimed.
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Corollary 8.6. — For any m ≥ 1, and every (z1, . . . , zm) in a full Lebesgue measure
subset of Mm, there exists c > 0 such that

dist(fk(zi), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m and all k ∈ Z, except k = 0 when i = l.

Proof. — It suffices to prove that the conditions obtained replacing k ∈ Z by either
k ≥ 0 or k ≤ 0 are satisfied on full Lebesgue measure subsets of Mm, and then take
the intersection of these two subsets. We consider the case k ≥ 0, as the other one is
analogous. Suppose there is a positive Lebesgue measure subset of (z1, . . . , zm) ∈Mm

for which the condition is not satisfied: the forward orbit of some zi accumulates some
zl faster than c/(1 + k2) for any c > 0. Then, since M is covered by the foliation
boxes of the strong-stable foliation, there exist foliation boxes Ui, 1 ≤ i ≤ m such that
this exceptional subset intersects U = U1 × · · · × Um on a positive Lebesgue measure
subset. The domain U is foliated by the products Ws

loc(y1) × · · · × Ws(ym) of local
strong-stable leaves. We denote this foliation as Ws,m. Given any holonomy maps
hi : Σ1

i → Σ2
i between cross-sections to the strong-stable foliation Ws inside Ui, the

products Σj = Σj
1 × · · · × Σj

m are cross-sections to Ws,m, and the holonomy map of
Ws,m is

h : Σ1 → Σ2, h(z1, . . . , zm) = (h1(z1), . . . , hm(zm)).

Since all the hi are absolutely continuous, so is h: the Jacobians are related by
Jh(z1, . . . , zm) = Jh1(z1) · · · Jhm(zm). This absolute continuity property implies that
every positive Lebesgue measure subset of U intersects Ws

loc(y1)× · · ·Ws
loc(ym) on a

positive Lebesgue measure subset, for a subset of (y1, . . . , ym) with positive Lebesgue
measure. In particular, the exceptional set intersects some leaf of Ws,m on a positive
Lebesgue measure subset. This contradicts Lemma 8.5, and this contradiction proves
the corollary.

Corollary 8.7. — For any m ≥ 1, any (x1, . . . , xm) ∈Mm, and any ∗ ∈ {s, u}, and
a full Lebesgue measure set D∗ of (z1, . . . , zm) ∈Mm, there exists c > 0 such that

(8.3) dist(fk(zi), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m and all k ∈ Z, except k = 0 when i = l, and there exist
accessibility ∗-sequences [yi

0, . . . , y
i
n(i)] connecting xi to zi, for 1 ≤ i ≤ m such that

(8.4) dist(fk(yi
j), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m, all 0 ≤ j < n(i), and all k ∈ Z.

Proof. — Just take the intersections of the full Lebesgue measure subsets given in
Corollary 8.4, for ∗ ∈ {s, u}, and in Corollary 8.6.

Proof of Proposition 8.2. — Given m ≥ 1 and (x1, . . . , xm) ∈Mm, let Ds and Du be
the full Lebesgue measure sets given by Corollary 8.7, and then consider

(z1, . . . , zm) ∈ Ds ∩Du .
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The corollary yields, for each 1 ≤ i ≤ m, an accessibility s-sequence [yi
0, . . . , y

i
r(i)] and

an accessibility u-sequence [wi
0, . . . , w

i
t(i)] connecting xi to zi. Then

γi = [yi
0, . . . , y

i
r(i) = wi

t(i), . . . , w
i
0]

is a loop at xi, and properties (8.3)-(8.4) mean that the family {γ1, . . . , γm} of loops
has slow recurrence.

8.2. Holonomies on loops with slow recurrence. — As we pointed out before,
the tangent space at each point B ∈ Gr,α(M,d,K) is naturally identified with the
Banach space of Cr,α maps from M to the space of linear maps in Kd. This means
that we may view the tangent vectors Ḃ as Cr,α functions assigning to each z ∈M a
linear map Ḃ(z) : Kz → Kf(z).

Let A ∈ Gr,α(M,d,K) be fiber bunched. As we have seen in Section 3.2, there exists
a neighborhood U ⊂ Gr,α(M,d,K) of A such that every B ∈ U is fiber bunched. Then,
for any loop γ = [y0, . . . , yn] at a point x ∈M , and any 0 ≤ k < l ≤ n, we have linear
holonomy maps

HB,γ,k,l = H∗l

B,yl−1,yl
◦ · · · ◦H∗k+1

B,yk,yk+1
: Kyk

→ Kyl
.

Furthermore, all the maps B 7→ HB,γ,k,l are C1 on U . In particular, the derivative of
B 7→ HB,γ = HB,γ,0,n is given by

(8.5) ∂BHB,γ : Ḃ 7→
n∑

l=1

HB,γ,l,n

[
∂BHB,γ,l−1,l(Ḃ)

]
HB,γ,0,l−1.

The main result in this section is

Proposition 8.8. — Let A ∈ Gr,α(M,d,K) be fiber bunched and U be a neighborhood
as above. For each x ∈ M and m ≥ 1, let γi = [yi

0, y
i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a

family of loops at x with slow recurrence. Then

U ∋ B 7→ (HB,γ1 , . . . , HB,γm
) ∈ GL(d,Kx)m

is a submersion: the derivative is surjective at every point, even restricted to the
subspace of tangent vectors Ḃ supported on a small neighborhood of the pivots.

In the proof we use (8.5) together with the expressions for the ∂BHB,γ,l−1,l(Ḃ)
given in Propositions 3.5 and 3.7. The idea is quite simple. Perturbations in the
neighborhood of the pivots affect the holonomies over all the loop legs, of course.
However, Corollaries 3.6 and 3.8 show that the effect decreases exponentially fast
with time, and slow recurrence means that the first iterates need not be considered.
Combining these two ideas one shows (Corollary 8.12) that the derivative is a small
perturbation of its term of order zero. The latter is easily seen to be surjective
(Lemma 8.13), and then the same is true for any small perturbation.

Remark 8.9. — Essentially the same arguments yield an SL(d,K)-version of this
proposition: the map U ∩ Sr,α(M,d,K) ∋ B 7→ (HB,γ1 , . . . , HB,γm

) ∈ SL(d,Kx)m is
a submersion. Clearly, it remains true that the derivative is a small perturbation of
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its term of order zero. Then the main point is to observe that the restriction of the
operator S in Lemma 8.13 maps TBSr,α(M,d,K) surjectively to THB,γ

SL(d,Kx).

Before getting into the details, let us make an easy observation that allows for some
simplification of our notations. If γ = [y0, . . . , yn] is a loop with slow recurrence then
so is γ̄ = [yn, . . . , y0], and HB,γ̄ is the inverse of HB,γ . Hence, the statement of the
proposition is not affected if one reverses the orientation of any γi as described. So, it
is no restriction to suppose that every loop γ has the orientation for which the pivot
yr satisfies

(8.6) yr ∈ Ws(yr−1) ∩Wu(yr+1),

and we do so in all that follows.

Lemma 8.10. — Let γ = [y0, . . . , yn] be a loop with slow recurrence and yr be the
corresponding pivot. Then, there is τ > 0 such that for any small ε > 0 and any
tangent vector Ḃ supported on B(yr, ε),

‖∂BHB,γ,l−1,l(Ḃ)‖ ≤ θ
√

τ/ε ‖Ḃ‖0,β for any l 6= r, and

‖∂BHB,γ,r−1,r(Ḃ) +B(yr)
−1Ḃ(yr)H

s
B,yr−1,yr

‖ ≤ θ
√

τ/ε ‖Ḃ‖0,β.

Proof. — By Definition 8.1, there exists c > 0 such that

dist(fk(yl), yr) ≥ c/(1 + k2) for all (l, k) ∈ {0, . . . , n} × Z, (l, k) 6= (r, 0).

Consider ε < c/2. Then B(yr, ε) contains no other node of the loop. Moreover, for
any 0 ≤ l ≤ n and any k ≥ 1,

fk(yl) ∈ B(yr, ε) =⇒ |k| ≥ t(ε), where t(ε) =
√
c/ε− 1.

Let us denote by ∂BHB,γ,l−1,l,t(ε)(Ḃ) the t-tail of the derivative, that is, the sum
over i ≥ t in Proposition 3.5 (case ∗l = s) or Proposition 3.7 (case ∗l = u). Then,

for any Ḃ ∈ TBGr,α(M,d,K) supported in B(yr, ε), the expression in Proposition 3.5
becomes

(8.7) ∂BHB,γ,l−1,l(Ḃ) = ∂BHB,γ,l−1,l,t(ε)(Ḃ)

for all l 6= r, and

(8.8) ∂BHB,γ,r−1,r(Ḃ) = −B(yr)
−1Ḃ(yr)H

s
B,yr−1,yr

+ ∂BHB,γ,l−1,l,t(ε)(Ḃ)

for l = r. This applies to the loop legs with symbol ∗l = s. Observing that the sum
in Proposition 3.7 does not include the term i = 0, we conclude that (8.7) extends to
all loop legs with symbol ∗l = u. Next, by Corollaries 3.6 and 3.8,

(8.9) ‖∂BHB,γ,l−1,l,t(Ḃ)‖ ≤ C5(a) θ
t ‖Ḃ‖0,β,

for every 1 ≤ l ≤ n and any t ≥ 0, where a is an upper bound for the distances
between consecutive loop nodes. Choose any τ < c/2. The lemma follows directly
from (8.7), (8.8), (8.9) with t = t(ε), because θ < 1 and the choices of ε and τ ensure

t(ε) >
√
τ/ε.
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Corollary 8.11. — Let γi = [yi
0, y

i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a family of loops at x

with slow recurrence and yr(i), 1 ≤ i ≤ m be the corresponding pivots. Then there
exists τ > 0 such that, for any small ε > 0, any 1 ≤ j ≤ m, and any tangent vector
Ḃ supported on B(yj

r , ε), r = r(j)

‖∂BHB,γi,l−1,l(Ḃ)‖ ≤ θ
√

τ/ε ‖Ḃ‖0,β for all (i, l) 6= (j, r), and

‖∂BHB,γj,r−1,r(Ḃ) +B(yj
r)

−1Ḃ(yj
r)H

s
B,yj

r−1,yj
r
‖ ≤ θ

√
τ/ε ‖Ḃ‖0,β.

Proof. — The case i = j is contained in Lemma 8.10. The cases i 6= j follow from
the same arguments, observing that

dist(fk(yi
l ), y

j
r) ≥ c/(1 + k2) for every k ∈ Z

and so fk(yi
l) ∈ B(yj

r , ε) implies |k| ≥ t(ε), for every 0 ≤ l ≤ n(i).

Corollary 8.12. — Let γi = [yi
0, y

i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a family of loops at x

with slow recurrence, and yr(i), 1 ≤ i ≤ m be the corresponding pivots. Then, there
exists K1 > 0 such that, for any small ε > 0, any 1 ≤ j ≤ m, and any tangent vector
Ḃ supported on B(yj

r , ε), r = r(j)

‖∂BHB,γi
(Ḃ)‖ ≤ K1θ

√
τ/ε ‖Ḃ‖0,β for all i 6= j, and

‖∂BHB,γj
(Ḃ) +HB,γj ,r,n(j)B(yj

r)
−1Ḃ(yj

r)HB,γj ,0,r‖ ≤ K1θ
√

τ/ε ‖Ḃ‖0,β

Proof. — This follows from replacing in (8.5) the estimates in Corollary 8.11. By
part (e) of Proposition 3.2, the factors HB,γi,0,l−1 and HB,γi,l,n(i) are bounded by
some uniform constant K2 that depends only on the loops. Then, for every i 6= j,
Corollary 8.11 and the relation (8.5) gives

‖∂BHB,γi
(Ḃ)‖ ≤

n(i)∑

l=1

K2
2‖∂BHB,γ,l−1,l(Ḃ)‖ ≤ K1θ

√
τ/ε ‖Ḃ‖0,β,

as long as we choose K1 ≥ K2
2 maxi n(i). This gives the first part of the corollary.

Now we consider i = j. For the same reasons as before, all but one term in the

expression (8.5) are bounded by K2
2θ
√

τ/ε ‖Ḃ‖0,β. The possible exception is

HB,γj ,r,n(j)

[
∂BHB,γj ,r−1,r(Ḃ)

]
HB,γj,0,r−1,

corresponding to l = r. By Corollary 8.11, this last expression differs from

−HB,γj ,r,n(j)B(yj
r)

−1Ḃ(yj
r)H

s
B,yj

r−1,yj
r
HB,γj ,0,r−1 =

−HB,γj ,r,n(j)B(yj
r)

−1Ḃ(yj
r)HB,γj,0,r

by a term bounded by K2
2θ
√

τ/ε ‖Ḃ‖0,β. This completes the proof.

Lemma 8.13. — Let γ = [y0, . . . , yn] be a loop at x ∈ M and 0 < r < n be fixed.
Then the linear map

S : TBGr,α(M,d,K) → THB,γ
GL(d,Kx) ≃ L(Kd

x,K
d
x)

Ḃ 7→ −HB,γ,r,nB(yr)
−1Ḃ(yr)HB,γ,0,r
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is surjective, even restricted to the subspace of tangent vectors Ḃ vanishing outside
some neighborhood of yr. More precisely, there exists K3 > 0 such that for 0 < ε < 1
and Θ ∈ L(Kd,Kd) there exists ḂΘ ∈ TBGr,α(M,d,K) vanishing outside B(yr, ε) and

such that S(ḂΘ) = Θ and ‖ḂΘ‖0,β ≤ K3 ε
−β ‖Θ‖.

Proof. — Let τ : M → [0, 1] be a Cr,α function vanishing outside B(yr, ε) and such
that τ(yr) = 1 and the Hölder constant Hβ(τ) ≤ 2ε−β. For Θ ∈ L(Kd,Kd), define

ḂΘ ∈ TBGr,α(M,d,K) by

ḂΘ(w) = B(yr)H
−1
B,γ,r,n ΘB(yr)

−1 τ(w)B(w)H−1
B,γ,0,r .

Notice that ḂΘ(yr) = B(yr)H
−1
B,γ,r,n ΘH−1

B,γ,0,r and so S(ḂΘ) = Θ. Moreover,

(8.10) ‖ḂΘ‖0,0 ≤ ‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖ ‖B‖0,0 ‖Θ‖.

For any w1, w2 ∈M the norm of ḂΘ(w1)− ḂΘ(w2) is bounded by

‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖

(
‖τ(w1)− τ(w2)‖‖B(w1)‖+ |τ(w2)|‖B(w1)−B(w2)‖

)
‖Θ‖.

Consequently, the Hölder constant Hβ(ḂΘ) of ḂΘ is bounded above by

(8.11) ‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖

(
2ε−β‖B‖0,0 +Hβ(B)

)
‖Θ‖.

Adding the inequalities (8.10) and (8.11), and taking

K3 = ‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖ ‖B‖0,β,

one obtains ‖ḂΘ‖0,β ≤ K3ε
−β‖Θ‖.

Proof of Proposition 8.8. — For each 1 ≤ j ≤ m, let Sj be the operator associated
to γ = γj as in Lemma 8.13. Let Θj be any element of the unit sphere in L(Kx,Kx).

By Lemma 8.13, for any small ε > 0 there exists a tangent vector Ḃ(j,Θj) supported

in B(yj
r(j), ε) such that

Sj

(
Ḃ(j,Θj)

)
= Θj and ‖Ḃ(j,Θj)‖ ≤ K3ε

−β .

By Corollary 8.12, the norm of

(∂BHB,γ1 , . . . , ∂BHB,γj
, . . . , ∂BHB,γm

)(Ḃ)− (0, . . . , 0, Sj(Ḃ), 0, . . . , 0)

is bounded above by K3θ
√

τ/ε‖Ḃ‖, for any tangent vector supported in B(yj
r(j), ε).

For Ḃ = Ḃ(j,Θj) this gives that

‖(∂BHB,γ1 , . . . , ∂BHB,γj
, . . . , ∂BHB,γm

)(Ḃ(j,Θj))− (0, . . . , 0,Θj, 0, . . . , 0)‖

is bounded by K1K3θ
√

τ/εε−β. Assume ε > 0 is small enough so that

K1K3θ
√

τ/εε−β < 1/(2m).
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Then for any Θ = (Θ1, . . . ,Θm) with Θj in the unit sphere of L(Kx,Kx) we find a

tangent vector Ḃ(Θ) =
∑m

j=1 Ḃ(j,Θj) supported on the ε-neighborhood of the pivots
and such that

‖
(
∂HB,γ1, . . . , ∂HB,γm

)(
Ḃ(Θ)

)
−Θ‖ < 1/2.

This implies that the image of the derivative (∂HB,γ1 , . . . , ∂HB,γm
) is the whole target

space L(Kd
x,K

d
x)m, as claimed.

8.3. Invariant measures of generic matrices. — Finally, we prove Theorem A.
The only missing ingredient is

Proposition 8.14. — Given ℓ ≥ 1, let G2ℓ be the set of (A1, . . . , A2ℓ) ∈ GL(d,K)2ℓ

such that there exists some probability η in P(C) invariant under the action of Ai for
every 1 ≤ i ≤ 2ℓ. Then G2ℓ is closed and nowhere dense, and it is contained in a
finite union of closed submanifolds of codimension ≥ ℓ.

Remark 8.15. — The arguments that we are going to present remain valid if one
replaces GL(d,K) by the subgroup SL(d,K) of matrices with determinant 1: just note
that the curves B(t) defined in (8.13) and (8.17) lie in SL(d,K) if the initial matrix A

does. Thus, the proposition holds for SL(d,K) as well.

Let us assume this proposition for a while, and use it to conclude the proof of the
theorem in the complex case. Let A ∈ Gr,α(M,d,K) be fiber bunched. Fix any ℓ ≥ 1
and x ∈ M . By Proposition 8.2 there is a family γi, 1 ≤ i ≤ 2ℓ, of loops at x with
slow recurrence. By Proposition 8.8, the map

U ∋ B 7→ (HB,γ1 , . . . , HB,γ2ℓ
) ∈ GL(d,Kx)2ℓ

is a submersion, where U is a neighborhood of A independent of ℓ. Let Z be the
pre-image of G2ℓ under this map. Then Z is closed and nowhere dense, and it is
contained in a finite union of closed submanifolds of codimension ≥ ℓ.

We claim that λ−(B,µ) < λ+(B,µ) for all B ∈ U \ Z. Indeed, suppose the
equality holds, and let m be any P(FB)-invariant probability that projects down to
µ. By Theorem B, the measure m admits a disintegration {mz : z ∈ M} which is
invariant under strong-stable holonomies hs = P(Hs) and strong-unstable holonomies
hu = P(Hu), on the whole manifold M . In particular,

(8.12) P(HB,γi
)∗mx = mx for every 1 ≤ i ≤ 2ℓ.

This contradicts the definition of G2ℓ, and this contradiction proves our claim. Let
Z0 be the set of fiber bunched B ∈ Gr,α(M,d,K) for which λ−(B,µ) = λ+(B,µ). We
have shown that any fiber bunched A ∈ Gr,α(M,d,K) admits a neighborhood U such
that, for any ℓ ≥ 1, there exists a nowhere dense subset Z of U contained in a finite
union of closed submanifolds of codimension ≥ ℓ and such that Z0 ∩ U ⊂ Z. Thus,
the closure of Z0 has infinite codimension and, in particular, is nowhere dense.

The proof of Theorem A has been reduced to proving Proposition 8.14. The proof
of the proposition is presented in the next two sections.
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8.3.1. Complex case. — Let S be the subset of matrices A ∈ GL(d,C) whose eigen-
values are all distinct in norm. Then, S is an open and dense subset of GL(d,C) whose
complement is contained in a finite union of closed manifolds of positive codimension.
We use the following fact about variation of eigenvectors inside S:

Lemma 8.16. — Let A ∈ S. Then there exist C∞ functions λi : SA → C and
vi : SA → P(Cd) defined on an open neighborhood SA of A, for each 1 ≤ i ≤ d, such
that vi(B) is the direction of an eigenvector of B associated to the eigenvalue λi(B),
for any B ∈ SA. Furthermore, the map SA → P(Cd)d, B 7→ (v1(B), . . . , vd(B)) is a
submersion.

Proof. — Since each eigenvalue λi(A) is a simple root of the polynomial det(A−λ id),
it has a C∞ continuation λi(B) for all nearby matrices, given by the implicit function
theorem. Denote Li(B) = B − λi(B) id. It depends smoothly on B ∈ SA and, since
λi(B) remains a simple eigenvalue of B, it has rank d−1. Since the entries of adj(Li(B))
are cofactors of Li(B), the adjoint is a non-zero matrix that also varies in a C∞ fashion
with B. Moreover,

Li(B) · adj(Li(B)) = det(Li(B)) id = 0.

This means that any nonzero column of adj(Li(B)) is an eigenvector for Li(B), de-
pending in a C∞ fashion on the matrix, and so we may use it to define a function
vi(B) as in the statement. To check that the derivative of v at A is onto just consider
any differentiable curve (−ε, ε) ∋ t 7→ (β1(t), . . . , βd(t)) such that βi(0) = vi(A) for
all i = 1, . . . , d. Define P (t) = [β1(t), . . . , βd(t)], that is, P (t) is the matrix whose
column vectors are the βi(t). Then define

(8.13) B(t) = P (t) diag[λ1(A), . . . , λd(A)]P (t)−1.

Then, B(0) = A and v(B(t)) = (β1(t), . . . , βd(t)) for all t. In particular, the derivative
Dv(A) maps B′(0) to (β′

1(0), . . . , β′
d(0)). So, the derivative is indeed surjective.

Let Z1 be the subset of A = (A1, . . . , A2ℓ) such that Ai /∈ S for at least ℓ values of i.
Then Z1 is closed and it is contained in a finite union of closed submanifolds of codi-
mension ≥ ℓ. For every A /∈ Z1 there are at least ℓ+ 1 matrices Ai whose eigenvalues
all have distinct norms. Restricting to some open subset V of the complement of Z1,
and renumbering if necessary, we may suppose that these matrices are A1, . . . , Aℓ+1.
By Lemma 8.16, reducing V if necessary, the map

V \ Z1 ∋ A 7→
(
vj(Ai)

)
1≤j≤d, 1≤i≤ℓ+1

∈ P(Cd)d(ℓ+1)

is a submersion. Consequently, there exists a closed subset Z2 of V \ Z1 contained
in a finite union of closed submanifolds of codimension ≥ ℓ such that for every A ∈
V \ (Z1 ∪ Z2) there exists some 1 ≤ i ≤ ℓ such that

(8.14) va(Ai) 6= vb(Aℓ+1) for every a, b ∈ {1, . . . , d}.
Now it suffices to prove that G2ℓ ∩ V is contained in Z1 ∪ Z2. Indeed, suppose there
is A ∈ G2ℓ ∩ V \ (Z1 ∪ Z2). By the definition of G2ℓ, there exists some probability
measure η on P(Cd) such that

(8.15) (Al)∗η = η for every 1 ≤ l ≤ 2ℓ.
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Consider l = i, as in (8.14), and also l = ℓ + 1. Since all the eigenvalues of Ai have
distinct norms, η must be a convex combination of Dirac masses supported on the
eigenspaces of Ai. For the same reason, η must be supported on the set of eigenspaces
of Aℓ+1. However, (8.14) means that these two sets are disjoint, and so we reached a
contradiction. This contradiction proves Proposition 8.14 in the complex case.

8.3.2. Real case. — The proof for real matrices is a bit more complicated due to the
possibility of complex conjugate eigenvalues. In particular, the set of matrices whose
eigenvalues are all distinct in norm is not dense. This difficulty has been met before
by Bonatti, Gomez-Mont, Viana [6], and we use a similar approach in dimensions
d ≥ 3. For d = 2 we use a different argument, based on the conformal barycenter
construction of Douady, Earle [10].

For each r, s ≥ 0 with r+2s = d, let S(r, s) be the subset of matrices A ∈ GL(d,R)
having r real eigenvalues, and s pairs of (strictly) complex conjugate eigenvalues, such
that all the eigenvalues that do not belong to the same complex conjugate pair have
distinct norms. Every S(r, s) is open and their union S = ∪r,sS(r, s) is an open and
dense subset of GL(d,R) whose complement is contained in a finite union of closed
submanifolds with positive codimension. Let Grass(k, d) denote the k-dimensional
Grassmannian of Rd, for 1 ≤ k ≤ d. In what follows we often think of elements of
Grass(2, d) as subsets of Grass(1, d) = P(Rd).

Lemma 8.17. — Let F =
{
[(r1, . . . , rd)e

iθ] ∈ P(Cd) : θ ∈ [0, 2π], (r1, . . . , rd) ∈ R
d
}
.

Then F is closed in P(Cd) and the map Ψ : P(Cd)\F → Grass(2, d) defined by Ψ(v) =
Span {Re(v), Im(v)} is a submersion.

Proof. — First, we recall the usual local charts in Grass(2, d). Let e1, . . . , ed the
canonical base of Rd and 1 ≤ i < j ≤ d be fixed. For any d × 2 matrix A we
denote by ϕ(A) the 2 × 2 matrix formed by the ith and jth rows of A and by ϕ∗(A)
the (d − 2) × 2 matrix formed by the other rows of A. Let Ui,j be the open set of
planes L ∈ Grass(2, d) such that the orthogonal projection of L to Span {ei, ej} is
an isomorphism. This means that if L ∈ Ui,j with L = Span {v1, v2} then ϕ(AL)
is invertible, where AL = [v1, v2] is the matrix whose columns are the vectors v1, v2.
Then the map φ : Ui,j → R2(d−2) defined by φ(L) = ϕ∗(AL)ϕ(AL)−1, where we identify

(d− 2)× 2 matrices with points in R2(d−2), is a local chart in the Grassmannian.
Now, note that v, v ∈ Cd are linearly independent if and only if v ∈ P(Cd)\F .

Moreover, in that case Re(v), Im(v) are C-linearly independent and, in particular,
Ψ(v) is well defined. It is clear from its expression in local charts that Ψ is differen-
tiable. Moreover, still in local charts, its derivative is given by

DΨ(v)v̇ = ϕ∗(Ȧ)ϕ(A)−1 − ϕ∗(A)ϕ(A)−1ϕ(Ȧ)ϕ(A)−1,

where v̇ ∈ TvP(Cd), A = [Re(v), Im(v)] and Ȧ = [Re(v̇), Im(v̇)]. Let Ḃ be in the tangent
space TΨ(v) Grass(2, d). Then Ḃ is a (d − 2) × 2 matrix with real entries. Let ȦḂ be

the d × 2 matrix defined by ϕ∗(ȦḂ) = Ḃϕ(A) and ϕ(ȦḂ) = 0. Since, ȦḂ = [v̇1, v̇2], we
have that DΨ(v)(v̇1 + iv̇2) = Ḃ. This finishes the proof of the lemma.
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Lemma 8.18. — Let A ∈ S(r, s). Then there exists an open neighborhood SA of A
and there exist C∞ functions

λj : SA → R, ξj : SA → Grass(1, d), for 1 ≤ j ≤ r, and

µk : SA → C \ R, ηk : SA → Grass(2, d), for 1 ≤ k ≤ s,
such that ξj(B) is the eigenspace of B associated to the eigenvalue λj(B), and ηk(B)
is the characteristic space associated to the conjugate pair of eigenvalues µk(B) and
µ̄k(B). Furthermore, the map

SA → Grass(1, d)r ×Grass(2, d)s, B 7→ (ξj(B)1≤j≤r , ηk(B)1≤k≤s)

is a submersion.

Proof. — Existence and regularity of the eigenvalues λj and µk follow from the
implicit function theorem. Moreover, the arguments in Lemma 8.16 imply that if
vj(B) is an eigenvector associated to the eigenvalue λj(B), for j = 1, . . . , r, and
vr+2k−1(B), vr+2k(B) are eigenvectors associated to µk(B), µ̄k(B), respectively, for
k = 1, . . . , s, then the map Φ defined by

(8.16) Φ(B) = (v1(B), . . . , vr(B), vr+1(B), . . . , vr+2s(B)) ∈ P(Rd)r × P(Cd)s

is C∞. We are going to show that this map is a submersion on some open neigh-
borhood SA of A. For this, it is sufficient to show that the derivative DΦ(A) is
onto. Consider any differentiable curve (−ε, ε) ∋ t 7→ (β1(t), . . . , βr+s(t)) such that
βj(0) = vj(A) for j = 1, . . . , r and βr+k(0) = vr+2k−1(A) for k = 1, . . . , s. Define

(8.17)
P (t) = [β1(t), . . . , βr(t), βr+1, β̄r+1, . . . , βr+s, β̄r+s], and

B(t) = P (t) diag[λ1(A), . . . , λr(A), µ1(A), µ̄1(A), . . . , µs(A), µ̄s(A)]P (t)−1.

Observe that t 7→ B(t) is a curve in GL(d,R), with B(0) = A. Observe also that
Φ(B(t)) = (β1(t), . . . , βr+s(t) for all t ∈ (−ε, ε), and so DΦ(A) maps B

′(0) to the
vector (β′

1(0), . . . , β′
r+s(0)). So, the derivative is indeed surjective. Finally, define

ξj(B) = vj(B) for j = 1, . . . , r and

ηk(B) = Span {Re(vr+2k−1), Im(vr+2k−1)} for k = 1, . . . , s.

Clearly these maps are C∞. Moreover, since (8.16) is a submersion, Lemma 8.17
implies that B 7→ (ξj(B)1≤j≤r , ηk(B)1≤k≤s) is a submersion.

Let Z1 be the subset of A = (A1, . . . , A2ℓ) such that Ai /∈ S for at least ℓ values
of i. Then Z1 is closed and it is contained in a finite union of closed submanifolds
of codimension ≥ ℓ. For every A /∈ Z1 there are at least ℓ + 1 values of i such that
Ai ∈ S, that is, Ai ∈ S(ri, si) for ri and si. Restricting to some open subset V of the
complement of Z1, and renumbering if necessary, we may suppose that these matrices
are A1, . . . , Aℓ+1. By Lemma 8.18, reducing V if necessary, the map

(8.18) V \ Z1 ∋ A 7→
(
ξj(Ai)1≤j≤ri

, ηk(Ai)1≤k≤si

)

1≤i≤ℓ+1

is a submersion.
Assume first that d ≥ 4, and so dim P(Rd) ≥ 3. Since the ξj(A) are points and the

ηk(A) are lines in the projective space, it follows that there exists a closed subset Z2
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of V \ Z1 contained in a finite union of closed submanifolds of codimension ≥ ℓ such
that for every A ∈ V \ (Z1 ∪ Z2) there exists some 1 ≤ i ≤ ℓ such that

ξa(Ai) 6= ξb(Aℓ+1)(8.19)

ξa(Ai) /∈ ηc(Aℓ+1) and ξb(Ai) /∈ ηd(Aℓ+1)(8.20)

ηc(Ai)∩ηd(Aℓ+1) = ∅(8.21)

for every 1 ≤ a ≤ r(Ai), 1 ≤ b ≤ r(Aℓ+1), 1 ≤ c ≤ s(Ai), and 1 ≤ d ≤ s(Aℓ+1).
Now it suffices to prove that G2ℓ ∩ V is contained in Z1 ∪ Z2. Indeed, suppose there
is A ∈ G2ℓ ∩ V \ (Z1 ∪ Z2). By the definition of G2ℓ, there exists some probability
measure η on P(Cd) such that

(8.22) (Al)∗η = η for every 1 ≤ l ≤ 2ℓ.

Consider both l = i, as in (8.19)–(8.21), and l = ℓ+ 1. Since all the eigenvalues of Ai

have distinct norms, apart from the complex conjugate pairs, the measure η must be
supported on

Σ(Ai) =

r⋃

j=1

{ξj(Ai)} ∪
s⋃

k=1

ηk(Ai).

Analogously, η must be supported on Σ(Aℓ+1). However, conditions (8.19)–(8.21)
mean that the two sets Σ(Ai) and Σ(Aℓ+1) are disjoint. This contradiction proves the
proposition in any dimension d ≥ 4.

For d = 3 the projective space P(R3) is only 2-dimensional, and so one can not
force a pair of 1-dimensional submanifolds ηk(A) to be disjoint, as required in (8.21).
However, the argument can easily be adapted to cover the 3-dimensional case as well.
Firstly, one replaces (8.21) by

(8.23) ηc(Ai) 6= ηd(Aℓ+1)

for every 1 ≤ c ≤ s(Ai) and 1 ≤ d ≤ s(Aℓ+1). (Both (8.21) and (8.23) are void if
either s(Ai) = 0 or s(Aℓ+1) = 0; the only other possibility is s(Ai) = s(Aℓ+1) = 1, with
c = d = 1.) Then the argument proceeds as before, except that we may no longer
have disjointness: when s = 1,

Σ(Ai) ∩Σ(Aℓ+1) = η1(Ai) ∩ η1(Aℓ+1)

consists of exactly one point in projective space. Then η must be a Dirac measure
supported on this point. However, in view of (8.22), this would have to be a fixed
point of Ai contained in η1(Ai), which is impossible because the eigenspace ηi(Ai)
contains no invariant line. Thus, we reach a contradiction also in this case.

Now we deal with the case d = 2. Let Z1 be as in the previous cases: for every
A /∈ Z1 there are at least ℓ + 1 values of i such that Ai ∈ S = S(2, 0) ∪ S(0, 1). As
before, it is no restriction to assume that these matrices are A1, . . . , Aℓ+1. There are
three cases to consider:

First, suppose there exist 1 ≤ i, j ≤ ℓ + 1 such that Ai ∈ S(2, 0), that is, it has
two real (distinct) eigenvalues, and Aj ∈ S(0, 1), that is, it has a pair of complex
eigenvalues. We claim that in this case A can not belong to G2ℓ. Indeed, on the one
hand, any probability measure η on P(R2) which is invariant under Ai ∈ S(2, 0) must
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be a convex combination of Dirac masses at the two eigenspaces. On the other hand,
the action of Aj ∈ S(0, 1) on the projective space is a rotation whose angle is not a
multiple of π, and so it admits no such invariant measure.

Next, suppose all the matrices are hyperbolic: Ai ∈ S(2, 0) for all 1 ≤ i ≤ ℓ. In this
case one can use precisely the same argument as we did before in higher dimensions
(conditions (8.20) and (8.21)-(8.23) become void). One finds a closed subset Z2

contained in a finite union of submanifolds with codimension ≥ ℓ such that G2ℓ ∩ V
is contained in Z1 ∪ Z2.

Finally, suppose all the matrices are elliptic: Ai ∈ S(0, 1) for all 1 ≤ i ≤ ℓ. Recall
that every matrix A ∈ GL(2,R) with positive determinant induces an automorphism
hA of the Poincaré half plane H:

(8.24) A =

(
a b
c d

)
−→ hA(z) =

az + b

cz + d
.

The action of A on the projective plane may be identified with the action of hA on the
boundary of H, via

∂H→ P(R2), x 7→ [(x, 1)]

(including x = ∞) so that P(A)-invariant measures on the projective plane may be
seen as hA-invariant measures sitting on the real axis. It is also easy to check that hA
has a fixed point in the open disc H if and only if A ∈ S(0, 1). Define φ(A) to be this
(unique) fixed point. It is easy to see that the A 7→ φ(A) is a C∞ submersion: just
use the explicit expression for the fixed point extracted from (8.24). The key feature
is the following consequence of a classical construction of Douady, Earle [10]:

Lemma 8.19. — If A, B ∈ S(0, 1) have some common invariant probability measure
µ on ∂H then φ(A) = φ(B).

Proof. — It is clear that elliptic matrices have no invariant measures with atoms
of mass larger than 1/3: such atoms would correspond to periodic points of A in the
projective plane with period 1 or 2, which would contradict the definition of S(0, 1). In
Proposition 1 of [10] a map µ 7→ B(µ) is constructed that assigns to each probability
measure µ with no atoms of mass ≥ 1/2 (see Remark 2 in [10, page26] ) a point B(µ)
in the half plane H, in such a way that

B(h∗µ) = h(B(µ)) for every automorphism h : H→ H.

When µ is A-invariant this implies hA(B(µ)) = B((hA)∗µ) = B(µ), and so the con-
formal barycenter B(µ) must coincide with the fixed point φ(A) of the automorphism
hA. Thus, if µ is a common invariant measure then φ(A) = B(µ) = φ(B).

It follows from the previous observations that the map

V \ Z1 ∋ A 7→
(
φ(Ai)

)
1≤i≤ℓ+1

∈ H
ℓ+1.

is a submersion. Hence, there exists a closed subset Z2 of V \ Z1 contained in a
finite union of closed submanifolds of codimension ≥ ℓ such that for every A ∈ V \
(Z1 ∪Z2) there exists some 1 ≤ i ≤ ℓ such that φ(Ai) 6= φ(Aℓ+1). Thus, we may apply
Lemma 8.19 to conclude that if A ∈ V \(Z1∪Z2). In other words, G2ℓ∩V is contained
in Z1 ∪ Z2.
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The proofs of Proposition 8.14 and Theorem A are now complete.
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