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Abstract. The majority of Hölder continuous, or even differentiable, linear

cocycles over any hyperbolic (uniformly or not) transformation exhibit non-
zero Lyapunov exponents, that is, exponential growth of the norm. Indeed,

this is true on an open dense subset whose complement has ∞ codimension.
These results strongly suggest that the majority of Cr dynamical systems,

r > 1, should be hyperbolic (uniformly or not); that is known to be false for

C1 systems, by recent results of Bochi and the author.

1. Introduction

Let M be a compact manifold with dimension d ≥ 1, and f : M → M be
a Cr diffeomorphism, r ≥ 1. Oseledets theorem [Ose68] says that, relative to any
f -invariant probability µ, almost every point admits a splitting of the tangent space

TxM = E1
x ⊕ · · · ⊕ Ekx , k = k(x),(1)

and real numbers λ1(f, x) > · · · > λk(f, x) such that

lim
n→±∞

1
n

log ‖Dfn(x)vi‖ = λi(f, x) for every non-zero vi ∈ Eix .

These objects are uniquely defined and they vary measurably with the point x.
Moreover, the Lyapunov exponents λi(f, x) are constant on orbits, hence they are
constant µ-almost everywhere if µ is ergodic.

Assuming hyperbolicity, that is, that no Lyapunov exponents are zero, Pesin the-
ory provides detailed geometric information about the system, including existence
of stable and unstable sets that are smooth embedded disks at almost every point
[Pes76, Rue81, FHY83, PS89]; here one takes the derivative to be Hölder continu-
ous. Such geometric structure is at the basis of several deep results on the dynamics
of hyperbolic systems, like [Pes77, Kat80, Led84, LY85, BPS99, SW00].

Which makes the following problem central to the whole theory:

Problem. Are most dynamical systems hyperbolic ?

More precisely, consider the space Diffrµ(M) of Cr, r ≥ 1 diffeomorphisms that
preserve a given probability µ, endowed with the corresponding Cr topology. Then
the question is to be understood both in topological terms – dense, residual, or
even open dense subsets – and in terms of Lebesgue measure inside generic finite-
dimensional submanifolds, or parametrized families, of Diffrµ(M). The most inter-
esting case is when µ is Lebesgue measure in the manifold. 1
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1But the problem is just as important for general dissipative diffeomorphisms, that is, without

a priori knowledge of invariant measures. E.g. [ABV00] uses hyperbolicity type properties at

Lebesgue almost every point to construct invariant Sinai-Ruelle-Bowen measures.
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As we are going to see next, systems with zero Lyapunov exponents are actually
abundant among C1 volume preserving diffeomorphisms. But the main results
announced here, Theorems 6 and 7 below, give strong evidence that the answer to
the Problem should be affirmative for Cr systems, any r > 1.

2. A dichotomy for C1
conservative systems

Let µ be normalized Lebesgue measure on a compact manifold M .

Theorem 1 ([BV01, BVa]). There exists a residual subset R of Diff1
µ(M) such

that, for every f ∈ R and µ-almost every point x,

(a) either all Lyapunov exponents λi(f, x) = 0 for 1 ≤ i ≤ d,
(b) or the Oseledets splitting of f is dominated on the orbit of x.

The second case means there exists m ≥ 1 such that for any y in the orbit of x

‖Dfm(y)vi‖
‖vi‖

≥ 2
‖Dfm(y)vj‖
‖vj‖

(2)

for any non-zero vi ∈ Eiy, vj ∈ Ejy corresponding to Lyapunov exponents λi > λj .
In other words, the fact that Dfn will eventually expand Eiy more than Ejy can be
observed in finite time uniform over the orbit. This also implies that the angles
between the Oseledets subspaces Eiy are bounded away from zero along the orbit,
in fact the Oseledets splitting extends to a dominated splitting over the closure of
the orbit.

In some situations the conclusion gets a more global form 2 : either (a) all
exponents vanish at µ-almost every point or (b) the Oseledets splitting extends
to a dominated splitting on the whole ambient manifold. The latter means that
m ≥ 1 as in (2) may be chosen uniform over the whole M . It is easy to see that a
dominated splitting into factors with constant dimensions is necessarily continuous.
Now, existence of such a splitting is a very strong property that can often be
excluded a priori. In any such case Theorem 1 is saying that generic systems must
satisfy alternative (a).

A first example of this phenomenon is the 2-dimensional version of Theorem 1,
proved by Bochi in 2000, partially based on a strategy proposed by Mañé in the
early eighties [Mañ96].

Theorem 2 ([Boc]). For a residual subset of C1 area-preserving diffeomorphisms
on any surface, either

(a) the Lyapunov exponents vanish almost everywhere or
(b) the diffeomorphism is uniformly hyperbolic (Anosov) on the whole M .

Alternative (b) can only occur if M is the torus; so, C1 generic area preserv-
ing diffeomorphisms on any other surface have zero Lyapunov exponents almost
everywhere.

2It is an interesting question whether the theorem can always be formulated in this more global
form. A partial positive answer is given in [BV01] for symplectic maps: generically, either the

diffeomorphism is Anosov or Lebesgue almost every point has zero as Lyapunov exponent with
multiplicity ≥ 2.
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3. Deterministic products of matrices

Let f : M → M be a continuous transformation on a compact metric space M .
A linear cocycle over f is a vector bundle automorphism F : E → E covering f ,
where π : E →M is a finite-dimensional vector bundle over M . This means that

π ◦ F = f ◦ π

and F acts as a linear isomorphism on every fiber. The quintessential example is
the derivative F = Df of a diffeomorphism on a manifold (dynamical cocycle).

For simplicity, I focus on the case when the vector bundle is trivial E = M ×Rd,
although this is not strictly necessary for what follows. Then the cocycle has the
form

F (x, v) = (f(x), A(x)v) for some A : M → GL(d,R).

It is no restriction suppose that A takes values in SL(d,R), dividing each A(x) by
the determinant. Moreover, I always assume that A is at least continuous. Note
that Fn(x, v) = (fn(x), An(x)v) for n ∈ Z, with

Aj(x) = A(f j−1(x)) · · ·A(f(x))A(x) and A−j(x) = inverse of Aj(f−j(x)).

The theorem of Oseledets extends to linear cocycles: Given any f -invariant
probability µ, then at µ-almost every point x there exists a filtration

{x} × Rd = F 0
x > F 1

x > · · · > F k−1
x > F kx = {0}

and real numbers λ1(A, x) > · · · > λk(A, x) such that

lim
n→+∞

1
n

log ‖An(x)vi‖ = λi(A, x)

for every vi ∈ F i−1
x \ F ix. If f is invertible there even exists an invariant splitting

{x} × Rd = E1
x ⊕ · · · ⊕ Ekx

such that

lim
n→±∞

1
n

log ‖An(x)vi‖ = λi(A, x)

for every vi ∈ Eix \ {0}. It relates to the filtration by F jx = ⊕i>jEix.
In either case, the largest Lyapunov exponent λ(A, x) = λ1(A, x) describes the

exponential rate of growth of the norm

λ(A, x) = lim
n→+∞

1
n

log ‖An(x)‖ .

If µ is an ergodic probability, the exponents are constant µ-almost everywhere. I
represent by λj(A,µ) and λ(A,µ) these constants.

Theorem 1 also extends to linear cocycles over any transformation. I state the
ergodic invertible case:

Theorem 3 ([Boc00, BV01]). Assume f : (M,µ) → (M,µ) is invertible and er-
godic. There exists a residual subset R of maps A ∈ C0(M,SL(d,R)) for which
either the Lyapunov exponents λi(A,µ) are all zero at µ-almost every point, or the
Oseledets splitting of A extends to a dominated splitting over the support of µ.

The next couple of examples describe two simple mechanism that exclude a priori
the dominated splitting alternative in the dichotomy:
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Example 4. Let f : M → M and A : M → SL(d,R) be such that for every
1 ≤ i < d there exists a periodic point pi in the support of µ, with period qi , such
that the eigenvalues {βij : 1 ≤ j ≤ d} of Aqi(pi) satisfy

|βi1| ≥ · · · ≥ |βii−1| > |βii−1| = |βii | > |βii+1| ≥ · · · ≥ |βid|(3)

and βii , β
i
i+1 are complex conjugate (not real). Such an A may be found, for in-

stance, starting with a constant cocycle and deforming it on disjoint neighborhoods
of the periodic orbits. Property (3) remains valid for every B in a C0 neighbor-
hood U of A. It implies that no B admits an invariant dominated splitting over
the support of µ: if such a splitting E ⊕ F existed then, at every periodic point,
the dimE largest eigenvalues would be strictly larger than the other eigenvalues,
which is incompatible with (3). It follows, by Theorem 3, that every cocycle in a
residual subset U ∩ R of the neighborhood has all the Lyapunov exponents equal
to zero.

Example 5. Let f : S1 → S1 be a homeomorphism and µ be any invariant ergodic
measure with suppµ = S1. Let N be the set of all continuous A : S1 → SL(2,R)
non-homotopic to a constant. For a residual subset of N , the Lyapunov exponents
of the corresponding cocycle over (f, µ) are zero. That is because the cocycle has
no invariant continuous subbundle if A is non-homotopic to a constant (this may
be shown by the same kind of arguments as in Example 13 below).

4. Abundance of non-zero exponents

We are now going to see that the conclusions of the previous section change
radically if one considers linear cocycles which are better than just continuous:
assuming the base dynamics is hyperbolic, the overwhelming majority of Hölder
continuous or differentiable cocycles admit non-zero Lyapunov exponents.

For 0 < ν ≤ ∞ denote by Cν(M,SL(d,R)) the space of Cν maps from M to
SL(d,R) endowed with the Cν norm. When ν ≥ 1 it is implicit that M has a
smooth structure. For integer ν the notation is slightly ambiguous: Cν means
either that f is ν times differentiable with continuous ν:th derivative, or that it is
ν − 1 times differentiable with Lipschitz continuous derivative. All the statements
are meant for both interpretations.

Let f : M →M be a C1 diffeomorphism with Hölder continuous derivative. An
f -invariant probability measure µ is hyperbolic if every λi(f, x) is different from
zero at µ-almost every point. The notion of measure with local product structure
is recalled at the end of this section, and I also observe that this class contains most
interesting invariant measures.

Theorem 6 ([Via]). Assume f : (M,µ) → (M,µ) is ergodic and hyperbolic with
local product structure. Then, for every ν > 0, the set of cocycles A with largest
Lyapunov exponent λ(A, x) > 0 at µ-almost every point contains an open dense
subset A of Cν(M,SL(d,R)). Moreover, its complement has ∞-codimension.

The last property means that the set of cocycles with vanishing exponents is
locally contained inside finite unions of closed submanifolds of Cν(M,SL(d,R))
with arbitrary codimension. Thus, generic parametrized families of cocycles do not
intersect this exceptional set at all!

Now suppose f : M →M is uniformly hyperbolic, for instance, a two-sided shift
of finite type, or an Axiom A diffeomorphism restricted to a hyperbolic basic set.
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Then every invariant measure is hyperbolic. The main novelty is that the set A
may be taken the same for all invariant measures with local product structure.

Theorem 7 ([BGMV, Via]). Assume f : M →M is a uniformly hyperbolic home-
omorphism. Then, for every ν > 0, the set of cocycles A with largest Lyapunov
exponent λ(A, x) > 0 at µ-almost every point and for every invariant measure with
local product structure contains an open dense subset A of Cν(M,SL(d,R)). More-
over, its complement has ∞-codimension.

Theorem 7 was first proved in [BGMV], under an additional hypothesis called
domination. Under this additional hypothesis [BVb] gets a stronger conclusion: all
Lyapunov exponents have multiplicity 1, in other words, the Oseledets subspaces
Ei are one-dimensional. I expect this to extend to full generality:

Conjecture. Theorems 6 and 7 should remain true if one replaces λ(A, x) > 0 by
all Lyapunov exponents λi(A, x) having multiplicity 1.

Theorems 6 and 7 extend to cocycles over non-invertible transformations, re-
spectively, local diffeomorphisms equipped with invariant non-uniformly expanding
probabilities (all Lyapunov exponents positive), and uniformly expanding continu-
ous maps, like one-sided shifts of finite type, or smooth expanding maps.

Finally, I recall the notion of local product structure for invariant measures. Let
µ be a hyperbolic measure. I also assume that µ has no atoms. By Pesin’s stable
manifold theorem [Pes76], µ-almost every x ∈ M has a local stable set W s

loc(x)
and a local unstable set Wu

loc(x) which are C1 embedded disks. Moreover, these
disks vary in a measurable fashion with the point. So, for every ε > 0 we may find
Mε ⊂M with µ(Mε) > 1−ε such that W s

loc(x) and Wu
loc(x) vary continuously with

x ∈ Mε and, in particular, their sizes are uniformly bounded from zero. Thus for
any x ∈ Mε we may construct sets H(x, δ) with arbitrarily small diameter δ, such
that (i) H(x, δ) contains a neighborhood of x inside Mε , (ii) every point of H(x, δ)
is in the local stable manifold and in the local unstable manifold of some pair of
points in Mε , and (iii) given y, z in H(x, δ) the unique point in W s(y) ∩Wu(z) is
also in H(x, δ).

Lebesgue measure has local product structure if it is hyperbolic; this follows from
the absolute continuity of Pesin’s stable and unstable foliations [Pes76]. The same
is true, more generally, for any hyperbolic probability having absolutely continuous
conditional measures along unstable manifolds or along stable manifolds. Also,
in the uniformly hyperbolic case, every equilibrium state of a Hölder continuous
potential [Bow75] has local product structure.

5. About the proofs

I discuss some main ingredients, focussing the case when the base dynamics
f : M → M is uniformly expanding, and µ is ergodic with suppµ = M . The
general cases of Theorems 6 and 7 follow from a more local version of similar
arguments.

In fact, similar methods apply to much more general non-linear cocycles, that
is, with values in a large class of subgroups G of Diffν(N), N a compact manifold.
The linear case treated here corresponds to G = SL(d,R) seen as a subgroup of
Diffr(RPd−1).
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Notice that it is no restriction to consider ν ≥ 1: the Hölder cases 0 < ν < 1 are
immediately reduced to the Lipschitz one ν = 1 by replacing the metric dist(x, y)
in M by dist(x, y)ν .

Definition 8. A : M → SL(d,R) is called bundle-free if it admits no finite-valued
Lipschitz continuous invariant line bundle: in other words, given any η ≥ 1, there
exists no Lipschitz continuous map ψ : x 7→ {v1(x), . . . , vη(x)} assigning to each
x ∈M a subset of RPd−1 with exactly η elements, such that

A(x)
(
{v1(x), . . . , vη(x)}

)
= {v1(f(x)), . . . , vη(f(x))} for all x ∈M.

A is called stably bundle-free if all Lipschitz maps in a neighborhood are bundle-free.

The case η = 1 means that the cocycle has no invariant Lipschitz subbundles.
The regularity requirement is crucial in view of the next theorem: invariant Lips-
chitz subbundles are exceptional, whereas Hölder invariant subbundles with poor
Hölder constants are often robust! The following exercise illustrates these issues.

Exercise 9. Let G : S1 × R→ S1 × R, G(θ, x) = (f(θ), g(θ, x)) be a smooth map
with

σ1 ≥ |f ′| ≥ σ2 > σ3 > |∂xg| > σ4 > 1.
Let θ0 be a fixed point of f and x0 be the fixed point of g(θ0, · ). Then

1. The set of points whose forward orbit is bounded is the graph of a continuous
function u : S1 → R with u(θ0) = x0 . This function is ν-Hölder for any
ν < log σ4/ log σ1 . Typically it is not Lipschitz:

2. The fixed point p0 = (θ0, x0) has a strong-unstable set Wuu(p0) invariant
under G and which is locally a Lispchitz graph over S1. If u is Lipschitz then
its graph must coincide with Wuu(p0).

3. However, for an open dense subset of choices of g the strong-unstable set is
not globally a graph: it intersects vertical lines at infinitely many points.

Theorem 10. Suppose A ∈ Cν(M,SL(d,R)) has λ(A, x) = 0 with positive proba-
bility, for some invariant measure µ. Then A is approximated in Cν(M,SL(d,R))
by stably bundle-free maps.

Here is a sketch of the proof. The first step is to deduce from the hypothesis

lim
n→∞

1
n

log ‖An(x)‖ = 0 for µ−almost all x

that Birkhoff averages of log ‖Ai‖ are also small: given δ there is N ≥ 1 such that

lim
n→∞

1
n

n−1∑
j=0

1
N

log ‖AN (f jN (x))‖ < δ for µ−almost all x.(4)

Using the shadowing lemma, one finds periodic points p ∈M satisfying (4) with δ
replaced by 2δ. This implies that the eigenvalues βj of Aq(p), q = per(p) are all
close to 1:

2(1− d)δ <
1
q

log |βj | < 2δ for all j = 1, . . . , d.

We may take all the norms |βj | to be distinct. Now the argument is very much
inspired by Exercise 9. The eigenspaces of Aq(p), seen as periodic points of the
cocycle acting in the projective space, have strong-unstable sets that are locally
Lipschitz graphs over M . Any Lipschitz continuous invariant line bundle ψ as in
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Definition 8 has to coincide with the strong-unstable sets. But a simple transver-
sality argument shows that globally the strong-unstable sets are not graphs (not
even up to finite covering), if certain configurations with positive codimension are
avoided.

Another key ingredient is the following result, which may be thought of as a
geometric version of a classical result of Furstenberg [Fur63] about products of
i.i.d. random matrices:

Theorem 11. Suppose A ∈ Cν(M,SL(d,R)) is bundle-free and there exists some
periodic point p ∈ M of f such that the norms of the eigenvalues of A over the
orbit of p are all distinct. Then λ(A,µ) > 0 for any ergodic measure µ with local
product structure and suppµ = M .

The condition on the existence of some periodic point over which the cocycle
is all eigenvalues with different norm is satisfied by an open and dense subset of
Cν(M,SL(d,R)), that I denote SP. See the last section of [BVb]. I also denote by
BF the subset of bundle-free maps. The proof of Theorem 11 may be sketched as
follows.

Let f̂ : M̂ → M̂ be the natural extension of f , and µ̂ be the lift of µ to M̂ . Let
f̂A : M̂ ×RPd−1 → M̂ ×RPd−1 be the projective cocycle induced by A over f̂ . Let
us suppose that λ(A,µ) = 0, and conclude that A is not bundle-free.

The first step is to prove that all points in the projective fiber of µ̂-almost every
x̂ ∈ M̂ have strong-stable and strong-unstable sets for f̂A that are Lipschitz graphs
over the stable manifold and the unstable manifold of x̂ for f̂ . This follows from (4)
and the corresponding fact for negative iterates. The strong-stable sets are locally
horizontal: by definition, the cocycle is constant over local stable sets of the natural
extension f̂ .

Next, one considers invariant probability measures m on M̂ × RPd−1, invariant
under f̂A and projecting down to µ. One constructs such a measure admitting a
family of conditional probabilities {mx̂ : x̂ ∈ M̂} that is invariant under strong-
unstable holonomies. Using the hypothesis λ(A,µ) = 0 and a theorem of Ledrap-
pier [Led86], one proves that the conditional measures are constant on local stable
leaves (in other words, invariant under strong-stable holonomies), restricted to a
full µ̂-measure subset of M̂ . Using local product structure and supp µ̂ = M̂ , one
concludes that m admits some family of conditional measures {m̃x̂ : x̂ ∈ M̂} that
vary continuously with the point x̂ on M and are invariant by both strong-stable
and strong-unstable holonomies.

Finally, one considers a periodic point p̂ of f̂ such that the norms of the eigen-
values of Aq(p̂), q = per(p) are all distinct. Then the probability m̃p is a convex
combination of Dirac measures supported on the eigenspaces. Using the strong-
stable and strong-unstable holonomies one propagates the support of m̃p over the
whole M . This defines an invariant map ψ as in Definition 8, with η ≤ # supp m̃p .
This map is Lipschitz, because strong-stable and strong-unstable holonomies are
Lipschitz. Thus, A is not bundle-free.

Finally, I explain how to obtain Theorem 7, in the special case we are considering,
from the two previous theorems. Let ZE be the subset of A ∈ Cν(M,SL(d,R))
such that λ(A,µ) = 0 for some ergodic measure with local product structure and
supp = M . Theorem 10 implies that any A ∈ ZE is approximated by the interior
of BF. Since SP is open and dense, A is also approximated by the interior of
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BF∩SP. By Theorem 11, the latter is contained in the complement of ZE. This
proves that the interior of Cν \ ZE is dense in ZE, and so it is dense in the whole
Cν(M,SL(d,R)), as claimed. To get the ∞ codimension statement observe that it
suffices to avoid the positive codimension configuration mentioned before for some
of infinitely many periodic points of f .

6. Further comments

The following couple of examples help understand the significance of Theorem 11.

Example 12. Let M = S1, f : M → M be given by f(x) = kxmod Z, for some
k ≥ 2, and µ be Lebesgue measure on M . Let

A : M → SL(2,R), A(x) =
(
β(x) 0

0 1/β(x)

)
for some smooth function β such that

∫
log β dµ = 0. It is easy to ensure that

the set β−1(1) is finite and does not contain x = 0. Then A ∈ SP and indeed the
matrix A “looks hyperbolic” at most points. Nevertheless, the Lyapunov exponent
λ(A,µ) =

∫
log β dµ = 0. Notice that A is not bundle-free.

Hence the following heuristic principle: assuming there is a source of hyper-
bolicity somewhere in M (here the fact that A ∈ SP), the only way Lyapunov
exponents may happen to vanish is by having expanding directions mapped exactly
onto contracting directions, thus causing hyperbolic behavior to be “wasted way”.

Putting Theorems 3 and 11 together we may give a sharp account of Lyapunov
exponents for a whole C0 open set of cocycles. This construction contains the main
result of [You93]. It also shows that the present results are in some sense optimal.

Example 13. Let f : S1 → S1 be a C2 uniformly expanding map, and µ be the
absolutely continuous invariant measure. Let A : S1 → SL(2,R) be of the form

A(x) = Rα(x)A0

where A0 is some hyperbolic matrix, α : S1 → S1 is a continuous function with
α(0) = 0, and Rα(x) denotes the rotation of angle α(x). Assume that 2 deg(α) is
not a multiple of deg(f)− 1, where deg( · ) represents the topological degree.

Corollary 14. There exists a C0 neighborhood U of A such that
1. for B in a residual subset R∩ U we have λ(B,µ) = 0;
2. for every B ∈ U ∩ Sr,ν(M, 2), r > 0, we have λ(B,µ) > 0.

Proof. Start by taking U to be the isotopy class of A in the space of continuous
maps from M to SL(2,R). We claim that, given any B ∈ U , there is no continuous
B-invariant map

ψ : M 3 x 7→ {ψ1(x), . . . , ψη(x)}
assigning a constant number η ≥ 1 of elements of RP1 to each point x ∈ M . The
proof is by contradiction. Suppose there exists such a map and

G = {(x, ψi(x)) ∈ S1 × RP1 : x ∈ S1 and 1 ≤ i ≤ η}

is connected. Then the graph G represents an element (η, ζ) of the fundamental
group π1(S1 × RP1) = Z ⊕ Z. Because B is isotopic to A, the image of G under
the cocycle must represent (η deg(f), ζ + 2 deg(α)) ∈ π1(S1 ×RP1); here the factor
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2 comes from the fact that S1 is the 2-fold covering of RP1. By the invariance of ψ
we get

ζ + 2 deg(α) = deg(f)ζ

which contradicts the hypothesis that deg(f) − 1 does not divide 2 deg(α). If the
graph G is not connected, consider the connected components instead. Since con-
nected components are pairwise disjoint, they all represent elements with the same
direction in the fundamental group. Then the same type of argument as before
proves the claim in full generality.

Now letR be the residual subset in Theorem 3. The previous observation implies
that no B ∈ R∩ U may have an invariant dominated splitting. Then B must have
all Lyapunov exponents equal to zero as claimed in (1). Similarly, that observation
ensures that every B ∈ U ∩ Cν is bundle-free. It is clear that A is in SP, and so is
any map C0 close to it. Thus, reducing U if necessary, we may apply Theorem 11
to conclude that λ(B,µ) > 0. This proves (2).
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