CONTINUITY OF THE LYAPUNOV EXPONENTS OF RANDOM
MATRIX PRODUCTS
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ABSTRACT. We prove that the Lyapunov exponents of random products in
a (real or complex) matrix group depends continuously on the matrix coeffi-
cients and probability weights. More generally, the Lyapunov exponents of the
random product defined by any compactly supported probability distribution
on GL(d) vary continuously with the distribution, in a natural topology cor-
responding to weak*-closeness of the distributions and Hausdorff-closeness of
their supports.
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Part I. Lyapunov exponents and random walks
1. INTRODUCTION

Lyapunov exponents. The notion of Lyapunov exponents is rooted in the sta-
bility theory of differential equations created by Lyapunov [52] at the end of the
19th century. Consider a differential equation

(1.1) ' = L(t)z + R(t,z),
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where L(t) : R? — R? is linear and R(t,-) is a perturbation of order greater than
1. The Lyapunov exponent function v — A(v) is defined by

(1.2) A(v) = limsup % log ||z, (1)

t—w0
where z,, is the solution of the linear equation ' = L(t)z with initial condition
v. When A < 0 the constant solution xo(t) = 0 is exponentially stable for this
linear equation. The stability theorem of Lyapunov asserts that, under a technical
Lyapunov regularity condition, it remains exponentially stable for (1.1).

In 1960, Furstenberg, Kesten [41] proved that the limit in (1.2) exists for almost
every z, relative to any probability measure invariant under the flow. A few years
later, Oseledets [56] showed that Lyapunov regularity also holds for almost every
point. Such results brought the subject of Lyapunov exponents to the realm of
ergodic theory, where it has prospered since. Three main problems have a central
role in the theory.

The first one is non-triviality of the Lyapunov spectrum: when is it the case that
not all Lyapunov exponents are equal? This was founded by Furstenberg [40] in the
1960s and has been much studied since, especially in the last couple of decades or
so. See Viana [65] and references therein. A product of this theory much exploited
recently is the Invariance Principle [51, 20, 7, 5], a general statement to the effect
that systems with trivial Lyapunov spectra are very rigid.

A related issue is that of simplicity of the Lyapunov spectrum: when are all the
Lyapunov exponents distinct, with multiplicity 1?2 This was initiated by Guivarc’h
and Raugi [46] and by Gol’dsheid and Margulis [45], and has also been the ob-
ject of considerable interest in recent years. See [65] for references and a detailed
discussion. An application was the proof of the Zorich—-Kontsevich conjecture on
the Lyapunov spectrum of the Teichmiiller flow on the moduli space of Abelian
differentials [6].

Continuity theorem. In the present paper we are mostly concerned with the
dependence problem: how do the Lyapunov exponents depend on their underlying
system? Several references to the literature on this problem will be given in a while.
Right now, the following special case of our main result illustrates the kind of goals
we pursue here.

Let (Ay,...,A,,) be an m-uple of matrices in G = GL(RY) and (p1,...,pm)
be an element of the open simplex A,, of dimension m — 1, that is, an m-uple of
numbers p; € (0,1) such that > p; = 1. Let v be the probability measure on G

given by
m
V= Z pida,
i=1

where 0 4 denotes the Dirac mass at any A € G. Let Ay > --- = Ay be the Lyapunov
exponents of the random matrix product induced by v (definitions will appear in
Section 2). We prove:

Theorem A. For each 1 < j < n, the number \; depends continuously on the A;
and the p; at every point of the domain G™ x A,,.

The 2-dimensional case of Theorem A has been proved by Bocker and Viana [18].
A different proof of that case that introduces a few of the ideas in this paper ap-
peared in Chapter 10 of the book [65]. Kifer [50] observed the Lyapunov exponents
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may actually jump when some weight p; goes to zero, and that is why A,, is taken
to be an open simplex.

A crucial point in Theorem A is that the conclusion holds even at reducible
points, that is, when the matrices Ay, ..., A, share one or more invariant proper
subspaces. Indeed, continuity of the Lyapunov exponents at irreducible points had
already been proved in the 1980s, independently, by Furstenberg and Kifer [42] and
by Hennion [47]. As often happens in this field, the reducible case is a lot more
subtle, requiring a whole different set of ideas.

Our approach relies on a quantitative analysis of the random walk

x+— gz, g€ G arandom variable with distribution v,

defined on the projective space P = P(RY) by the probability measure v. By
Furstenberg and Kifer [42], discontinuity of the Lyapunov exponents can only occur
if there is some proper subspace invariant under all the matrices and containing all
the “most contracting” directions for the cocycle (see Section 3 for the precise
statement).

In a nutshell, we prove that if such an invariant subspace E (the “equator”) does
exist, typical trajectories of nearby generic random walks spend very little time in
its vicinity, rendering the presence of the equator effectively harmless. A bit more
precisely, we consider generic distributions v, converging to v as k — o0, and we
show that the stationary measures 7 for the corresponding random walks cannot
accumulate on the equator: any limit point 7y, as k — oo (which is automatically
a stationary measure for v) must satisfy 7., (E) = 0. These notions and their basic
properties will also be recalled in Section 3.

Margulis functions. The key technical tool to do this is the concept of Mar-
gulis function. Such functions have been introduced to the dynamics literature by
Margulis in [32]. (In the probability setting, a Margulis function is also called a
Foster-Lyapunov (or drift) function, and has been used extensively. See the book
[55] for further references.)

In a few words, ® : X — [0,00] is a (multiplicative) Margulis function for a
Markov operator 7 on some space X, relative to a set Y < X, if ® =00 on Y and
there exist constants ¢ < 1 and b < o0 satisfying

(1.3) To(x) < cP(x)+bforall z e X.

The distinctive feature implied by this inequality is that 7®(x) is much smaller than
®(x) near Y, even if it may be somewhat bigger on other parts of X. Such functions
have been used, for example, in [34, 31, 33, 1, 2, 24, 35, 14, 30, 3, 49, 53, 12, 43, 44|
and [65, Chapter 10]. For a fairly recent survey on this topic see [38].
Nevertheless, our application of Margulis functions in the present setting comes
with a number of novelties. To begin with, we need a different kind of Margulis
function, which we introduce here: given a partition (A, B) of the space X, ® is an
(additive) Margulis function if there exist positive constants k4 and xp such that

TU(x) < U(x) —ka for every z € A

1.4
(14) TU(x) < ¥(x)+ kp for every x € B.

If ® is a multiplicative Margulis function then log® is an additive Margulis
function relative to a suitable partition (A, B) (see Remark 6.22). On the other
hand, it is not true that if ¥ is an additive Margulis function then exp ¥ is a
multiplicative one. That is because the inequality (1.3) is very sensitive to the
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“worst case” behavior of ¥, whereas (1.4) depend more on the “average case”
behavior. For this reason, it is often much easier to construct an additive Margulis
function than a multiplicative one. In fact, we do not know how to construct a
useful multiplicative Margulis function in our setting beyond the case d = 2 (see
[65, Chapter 10] and [53]).

Another point worth emphasizing is that in all the previous constructions (apart
from [53, 65, 12]), the dynamical system is fixed. Instead, in the present paper
we try to make the same Margulis function work for a whole family of dynamical
systems, which have very different behaviors near the equator. This introduces
quite a lot of new issues. Furthermore, the dynamical behavior near the equator
is totally different from the behavior in other parts of phase-space. Thus, we need
to carry out a localized analysis of the random walk, which is another important
source of difficulties.

Further perspectives. Random products of matrices may be represented as a
special kind of linear cocycle

F:MxR*— M xR F(z,v) = (f(z), Alz)v)

where the base dynamics f : M — M is a shift map f((zp)n) = (Tn+1)n endowed
with a Bernoulli measure, and the cocycle function A depends only on the coor-
dinate zg. The dependence problem extends naturally to this general setting of
linear cocyles: usually one takes the base dynamics f and the corresponding invari-
ant probability measure u to be fixed, and one is interested in understanding how
the Lyapunov exponents depend on A.

A natural step is to try and allow for much more general cocycle functions A.
For reasons that we will soon discuss, it is convenient to assume some regularity,
like Holder continuity. Moreover, essentially all known results assume the cocycle
to satisfy a kind of quasi-conformality condition called fiber-bunching (see [20, 7])
which also involves Holder continuity.

Another natural way to broaden the scope of the theory is to weaken the assump-
tions on the base dynamics, to consider general dynamical systems more general
than shift maps, as well as invariant measures satisfying much milder indepen-
dence conditions. In this latter direction, Theorem A has been extended to Markov
products of 2-dimensional matrices by Malheiro and Viana [53].

For Holder cocycles, Backes, Brown and Butler [12] extended the 2-dimensional
case of Theorem A to general fiber-bunched cocycles whose base transformation f
is a hyperbolic homeomorphism on a compact metric space (in the sense of [64])
and whose invariant probability measure has local product structure (see [20, 64]), a
mild requirement meaning, roughly speaking, that the future depends only weakly
on the past. In fact, their statement extends to the class of linear cocycles with
invariant holonomies. Both versions had been conjectured in [65, Section 10.6].

Another interesting path to possibly generate further progress is to consider
linear cocycles over partially hyperbolic diffeomorphisms, volume-preserving or not.
Groundwork in this direction has been laid in [5] and some continuity results have
been derived in [7]. See also Avila, Viana and Wilkinson [8, 9], and Poletti and
Viana [59].

The need for some regularity of the cocycle function is highlighted by the follow-
ing result of Bochi [15]: if the system (f, 1) is aperiodic, d = 2, and the linear cocycle
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is continuous and not uniformly hyperbolic, then it may be C°-approximated by lin-
ear cocycles with trivial Lyapunov spectra (the two Lyapunov exponents are equal).
Thus, continuity can only hold at cocycles which either are uniformly hyperbolic
or have trivial spectra.

In fact, the same is true restricted to the class of derivative cocycles of area-
preserving surface diffemorphisms, a much harder fact which was discovered by
Mané [54] and whose proof was completed by Bochi [15]. These results have been
extended to arbitrary dimensions by Bochi and Viana [17, 16]. They are generally
not true for cocycles over non-invertible maps, even in the SL(R?) case, according
to Viana and Yang [66].

On the other hand, the actual relevance of the fiber-bunching condition in this
context is presently not entirely clear, indeed this remains one of the outstanding
open questions in this area. Examples of discontinuity of the Lyapunov exponents
for Holder continuous linear cocycles which are not fiber-bunched have been found
in [65, Section 9.3] and Butler [25].

We have restricted our attention to matrix groups, for good reason. While the
basic concepts discussed here (such as Lyapunov exponents, Oseledets regularity,
etc.) extend to the more general setting of all (not necessarily invertible) matrices,
there is no hope to obtain any general regularity result for Lyapunov exponents in
this more general setting.

To explain why, let us consider the Lyapunov exponents of the random product
of two real matrices A; and Ag, with probability weights py = ps = 1/2. The
Lyapunov exponents are well defined, but the bottom one is equal to —oo if one of
the matrices is not invertible. Moreover, if some finite matrix product involving A
and A, is zero then the top Lyapunov exponent is —o0 as well.

For instance, let L(#) denote the top Lyapunov exponent for

1 0 cos2mf —sin2wl
A= (O O) and 4, = (Sin 270  cos2ml ) ’

viewed as a function of # € R. For § = p/4q with p odd and ¢ a non-zero integer, we
have that A; AJA; = 0, and so L(f) = —oo. By an upper semi-continuity argument,
it follows that L(#) = —oo for Baire-generic #. In fact, it is not difficult to give an
explicit generic quantitative condition ensuring that L(f) = —oo, and even a sharp
one, using the easily checked formula

20
L(o) = Z 2772 1og | cos 2mk#),
k=0
which also shows that the Lyapunov exponent L(6) is finite (and discontinuous) at
a full Lebesgue measure set of 6.

What happens in this sort of situation is that, while one can still analyze the
Lyapunov exponents of cocycles such as this one using a stationary measure 1 on
the projective space, just as we do in the present paper for the invertible case (but
taking care of issues such as indeterminacy), in the present setting the measure 7

becomes atomic, being the sum of Dirac masses with weights 27%~1 on the lines
through (cos 27k0, sin 27k6).

Significance and applications of continuity. Knowledge that the Lyapunov
exponents are continuous at some f can in itself give information about the dy-
namics of f, as pointed out in Bochi, Viana [17], and abstract facts about the
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existence of many (in the Baire sense) continuity points can be leveraged to a fine
understanding of the dynamics from the generic point of view.

For instance, continuity of Lyapunov exponents ensures that the Oseledets de-
composition varies continuously in a suitable sense: see Backes, Poletti [13]. More-
over, the convergence in the Oseledets theorem is locally uniform on the cocycle.
This sort of uniformity is useful in various situations in dynamical systems. An ex-
ample is the following relevant question in the ergodic theory of volume-preserving
diffeomorphisms f : M — M. See [39] or [60] for background.

Let K < M be a Pesin block, that is, a compact (non-invariant) set where
the Lyapunov exponents are all bounded away from zero and the estimates in the
Oseledets theorem hold uniformly. Over such a set, the Pesin stable and unstable
manifolds are well defined and depend continuously on the point. In particular they
have a definite size, and so nearby points in the Pesin block must belong to the
same ergodic component. One may thus ask about the stability of Pesin blocks:
is it the case that a smooth perturbation of g must also possess a Pesin block K,
nearby (in the sense that the symmetric difference K AK, has small measure) such
that its Pesin manifolds are close to the unperturbed ones? This can be shown
to follow from a suitable control of the dependence of the Lyapunov exponents,
and in particular if the averaged Lyapunov exponents depend continuously on the
diffeomorphism at the point f.

One setting where knowledge about the continuity of the Lyapunov exponents
has been used as an essential ingredient in the understanding of the dynamics is
in the study of quasiperiodic Schrédinger operators. Here f = f, : @ — 2 + a' is
a translation on a finite dimensional torus T¢, and the cocycle function takes the
form

Az) = (E ~ ) _01) & SL(2,R).

In this case the continuity of Lyapunov exponents with respect to both o and A has
been proved for analytic A and totally irrational o (meaning that f, is minimal),
by Bourgain and Jitomirskaya [23] when d = 1 and by Bourgain [21] in the general
case.

It was used, for instance, in the solution by Avila and Jitomirskaya [4] of the Ten
Martini Problem, which asked whether the Almost Mathieu Operator has a Cantor
spectrum (this can be rephrased as density of uniform hyperbolicity within certain
one-parameter families of cocycles). It also appears prominently in the proof of
the quantization of the acceleration for d = 1, which is the starting point of the
so-called global theory of one-frequency Schrédinger operators (Avila [10]).

Continuity is very subtle in this context: for instance, the aforementioned result
of Bourgain and Jitomirskaya does not hold when A is merely C* (a result of
Wang-You [67]). Continuity as a function of « also may fail at rational « even
when A is analytic, see [23] for a discussion.

Another setting which connects with the ideas discussed in this paper is that of
SL(2, R)-actions on moduli spaces of Abelian or quadratic differentials. Let n be an
SL(2,R)-invariant probability measure. By Eskin-Mirzakhani [36], n is equivalent
to Lebesgue measure on some submanifold. The Kontsevich-Zorich cocycle over the
Teichmiiller flow, which plays a fundamental role in the ergodic theory of translation
surfaces, has a nice behavior with respect to 7: it is basically a random matrix
product (involving countably many matrices), except that the products are merely
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“quasi-independent”. See [6] for an application of this idea to the issue of simplicity
of the Lyapunov spectrum.

Let (vk)r be a sequence of SL(2,R)-invariant probability measures converging
in the weak™ sense to some probability measure v. It would be tempting to use
the techniques of our paper to address the issue of continuity of the Lyapunov
exponents in this context. However, it turns out that the difficulties addressed in
our paper do not show up, and hence simpler techniques can be applied, as was
done in Bonatti, Eskin, and Wilkinson [19]. Indeed, by Theorem 2.3 in Eskin,
Mirzakhani, and Mohammadi [37] (see also Theorem 2.6 in [19]), the support of vy
is contained in supp v for every large k. So, in terms of the random matrix models,
if there is an invariant subspace for n then it is also invariant for the 7y for large
k. This allows one to quotient out bad invariant spaces, and establish continuity
by the usual Furstenberg—Kifer argument [42].

Quantitative regularity. Another natural question is how much can the regu-
larity of Lyapunov be upgraded from mere continuity. An old result of Ruelle [61]
asserts that if all the matrix coeflicients are positive then the largest Lyapunov
exponent is a real-analytic function of those coefficients. For locally constant co-
cycles over Markov shifts, Peres [58] has shown that if the Lyapunov exponents
are simple then they depend real-analytically on the transition data, assuming the
cocycle function itself is fixed.

For parametrized random matrix products satisfying strong irreducibility and the
contraction property, Le Page [57] has proved that the largest Lyapunov exponent
is a Holder continuous function of the parameter. This function is even C™ if the
probability distributions are absolutely continuous. In the opposite direction, a
construction of Halperin (see Simon and Taylor [62, Appendix 3]) shows that for
every a > 0 one can find random Schrédinger cocycles near which the Lyapunov
exponents fail to be a-Holder continuous.

These results have been sharpened by Duarte and Klein, who developed a unified
approach to proving generic moduli of continuity of the Lyapunov exponents for
different classes of linear cocycles, both random and quasi-periodic, especially in
the 2-dimensional case. See [27, 28] and also [26] for an account of their approach
and many applications.

Still in the 2-dimensional case, Tal and Viana [63] have shown that Holder con-
tinuity holds at every point where the Lyapunov spectrum is simple. This is an
application of estimates obtained from the methods we develop here, namely a
uniform bound

n(E(r)) < Cr?
for the weight of the neighborhood E(r) of the equator relative to stationary mea-
sures 7 of nearby random walks. Tal and Viana [63] have also shown that, while
Holder continuity may fail when the two Lyapunov exponents coincide, a weaker
log-Holder modulus of continuity does hold at every point. It would be interesting
to extend these results to arbitrary dimension.

Still regarding products of finitely many matrices, one problem that has proved
to be very resistent to all techniques so far is whether the dependence of the Lya-
punov exponent can be much better than Holder in some non-trivial region of the
parameter space. For instance, let us consider random matrix products of two
SL(2,R)-matrices A; and Aj, with probability weights p; = ps = 1/2. Over the
open set UH of uniformly hyperbolic pairs (A1, Az), the top Lyapunov exponent is
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clearly a real analytic function. Fix 1 < k < 0. Is there a non-empty open subset
in the complement of UH over which the top Lyapunov exponent is C*?

It is tempting to try to answer (affirmatively) this question by establishing a
suitable spectral gap. Unfortunately the current approaches to the spectral gap use
algebraic properties of the matrix coefficients, and thus do not apply over any open
set, see [22].

2. STATEMENT OF MAIN RESULT

We state our main result, Theorem B below, of which Theorem A is an easy
consequence. Initially, we recall the notion of Lyapunov exponents and

Given any compactly supported probability measure v on G = GL(R?), let N
and v% denote the corresponding Bernoulli measures on G and GZ%, respectively.
Consider the shift maps o : GN — G and o : GZ — G? given by

o ((gn)n> = (gn+1>n-
By the Oseledets multiplicative ergodic theorem (see [65, Theorems 4.1 and 4.2]),

there exist k € {1,...,d} and real numbers

(2.1) x1(v) > > xk(v)

such that for vM-almost every g = (go,...,gn,...) € GV there exists a decreasing
family of vector subspaces

(2.2) R =Vi(g) > - >V(g) > V**(g) = {0}

and for v%-almost every g+ = (..., 0—ny--,90s-++,Gn,--.) € GZ there exists a
direct sum decomposition

(2.3) R =B (g2) ®- - @ E"(g+)

such that, for every i =1,...,k,
e 90V(g) = Vi(o(g)) and goE(g+) = F'(o(gs)) for v-almost every go € G;
o Vi(g) = Ei(g+) @ Vi+l(g) for g = 7(g+), where m : GZ — GV denotes the
canonical projection.
e for every non-zero v; € Vi(g)\Vi*!(g) and vN-almost every g e GV

1
(2.4) 117?1 " log [gn—1--- govi| = xi(v);
e for every non-zero v; € E*(g+) and v%-almost every gy € G~
1 .1 - -
(2.5) lim —1og g1 -+~ govi[| = x:(v) = lim — log lg=; - -~ g7 vil

The maps g — Vi(g) and g+ — E’(g4+) with values in the Grassmannian of
R? are measurable and the dimensions dim V#(g) and dim E(g4) are constant on
full measure sets. The number m; = dimV? — dim V?*! = dim E* is called the
multiplicity of the Lyapunov exponent x;(v). Denote by Ai(v) = --- = A\g(v) the
Lyapunov exponents counted with multiplicity.

Let P = P(R?). The random walk defined by v is described by the pair (F,v"),
where

(2.6) F:G"xP->GYxP (g,v)— (6(g),g0v).
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The Lyapunov exponents and the Oseledets filtration may also be obtained from
it, as follows. Define

: — log 191
(2.7) O:GxP-o>R, ®(g,v)=log o

v

(For notational simplicity, we use the same symbol (v, say) to denote both a non-
zero vector in R? and the corresponding element of P; analogously, we use the same
notation (L, say) for a vector subspace of R? and the subset of P associated to it.)
A result of Ledrappier (see [65, Theorem 6.1]) asserts that:

e Given any F-invariant ergodic probability measure m on GN x P that
projects to v, there exists j € {1,...,k} such that

(2.8) J,GN . ®dm = x;(v) and m ({(g,v) (v E Vj(g)\VjH(g)}) =1.

e Givenany j € {1,...,k} there is an ergodic F-invariant probability measure
m projecting to v and satisfying (2.8).

Let (A1,%,.--,Am.k), k € N be a sequence of m-uples of matrices converging to
some (A1 0,y Am,oo) € G™ and (1, - --,Pm k), k € N be a sequence of probabil-
ity m-vectors real numbers converging to some (p1,4, - - -, Pm.x) € Am. Let vy and
vy be the probability measures in G given by

m m
(2.9) Vg = Zpi7k6Ai,k and vy, = ZPL%‘S&,W
i=1 i=1

We want to prove that A\;(v;) — A;j(vy) when k — oo, for every j =1,...,d.

In fact, we prove a stronger statement, involving probability measures whose
supports need not be finite. Let P.(G) be the space of compactly supported prob-
ability measures on GG, with the smallest topology 7 that contains both:

e W = the restriction of the weak® topology in the space of probability
measures on G

e supp* H = the pull-back under v — supp v of the Hausdorff topology H in
the space of compact subsets of G.

This topology T is metrizable, because both W and H are. A sequence (1) con-
verges to vy, in Pe(G) if and only if

(i) (Vk)k — Vs in the weak™ topology and
(ii) (supp vg)r — Supp Vs in the Hausdorff topology.

That is the case for the measures in (2.9) if A; — A; o and p; x — pio for every
1 =1,...,m; here, the assumption that p; ., > 0 is important to ensure continuity
of the supports.

Related to this, the example of Kifer [50] shows that part (i) alone is not enough
to ensure continuity of the Lyapunov exponents: for our results to hold one cannot
omit part (ii) of the definition of the topology.

Remark 2.1. If (1), — vy in the weak® topology then, given any € > 0, the
support of v, is contained in the e-neighborhood of supp v for all large k. Thus,
the condition (i) in the definition contains half of the condition (ii). The other half
is that, given any € > 0, the support of v is contained in the e-neighborhood of
supp vy, for all large k. This will be used repeatedly.
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Also, let us point out that for proving Theorem A it suffices to consider the case
7 = 1. That is because of the following construction. Let E = R?and 1 <1 < d.
The exterior l-power A'E of E is the vector space of alternating [-linear forms

w: E* x .- x E* > R on the dual space E*. The exterior product of vectors
v1,...,0 € E, is the alternating [-linear form v; A --- Av; : E* x --- x E* > R
defined by

(V1 A Av) (b1, ,01) = Zsign(U) b1y (V1) - -+ Do) (V1)

where the sum is over all permutations of {1,...,{}. If {e; : j =1,...,d} is a basis
of E then {ej, A= Aej, : 1< j1 <---<j <d}is a basis of A'E. So,

dimA'E = (Cll) .

Every g € G induces an invertible linear map Alg : A'E — A'E, defined by
Alg(w): (91, 1) » w(dr0g,....d10g),

for we A'E and ¢1,...,¢; € E*. Thus, any measure v in G induces a measure Alv
in GL(A'E), by push-forward under g ~— Alg. Moreover, the maps v + Alv are
continuous. One can check (see [65, Proposition 4.17]) that the Lyapunov exponents
of the random walk defined by Alv, counted with multiplicity, are the sums

)\i(l)(u) + - +)\i(l)(55> with 1 <41 <--- < < d.

In particular,
)\1(All/) =\ (V) +---+ )\l(V).
Thus, proving that v+ A;(Alv) is continuous, for every 1 <1 < d, will entail that
v — Aj(v) is continuous, for every 1 < j < d.
In view of these observations, Theorem A will follow immediately from:

Theorem B. The function A1 : Po(G) — R, v — A\ (v) is continuous, in any
dimension d = 2.

The rest of the paper is devoted to proving Theorem B. In Sections 3 and 4 we
present a useful large deviations principle for Lyapunov exponents (Theorem 4.1).
In Sections 5 and 6 we introduce several useful tools. In Section 7 we reduce the
proof of Theorem B to a main technical result, Theorem 7.1. The proof of the latter
result is by induction on the dimension r of the equator, as outlined in Section 7.
The case r = 1 is carried out in detail in Sections 8 through 11. The inductive step
is dealt with in Sections 12 through 16.

Before stating Theorem 7.1 and outlining its proof, we must introduce several
general notions and a number of auxiliary results. On the other hand, the proofs
of those results, given in Sections 3 to 6, are in themselves not used for estab-
lishing Theorem 7.1. Thus the reader is encouraged to skip them at first reading,
proceeding as directly as possible to Section 7.

3. INVARIANT SUBSPACES

In this section we introduce some background material, due mostly to Fursten-
berg and Kifer [40, 42]. This also allows us to introduce some notations that will be
useful in the following. Proofs and more information can also be found in Chapters
4 through 6 of [65].
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3.1. Stationary measures. Fix v € P.(G). We say that a probability measure n
on P is v-stationary if

j w<x>dn<x>=j (gy) dv(g) dn(y)
P GxP

for every bounded measurable function ¢ : P — R. In other words, 7 is v-stationary
if and only if P}n = n, where P} is the operator defined by

(3.1) Pe = jG (gx) dv(g)

in the space of probability measures. Moreover (see [65, Proposition 5.5]), n is
v-stationary if and only if the probability measure vN x 7 is invariant under the
projective cocycle F : GN x P — GY x P defined in (2.6). Stationary measures
always exist (see [65, Proposition 5.6]).

We also consider the operator P, : B(P) — B(P) defined in the space B(P) of
measurable bounded functions ¢ : P — R by

(3.2) Po(v) = Lw(gw du(g).

A function % is said to be v-stationary if P, = 1. A v-stationary measure 7 is
ergodic if every v-stationary function is constant on some full 7-measure set. This
happens (see [65, Proposition 5.13]), if and only if the F-invariant measure ™ x 7 is
ergodic for F'. The ergodic decomposition theorem (see [65, Theorem 5.14]) asserts
that every v-stationary measure is a convex combination of ergodic v-stationary

measures.
Let ® be as in (2.7). Then (see [65, Proposition 6.7]),

(3.3) A(v) = max{ dd(v x n) :n is a v-stationary measure}.
GxP
Denote a(n) = §,, p ®d(v x 1) for each v-stationary measure 7. The ergodic
decomposition theorem implies that the maximum does not change if we restrict to
ergodic v-stationary measures.
We may also view ® as a function on GY x P that depends only on gg an v:

lgov|

Then
1. gn-1---gov| 1" Ngig5-1 0 gov 1S
lim — log 1" =L 0L — iy = N jog MAHZL IO iy = N @ (E (g, 0)).
non vl non = gigov|  nn S

So, for any ergodic v-stationary measure 7, we have

1 1
(3.4) lim L Jog 19n=1" 90V _ J & d(v x n)
non vl GxP
VN x p-almost everywhere in GN x P.
Furstenberg and Kifer have shown (see [42, Theorem 2.1]) that if a(n) = A\ (v)
for every (ergodic) v-stationary measure 7 then for every v € P

lgn—1---govll _

1
(3.5) lim — log
non ol

1(v) for N-almost every g.
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This fact is also contained in Theorem 4.1 below. In the next section we analyze
what happens when the hypothesis of (3.5) is not fulfilled.

3.2. The equator. A vector subspace L of R? is said to be v-invariant if gL = L
for v-almost every g or, equivalently, for every g € suppr. Observe that if L is a
v-invariant subspace then

1
lim —10g [gn—1---g0 | L]

exists for every g in a full ¥N-measure subset of G and is constant on this sub-
set. This direct consequence of Kingman’s subadditive ergodic theorem (see [65,
Theorem 3.3]), together with the fact that the Bernoulli shift (o,2") is ergodic,
will be used repeatedly. It is part of the proof of the Oseledets theorem (see [65,
Proposition 4.11]) that for L = R? the limit coincides with the largest Lyapunov
)\1 (V)

For any ergodic v-stationary measure 7, define L(n) to be the smallest vector
subspace such that n(L(n)) = 1. Equivalently, L(n) is the vector subspace spanned
by the support of 5. Then L(n) is v-invariant:

| xame) dviiine) = | xum(@)dnt) =nw) =1
GxP P
and this implies
n(g 'L(n)) = J XL(n)(gv) dn(v) = 1 for v-almost every g.
P

So, it follows from the definition that g~ *L(n) = L(n) for v-almost every g.
Since the support of n spans L(n), it follows from (3.4) that we may find a basis

v1,...,v of L(n) and a full vN-measure subset of g such that
1 1 GoUs _
1im—logw =a(n) fori=1,...,1L
non Jvi
Then
.1
(3.6) lim —10g lgn—1---g0 | L(n)] = a(n)-

It also follows that if n is such that a(n) < A1(v) then L(n) is a proper subspace.
We call the equator of v a maximal v-invariant subspace E such that

1
(3.7) lim ~10g |gn-1---go | B]| < A(v).

Such a subspace is necessarily proper, but it may not exist. It follows from the
previous paragraph that the equator does exist if a(n) < A1(v) for some (ergodic)
v-stationary measure; the converse is also true. Moreover, the equator is unique
and contains L(n) for every ergodic v-stationary measure n: both claims follow
immediately from the observation that if two subspaces satisfy (3.7) then so does
their sum.

If the equator does exist, every ¢ in (the group generated by) the support of v
may be written as

E
(3.8) g= ( 90 ghl ) with ¢” € GL(E) and g+ € GL(E?).
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Let v¥ and v+ be the push-forwards of v under the maps g — ¢ and g — g=*.
Furstenberg and Kifer [42, Lemma 3.6] observed that

M (v) = max{\ (vF), M ()}
The property (3.7) means that A\;(vF) < A\;(v). Hence, A\ (vt) = A\ (v).

Remark 3.1. Any g € G that preserves F may written in the form (3.8). Then
(gu)t = gtut for every u, where L denotes the component orthogonal to £. Do
not mistake this for gut = hut + gtut. It is equally clear that |g*| < |g|. These
simple facts will be used several times.

Suppose that there exists some ergodic v'-stationary measure n* such that
oty = [ edwt o)
GxP
1

is strictly less than Ay (v1) = A\;(v). Then L(nt) is a proper v
of E+ and, according to (3.6),

-invariant subspace

1
lim - log gy -9 | LOn™)|l = a*(n*).

Then E' = E @ L(nt) is a proper v-invariant subspace of R? and it satisfies the
equator property (3.7), because

1
hrrln - 1og |gn—1---90 | E® L(n")|

1 .1
< max {lim —log [gn—1+++go | B[, lim —log lgn—1--- g0 | L(n")[}

Since E' contains E strictly, this contradicts the definition of the equator. This
contradiction proves that a(nt) = A1 (v) for every v*-stationary measure n=.

So, by (3.5), for every v+ € P(EL) there exists a full vN-measure subset of g for
which

1 gg g gavt
(3.9) lim = log 2=t 90V | _
non oL

/\1(1/).

This also implies (see [65, Proposition 4.14]) that for every v € R\ E there exists a
full vN-measure subset of g for which

1 1 ]
(3.10) lim 2 log [gn_1 - - - gov] — lim = log 19n=290%1 _ 5 ()
" " ol
The following example shows that the equator need not be any of the subspaces

V% in the Oseledets flag (2.2):

Example 3.2. Let d = 3 and m = 2 and v = p1d4, + p204, where the matrices
A; and Ay are given by

B 0 . o 0
Alz(o 1)W1thB—<0 Ul)anda>1

_( ReB O . _ cosf sind
Ag—( 0 1)w1thR9—(_Sm9 Cose)andt?;é()small.

The subspace E3 = {(0,0)} x R is v-invariant and corresponds to a zero Lyapunov
exponent. The only other v-invariant subspace is E12 = R? x {0}. Given any ¢ > 0,
the cone

C" = {(z,y,0) e R? : |y| < elz|} < E12
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is forward invariant under both A; and As, as long as 6 is close enough to zero.
This implies that some Lyapunov exponent is close to logo. Analogously, the cone

C* = {(2,9,0) € B : [a] < elyl} < Ena

is backward invariant under both A; and Az, which implies that some Lyapunov
exponent is close to —logo. So, the Lyapunov exponents are

A1 (v) = logo and A2 (v) = 0 and A3(v) ~ —logo.

Thus, Fs is the equator of v and corresponds to the middle eigenvalue Ao(v) = 0.
Note that both A+ = B and A+ = RyB have determinant 1.

4. UNIFORM CONVERGENCE IN MEASURE

We need to prove that the limit in (3.9) is uniform in measure with respect to
v € P(EL). This follows directly from a corresponding fact for the limit in (3.5),
that we state precisely as follows:

Theorem 4.1. Assume that a(n) = A1 (v) for every v-stationary measure 1. Then
for any € > 0 there exist constants C = C(v,e) > 0 and ¢ = c(v,e) > 0 such that
for any v € P and N € N, there erists a measurable set & = E(v,e,v,N) < GV
satisfying:
(1) N(E&°) < Ce N and
(2) 1 1 Hgn—l"'QOUH d
- ogT € (M) —e, (V) +¢) for everyge & andn = N.

In what follows we prove Theorem 4.1. The proof will not be used in the rest of
the paper, so the reader may choose to skip the remainder of this section at first
reading.

Recall that S = suppv is taken to be compact. Let C(S x P) be the Banach
space of continuous functions ¢ : S x P — R with the norm || = sup |¢|. Consider
the operator Q, defined on C(S x P) by

QW@%O=L¢@@@W@)

Note that 9, (g¢’,v) does not depend on ¢’. The dual operator Q} acts in the
space of finite signed measures on S x P by

YdOIN = Q.1 d\ for every ¢ € C(S x P).
SxP SxP

A signed measure A is said to be Q,-invariant if QXA = A. Given ¢ € C(S x P),
denote

3(v, ) = sup {J, @d)\: \is a Q,-invariant probability measure} .
SxP

Lemma 4.2. Given any non-negative ¢ € C(S x P) and any € > 0 there exist
P, &€ C(S x P) such that ¢ = Q,¢p — v + & and ||&] < Z(v, ) +e.

Proof. Let W < C(S x P) be the subspace of functions of the form ¢ = Q,¢ — ¢
for some 1 € C(S x P). By Hahn—Banach, given any ¢ € C(S x P) there exists a
continuous linear functional L : C(S x P) — R such that |[L| =1and L | W =0
and L(yp) = d(p,W). By Riez—Markov, there exists some signed measure A on
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S x P such that |A| = 1 and L(y) = {5, % dX for every ¢ € C(S x P). The fact
that L vanishes on W ensures that O\ = A:

J (Qup — ) d\ = L(Qu¢p —1p) = 0 for every ¢ € C(S x P).
SxP

Let A = At — A~ be the Hahn decomposition of A. Then [AT| + A7 = |[A] =1
and A = Q*\ = Q*\t — Q*\~. Since Q*\% are non-negative measures, the latter
implies that Qj)\i > \*. Since 9,1 = 1 we have
Qs = J 1dQENE =J Q,1d\*t = J LdAE = A%
SxP SxP SxP
Hence, Q¥\* = A, Let Ag = AT/|[AT||. Then Q%o = Ao and \g > AT > \. Since
 is assumed to be non-negative, it follows that
(4.1) J pdXo = J wd\ = L(p) = d(p, W)

SxP SxP
Take ¢ € C(S x P) such that [p — (Qu1 — ¥)| < d(p, W) + ¢ and then define
§=¢—(Qu —1). Then, by (4.1),

Musdev>+a<j pddo +
SxP

and this implies that [£]| < X(v, ) +¢. O

For n = 0, let B, be the o-algebra of SN generated by the family of cylinders
[0; Ao, ..., An], where the A; are measurable subsets of S. For a measurable func-
tion X : SN — R, let E(X) = {4 X dv and E(X | B,,) denote the expectation of
X conditioned to B, that is, the (essentially unique) B,,-measurable function such
that

J E(X |B,)dN=| XdN.
GN GN

The next lemma is a particular instance of the Azuma-Hoeffding inequality

(Azuma [11], Hoeffding [48]) for sums of bounded random variables:

Lemma 4.3. Let Y, : GY - R, n e N be such that A = sup,, |Y,| is finite and
(4.2) E(Yi, ---Y;,) =0 for every 1 <iy < --- < ig.

Then, for any s >0 and n € N,

2
N ) S
Flas I+ 4 Yl 2 o) < 200 (<50 ).

Proof. Since the exponential function is convex,

a 1+ 11—z 142 , 1-2 _, .
e’ =expla —a < et + e % =cosha + xsinha

2 2 2 2
for every x € [-1,1] and a € R. Taking x = Y;/||Yi|| and a = t||Yi||, we get that
Yi .
e < cosh(¥ ) + bt

for any ¢t € R. The hypothesis (4.2) implies that

IE( (ai +bm)> =[]a
i=1 i=1

?
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for any real numbers a,...,a, and by,...,b,. Hence,

E@mﬂg@%gmwmnnw

Using the fact that, for every = € R,

) Hcosh tYil)-

0 0
ka 2k

— ZC_ _ x?)2
cosh = 2, i < 2 e =€

we conclude that

. n 2 <
E (etZi:I Yi) < Hexp (§||}/z||2) = exp (5 Z ||YZ|2>
i=1 i=1

for any ¢t € R. Then, by the Chebyshev inequality,

j=1
n 12 &
R (etzizl Yj) Sexp | ~ts+ 5 3 Vil
1=1

for any ¢ € R. Taking t = s/>,"" | |Y;|?, we conclude that

n 2 2
N . ) 5 V< __5
(w;%(”QwW(QLmW\W<%#)

Analogously, replacing each Y; with —Yj,

NGmé%( ﬂg o (5o

Adding these two inequalities, we get the conclusion of the lemma. (I

Lemma 4.4. For any @ € C(S x P) and € > 0 there exist C1 = Cy(3),e) > 0 and
c1 = c1(¢,€) > 0 such that for any v e R? and N € N there exists a measurable set
&1 =& (v, ¢, e,v,N) satisfying:
(1) NS < Cre N and
n—1
1
2) - 1 Qut(gi-1.gj-1--90v) —b(gj, ;- gov) € (—£, ) for any g € & and
Jj=0
n>N.

Proof. We may suppose that [|¢| > 0 for otherwise the statement is trivial. Given
veR? and n e N, define

Yn(9) = Qut(9n-1,9n-1"90v) = ¢(gns gn - - Gov)-
Clearly, |Y,| < 2||¢|. Moreover, Y,, is B,-measurable and, by the definition of Q,,

E(Y, | Buo1) = Quib(gn-1,9n—1"""gov) — Lw(g,ggn—l - gov) dr(g) = 0.

Thus, given any k-uple (i1,...,45—1,%) with iy > 4; for every j =1,...,k — 1,
E(Y, Y, Vi) =E (Y -+ Vi \E(Y; | By_1)) = 0.

1k—1 1k—1
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So, (Y., )n satisfies the hypotheses of Lemma 4.4. Thus,

2
N ({9 eG": %|Y0(9) oot Ya(e)l 2 E}> S Zexp <_$;||2>

for every € > 0 and every n € N. The conclusion follows by letting &1 be the set of all
g such that the claim in part (2) holds for every n > N and taking ¢; = £2/(8]¢]?)
and C1 = 22‘;[’:0 e, O

Lemma 4.5. For every ¢ € C(S x P) and € > 0 there exist Cy = Cay(v,p,e) > 0
and ca = ca2(v,p,e) > 0 such that, for every v € P and N € N there exists a
measurable set E; = Ex(v, ¢, e,v, N) < GN satisfying:

(1) v ) < Cye 2N and

(e
Z (95,95 ---90v) < X(v, ) + ¢ for every ge & and n = N.

3|'—‘

Proof. Neither the hypothesis nor the conclusion are affected if one replaces ¢
with ¢ + const (clearly, X 4const = (v, ) + const). Thus, it is no restriction to
suppose that ¢ is non-negative. Then, by Lemma 4.2, for any € > 0 we may find
¥, € C(S x P) such that ¢ = Q.9 — ¢ +§ and ||§]| < E(v, ) +¢/4. Then

D Q951,951+ gov) — (g5, 95 - - - Gov)

S|
3|P—‘

ne
Z ©(95:9;5 - - - gov)
=0

,_.,_.

Jj=
n

1 1
£(95,95 - - gov) + Ew(gmgn - gov) — Ew(go,gov).

SRS

+

Il
=)

J
Let C1, ¢1 and & be as in Lemma 4.3, with € replaced with /4. The first term
in the previous sum is less than £/4 for every g € £;. The second term is bounded
above by [€] < 2(v, ¢) +¢/4. Let L = [|¢|/(4¢)]. The third and fourth terms are
less than €/4 if n > L. Thus, for every g€ & and n > N > L,

S|

n—1
Z ©(gj, 95 ---gov) < X(v, @) + €.
j=0

Take co = ¢; and Cy = max{Cy,e2F}. Define & = & if N > L and & = GY
otherwise. [l

Corollary 4.6. Let p € C(S x P) be such that {4 ,od\ = B(v,¢) for every
Q. -invariant probability measure A. For e > 0 there exist C5 = C3(v, p,e) > 0 and
cs = c3(v, p,e) > 0 such that, for every v € P and N € N there exists a measurable
set E3 = E3(v, ¢,6,v, N) < GN satisfying:
(1) N(ES) < Cze 2N and
1n 1

E Z (95,95 ---90v) € (E(v, ) —e,2(v, ) +¢) forge E andn = N
Proof. The assumption implies that 3(v, —p) = —3(v, ). So, applying Lemma 4.5

also to the function —¢ we get Co(—y,e) and co(—p,€) and E(—p,e,v, N) such
that

S|

n—1
Z ©(gi, g5 ---gov) > E(v, @) — €.
Jj=0
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for any g € E(—yp,e,v,N) and n = N. To conclude, take C3 to be the sum of
Ca(v, 1o, €) and c3 to be the minimum of ¢z (v, ¢, €) and &3 to be the intersection
of & (v, +p,e,v,N). O

We also need to interpret (v, ) in terms of the v-stationary measures. That is
the purpose of the next lemma:

Lemma 4.7. Let 1 : S x P — S x P, 1«(g,v) = (g9,gv). Then g 1x(v x 1) maps
the set of v-stationary measures bijectively to the set of Q. -invariant probability

measures. Its inverse is the push-forward w4 of the canonical projection w: Sx P —
P.

Proof. Given any probability measure A\ with Q*\ = A, let n be its projection to
P. For any bounded measurable function ¢ : S x P — R,

j (g’ v) dA(g,v) = j Quo(g'v) dA(', )
SxP SxP

=j (g, gv) dv(g) dN(g',v) = j (g, gv) dv(g) dn(w)
SxSxP SxP

(because the integrand does not depend on g’). Moreover, the special case when ¢
does not depend on g means that

j ¢<v>dn<v>=f o) NG ) = [ Quélg vy A )
P SxP

SxP

_ f 6(gv) dv(g) dA(g',v) = j 6(gv) dulg) dn(v)
SxSxP

SxP
for any bounded measurable function ¢ : P — R. In other words, 7 is v-stationary.
Conversely, given any v-stationary measure 77, define A on S x P by

j (g’ v) dA(g', ) = j (9, gv) dv(g) dn(v).
SxP SxP

for any bounded measurable function ¢ : S x P — R. Then

Qup(g',v)dX(g',v) = Que(g’, g'v)dv(g") dn(v)
SxP SxP

- j (9. 99'0) du(g) d(g') d(v).
SxSxP

Since 7 is v-stationary, the right-hand side may be rewritten as

j (g, gv) di(g) dn(v) = j (9,0 dA(g, v).
SxP SxP

Combining these two identities, one sees that QA = A. g

Proof of Theorem 4.1. Consider ¢ = ® o1~1, that is,

p:SxP—>R, ¢(g,v)=log ||j;1|| :
lg="oll
Lemma 4.7 implies that
(v, ) = sup{ wd\: Q¥ = )\}
SxP
= sup { ®d(v xn): nis a v-stationary measure} = A1 (v)
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and the hypothesis of Corollary 4.6 corresponds precisely to the hypothesis of The-
orem 4.1. Take C' = C3(v, p,¢) and ¢ = c3(v, p,¢) and € = E(v, ¢, e,v, N). Then
vN(E¢) < Ce ™ and for any g € &,

1
© (94595951 """ gov)

lgn—1---gov| 1 "Z

—1
R w2 P oo) =
=0

2

S|

%log by
Jj= j=0
€ (X, p) —&, X, p)+e) =M(v) —g, A\ (V) + ).

This completes the proof of the theorem. O

Part II. Preliminaries and outline of the proof
5. THE EQUATOR IS A REPELLER

Let (vk)r be a sequence converging to some vy, in the space P.(G). By (3.3),
for every k there exists a vg-stationary measure 7, on P such that

/\1(Vk) = J’G P‘I)d(l/k X nk)-

Since the space of probability measures on P is weak*-compact, to prove that
(M (vg)) converges to Aj (1) it is no restriction to suppose that the sequence (1 )k
converges to some probability measure 7,,. Then

A (k) — & d(vy X 1) when k — o0.
GxP
The measure 7, is necessarily v -stationary (see [65, Proposition 5.9]).
Now there are two alternatives. If Spr D d(vyy X M) = A1 (V) then

/\1 (Vk) — /\1(1/%),

as we wanted to prove. Otherwise, we are in the setting of Section 4: there is a
proper subspace E of R? such that

(i) F is vy-invariant and

1
lim —10g |lgn-1---go [ B < A(vec)-

(ii) For any € > 0 and § > 0 there exists N = N(v,,¢,d) € N and for every
vt e P(E1) there exists £ = E(v, €, d,v1) such that v} (£¢) < § and

1y, Jona--govr|

lot]

for any ge £ and n > N.

(iii) ne(E) > 0.

We are going to see that the properties (i) - (iii) are incompatible with the
fact that n,, is the limit of stationary measures for nearby random walks. Indeed,
if E satisfies (i) and (ii) then it is a kind of repeller for the random walk on P
associated to v, (the precise statements are in Section 5.2). As we are going to
see, that implies that the ng-measure of any neighborhood of F is small when k is
large, so that the limit 75, cannot satisfy (iii); the proof will use some general tools
that we introduce in Sections 6.1 through 6.4. Hence the second alternative above
cannot actually occur, and thus Theorem B will follow.

€ (M(ve) —e, M(vy) +€)
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5.1. Generic measures. Actually, it suffices to carry these arguments in a special
case, as we are going to explain. For each 1 < r < d, let Gr(r, d) be the Grassman-
nian manifold of r-dimensional subspaces of R?. Moreover, let F(r, d) be the space
of flags

FircFkc---cF._1 CFTCRd,

where each F; has dimension i. Note that Gr(1,d) = F(1,d) coincides with the
projective space P.

The natural action of G on the projective space extends to group actions on
every Gr(r,d) and F(r,d). Thus, in particular, to each probability measure v on G
we may associate operators P, and P acting, respectively, on bounded measurable
functions and on measures of Gr(r,d) or F(r,d), just as we did for P in (3.1) and
(3.2):

(5.1) P(v) = L (gv) dv(g) and Prn = L (gam) di(g).

We continue to say that a function v is v-stationary if P, = ¢ and a probability
measure ( is v-stationary if P¥( = (.

A subset of an algebraic variety X is Zariski-dense if it is not contained in any
proper algebraic subvariety of X. The cases we are interested in are X = Gr(r, d),
F(r,d), or G. We call a measure n on the algebraic variety generic if n(M) = 0 for
any proper algebraic subvariety M. Then, in particular, n is non-atomic, meaning
that n({p}) = 0 for every point p in the domain.

Remark 5.1. The restrictions n | U of generic measures are generic, and so are
the products 71 x 12 of generic measures. Moreover, if {n; : t € T} is a family of
generic measures, and & is a measure on T' then n = ST 7 dE(t) is a generic measure.
In particular, the generic measures form a vector subspace.

Proposition 5.2. Let X = Gr(r,d) or X = F(r,d). If v is a probability measure
whose support is Zariski-dense in G then v admits a unique stationary measure n
on X, and this measure is generic.

Proof. Lemmas 4.2 and 4.5 in Gol’dsheid, Margulis [45]. O

Proposition 5.3. Every v € P.(G) is approxzimated by generic probability measures
whose supports are Zariski-dense.

Proof. For each j € N, let {; € P.(G) be the normalized restriction of the Haar
measure of G to the ball of radius 1/5 around the identity I relative to some left-
invariant distance on G. It is clear that supp§; coincides with that ball, and ¢&;
vanishes on any proper subvariety of G. Moreover, (§;); converges to the Dirac
mass d7 in the topology of P.(G). For each j € N, let v; = v &, be the probability
measure on G such that, for any limited function ¢ : G — R,

f bd; =f o(gh) duig) d&; (h).
G G

The assumption on ¢; ensures that v; is generic. Moreover, (v;); converges to v in
the weak™ topology. Furthermore, suppv; coincides with the (1/j)-neighborhood
of the support of v, and so (suppv;); — suppv in the Hausdorff topology. This
proves that (vj); — v in P.(G). The fact that suppr; has non-empty interior
implies that it is Zariski-dense, for every j € N. O
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Corollary 5.4. Suppose that (A (v},))r — M (Vo) for any sequence (V) converg-
ing to Vo, in P.(G) such that v}, is generic and supp v, is Zariski-dense in G for
every k. Then (M (vk))x — A (ve) for every sequence (Vi) converging to v, in

P.(G).

Proof. Let (vi)r be any sequence converging to v, in P.(G), and d be any dis-
tance generating the topology of P.(G). By Proposition 5.3, for each k we may
find a generic probability measure v, arbitrarily close to v, and whose support is
Zariski-dense. Take vj, such that d(vg,v;) < 1/k. Using the well-known fact that
the function ¢ — A;({) is upper semi-continuous (this is a consequence of (3.3)
below), we may also suppose that Ai(v;,) < Ai(vx) +1/k. Then (v,)r — v and so
limy A1 (v},) = A1 (v ). Moreover,

limkinf A (k) = liin A (vy) = M(ve).
Using semi-continuity once more, this implies limg A1 () = A1 (Vo). O

Thus, to prove Theorem B it suffices to consider sequences (v ) — vy, of generic
measures such that every supp vy, is Zariski-dense in G. We do so in all that follows.
Then, by Proposition 5.2, the vg-stationary measure 7 is unique and generic.

5.2. Repelling behavior. Given any subspace W < R%, let Iy : R? — Wt
be the orthogonal projection along W. When W is 1-dimensional we also write
Iy, = I1,, for any non-zero vector w € W.

For any g € G and v € P, let Dg, : T,P — T,,P denote the derivative of
g : G — G at the point v € P. The tangent space T, P is naturally identified with
the orthogonal space {v}1. Then

: ol
(5.2) Dgy0 =1, 907—.
7 gl
For v e F, let
(5.3) ng_ =1lg o Dg, | Et:.Et > B, ng‘vj‘ = gJ‘UJ' [v]

lgvll
For n € N and any probability measure v on G, let v(™ denote the n-convolution,
that is, the push-forward of N under the map GN — G defined by g — ¢n—1 - - go:
(5.4) v = N{geGN:gy1---go € B})

for any measurable set B © G. Note that the map v — (") is continuous relative
to the weak™ topology.

Proposition 5.5. There exists ko = ko(Vy) > 0 and for each § > 0 there exist
No = No(vy,0) € N and 19 = 179(Vs,0) > 0 such that for every n = N and
vt e P(EL) there exists Eg = Ey(Vop, 6,1, vF) < supp U5 with v (&§) < 6 and

D 1,1
(1) 1og% > kon for any g€ & and v € E;

1 LH

lg™v

(2)
lgv|
Proof. Fix numbers a = a(vy,) and § = (v ) such that

> 1 for any g € &.

1
117rlnﬁlog\|gn,1---go |E| <a<pf <M(vy)
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and then choose 0 < kg < 8 — . Let 6 > 0. By property (i), there exist N’ € N
and & < GY such that 3 ((£')¢) < 6/4 and

(5.5) logw <onforany ge & andve E andn = N'.
v
By property (ii), there exists N” € N and for each v+ € E+ there exists £” < GN
such that v} ((£”)¢) < 6/4 and
lgi_1 - gov*|
o]
Let N = max{N’, N"} and for each n > N” and vt € P(E*') define
E" ={gn_1-go:ge& n&"}.

The definition (5.4) gives that v ((£”)°) < V5 ((£')° U (£")°) < §/2. Moreover, if

g € & then (5.5) and (5.6) give that

|1Dgiot _ lgtet]

P = log t—t —
lot] lot]

for any v € E and n = N™. This gives claim (1), as long as we choose Ny = N"

and & < &£”, which we will do in the next paragraph.

Now let us explain how to obtain claim (2). The following elementary inequality
will be used a couple of times:

(5.6) log = Bn for any g€ £” and n = N”.

log |||gv”|| = (8 —a)n > kon
v

(5.7) log

|v1 £ v

for any non-zero vy, vy € R%.
lva]|

(5.8) | sin Z(v1,v2)| <

Let a = (x1 — x2)/8 where x1 > x2 are the two largest Lyapunov exponents
in (2.1). Clearly, we may assume that 8 has been chosen greater than y; — a
(keep in mind that x1 = A1). Consider the Oseledets splitting in (2.3) and denote
E* = E2®---@®E*. By the Oseledets theorem (see [65, Theorem 4.2]), there exists
a measurable function g+ — ¢(g+) with values in (0, 1) such that

(5.9) c(g1) "0V [or]| < [gn-1--- gova|| < elgs) e T oy

(5.10) [gn—1-+-govs | < e(ge) " e 2T oy

for any vy € E'(gy), vy« € E*(g1) and n € N, and for vZ-almost every g4. In
particular, E'(g+) n E*(g+) = {0}. Since the growth rate of every vector v € E is

strictly less than A\; = x1 (property (i) above), we also have that E'(g+)nE = {0}.
Thus, up to reducing the function ¢(g+ ), we may suppose that

(5.11) |sin Z(E(g2), E*(91+))| = ¢(gz) and |sin Z(E*(g1), B)| = ¢(g2)
for v/Z -almost every g4. Fix b = b(v,,d) > 0 small enough that the set
A={g:€G":coy) > b}

has vZ (A°) < 6/4. Then fix M = M(v,,,6) € N such that
2

b
(5.12) eTM < 5 for every n = M.
Let No = max{N’, N, M} and for each n > Ny and v* € P(E') define

Eo=1{gn-1-go:grenm & nr " nAno ™A} nsupp i
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(r : GZ — GY is the canonical projection). The choices of £, £&” and A ensure
that u$)(5g) < 0. For each g € &, take g+ € &' nE" n A n 07" A such that
g = gn_1--+go and then let v = v; + v, be the decomposition of v with respect
to the splitting R? = E'(g4) @ E*(g+). From property (5.11) and the fact that
g+ € A we get

[
e S [z e B )

Since 8 > x1 — a, the inequality (5.6) gives

< clgs) 7 ot < b7 ot

(5.14) [ e i e
Properties (5.9) and (5.10) give
(5.15) lgvt | < b~ teb et oy | + 07t o, .

Putting the relations (5.13) through (5.15) together, and using (5.12), we obtain
o] < b o 4 b b2
<072 o 4+ 520 ot | <67 o + 2 o]
This proves that ||vy | > (b/2)e2%"|v|. Combining this inequality with (5.13) and
properties (5.9) and (5.10),
e oy | > (07 /2)e 0" o

lgva] =0
|< -1 X2+a)nH,U*” < b72e()(2+a)n”vj_”

lgvs|

In view of our choice of a and the relation (5.13), this implies that

Hgv* H 46(X2—X1+4a)n < 2b—46—4an < ée—Qan < é
lgv1 H R 2 =2
Then it follows that
sin (g, B (0"g2)] < [sin Z(gvt,gon)| < {22 < b2
gu1

Now, property (5.11) implies that | sin Z(E'(c"g+), E)| = b, because we have taken
g+ such that o™g4 € A. Since | sin| is a subadditive function, these two inequalities
imply that |sin Z(gvt, E))| > b/2, which means that |gtvt| > (b/2)|gvt|. This
proves (2) with o = b/2. O

Let d(-,-) be the distance defined on the projective space P by
(5.16) d(u, v) = Hnuﬁ' = [sin Z(u, v)|.
v

Note that 0 < d(u,v) < 1 for every u,v € P. Next, we formulate the infinitesimal
estimate in part (1) of Proposition 5.5 in terms of the distance to the equator:

Corollary 5.6. For each n = N there exists pg = po(Ven,n) > 0 and for each
x € P with d(z, E) < po there exists Dy (x) = Dy (Va,d,n,2) C supp U5 with,
W (Do (2)°) < 6 and

(5.17) —logd(gz, F) < —logd(x, E) — %n for any g € Do (x).
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Proof. Let exp denote the exponential map of the Riemannian manifold P. For

each z € P close to the equator we may write = = exp, v> for a (unique) vt € E+
with |[vt| = d(z,v) = d(x, E). Then

. d(g(E, E) . d(equv DgUUJ_7 E)
lim Tl — lim - 1 =1
w8 |Dgyvt|  amB |[Dggot|
and the limits are uniform in g € supp I/EZZ ). In particular, there exists py =

po(Va,n) > 0 such that

Aoz B) | 1Daivt| o

d(x, E) ol 4

(5.18) dz,E)<py = |log

for every g € supp V(,n) Define D, (z) to be the set & (v, §,n, v+) given by Propo-
sition 5.5. Then (5.17) follows from (5.18) and part (1) of Proposition 5.5. O

We also need to extend these estimates from k& = o0 to every large k € N:

Corollary 5.7. For anyn = N and p € (0, po) there is ko = ko(Vep, 6,1, p) € N and
for any x € P with p < d(z, E) < po there is Di(x) = Di(Vop, 4, n, p, &) C SUpp V,gn)
such that I/](Cn) (Dr(z)°) <6 and

(5.19) —logd(gz, E) < —logd(z, E) — %n for any g € D(x) and k = k.

Proof. Let n = N and p € (0, po) be fixed. Theset K = {x € P:p<d(z,E) < po}
is compact. By continuity, there exists 8 = 0(vy,n,p) > 0 (keep in mind that
ko = ko(Va) and pg = po(vs, n)), such that

d(g'rv E) d(hya E) R0
5.20 log ———+ —log ————=| < —
(5:20) U B BdwE) | -2
for any g € B(h,0) and = € B(y,0) and h € supp uf,j” and y € K. Choose a finite
set {z; : j =1,...,l} © K such that the balls B(x;,0), j =1,...,1 cover K. For
each x € K choose j € {1,...,1} such that x € B(x;,0) and define

(5.21) Dy (x) = [ 6-neighborhood of D (x;)] n supp V,(C").
Let z € K and g € Di(x). By definition, there exist z; € K and h € Dy, (x;) such
that d(x,z;) < 6 and d(g,h) < 0. Then (5.20) gives that

—@M@LEk@J%ﬂLEyJ%ﬂm%E%H%ﬂ%JD+%%,
whereas (5.17) gives that —logd(hx;, E) < —logd(x;, E) — (3/4)kon. Substituting
the latter in the former one obtains (5.19). Since V,(Cn) converges to ™ in the
weak*® topology, the limit inferior of the u,i")-measures of (5.21) is greater than or
equal to

VI (Do () > 16

for any j =1,...,l. In particular, there is ko = ko(ve, 9,1, p) € N such that
V,(C")(Dk(:zr)) >1—4 for every k = kg and x € K.

This completes the argument. O
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6. A TOOLBOX

Here we collect several fairly general ideas and facts that are required for the
continuation of our arguments. The proofs themselves will not be used in what
follows, so the reader is advised to skip them at this stage, and to return to this
section for reference along the way, as needed. In our applications, the metric spaces
X and X’ will be suitable subsets of Grassmannian manifolds or flag varieties.

6.1. Couplings. Let n and 1’ be measures on measurable spaces X and X', re-
spectively, with n(X) = n’(X’). A measure 77 on X x X' is a coupling of n and 7’
if it projects to n on the first factor and to n’ on the second factor, that is, if
A(A x X') = n(A) and (X x A') = if (4')

for any measurable sets A ¢ X and A’ ¢ X’. When = 7' (and X = X') we
call 77 a self-coupling of n. A self-coupling is symmetric if it is invariant under the
involution ¢ : (z,2') — (2/, x).

For example, the diagonal embedding of a measure n on X is the symmetric
self-coupling 7 of 1 defined by

(6.1) W(B) = n({w e X : (w,2) € BY).
Another simple example of a coupling is the scaled product

1
(6.2) 7 =—(nxmn"), where c = n(X) = n'(X").

c
Couplings are far from being unique, which turns out to be a very convenient
feature in our context. Especially, we will use the following elementary construction:

Lemma 6.1. Suppose that A ¢ X and A’ ¢ X' are such that n(A) < n(X\A)
and n'(A") < n'(X"\A"). Then there exists a coupling 11 of n and n' such that
(A x A") =0.

Proof. Let B = X\A and B’ = X"\ A’ and then take

1 1
= (| A) < (0 | B) + ——(n | B) x (of | 4)
(6.3) n'(B') : 1 n(B) c
i <n<B> NN W(B)n’(B’)) 1 B)>x 1 ),
where ¢ = n(X) = ' (X"). -

Lemma 6.2. Let Aj c Cjc X and A < C; < X', j =1,...,k be such that

(1) 9(C;) < n(X\Cj) and n/(CF) <7/ (X'\Cj) for 1 <j <k;

(2) Aj x (X'\C%) and (X\Cj) x A} are disjoint from A; x A} for1 <i<j<k.
Then there exists a coupling 1) of n and 1’ such that (A; x A}) =0 forj=1,... k.
Proof. We are going to construct couplings 7;, j = 1,...,k of 7 and n’ such that
(6.4) 7j(A; x A}) =0 for any 1 <7 < j.

Then it suffices to take 1 = 7.
The case j = 1 of (6.4) is contained in Lemma 6.1. We proceed by induction.

Let j € {2,...,k} and assume that we have constructed a coupling 7,1 of  and 7’
such that A; x A; has zero measure for every i = 1,...,j — 1. We claim that

(6.5) Mj—1(Cj x C%) < @j—1(C5 x (C)°),



CONTINUITY OF THE LYAPUNOV EXPONENTS OF RANDOM MATRIX PRODUCTS 27

where O = X\Cj and (C})¢ = X'\C]. Indeed, suppose that n'(C?) < n(Cj).
Recall that n(Cj) < n(C%), by assumption. Moreover,

o 7-1(C; x C3) +1;-1(CF x CF) = n/'(C7),

o 7-1(C§ x C}) +1;-1(C5 x (C})°) = n(C5).
Combining these relations we get the inequality in (6.5). The case n(C;) < 7'(C})
is analogous, and so the claim is proved. In particular, the following number is

smaller than 1: }
j—1(4; x A%)

j-1(C§ x (C})°)

Let m: X x X' - X and 7’ : X x X’ — X' be the canonical projections. Let (;
be the scaled product of my (7j—1 | A; x A;) and 07}, (71 | 5 x (CJ’-)C), and (;
be the scaled product of 8y (71 | Cs x (C’;)C) and 7, (-1 | Aj x A;) Then
define
(6:6) iy =m1 = (-1 [ Ay x Af) =05 (i1 | CF x (C)) + G + G,

It is clear that 7; is a (positive) measure, because 6; < 1. It is also clear that 7); is
a coupling of n and 7'

il = Talljim1 — T (Mj-1 | A x Aj) — 05y (j-1 | CF x (CF)°)

+ s (M1 | Aj x A)) + 0574 (nj—1 | CF x (C})°) = mutjjm1 =1
and, analogously, m,7; = 7’. Note also that 7;(A; x A}) = 0. Moreover, (; is
concentrated in A; x (C7)¢ and ¢} is concentrated in C§ x A’. Since both sets are
assumed to be disjoint from A; x AL, we get that

ﬁj (Az XA;) <ﬁj_1 (Az XA;) =Oforz=1,,]—1
This completes the induction. ([

0; =

Remark 6.3. By construction, the coupling 7 varies continuously with 7 and 7’
in the weak™*-topology at all points such that the boundaries of all A; and C; have
zero n-measure and the boundaries of all A; and C]’- have zero n’-measure.

Remark 6.4. The constructions in Lemmas 6.1 and 6.2 preserve the class of non-
atomic measures and, when X is an algebraic variety, also the class of generic
measures: if 7 and 7’ are generic then so is the coupling 7. That follows directly
from Remark 5.1 and the expressions (6.3) and (6.6).

Remark 6.5. When X = X', these constructions are involution-invariant in the
following sense. First, in Lemma 6.1 the coupling 7 given by (6.3) is replaced
with ¢47) when one exchanges the roles of n, A and ', A’. In particular, if n = 7’
and A = A’ then the self-coupling 7] is symmetric. In Lemma 6.2 we may take
(¢} = 1x(; and then the coupling 7; is replaced with t47); when the roles of 1, A;, C;
and 7', A}, C! are exchanged. In particular, if n = 7/, A; = A}, and C; = C} then
the self-coupling 77 = 7 is symmetric.

Proposition 6.6. Let K be a compact subset of the product X x X' such that
K@)={yeX:(y,2)e K} and K'(z) = {3 € X' : (z,y') € K}.

satisfy

(6.7) n(K(z") <n(X\K(2)) and n' (K'(z)) <7 (X"\K'(z))
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for every (x,2') € X x X'. Then there exists a coupling j of n and n’ that vanishes
on a neighborhood of K.

Proof. We are going to find opensets A; c C; € X and A} c Cf <« X', j =1,... K,
such that

(a) n(C;) < n(X\C;) and n(C5) < n(X\Cj);

(b) A; x A} is disjoint from (X\C;) x A} and A; x (X\C});

(c) and the union of the products A; x A’ contains K.
Then, by Lemma 6.2, there exists a coupling 7 of n and 1’ vanishing on the union
of A; x A;, j =1,...,k, which gives the claim of the present lemma. So let us
explain how to construct such sets.

By compactness, there exists ¢ > 0 such that (6.7) remains valid when K(z')
and K’(x) are replaced with their 10e-neighborhoods. Let € be fixed. Also by
compactness, the maps « — K'(z) and ' — K (') are upper semicontinuous. In
particular, for any € X and 2’ € X' there exist d(x) > 0 and ¢'(z’) > 0 such that

K'(y) € B- (K'(z)) if d(z,y) < 46(x) and
K(y') € B- (K(2)) if d(2',y") < 45(z").
It is no restriction to assume that d(x) and ¢’(z’) are bounded by ¢, and we do so.
Let (z1,27),..., (zk, 7}) € K be such that B(xz;,d(z;)) x B(x},0'(2)), j =1,...,k
cover K. Initially, define

Aj = Blx;,36(x;)), A = B(x,30'(x}))
Cj = B (K(a}),10¢), C} = B (K'(z;),10¢).
Note that A; < Cj and A} < Cj since (z;,2) € K and 4,0’ < e. Conditions (a)
and (c) are clearly satisfied, but not necessarily (b). In the following we replace

the sets A; and A’ with suitable subsets, in such a way as to achieve (b) while
preserving (c). The condition (a) is clearly not affected.

(6.8)

(6.9)

Aj
!
’ Aj
Tip 1 X\C
Y =
7] S e e A
Z Z; Y

FIGURE 1. Trimming the sets A; and A: to achieve the disjoint-
ness condition (c), in the situation described in the figure A; x A’
is replaced with A; x (A;-\/i;), which corresponds to the shaded re-
gion. A dual operation is applied to A;, and the whole procedure
is repeated for every 7 and j.
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Consider any i,j = 1,..., k. If A; x A} is disjoint from A4; x (X\C]) and
(X\C;) x A there is nothing to do. Next, let us consider the case when there exists
(y,9') in (4; x A}) n((X\C;) x A}). See Figure 1. We claim that A; x B(}, 46(x})
is disjoint from K. Indeed, suppose there existed z € A; and y” € B(x%,4(x})) such
that (z,y") € K. Since d(z,y) < 65(z;) < 6e, it would follow that y € B(K (y"), 6¢).
On the other hand, K(y") ¢ B(K(x}),€) because d(y”,x}) < 45(z’). Hence, we
would have y € B(K (x}), 7¢), which would contradict the fact that y € X\C;. This
contradiction proves our claim. Now, this ensures that A; x Ag is disjoint and at a
definite distance from K. Thus, we may replace A’ with A;\/_l; in our construction
without affecting condition (d) and, by doing it, we get that A; x A’ becomes disjoint
from (X\C;) x Aj. The case when there exists (y,y') in (4; x A%) n (4; x (X'\C}))
is treated in the same way, trimming A’ instead. Repeating this procedure for each
i and j, we get all three conditions (a) to (c). O

Remark 6.7. The union of the boundaries dA; over all j = 1,...,k does not
increase under the trimming operation, and the same holds for the union of the
boundaries 0A} over j =1,...,k.

Next we want to state and prove a parametrized version of Proposition 6.6. The
following elementary fact will be useful at other places as well:

Lemma 6.8. Let g: Z xT — R be a bounded measurable function, where Z is a
metric space and (T, ) is a probability space. Let zg € Z be such that the set D(zp)
of values of t € T' such that z — g(z,t) is discontinuous at zy has zero p-measure.
Then z — {. g(z,t) du(t) is continuous at z = z.

Proof. Fix any € > 0. For each k € N, denote by T}, the set of values of ¢t € T such
that |g(zo0,t) — g(z,t)| < € for any z in the (1/k)-neighborhood of zg. The sequence
T}, is non-decreasing and the assumption ensures that U7} has full y-measure. Fix
k such that u(TF) < e. Then for any z in the (1/k)-neighborhood of =z,

JT,: 9(z,-)dp

Since € > 0 is arbitrary, this proves that zg is a continuity point. (Il

+ < (1 +2|g])e.

[ oo ydu [ st <e ][ oo an

Proposition 6.9. Let X, X', Y, and Y' be compact metric spaces, K be a compact
subset of X x X', and n = {ny 1y € Y} and 0’ = {n,, : y' € Y'} be continuous
families of probability measures on X and X', respectively, such that

(6.10) ny (K(2')) <ny (X\K(2")) and n, (K'(x)) <n, (X"\K'(z)) .

for every (x,2') € X x X' and (y,y') € Y x Y'. Then there exists a continuous
family 77 = {7y, : (y,y") € Y x Y’} of probability measures on X x X’ such that
each Ty 15 a coupling of n, and 77;, vanishing on a uniform neighborhood of K.

Proof. By compactness, the assumption (6.10) implies that there exists € > 0 such

that
ny(B(K(2"),10¢)) < n, (X\B(K (z'),10¢)) and

1y (B(K'(x),10¢)) < 1, (X"\B(K'(z),10¢))

for every (z,2') € X x X’ and (y,y’) €Y xY’. Fix € and let §(z),d'(z") € (0,¢) be
asin (6.8). Let (z1,7),..., (zx, 7)) € K be such that B(z;,d(z;)) x B(z},d (x})),
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j=1,...,k cover K. For each s € [0,1] and j =1,...,k, define
Ajs = B(xj, (3 = s)d(x5)), Aj, = B(a, (3 —s)d'(a))
Cjs = B(K(2}),(10 = s)e), Cj, = B (K'(z;),(10 — s)e) .

Applying to the measures 7, and 7;,, and the sets A5, Cj s, A’ ;, and C}
same construction in Lemma 6.2, we find for each s € [0,1] and (y,y/) € Y x Y’
coupling 7}y 4 s of 7, and 77 Wthh vanishes on a neighborhood of K independent
of both s and (y,y'). (recall that the trimming is always done at a definite distance
from K).

By Remark 6.3, for each fixed s € [0, 1] the map (y,y’) — 7y,4,s is discontinuous
at a given point (z,2’) € Y x Y’ only if the union of the boundaries of 4, and
C},s has positive measure for 7, or the union of the boundaries of A’ s and C”
has positive measure for n.,. In the setting of (6.11), the boundarles of the AJ s
are pairwise disjoint for each fixed j, and the same is true for the C;,, A’ , and

87
07 s~ Thus, positive measure may occur only for a countable subset of values of s.
Remark 6.7 ensures that the latter conclusion remains valid after the trimming. In
conclusion, every (z,2) € Y x Y’ is a continuity point of (y,y’) — 7.4, for all but

countably many values of s € [0, 1]. Then, using Lemma 6.8,

1
ﬁy_’y/ = J ﬁy.,y'-,s dS
0

is a coupling of 7, and 77;, depending continuously on y and y’ and vanishing on a
uniform neighborhood of K. (|

(6.11)

Remark 6.10. When X = X’ and the set K ¢ X x X is symmetric, one may ex-
change A;, C; with A%, C% in (6.9), and AJ s, Cjs with A% C% o in (6.11). Thus (re-
call Remark 6.5) when the roles of 77 and n’ are exchanged the coupling 7 is replaced
with ¢47 in Proposition 6.6 and each 7, , is replaced with ¢47y,,+ in Proposition 6.9.
In particular, if n = ' and Y = Y’ then the self-coupling 7 in Proposition 6.6 is
symmetric, and the family 7 in Proposition 6.9 is involution-invariant, meaning
that 7y y = Ll for every (y,y') €Y x Y.

The following special case of Proposition 6.6 will be useful:

Corollary 6.11. Let X = X' and assume that n and 0’ satisfy n({z}) < n(X\{z})
and n'({z}) < 0 (X\{z}) for every x € X. Then there exists a coupling 7} of n and
7' that vanishes on a neighborhood of the diagonal of X x X. If n = 7' then the
self-coupling 11 may be chosen to be symmetric.

6.2. Markov operators. Let X be a metric space. We denote by B(X) the Banach
space of bounded measurable functions on X, with the norm

9] = sup{|¢(2)] : z € X}.
A Markov operator is a linear operator T : B(X) — B(X) of the form

(6.12) Ti(z) = jx Oy) dos (y)

where {0, : © € X} is a measurable family of probability measures on X. It is
clear that 7 is a bounded operator, with ||7]| = 1. We call it continuous if the
map x — o, is continuous relative to the weak® topology. Then T preserves the
subspace C(X) of bounded continuous functions.
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The dual operator T* is defined on the space of bounded finitely additive signed
measures 77 on X with the total variation norm (see [29, IV.4.5]) by

(6.13) T*n = J o dn(z).
X
The two are related by
(6.14) J Yd(T*n) = J (T%) dn for every ¢ and .
X X

A measure n is T -invariant if T*n =n. If T is continuous then 7* preserves the
subspace of bounded (countably additive) signed measures on X.

Remark 6.12. If {0, : x € X} is such that every o, is a generic measure then, cf.
Remark 5.1, the range of the associated dual Markov operator T *n = SX oy dn(zx) is
contained in the space of generic measures. In particular, any 7T-invariant measure
is a generic measure.

Suppose that X comes with a transitive G—action (g, z) — gzr. Grassmannian
manifolds Gr(r,d) and flag varieties F(r,d) are the examples we have in mind.
Then, to any probability measure v on G we may associate the Markov operators
P, and P} in (3.1), (3.2), and (5.1)

(6.15) ﬁad%w)==J;¢%9w%ﬁ49)and‘P3n==J;(g*n)dvaﬁ~

This corresponds to (6.12) with o, = the push-forward of v under the map g — gz.
Note that P, is continuous if the G-action is continuous, and a measure n on Z is
‘P,-invariant precisely if it is v-stationary. These are the fundamental examples of
Markov operators in our context, but we will have to deal with other types as well.

One reason is that the kind of conclusion we are seeking, namely, that stationary
measures give small weights to a neighborhood of the equator is local in nature.
That is consistent with the fact that the information on the dynamics we can
extract from Proposition 5.5 is clearly local. In contrast, the property of being a
stationary measure is not local: the restriction of a P, -invariant measure 7 to some
set U c X is usually not a P,-invariant measure. The way we handle this is by
finding a “localized” Markov operator, related to the original one and to the domain
U in an explicit manner, with respect to which the restriction n | U is indeed an
invariant measure.

Remark 6.13. The assumption that the G-action on X is transitive means that
G — X, g — gz is surjective for any fixed z € X. Then every probability measure
o on X lifts (non-uniquely) to a probability measure p on G: use the Hahn—Banach
and Riesz—Markov theorems. In particular, (6.12) may be written in the form

Twm=wamm@

for some family {u, : @ € X} of probability measures on G. This general statement
is not used in the present paper, but an explicit construction in a special case will
appear in Lemma 16.1.

Proposition 6.14. Let T : B(X) — B(X) be a Markov operator, n be a T-
invariant measure, and U < X be such that n(U) > 0. Then there exists a Markov
operator Ty : B(U) — B(U) that leaves invariant the normalized restriction ny of
1 to the subset U.
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Proof. We are going to find {oy, : © € U} such that Tyy(z) = SUl/) Ydou . (y)
preserves . Let xy denote the characteristic function of U. Slnce 71 is T-invariant,

0= L (Txw — xv) dn = L UX o) dos(y) - xo(@)| dn(a)
- [ W) - i) + | o) ante)
U c
that is,
(6.16) J;J 0 (U°)dn(x) = J ) o, (U) dn(x).

Let J be this number. If J = 0, there is not much to do: ny turns out to be
T-invariant, and it suffices to take oy, = 0, for x € U. If J > 0, define

1
(617) s = (00 |U) + 0,09 | (o210 dn(e)
for each x € U. In other words,
Tu(x J Y(y)doy(y) + 0, (U)= J J Y(y) do,(y) dn(z)
and T3¢ = | (02 | 0)dg(a) + | 0u0)d@)] | (o2 | 0ydn(e)
U U J Jue
Observe that oy, is a probability on U:

o0 (U) = o0 (U) + UI(UC)% J () de() = 0a(U) + 02 (U%) = 1

Moreover, by the definition of J,

T = | (e |0y dn @) + | oo dn@3 | o 10 dne)
1 1
- 1U)d L |U)d — | (0w | U) dip(a).
7 (e 1a@ [ e nme) - o [ o1
Each ¢ € B(U) may be viewed as an element of B(X) that vanishes outside U.
Then
| van = — || v o ine - = | f 0(0) dor () dn(a)
= dn( ) dn( d
o) LTw(I) n(z f () dn(z f Y dno .
Thus, 7T*ny = nu, as we wanted to prove. O

The operator Ty in Proposition 6.14 need not be continuous, in general. In the
next proposition we fix that problem.

Proposition 6.15. Let 7 : B(X) — B(X) be a Markov operator, n be a T-
invariant measure, and U < X be such that n(U) > 0. Assume that x — oy is
continuous on U. Then there is a continuous Markov operator Ty : B(U) — B(U)
such that the normalized restriction ny is Ty -invariant.
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Proof. The strategy is to consider a monotone family {U; : ¢t € [0,1]} of subsets of
U with pairwise disjoint boundaries, and to associate to each U; a Markov operator
T: such that T,*ny = nu. These operators will still be discontinuous, but we can
get rid of the discontinuities by integrating with respect to t. The details follow.

As before, let J be the number in (6.16). When J = 0 there is nothing to do,
because in that case the construction in Proposition 6.14 does yield a continuous
Markov operator Ty. From now on, assume that J > 0. Let a > 0 be a small
number. For each t € [0,1], define U; = {x € U : d(z,U¢) > at} and

J(t) = fU 0o (UF) di(z).

Note that J(t) = J > 0. Then let & be the probability measure defined on U by

(6.18) ij | U dn(z) + (€ =7 | U.

Observe that & is well defined (each o, | Uy may be viewed as a measure on U,
since Uy < U, and so all the terms in this identity are measures on U) and it is
indeed a probability measure.

Now let 7; : B(U) — B(U) be the Markov operator associated to the family

(6.19) Ozt = (02 | Ut) + 0. (Uf)&

of probability measures on U. Condition (6.18) means that ny is T;-invariant:

Tty = Lm | UL) di () + jU o2 (U9 dipr ()
J(t)
n(U)

Next, define Ty to be the Markov operator associated to the family of probability
measures

(6.20)

- J (ox | Up) dny (z) + & =nu.
U

1
(6.21) OV = J 0, dt.
0
It is clear from (6.20) that ny is Ty-invariant.
We are left to show that the map x — oy, is continuous with respect to the
weak™ topology, that is, that

1

02 o [edon = [ ([ ot + o) [ el ar
o \Ju, U

is continuous for any bounded continuous function ¢ : U — R. This will be a

consequence of the following fact:

Lemma 6.16. Let Z be a metric space, oy be a probability measure on Z and
g:Z — R be a measurable function such that the closure of the set of discontinuity
points has zero og-measure. Then oq is a continuity point of the map o — SZ gdo
in the space of probability measures on Z with the weak™ topology.

Proof. Denote by R the closure of the set of discontinuity points. Givene > 0, let V'
be an open neighborhood of R whose closure V satisfies o¢(V) < e. Then (V) < ¢
for any ¢ in a weak* neighborhood of ¢g. By the Tietze extension theorem, there
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exists a continuous function h : Z — R coinciding with g on the complement of V'
and satisfying || < |¢g|. Then

J’ gda—f gdog| < J’ hda—J’ hdog
z z z

for any o in a weak™ neighborhood of oy. Thus, oq is a continuity point. O

+4gle < (1 +4|gl)e

Going back to proving the proposition, fix any z € U and consider Z = X and
0o = 0,. Keep in mind that x — o0, is assumed to be continuous on U. Thus,
applying Lemma 6.16 twice, to g = pxy, and to g = xyy, we see that z is a point
of discontinuity of
(6.23) o0 | ) doaly) +ouU)) | o) dei(2)

U U
only if the boundary 0U; = 0Uf has positive measure for o,. Since these boundaries
are pairwise disjoint when ¢ varies, the latter can only happen for countably many
values of ¢t. Thus, we may apply Lemma 6.8 to Z = X and the function g(x,t)
given by the right-hand side of (6.23), to conclude that (6.22) is continuous. (]

Remark 6.17. The localization procedure in Propositions 6.14 and 6.15 preserves
the class of non-atomic measures and, when X is an algebraic variety, also the class
of generic measures. That is a direct consequence of (6.17), (6.18), (6.19), and
Remark 5.1.

6.3. Invariant couplings. Let X be a metric space X and T : B(X) — B(X) be
a Markov operator, given by
- [ v do
X

A self-coupling of T is a Markov operator 7 : B(X x X) — B(X x X) of the form
(624) %15(‘@7%/) = J "Zj(yuyl> d&w,m’(yvyl)

X xX’
where each &, . is a coupling of o, and o/,. The self-coupling T is continuous if
the map (x,2’) — 04 4 is continuous on X x X.

Lemma 6.18. If 7] is a coupling of n and 1 and T is a self-coupling of T then
T*7 is a coupling of T*n and T*n'.

Proof. Let 1/~) : X x X — R be any bounded measurable function that depends only
on the first variable: ¢(z,2") = ¢(x) for some ¢ € B(X). By definition,

f Dd(F*i) = j f Dy, ) dar (o) dif(, ')
XxX XxX JXxX

JXxXJXXX Y) dog 2 (y,y") dij(z, x').

Since 65,7 projects to o, and 7] projects to n on the first factor, this last expression
may be written as

JXXXJ'¢ )do (y) dii(z, ') wa ) do (y) dn(z deT*)

This proves that ’T*ﬁ projects to T*n on the first factor. Analogously, it projects
to T*n' on the second factor. O
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Lemma 6.19. Assume that X is compact and T is continuous, and let n and n' be
T -invariant probability measures on X. Given any coupling 7o of n and n', every
accumulation point 7 of the sequence

:%;7’”*%

is a T -invariant coupling of n and n'. In particular, T -invariant couplings do exist.

Proof. By Lemma 6.18, every 7, is a coupling of n and n’. By compactness, there
exists (n;); — oo such that (7,,); converges to some 77 in the weak® topology.
Clearly, 7 is still a coupling of  and 7’. Let ¥ : X x X > R be any bounded
continuous function. The assumption ensures that 7~'1L is also continuous. Thus,

[, o=t (5=

T — 1/;) dijo =0

= lim (
voJxxx T

(recall that |7™4| < || for every n). Thus, 7*ij = 7}, as we wanted to prove. [J

Remark 6.20. A self-coupling T is symmetric if o4 4 = L40y, ol for all z,2' € X.
If 7 is symmetrlc and 7 is a symmetmc self-coupling of " then T*n is a symmetric

self-coupling of 'T*n Moreover, the 7 -invariant self-coupling 7 in Lemma 6.19 may
be taken to be symmetric.

6.4. Margulis functions. As before, let
T4B(X) = BX), Tu(e) = [ o) doalo)

be a Markov operator on a metric space X. Let X = A u B be a partition of X
into disjoint sets A and B. An (additive) Margulis function for T relative to (A, B)
is a measurable function ¥ : X — [0, o0] such that there exist k4 > 0 and kg > 0
such that

(6.25) TY(z) < V(x) —ka for every z € A
(6.26) TY(z) < U(x) + kp for every x € B.

(W is usually not bounded, but its image under 7T is easily defined using monotone
convergence: let 7 = lim,, 7 (min{¥,n}). Then {, TWd{ = {Wd(T*¢) for any
probability measure ¢ on X.) We make following technical assumption, which is
used in the context of (6.30): there exists L > 0 such that ¥ is lower semi-continuous
on U=L([L, o0]).

Margulis functions are a very effective tool for estimating the spatial distribution
of T-invariant measures. The simple lemma that follows illustrates this idea:

Lemma 6.21. Let ¥ : X — [0,00] be a Margulis function for a Markov operator
T relative to a partition (A, B). Let ¢ be any measure on X such that § ¥ d¢ < oo

and § TOd( > §,, Wd(. Then
KA
(6.27) (B> )

In particular, this holds if ¢ is T -invariant and satisfies { ¥ d¢ < oo.
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Proof. We have
J Vd¢ < J TUd¢ < J U d¢ — ka((A) + kp((B).
X X X

Thus, kaC(A) — kp((B) < 0, which is the same as (6.27). To get the last claim,
just note that §,, 7Wd( = §, WdC if ¢ is T-invariant. O

Remark 6.22. Given a set Y < X, we call multiplicative Margulis function for
T relative to (X,Y) any measurable function ® : X — [1, 0] such that log ® is
uniformly continuous, ®(x) = oo if and only if z € Y, ® is a proper function on
X\Y, and there exist constants ¢ < 1 and b < oo such that

(6.28) To(x) < c®P(x)+bforall z e X.
If @ is a multiplicative Margulis function then log ® is an additive Margulis function
relative to the partition (A, B) defined by
A={reX :®(x)>a}and B={re X : ®(x) < a}
for any o > b/(1 — ¢). Indeed, the Jensen inequality implies that
Tlog ®(x) < log TP®(x) < log(c®(x) + b) for every x.
Moreover,

logy + log(c +b) for every y > 1

10g(0y + b) < { logy + log(c + b/a) if Yy > Q.

Thus, we may take k4 = —log(c+b/a) > 0 and any xp = log(c+b). On the other
hand, as was already pointed out in the Introduction, it is not true that if ¥ is an
additive Margulis function then exp ¥ is a multiplicative one.

Proposition 6.23. Assume that X is compact and let T be a continuous self-
coupling of T. Let ¥ : X x X — [0,4o] be a Margulis function for T which
is bounded outside every meighborhood of the diagonal, and let n be a non-atomic
T -invariant measure on X. Then one can find a T -invariant self-coupling n of n
and a sequence (7;); of self-couplings of n converging to 7 in the weak™ topology
and such that

(6.29) J W dij; < oo and J TO dn; = J W dij; for every j.
XxX XxX XxX

Proof. By Corollary 6.11, there exists some self-coupling 79 of 1 that vanishes on
a neighborhood of the diagonal. Then SXXX U dijy is finite. Conditions (6.25) and

(6.26) imply that 77/ (z) < U(x) + jrp for every z € X, and so
J ’fjllldﬁogJ’ U dii + jrp < o
XxX XxX

for every j. Let 7 = lim; 7j,, be any weak™ accumulation point of the sequence

T =

S

n—1 -
D T
5=0

As noted in Lemma 6.19, every 7, is a self-coupling of n with SXXX U dn, < o0,

and 77 is a 7 -invariant self-coupling of 7.
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If SX W d7 is finite then the claim follows by taking 7; = 7 for every j. In this
case the equality holds on the second part of (6.29). Now suppose that SX W dn is
infinite. By the lower semi-continuity assumption on ¥, this implies that

(6.30) J ¥ di)y,, — 0 as i — 0.
X

Then §,, ¥d (7’*"770) must be unbounded. In particular, one can find (m;); — o
such that

~ 1 ~
J T dijm, —J U dif, = — (J wa (T i) —J \Ddﬁo) > 0.
XxX XxX my XxX XxX

Thus, it suffices to take 7); = 7, for every j. O

6.5. Adapted operators. Let Z be an algebraic variety endowed with a continu-
ous G—action (g, z) — gz. Let v be a compactly supported probability measure on
G, and 7 be a v-stationary probability measure on Z. For each z € Z, let v, denote
the push-forward of v under the map g — gz.

Let X < Z and ax > 0 be some small number. Consider the family of subsets
Xy ={zr e X :dz,2\X) = axt}, t € [0,2]. Note that t — X; is monotone
decreasing. Define the v—core of X to be

(6.31) X, X ={xe Xs:gxe X, forall gesuppr}.

The complement 0, X = X\X, X is called the v—border of X. Define also
(6.32) X#X = {reX, X :g7'ze X, X forall gesuppr}.

It is clear that XfX c XA, X c Xy c X. Moreover,

(6.33) vy (X\X2) =0 for all z € X, X, and

(6.34) vy (XFX) =0forallz €0, X.

Example 6.24. In our initial applications, Z will be a Grassmannian manifold
Gr(r, d) and X will be the closed e-neighborhood E,(¢) of the subset of r-dimension-
al subspaces of R? contained in the equator E. Later we will also take Z to be a flag
variety F(r,d) and X to be the closed subset E?(¢) of flags whose r-coordinate F;. is
in E,(¢). We will always take ax = /100, which means that X; = E,.((1—t/100)¢)
and X; = E2((1 —t/100)e), respectively, for all ¢ € [0, 2].

A Markov operator T : B(X) — B(X) is said to be adapted to (v, X) if the
associated family of probability measures {o,, : © € X} satisfies

(a) o, = v, for every x in a neighborhood of the v-core X, X;
(b) 0.(X#X) =0 for every z in the v-border 7, X;
(c) o is generic for every x € X.

The assumption of the next proposition implies that « — ¢, is continuous on U,
and so Proposition 6.15 does hold in this setting. The assumption is satisfied, in
particular, if the Markov operator T is adapted to (v, X) and U is a subset of the
v-core of X.

Proposition 6.25. Let T : B(X) — B(X) be a Markov operator, n be a T-
invariant measure, and U < X be such that n(U) > 0. Suppose that

(a) 0y = vy for every x € U;

(b) 0. (XFU) =0 for every x ¢ U;
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(¢c) o, is a generic measure for every x € X.

Then the continuous Markov operator Ty : B(U) — B(U) given by Proposition 6.15
is adapted to (v,U).

Proof. Let U¢ = X\U and Uf = X\U;. Recall that Ty is given by the probability
measures oy, defined in (6.21). Since n = { 0, dn(y), because 7 is assumed to be
T-invariant, the definition (6.18) of & means that

1

70 (L (oy | U)dn(y) + L (o, | U NUf) dn(y)) ,

€t=J(

and so

(6.35) 04t = (0x | U) +

6 (

Condition (c) in the definition of an adapted operator follows directly from Re-
mark 6.17. Let us check conditions (a) and (b).

If x € X, U then gx € Us for every g € supp v. Since U; is a neighborhood of Us,
and the support of v is compact, it follows that there exists a neighborhood V' of
X, U such that g € Uy for every x € V and g € suppv. Thus 0,(Uf) = v, (Uf) =0,
and so, for all ¢ € [0, 1], the second term on the right hand side of (6.35) vanishes,
which means that o, = 0, = v,. Integrating with respect to ¢, we find that
Uz = 05 = vy for all z € V, which proves condition (a).

Now consider z € ¢,U. We claim that all three terms on the right-hand side of
(6.35) vanish on X#U. Initially, (6.34) implies that o, (X7U) = v, (X#U) = 0,
which sets the claim for the first term. The case of the second term is an immediate
consequence of the assumption that o, (X#U) = 0 for every y € U°. Finally,
(oy | UnUXFU) = 0 for every y € U and t € [0,1], just because X#U is
contained in U;. Hence, the third term is also zero on X#U. This proves that
0 1(XFU) = 0 for all t € [0,1], which implies that o, satisfies (b). O

[ i+ [ @10 au am).

U

Remark 6.26. By definition v, (X#U) = 0 for every z ¢ U. Compare conditions
(a) and (b) in Proposition 6.25.

7. OUTLINE OF THE PROOF
Given any subspaces U and V of R, define
(7.1) d(U, V) = sup in‘f/ d(u,v) = sup in‘f; | sin Z(u, v)].

uelU V& uel V&
Then 0 < d(U,V) < 1, with d(U, V) = 0 if and only if U < V and d(U,V) = 1 if
and only if U n V+ # {0}. In particular,

(7.2) dmU > dimV = dU,V)=1.

It is also clear that d(Usa, V1) = d(U1, Va) whenever Uy € Uy and V; < Va.

The function d(-,-) in (7.1) is clearly not symmetric, in general. However, its
restriction to each Grassmannian manifold Gr(r,d) turns out to be a distance,
invariant under the action of the orthogonal group O(d) on the Grassmannian.
The case r = 1 is just (5.16).

Let E,. c Gr(r,d) be the set of r-dimensional subspaces contained in the equator
E. In particular, Gr(l,d) = P and Fy = E. For ¢ > 0, let E,.(¢) < Gr(r,d)
be the closed e-neighborhood of E,.. We also denote E,(g,e') = E.(e)\E,(g") for
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0 <&’ <e. Foreach X = E, (), we always take ax = /100 in the definition (6.31)
of the v—core X, X and the v—border 0,X.

7.1. Main inductive statement. We are going to prove Theorem B by contra-
diction: suppose that there exists a discontinuity point v, for the largest Lyapunov
exponent A\;. Then, as we saw in Section 5 (Proposition 5.2 and Corollary 5.4),
there exists a sequence () of generic measures with Zariski-dense supports con-
verging to some vy, on G and such that their (unique) stationary measures (nx)
on P converge to a vy, -stationary measure 7, satisfying 7, (E) > 0.

Theorem 7.1. Let 1 < r < d and suppose that there exist constants €, > 0 and
n, € N such that:

(i) For each k € N there is a continuous Markov operator

oo BUEE) = B, Thrt@) = [ o) dovaty
E,. (e,
adapted to (V,(CM), E.(er)).
(ii) For each k € N there is a Tg -invariant probability measure ny , on E,(g,)
such that Ny, » = limy g, exists and satisfies No, »(Er) > 0.
If r < dim E then there exist constants e,41 and K1 € N such that (i) and (i)
hold when r is replaced with r + 1. If r = dim E then (i) and (ii) cannot happen.

By Remark 6.12, the invariant measures 7, are automatically generic measures.

Remark 7.2. Since the support of vy is Zariski-dense, it follows from Proposi-
tion 5.2 that for each 1 < r < d there exists a unique vi-stationary probability
measure 7, in Gr(r,d). However, even if we assume that there exists a subse-
quence along which (7j,1)r converges to a measure 7, 1 with 7,1 (F) > 0, it is
not clear that for any r > 1 the sequence (7j ), admits a subsequence converging
to some measure 7o, » with 7y »(Er) > 0. Thus, Theorem 7.1 is not immediately
obvious. Indeed, our measures 7y, on E,.(e,) are not the normalized restrictions
of the 7.

To deduce Theorem B, note that the assumptions of Theorem 7.1 hold for r = 1,
with n; = 1 and €1 = 1, so that F1(e1) = P, and

T =Py, : B(P) — B(P) and 1,1 = nx, for ke N.

Indeed, it is clear that P,, is adapted to (v, P) and leaves n invariant. Recall
that v, is taken to be generic for k € N. Moreover, the limit 7,1 = 7, satisfies
N (E) > 0. Then we can iterate Theorem 7.1 until we arrive at the case r = dim E,
which leads to a contradiction, which proves Theorem B.

The proof of Theorem 7.1 occupies what is left of this paper. In the remainder of
the present section we outline the main ideas. Initially, we discuss the case r = 1,
which involves many of the ingredients of the general step, though not all. Then
we hint at how these ideas can be extended to r > 1.

Throughout, F;(e)? = Ey(e) x Ei(e) and Ey(g,&')? = Ei(e,e') x Eyi(g,¢') for
any 0 < ¢’ < e. The following simple fact will be used a few times:

Remark 7.3. Given any 5 > 0 and n € N, the neighborhood F, () is contained in
the ug,fl)—core of E.(8/2) for all 1 < r < d if a is sufficiently small, depending only

on vy, n and B. This is because the equator E is v, -invariant. Since supp V,gn)
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converges to supp I/EZZ ), it follows that if o > 0 is sufficiently small and &k € N is large

enough, depending only on v, n and 3, then E,.(a) is contained in the V,(C")—core

of E.(8) for all 1 <r < d.

7.2. First step. Let us consider constants €1 > 0 and n; € N, continuous Markov
operators

Tos: B(Ev(e1)) — B(Ev(e1)),  Thng(e) = JG o(y) oo (y)

and 7T 1-invariant measures 7,1 as in Theorem 7.1. We may start from n; = 1 and
€1 = 1, as in the previous section, but along the way we replace the operators with
convenient iterates, which means that n; is increased, and we also localize them
to suitable neighborhoods of the equator F, using Propositions 6.15 and 6.25 and
Remark 7.3, which entails reducing ¢1.

The way we set this is by replacing n, with a variable n € N, which we think of
as a free parameter, and by taking 7x 1 and €1 as functions of n. The conditions
on €1 are given in (7.3) and (9.12), depending on vy, ¢ and n. The condition on n
is stated only near the end of the construction, in (11.13), depending on v,, and 4.

1. Up to reducing &7 if necessary, it is no restriction to assume that

(73) Bea(BLEDNE) < 1o (B).

That may be seen as follows. Since 7., 1(E1(a)) converges to 1, 1(E) as a — 0,
and the limit is assumed to be positive, we have

(7.4 e (Br(@\E) < $570 ()

for every small o > 0. By Remark 7.3,

(7.5) Ei(«) is contained in the V,(C")—core of E1(e1)
for every large k and every small o > 0. Clearly,

(7.6) N1 (0E1 (@) =0

for all but countably many values of . Fix a > 0, depending only on v, and ¢,
satisfying (7.4), (7.5) and (7.6).

Applying Proposition 6.25 with X = E(e1), U = E1(a), v = V,(Cn) and T = Tp1,
for k large, we get a continuous Markov operator

Tix : B(Er(e) = B(Ey ()

adapted to (V]gn), E1(a)) and leaving invariant the normalized restriction 7y, ; of 7k 1
to E(a). Replace €1, Tg,1, and ng,1 with o, 7} |, and 7nj ;, respectively. Conditions
(i) and (ii) in Theorem 7.1 are not affected by this: in particular, observe that (7.6)
ensures that (1, ;)r — 7', 1. Then (7.3) just corresponds to (7.4).

We also introduce a suitable continuous self-coupling

Tea : B(Ei(e1)?) — B(Ei(61)?)

(e, a) = J 5, ) d6xrmar (1)
E;(e1)?

(7.7)
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of the operator T ; such that

(7.8) Frala, ') = L gz, g’ dvf™ (g)

when z and 2’ are both close to the equator E.
2. Counsider ] € (0,£1) and a sequence (wg1), decreasing to zero. Property (7.3)

ensures that

(7.9) Nk (Ei(er,el)) < %nk,l(El(El))

for every large k. Define Ay and By = B’ u By, through

(7.10) Ay = {(z,2") e By (e))* i d(z + 2/, B) > wi 1}
(7.11) B' = {(z,2') € Ei(e1)*: d(2, E) > £} or d(2', E) > €7
(7.12) By ={(z,2') € By(e1)? : d(x + 2", E) < wp1}-

It is clear that Ay and By = B’ u By are disjoint, and their union is the whole
E1(e1)?. For every large k, we have wg 1 < & and, in view of the definition (7.1),
that ensures that B’ and By are also disjoint. Moreover, (7.2) implies that By = ¥
if dim F = 1.

<o By (e1)?

Ay
B

FIGURE 2. A sketch of the partition of E;(g1)? into the sets Ay,
B’, and By. The latter converges to the central point (£, E') when
k — oo, because w1 — 0.

Suppose that for n € N sufficiently large there exist constants k4, xp > 0 with
k4 > 9kp, and for each large k € N there exists a lower semi-continuous function
Wy : Fi1(e1)? — R such that

(7.13) TeaWpa(z,a') < Up(z,2') — ko for every (z,2') € Ay
(7.14) Tr1 Wi (z,2') < Uyo(z,2') + kp for every (z,2') € By.

Then WUy ; is a Margulis function for the operator ’7~7€_’1 relative to the partition
(Ag, Br) of E1(e1)?. Combining Proposition 6.23 with Lemma 6.21, we conclude
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that there exist self-couplings 7jx,1,; of 1,1 such that SEI(EI)Q W1 dijk,1,5 is finite
and

. K .
k1,5 (Br) = — i1 (Er(e1)?)

(7.15) ! s 0
> Eﬁk,l,j(El(al)Q) = Eﬁk,l(El(El))-

Moreover, (75,1,;); may be taken to converge to a 7~7€71-invariant self-coupling 7 1
of 1.

The fact that 75,1,; is a self-coupling of 71 together with the inequality (7.9)
ensure that

_ 4
(7.16) 1,5 (B) < 20 (Br(er, e1) < 75w (Eilen))-
Subtracting (7.16) from (7.15), we conclude that
. 5
(717) 771@71)]'(3;;) > 1—077]@)1(E1 (81)) > 0.

This yields a contradiction when dim E = 1 because, as observed previously, in that
case the set By is empty.

3. If dim F > 2, consider the map
Y Ei(e1)? — Gr(2,d), X(z,2')=z+2.

The fact that X is not defined on the diagonal of Ej(e1)? need not concern us at
this stage: we will deal with it in Section 11.3. For each large k, let nr 2 = Xufi1
and {fk,1,4 : ¥ € Gr(2,d)} be a disintegration of 7 ; with respect to the partition
{71y : y e Gr(2,d)} of E1(e1)?. Then define

Tr2 : B(E(E1(21)%) = B(S(E1(21)%)), T2t (y) = Ti1 (0 D) dijg, 1.
S-ly
The measure 71,2 is Ti,o-invariant. Indeed, since 7,1 is 7~7€71-invariant,

j Tt dijn = f For (0 5 diigry dia(y)
S(E1(e1)?)

E(Er(e1)?) X1y

=J N For (4 0 S) dify. =J (W o %) dify.
E1 €1 2

E;(e1)?
= J (2 dﬁk,2
S(E1(e1)?)

for any ¢ € B(X(E1(e1)?)). Taking the limit as j — oo in (7.17), we find that

(7.18) M1 (BL) = 1_5077k.,1(E1(51))-

Recall that we take wy 1 — 0 as k — 00. Then, in view of the definition of B} in
(7.12), the sets X(Bj) approach Es. Taking the limit £ — oo in (7.18), we find that

5
N,2(F2) = Eﬁw,l(El(El)) > 0.

Now define ny = n. If y is close to Fs in Gr(2,d) then = and z’ are close to F1

(n2)
k

in Gr(1,d) and, in particular, they are in the v, *’-core of E;(e1) for every large k.
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Then, using (7.8),

Trath(y) = JE L W o S(gz, ga’) ™ (g) i1 o (2 2')
_1y

- j j w<gy>dué"”(g)dﬁk,l,y(x,x')=j Wlgy) ™ (g),
-1y JG G

because each 7)1, is a probability. Pick e2 > 0 such that this holds for every
y € Ea(e). Apply Proposition 6.25 with X = S(Ey(1)2), U = Ea(ea), v = v\,
and T = Ty, for k large. Replace Ty 2 and ny o with this new Markov operator
and invariant measure, respectively.

This would complete the proof of Theorem 7.1 for r = 1.

4. However, in general we cannot construct a Margulis function Wy ; as required.
Essentially, the problem is that, since we do not control the measures 6,1,4,, in the
border region, the inequality (7.14) cannot be proved to hold unless the Margulis
function Wy ;1 is taken to be bounded in the border region. However, outside the
border region ¥y 1(x,2’) must be very large if x and 2’ are close. The only way
to reconcile these two requirements is to introduce some drastic discontinuities in
U}, 1 which then cause (7.14) to fail at some points.

This problem is solved as follows. We do indeed create a discontinuity by cutting
Wy 1 off in such a way that it is bounded in the border region. The main idea for
dealing with the discontinuity, that we call recoupling, involves replacing 7~7€)1 with
another Markov operator ’7A7€_’1 that still projects to 71 on either factor. The
recoupling modification is restricted to a region which is disjoint from Bj and
relatively far from the equator, so that the properties of the measures 7 2 are not
affected. These arguments are detailed in Sections 8 through 11.

In Section 8 we introduce the notion of wvertical projection VP (z,z") of a pair
of points x and z’ in P, and we use it to construct a candidate —log VP (z,z')
to a Margulis function for 7~}1 The problem with this function is that it refers
explicitly to E and, since the equator is not vg-invariant for k € N, the estimates
break down for ’7~7€_’1 when k is finite.

This is fixed in Section 9.1, where we replace the vertical projection with a kind
of cut-off that we call the stabilized vertical projection and denote as SVPq(z, z').
Then, in Section 9.2 we give the precise recipe for the other cut-off, that was
mentioned previously. By the end of Section 10 point we will have a much more
viable candidate Wy ; for Margulis function when £ is finite.

The details of the recoupling procedure are described in Section 11.1. Propo-
sition 11.2 essentially states that this function W ; is a Margulis function for the
recoupled Markov operator ’7A7€1 In Sections 11.2 and 11.3 we wrap the arguments
up to conclude the step r = 1 of the proof.

7.3. General step. For r > 1 the strategy is similar, except that we need to work
with flag varieties. Recall that F(r,d) denotes the space of flags
FLcFyc..-cF._4 CFTCRd,

where each F; has dimension i. We use x = (F1,...,F,) and ' = (FY,..., F)) to
denote generic elements of F(r,d). Define EX = {x € F(r,d) : F, € E,} and, for
each e > ¢’ > 0,

EX(e) ={x e F(r,d): F, € E.(e)} and E}(e,€') = EZ(e)\ES ().



44 ARTUR AVILA, ALEX ESKIN, AND MARCELO VIANA

By definition, for any v € P.(G), the v-core of E°(¢) is the subset of flags = such
that F. € X, E,(e,), and the v-border of E°(¢g) is defined in a similar fashion.

We consider E?(g,)? = E2(e,) x E2(e,) and we aim to construct a Margulis func-
tion Wy, , for a suitable Markov operator 'YA?T : B(E2(g,)?) — B(E2(e,)?) relative to
a convenient generalization E?(e,)? = A u B}, u By of the partition (7.10)—(7.12).
For i = 1,2, define 0; : E¢(e,)?> — Gr(r,d) to be the projection to either factor
followed by the canonical map

(7.19) F(r,d) — Gr(r,d), xw— F,.
A constraint on 'ﬁfr is that it must project to 7y, under both 6;. Then we can
find a ﬁ:T—invariant measure 7 . which maps to 7, under both projections.

As in the case r = 1, once we have constructed ’ﬁ‘fr, Uy r, and ﬁ;;r we can try
to get an estimate of the form

e (Bi) > e . (B7 (er)?),
where ¢ > 0 is some absolute constant. Then, if we push 7y ,. forward by one of the

maps
S EX(e)? - Gr(r+ 1,d), %, (z,2') = F{ + F,
Y EXe)? - Gr(r+ 1,d), %, (z,2') = Fy + F)
we obtain probability measures 7 41 on Gr(r + 1,d) satistying the conditions of
Theorem 7.1.

However, for r > 1 the simple cut-off procedure we use in the initial step of the
induction is no longer sufficient to ensure that the Margulis function is bounded
on the border region. To fix that, we take advantage of the additional freedom
provided by the flag space, which is that we may vary the projections to Gr(j,d)
for j < r. More precisely, we modify the dynamics by averaging (”spreading out”)
the Markov operator over the subspaces of dimension less than r in the flag. Thus
we end up with modified Markov operators ’YA;QT that still project to the 7 , under
both 6;. Then the kind of argument we sketched in the previous paragraphs can
actually be carried out for ﬁ%—invariant measures ﬁ,gr that map to 7, under both
projections.

The detailed arguments are structured as follows in Sections 12 through 16. In
Section 12 we extend the notions of vertical angle and vertical projection to r > 1,
and we use them to exhibit a candidate —log,(x,z’) to a Margulis function.
In Section 13.1 we move to introduce the r > 1 version of the stabilized vertical
projection SVP,.(z,2'), and in Section 13.2 we describe the corresponding version
for the cut-off procedure. In Section 14 we extend this analysis to the perturbed
random walks, that is, to finite k. The Margulis function Wy, is defined at the end
of that section.

The spreading out modification is detailed in Section 15. Essentially, we define
’72% = 'f;‘fr o O, where O, : Bd(E?(e,)?) — B(E?(&,)?) has the form

érw(xu ‘TI) = J v d(jr,;ﬂ,m’

where G, 4 o+ is a smooth probability measure on the subset of pairs of flags whose
r-coordinate is (Fy, F)). A relevant feature is that Q, maps to the identity under
the canonical map (7.19). The details of the recoupling procedure are described in
Section 16.2. In Sections 16.3 and 16.4 we wrap up the proof.
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Part III. First step of the induction
8. PREPARING A MARGULIS FUNCTION

We are going to construct a positive function 7 such that —logi; has some
features of a Margulis function for large iterates of the operator P, :

Proposition 8.1. There exist k] = k1 (vy,) > 0 and C; = C{(v,) > 0 and for
any 0 > 0 there exists N1 = N1(vo,6) € N such that for every n = Ny there exists
Py = P (v, 6,n) > 0 satisfying

(8.1) jG —log 1 (g, gz') dvi (9) < —loghn (z,2") — (K} — Cié)n

for every x # x' in Eq1(p}).

The conclusion of Proposition 8.1 does not quite fit the definition of a Margulis
function because the set E1(p]) x E1(p}) where the estimate holds is not invariant
under the G-action restricted to supp v, and thus P, cannot be considered a
Markov operator on this set. Nevertheless, —log; is an important ingredient in
the definition of the actual Margulis function, which will be completed in Section 11.

The proof of Proposition 8.1 occupies the remainder of this section. Throughout,
we think of the equator as being “horizontal” and use the word “vertical” to refer
to the orthogonal direction. The numbers § > 0 and n € N will remain as free
parameters for most of our arguments. Near the end, in (11.13), we will fix § > 0
to be small, depending only on v,,, and n € N large, depending on v, and ¢ > 0.

Fix A = A(vy) > 0 and a compact neighborhood Wy = Wy(vy) € G of the
support of v, such that

—logd(U,V) — A< —logd(fU, fV) < —logd(U,V) + A

for any f € Wy, any pair U # V in Gr(r,d) and any 1 < r < d. Moreover, let
B = B(vy,) > 0 be defined by

B =sup {log | f]| +log |lf ' : f € Wo} +2.

Since (i), converges to v, in the space P.(G), it is no restriction to assume that
supp v, € W for every k € N. In particular,

(8.2) —logd(fU, fV) < —logd(U,V) + An
(8.3) log |If[If~1] < Bn

for every U # V in Gr(r,d), 1l <r <d, f € suppu,gn), ke Nuv {oo}, and n e N.

8.1. Vertical angle function. Given distinct points  and 2’ in P = Gr(1, d), let
y = y(z,2") € P denote the great circle through = and 2/, that is, the subset of P
associated with the element x + 2’ of Gr(2,d) that contains both z and z'.

The vertical angle function VA; is the sine of the angle between the great circle
y = y(z,z') and the equator, that is (recall (7.1) and check Figure 3),

1
(8.4) VAi(z,z') = d(y, E) = supd(u, E) = sup M
uey uey |ull
For any u € y that realizes the supremum,
I(gu)~ | g ]
(8.5) VAi(gz,gx') = = VA (z,2")
lgull lgul  llut]
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FIGURE 3. Geometric meaning of the vertical angle function VA;.
By making = and z’ go to F along a given great circle, one sees
that VA;(z,2’) need not go to infinity when = and 2’ approach the equator.

for any g € G. By Remark 3.1, when g € supp uf,j” this means that

lgtut] N i
(8.6) VA (gz, gx') = = VA (z,2") :
lgull lgul flu*]
Still for g € supp ugl), using Remark 3.1 and (8.3) we get that
1,1
lg~u~]| HULH > 11 > 11 S e Bn
lgul fa = IS~ gl — lg= gl
and so
(8.7) —log VA (gz, gz') < —log VA, (x, ") + Bn.

Lemma 8.2. There exists k1 = R1(vy) > 0 and for each 6 > 0 there exist 0, =
01(vy,d) > 0 and N1 = N1(vy,0) € N such that for every n = Ny and x # ' in P
there ewists & = 51(%0, d,n,xz,x’) C supp yf,f‘) with uf,j” (5{) < d and

(8.8)  —log VA, (gz, gz') < max{—log VA, (z,a") — #1n, 01} for every g € &,.
Proof. Let ko = ko(vw) > 0, Nog = No(v,8) € N, & = E(vy,d,n,ut) <
supp ugl), and 79 = 79(Vy,0) > 0 be as in Proposition 5.5. Given z # z’ in

P, take u € y realizing the supremum in (8.4). Write u = u¥ + u! with v € E
and ut € E+. Take

I~<61 = K0/2, 6‘~1 = —10g(7’0/4),

(8.9) ~ ~
Ny > max{Ny,4/k1}, and & = 50(ux,5,n,uL).

Let n > Ny and g€ & < supp yf,f‘). If |gtut||/|gu| = 70/2 then the inequality in
(8.6) implies that

70

(8.10) —log VA (gz, gz') < —log ) <40.
If |gtut|/|lgu| < 70/2 then part (2) of Proposition 5.5 gives that
o1 Bl 1
| < —, which implies lgw”] —.
lgul 2 lgul — 2
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Substituting the latter inequality and |u] > |uZ]| in (8.6), we find that

1 lgtut] fu”]
(8.11) VA (gz,g2') = = VA (z,2) .
2 Jut] - lgu®]|
Thus, recalling the definition (5.3) and part (1) of Proposition 5.5,
1 HDgi‘EuJ‘” 1 Kon
VAi(gz,gx') = §VA1(£C,$,)W > §VA1($,$,)€ or,

!

By the choices of %1 and N in (8.9), this implies that
)

o 1o —log VA1 (gz, gz') < —log VA1 (z,2") +log2 — 2R1n
(8.12) < —log VA (z,2") — Rin.
The conclusion of the lemma is contained in (8.10) and (8.12). O

8.2. Vertical projection function. The function —log VA;(x,z’) cannot be used
as a Margulis function to detect the equator because (unless dim E' = 1) it is possible
that —log VA (z, 2") remains bounded even as d(x, E') and d(z’, E') go to zero: the
great circle through points close to the equator need not be close to the equator,
as illustrated in Figure 3.

To (partially) rectify this, we introduce the vertical projection function VPq,
defined as follows:

(8.13) VPi(z,2") = VA (z, 2")d(z, 2" )"

where 71 = 71(vy) is a small positive constant to be chosen shortly (Proposi-
tion 8.3). Note that if 43 = 1 then VP;(z,2") would indeed be a sort of projection
on the orthogonal complement to the equator. It is clear from the definitions (8.4)
and (8.13) that VA; and VP, are symmetric functions:

8.14 VAi(z,2') = VA1 (2',z) and VPy(z,2') = VP1(2', ) for any = # 2’
y

Proposition 8.3. There exist 71 = v1(vy) > 0 and &) = £ (ve) > 0 and for
each 6 > 0 there exists N1 = N1(vy,0) € N such that for every n = Np there
exists pi = py Ve, d,n) > 0 such that for any © # x’ in E1(p}) there exists £ =
E(Vop, b, m, z,2") C supp yf,?) with ug‘)((E{)C) < and

(8.15) —1log VP4 (gz, gz') < —log VP (x,2") — K\n for every g € &;.

Proof. The overall strategy goes as follows. If the vertical angle VA1 (z, ') is small
then the conclusion of the present proposition is a consequence of Lemma 8.2,
provided that we choose the constant 7; small enough to make the variation of
d(z,z')" negligible. If VA;(z,2’) is large, let v and v’ be unit vectors in the
direction of 2 and 2’ and such that the angle between them is non-obtuse (the latter
may always be obtained by replacing v with —v if necessary). In Lemma 8.4 we
check that if  is close to F then the difference w = v'—wv is roughly vertical, meaning
that the angle between w and the equator is bounded from below. See Figure 4.
In Lemma 8.5 we deduce that in this situation —logd(z,z’) decreases under most
large iterates: the reason is that the dynamics increases vertical components and,
for n sufficiently large, the vertical component of the iterate of w dominates. This
implies the conclusion of the proposition because in this regime the variation of
VA (z,z') is bounded. Let us fill-in the details.
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FIGURE 4. Interpreting Lemma 8.4: if d(z, E) is small compared
to VAi(z,2") = d(y, E) then w = v' — v is roughly vertical.

Lemma 8.4. Given x # ' in P, let w = v — v be the difference between unit
vectors in the directions of x and x', respectively. Then

Jwt] 1

1
(8.16) d(z,E) < = VA (z,z") implies > ~ VA (z,2').
4 [w] — 4
,U/
w
v

FIGURE 5. Illustrating the estimates in (8.17): the distance from
x to ' is given by the length of the vertical dashed segment, which
is bounded above by |w|; the angle between v and w is at least
7/4, as the angle between v and v’ is non-obtuse.

Proof. As the angle between v and v’ was taken to be non-obtuse (check Figure 5)

(8.17) d(z, ') = |sin L(v,v")| < ||w| and Z(w,v) =

e

Take u € y realizing the supremum in (8.4). Since y = span{v,v'} = span{v, w}, we
may write v = av + bw with a,b € R. The angle bound in (8.17) implies that |av||
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and ||bw| are both less than 2||u|. Thus,

i L bt
PP [ o 0 L
] Jrull ]
L L L
vl ] [l
Thus, d(x, E) and |w=||/||w| cannot be both less than VA, (x, 2')/4. O

Take k1 = R1(vy) > 0 and 0, = 9~1(1/~,v~, 0) > 0 to be as in Lemma 8.2.

Lemma 8.5. There exists k1 = R1(vy) > 0 and for each § > 0 there exists
Ny = Ni(vy,96) € N such that for each n = Ny there exists p1 = p1(Vop,d,n) > 0
such that for any x # ' in E1(p1) with —log VA;(z,2') < 01 + Rin there exists

& =& (Vo 6,0, x, ') C supp Vgl) with Vgl) (EAf) <4 and

(8.18) —logd(gx,gx') < —logd(x,x’) —log VA (x,2") — Rin for every g € &

Hﬂgvgwu = ||7Tgv97/“

d(gz, gz'),

1

gvu

FIGURE 6. Verifying the inequality (8.21), when |gv| = ||gv’||: the
distance between gz and gz') is given by the length of the vertical
dashed segment on the left, which is greater than the length of the
vertical dashed segment on the right divided by |gv|.

Proof. Let kg = ro(ve) > 0, Ng = No(vs,6) € N, and & = & (vop, 6,n,vF) <

supp V(,n) be as in Proposition 5.5. Given z # 2’ in P, let w = v’ — v be the

difference between unit vectors v and v’ in the directions of  and 2', respectively.
Take

k1 = Iio/2, Nl > maX{N0,5/IA<L1},
(8.19) < ~
P < 6_01_’“"/107 and & = Eo(um,é,n,wl).
Let n > ],\71 and g € EAl C supp V(,n) As observed in (8.17),
(8.20) d(z,z") < ||Jw|

Let us suppose that |gv| = |gv’|; the case ||gv| < [gv’|| is analogous, reversing the
roles of z and a’. Then (check Figure 6)

gv' qw
8.21 d gx,ga:' = HH . = ' .
(8.21) (92,92°) = Moo = Mo oo

1
~ lgvll

IMgogwll,
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and so (keep in mind that |jv| = v/ = 1),

[Hgogw] ol
lgvl - Jwl

By the condition on p; in (8.19), if d(z, E) < p1 then

(8.22) —logd(gz, gz') < —logd(x,z") — log

dd(z, E) < e < VAL (2, 2),

and then Lemma 8.4 gives that
Jwtll 1 N

> = VA(z,2") > —e7"t7M",
w4 4
Up to further reducing p;, we may also assume that
bl _ 1 [hz"]
Izl = 2 127

(8.23)

1
(8.24) and [y haw] > ST, b

for any non-zero z = zF + 2+ in E® E+ with |z1|/||z| < p1 and any h € supp .
Indeed, the first part of (8.24) is a simple consequence of continuity; in the second
one note also that w is bounded away from the horizontal, by (8.23). This last part
of (8.24) implies that

1 1 1
(8.25) [Tnzhw] = 5[ 2ehw] = 5 [Mhw] = S |(hw)*]| = 5 |hrw*].

1
2

Noting that |v*|/|v] = d(x, E) < p1, take z = v and h = g in the previous two
relations. Thus, substituting (8.24) and (8.25) in (8.22),

lgtw]l 0"
—logd(gx, gx') < —logd(z,x’) + log4 — log )
lwll - gv*]
Then, using also (8.23) and (5.3),
/ , , lgtwt| o]
—logd(gz, gx') < —logd(z,x") —log VA1 (z,z") + log 16 — log [l 1907
w gu
|Dgyzw|

= —logd(z,z") —log VA (z,2") + log 16 — log el
w

By part (1) of Proposition 5.5 and the choice of #1 and Ny in (8.19), it follows that
—logd(gz,gx') < —logd(x,x’) —log VA (x,z') + 5 — 2k1n
< —logd(z,z") —log VA (z,2') — Rin,
as claimed. 0

We are ready to prove Proposition 8.3. Take A = A(v,,) as in (8.2) and then
define

~1 = min {1, /%1/(214)},
K} = min {/%1/2,71/%1/2},
(8.26) p1 = min{p1 (v, 0), pr (v, 6/2)}
Ni > max {Ni(vs,,8/2), N1 (v, 8/2), 261 /(v&1)} and
& =E (v, 8/2,m,2,2") A EL (v, /2,0, 2, ).
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Observe that yf,f‘)((é:{)‘?) < 0. By definition,
(8.27) —log VP (gz, gx') = —log VA (gz, gz') — v1 log d(gz, gz').

Consider = # 2/ in E1(p}), n > Ny and g € &. If —log VA (z,2') = 0, + &in
then, by Lemma 8.2,

(8.28) —log VAi(gz, gz') < —log VA1 (z,2") — kin
Substituting (8.2) and (8.28) in (8.27) we find that

—log VP (gz,gz") < —log VA1 (z,2") — fin — vy logd(z,x') + 1 An

(8.29) R . .
< —logVPy(z,2') — =" < —log VPy(z,2') — kin.

Now assume that —log VA4 (z,z") < 0, + #1n. In this case, Lemma 8.2 yields

(8.30) —log VA1 (g, gz') < 6,
and Lemma 8.5 gives that
(8.31) —logd(gz, gz') < —logd(x,x') —log VA1 (x,2') — R1n.

Substituting (8.30) and (8.31) in (8.27) we obtain
—log VP (gz, gz') < 6 — y1 logd(x, x') — y1log VA, (z,2') — y1/1n
< —log VP (z,2") 4+ 61 + (1 — v1) log VA (z, 2') — 11417
Since y1 <1, VA (z,2') < 1,and n = N > 291/(71/%1), this yields
—log VP (gz, gz') < —log VP (z,2') + 01 — yifin

(8.32) A
< —log VPy(z,2') — %n < —log VP (z,2') — Kin.
The relations (8.29) and (8.32) contain the conclusion of Proposition 8.3. (]

8.3. The function —logvy;. Now we are going to prove that ¢ = VP, satisfies
Proposition 8.1. Let A = A(vy,) and B = B(vy,) > 0 be as in (8.2) and (8.3). Take
k4 >0, N1 € N and p} > 0 as in Proposition 8.3. By definition,

(8.33) —logi(z,2') = —log VP (x,z') = —log VA1 (z,z") — v log d(z, x")
for every x # ' in P. Define
(8.34) C! = B+ A

Substituting (8.7) and (8.2) in (8.33), we find that
—log VP (gz,gx') < —log VA1 (z,2") + Bn — v log(dz, dz’) + v1 An

8.35
(8.35) < —log VPy(x,2') + Cin

for every x # 2’ in P and ¢ € supp yf,j‘). Integrating (8.15) over & and (8.35) over
the complement, and using the fact that yf,f‘)((é:{)‘?) < 6, we get that

J —log VP1(gz, gz') dvi™ (g) < —log VP (z, ') — Kn + C)on.
G

for every n = Ny and = # 2’ in Ey(p}). This completes the proof of Proposition 8.1.

Another relevant feature is that —logs(x, z') goes to infinity when z and '
approach the equator E:
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Lemma 8.6. Given any R > 0, there exists p1 = p1(ve, R) > 0 such that
—logyi(x, 2"y > R for any x # ' in E1(p1).

Proof. Consider any p; > 0 and let v and v be unit vectors in the direction of x
and z’, respectively. Observe that

1 "L
H'U H — d(I,E) < [)1 and ”(’U? H — d(x',E) g p~1'
vl o]
If d(z,2") < [)}/2 then
(8.36) VP (z,2) = VA (2, 2)d(z, 2')" < p772.

Now suppose that d(z,z’) = |sin L(U, v')| is greater than ﬁl/ . Then every u in the
great circle y generated by 2 and 2’ may be written as u = av + o'v’ with o, o’ € R

such that |u] = 51/*|ow| and |u| > 5% [o’v'||. Thus,

1 L1 1 1 L
[u]l  Joo] | Jo'@)7] 1 (Iv [yl G ||> <252,

ful = Jul ful = 52\ ol o]
212

Since wu is arbitrary, this proves that VA;(z,z’ , and so

(8.37) VPy(z,z") = VA (z, 2" )d(z, 2’
(because 1 < 1). The inequalities (8.36) and

) <
Y < 1/2 < 2~71/2
(8.37) imply that

—login(z,2") = —log VP (z,2) > ——log/31 —log 2

for any x # «' in E1(p1), which yields the claim. O

9. STABILIZATION AND CUT-OFF

Previously, we constructed a function —log; = —log VP, that exhibits some
of the features of a Margulis function. In this section we modify this function to
correct two important defects.

One problem with — log 11, that originates from VA, is that the definition refers
explicitly to E. The reason why this is a problem is that for k£ € N the equator is
not necessarily a vg-invariant set. Thus, even for k large, for g € supp vy there is
no uniform upper bound on the absolute value of

- log 1/)1 (g'rv gxl) + log 1/)1 (Ia II)
because —log VA1 (gz, gz’) may be wildly different from — log VA1 (z, z"). To rectify
this, in Section 9.1 we define “stabilized” versions of the functions VA; and VP;.
This will come at a price: the analogue of Proposition 8.1 will hold only outside a
“stabilization region” near E. Still, as we will explain in Section 10, stabilization
does allow us to by-pass this first difficulty in a satisfactory way.

Another problem is that, because of the way the Markov operators 7 1 will be
constructed, we have little control over the border region. The simplest way to
by-pass this is to take the Margulis function to be bounded when either x or 2’ is
in the border region. The function —log; does not satisfy this: for instance, it
can get arbitrarily large when x and 2’ are close to each other and, of course, that
may occur even if they are both in the border region. Thus, it is necessary to cut
that function off in (a neighborhood of) the border region.

However, doing a cut-off creates a discontinuity that translates into a drastic
failure of (7.14) near the discontinuity. The main idea to handle this, which we
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call recoupling, will be explained in Section 11.1. The recoupling technique is far
from universal, it can only handle certain types of discontinuities. Thus, it makes
sense to make the discontinuity as mild as possible. In Section 9.2 we explain just
how to do this. In particular, we only cut —logt); off if z and 2’ are both in (a
neighborhood of) the border region. In the present (r = 1) situation this is fine
because if one of the points, x or 2/, is close to the border region and the other
one is far outside then —log (x,2’) is bounded anyway. The steps r > 1 involve
additional issues, which we will discuss in Sections 13 and 15.

We use the following elementary inequalities, whose proof we leave to the reader:
given any C' > 0, ¢ > 0 and ¢ > 0,

(9.1) log(Q +cp ') <log(Q+¢ ') +loge if e>1
(9.2) log(Q+cy™) <log(Q+y~h) if c<1
(9.3) log(Q+cy™) <log(Q + ¢~ 1) +log/ec if c<1landy™ > Q/\e

Let k) = k] (vs) > 0, C; = C{(v) > 0, N1 = N1(v,0) € N be as in Proposi-
tions 8.1 and 8.3. Keep in mind that £; < p} < p1 and C] = B + 71 A, according
to (8.26), (8.34) and (9.12).

<
<

9.1. Stabilization. Let B = B(vy,) > 0 and 71 = 71 (vs) > 0 be as in (8.3) and
(8.26), respectively. For each w > 0, define the stabilized vertical angle

(9.4) SVA:(z,2";w) = max { VA (z,2'),we "}
and the stabilized vertical projection by
(9.5) 1 (z,2';w) = SVP (2, 2";w) = SVA; (z, 2 w)d(z, 2/ )"

for every x # 2’ in Ej(e1). The estimate (8.35) remains valid for the stabilized
vertical projection:

Lemma 9.1. For every x # ' in P, g € suppygl), and w > 0,

(9-6) —log 1 (g2, g2'sw) < —log s (z, 2";w) + Cin.
Proof. We begin by claiming that
(9.7) —log SVA; (g, gz';w) < —log SVA; (z,2";w) + Bn.

The proof can be split into two cases. First, suppose that VA;(z,2’) < w. Then,
by the definition (9.4),

—log SVA;(x,2';w) = —logw and
—log SVA; (g, g2';w) € —logw + Bn < —log SVA;(z,2’;w) + Bn,
as claimed. Now suppose that VA (z,z’) = w. Then, again by (9.4),
—log SVA; (z,2";w) = —log VA (z,z") and
—log SVA, (g, gx';w) < —log VA1 (gx, gx').

Then (9.7) is a direct consequence of (8.7). This completes the proof of (9.7). Now
(9.6) follows easily from (9.7) and (8.2): recalling the definition of C] in (8.34),

—1log SVPy(gz, g2’;w) = —log SVA1 (g, gr';w) — v1 log d(gz, gz')
(9.8)

N

—log SVA;(z,2';w) + Bn — y1 logd(z,z') — v1An
—log SVPy(z,2) + (B + 711 4)n.
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This completes the argument. O

The stabilization region is the set of pairs (z,2’) such that VA;(z,z') < w. We

have seen in (8.7) that
VA (gz, gz') = VA, (z,2")e P"

forany x # 2’ in P, g € suppugf)
stabilization region then
SVA;(x,2";w) = VA1 (z,2") and SVA;(gz, gz’;w) = VA1 (gz, gx')
SVP,(z,2';w) = VPy(z,2') and SVP;(gz,gr’;w) = VP (gz, gz')
for any g € supp uf,j” and n € N.

Propositions 8.1 and 8.3 immediately yield the following analogues for stabilized
vertical angles and vertical projections:

and n € N. Consequently, if (x,z") is not in the

(9.9)

Proposition 9.2. For every § > 0, n = N1,  # z' in E1(p}), and w > 0 with
VA (z,2') > w,
(9.10) —log 1 (gz, gz';w) < —log )y (z,2';w) — Kin for every g € &1,

and
(9.11) j —log 1 (gz, ga';w) vy () < —log ¥ (2, 2" w) — (s} — C1)n.
G

Proof. Since it is assumed that (z,2') is not in the stabilization region, (9.10) is a
restatement of Proposition 8.3 and (9.11) is a restatement of Proposition 8.1. O

9.2. Cutoff. Recall that €1 = 1(v,d,n) > 0 was chosen in Section 7.2, in the
context of (7.3). As observed then, it may be taken to be arbitrarily small. In
particular, it is no restriction to suppose that

(9.12) g1 < min{po, P} }

where pg = po(v,n) > 0 is as in Corollaries 5.6 and 5.7 and p} = p) (v, d,n) >0
is as in Propositions 8.1 and 8.3.
Arguing twice as in Remark 7.3, we find constants ¢} = ¢{(v,,d,n) > 0 and
€1 = E1(Vp,0,n) > 0 with 0 < £} < & < €1, and a compact neighborhood Wy =
(n)

Wi (v, 6, n) of suppry,’, such that
(9.13) gz € Eq(e1/2) for every x € E1(2¢1) and g € Wy and
(9.14) g 'z € E1(81/2) for every z € Ey(2¢]) and g € W).
Let ko = ko(V) > 0 be as in Proposition 5.5, and define €] = €] (v, §,n) by
(9.15) g} = 3eheTron/2,

Taking p = €/ in Corollary 5.7, and recalling that £; was chosen smaller than po,
we get that there are ky = l}l(u%, 0,n) € N and Dy (z) = Dy (Vs, I, n, ) C supp V,(Cn)
such that V]gn) (Di(x)€) < § and

d(gz, E) > ™" d(z, E) > eo™?" > 2¢
for any g € Dy (), z € E(e1,e¥) and k > ki. In other words, for k > ki,

(9.16) z € E(e1,e]) = gx ¢ E(2¢)) for every g € Dy(x).
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Increasing ky if necessary, we may suppose that supp 1/,2") c W, for every k > ki
Then (9.13) and (9.14) imply

(9.17) E1(261) € X Ey(e1) and Ey(26)) € X% Ey(e1)
k Vi
(9.18) z ¢ F1(£1/2) = gz ¢ E1(2¢)) for every g € supp 1/,2").
Finally, fix Q1 = Q1 (v, d,n) > 1 large enough that

(9.19) Qyej(e] =2 =21

and define

(9.20)

i (2,27 ) = log (U + Y1 (z, 2';w)7Y) ifze Ey (2e)) or o' € By (2€)
log 24 otherwise.

We will refer to the set Eq(2])¢ x E1(2¢])¢ as the cut-off region. See Figure 7.
Ei(e1)?
E1(2€I{22
Er(e])

core region

FiGURE 7. Illustrating the cut-off in the definition of the Margulis

function. The black dot at the center marks the point (E, E). The
dashed lined represents the boundary between the V,i")—core and
the V,i")—border of Ey(e1). The shaded area is the cut-off region,

where ¥, = log ().

Proposition 9.3. There exist kY = kY (vy) > 0 and for each § > 0 and n = Ny

there exists € = €' (v, 0,n) > 0 such that

(i) For any = # 2’ in Eq(e1) with U1(z,2";w) > logQy,
JG Uy (g7, g2'sw) dvi (9) < Uy (z,2';w) + Cn.
(ii) For any x # 2’ in E1(e1) with V1 (z,2";w) > logQy and VA1 (z,2') > w,
JG Uy (gz, ga'sw) dvi™ (g) < U (z,2';w) + Clon.
(iii) For any x # ' in Eq1(7) with VA1 (z,2') 2 w,

f W (g, g2’ w) A (g) < Wy (25 w) — (K2 — CLo)n.
G
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Proof. Define " = k! /2. Let n = Ny. Part (i) of the proposition is a consequence
of the following lemma:

Lemma 9.4. Ifx # 2’ in P are such that ¥ (z,z';w) > log ) then

(9.21) Uy (gz, g2'sw) < Uy (2,2";w) + Cin for any g € supp v,

Proof. By (9.6) and (9.1),
Uy (gz, ga'sw) < log (Q + ¢ (g, g2'sw) ") <log (91 + ey (z, I';w)’l)

<log () + 91 (z,2';w)™") + Cin = ¥y (2, 2';w) + Cin.

This gives the claim. (|
To prove part (ii) we use Proposition 9.2: given any w > 0 and = # 2’ in Fy(e1),

(9.22) —log (g, g2'sw) < —logn (z,2";w) — kin < —log ¥ (2, 2";w)

for every g € £]. Then,

og (U + 1 (gz, ga';w) ™)

og (Ql + 91 (x, :v';w)*l) =V (gz, gz’ w),

for every g € &£{. Integrating (9.23) over & and (9.21) over the complement, we
obtain the estimate in part (ii).

Now take ¢ = e 2%1™ in the relation (9.3). By Lemma 8.6, there exists £/ > 0
depending only on v, 6 and n (through ¢ and ;) such that

(9.24) —log 1 (z,2;w) = —log 1 (x, 2") = log (Q1//c)
for any  # 2’ in E1(e!"). Then, using (9.22), (9.24), and (9.3),

Uy (ga, gz'sw) < log (Qu + 1 (ga, gz'sw) ™)
(9.25) < log (Ql +e 2y (a, :v’;w)’l)

< log (1 + wl(x,x’;w)fl) —kin=9(z,2";w) — &'n

Uy (gx, gz';w) <
(9.23) 1l ) )

[EEE—

for every g € £1. Integrating (9.25) over £ and (9.21) over the complement, we
obtain the estimate in part (iii) of the proposition. O

Lemma 9.5. For any w > 0 and x # ' in Fi(e1) such that © ¢ Eq(g}) or
x' ¢ Ei(e)),
logQ; < Uy (z,2";w) < logQy + log 2.

Proof. The inequality on the left is an immediate consequence of the definition
(9.20), and the same is true for the one on the right if both points = and z’ are
outside E4(2e). Let us suppose that xz ¢ Ey(¢]) but 2’ € Fy(2e); the case when
x € E1(2¢)) but o’ ¢ Ei(e]) is analogous. Let y = y(z,2’) be the great circle
associated to « and z’. Then
d(z,z') = &) — 2¢] and VA (z,2') =d(y, E) = d(z, E) > €}
and so
i(z, 2’ w) = (e, 2’) = el (e —2e])7.
In view of the definition of €; in (9.19), it follows that
Uy (z,2';0) =log(h + ¢ (x,2';w) 1) < log 26,

as claimed. O
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10. TURNING THE PERTURBATION ON

Now we show that the conclusions of Proposition 9.3 hold for I/](Cn) instead of

I/EZZ ), as long as k € N is sufficiently large. More precisely, we prove:

Proposition 10.1. Given § > 0, n = N1, andw > 0 there is k1 = k1 (v, 0, n,w) €
N such that the following holds for every k = ky:

(i) For any x # 2’ in E1(e1) with U1(z,2';w) > log Yy,
JG U, (gz, gz’ w) dulgn) (9) € ¥y(z,2";w) + Cin.
(ii) For any x # a' in Fy(e1) with Uqi(x,2';w) > logQy and VA1 (z,2') > w,
JG Uy (gz, gz’ w) dulgn) (9) € ¥y(z,2";w) + C1on.
(i) For any x # a’ in Ey1(g)) with VA (z,2') > w,
| witomar' i) @ (0) < Wi(aatin) = (= Cion.

Keep in mind that we have chosen €1 < p} < p1 and C] = B + 1 A. Recall also
that k1 = k1(vs,d,n) € N was chosen so that the relations (9.16) through (9.18)
hold for every k = k1. Moreover, N1 € N is given by Propositions 8.3 and 9.2.

Proof. We are going to extend to large k € N several estimates in the proof of
Proposition 9.3. This will require a number of conditions on k, depending on v,
0, n and w, that we state along the way. We begin with the following extension of
Lemma 9.4:

Lemma 10.2. Given n > Ny and w > 0, there is ki = l%l(um,n,w) € N such that
if x # ' in P are such that V1 (z,2";w) > log§y then

(10.1) Uy (g, gr'sw) < Uy (z,2"50) + Cin

or any g € supp v and any k > k.
UNY & Yy

Proof. Let n = Ny and w > 0. We claim that there is ki = /%1(%[,,, n,w) such that
(10.2) —log SVA; (g, gz';w) < —log SVA; (z,2";w) + Bn
for any x # 2/, g € supp I/]in), and k > ki. This can be seen as follows. If
VA;(x,2') < w then, by the definition (9.4),

—log SVA;(x,2';w) = —logw and

—log SVA(gx, gx';w) € —logw + Bn < —log SVA; (x, 2’;w) + Bn,

as claimed. Now suppose that VA;(x,2') = w. The relation (8.7) does not apply
here. Instead, from (8.5) and (9.4) we get that

[Cgu)=] Jul
lgul fut]

(10.3) —log SVA, (g, g2';w) < —log SVA; (z,z';w) — log

for every g € supp u,gn), with u = u(z, ') realizing the supremum in (8.4). The

assumption VA;(z,7') > w means that |ul| > w|u|. Since suppwj converges to
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supp vy, in the Hausdorff topology, we may find ry = rg(vq,, n) — 0 such that every

(n)

g € suppv,, ~ is in the rg-neighborhood of some f € supp yf,j‘). Then

Tk

[(gu)™ = (fu) " < lgu = ful < riful < —Ju].
Fix k; € N large enough that, for every g € supp V](C") and k > 12:1,
[(fu) ] ]

IO

< —log + log 2
gl [utl [full - flut]
|fut]

= —log —— + log 2
[full Jutl

<log(f+)~!| +1log | f| +log2 < Bn.

Substituting this in (10.3) completes the proof of (10.2).
Next, substituting (10.2) and (8.2) in the definition (9.5) we find that
—log 1 (gz, g2';w) < —log SVA4 (z, 2';w) + Bn —logd(z,2") + 11 An

10.4
(104) = —log 1 (z,2";w) + Cin

for any = # 2/, g € supp V,(C"), and k > k. Using (9.1), it follows that
U1(gz, ga'sw) <log (Q + ¢i(ge, g2'sw) ™)
< log (Ql + eC1my (2, :v';w)*l)
<log (U + 1 (z,2";w)™") + Cin = ¥y (2, 2";w) + Cin,
as stated. (]

Next, we prove the following extension of Lemma 8.2:

Lemma 10.3. Given 6 > 0, n = Ny and w > 0, there is ki = ki (vy,0,n,w) € N
and for any x # x' in P with VA1 (z,2") > w there is & ; = & | (V, 0,0, 7, 7", w) ©
supp V](cn) with l/li")((é','ﬂ_rl)c) <4 and
(10.5) —log SVA (gz, g2'; w) < max{—log SVA; (z,z';w) — &1n, 0, }
for every g€ & | and k = k.
Proof. Fix 6 > 0 and n = Ny and w > 0. Let P,, denote the (compact) subset of all
v € P such that |[vt]/||v] = w/2. For v € P, and g in some compact neighborhood
V., of supp up(,?), consider
[(gv)*|
(10.6) (v,g) — —log .
lgvl

As long as V,, is sufficiently small, depending on v.,, n and w, the map (10.6) is
well defined and (uniformly) continuous. So, there exists a = a(vy,, n,w) > 0 such
that

[(gu)*| [(fo)*]
(10.7) —log < —log

gl 1ol

whenever d(u,v) < o and d(g, f) < a. Reducing « if necessary, depending only on
w, we may also assume that

+ log?2

Jut|

]

[ot]

(10.8) dlu,v) <a = —log ol
v

= —log —log 2.
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Fix v1,...,v € P, such that P, € B(vy,a)u---u B(v;, «). For each v € P, choose
j € {l,...,1} such that v € B(vj, ) and then define & o = Exo(vp,d,n,v,w) C
supp V]gn) by

(10.9) ko = [a-neighborhood of & (v, 6, n, vf‘)] N supp V]g ),

(n)

where & (v, 9, n,vj-) C supp VSJ) is as defined in Proposition 5.5. Since v’ con-

verges to I/EZZ ) in the weak* topology, the limit inferior of the V,(Cn) -measure of (10.9)

as k — oo is greater than or equal to

VF, (EO(VL,(S n, vj )) >1-90
for every j =1,...,l. In particular, there is k] = k{ (v, 0, n,w) € N such that
(10.10) V](C") (ko) >1—6 for every k > k] and v € P,,.

Given x # 2’ with VA(z,2') > w, take u = u¥ + u' to be a non-zero vector
that realizes the supremum in (8.4). Then,

1
(10.11) w< VA (z,2') = ”|1|L ||| (in particular, u € P,,) and
u
I(gw)*] nIgw) ] Ju
(10.12) VAi(gz,gx') = > VA (z,2")
lgull lgul - flutl
for any g € G. Then define
(10.13) Ern = Eko(Ve, 0,n,u,w).

It follows from (10.10) that I/k ((8;C 1)¢) < 6 for every k = ki.

Let g € &, and k = k{. Then, by definition, there exist v = v¥ +otin P, (take
v =wv; as in (10.9)) and f € &(vy, 8, n,v1) < supp VSJ) such that d(u,v) < a and
d(g, f) < a. Thus, substituting (10.7) and (10.8) in (10.12), we find that
L ffot] 1 [fot ] ol

= >~ VA (z,2") .
2 | fo] 4 Ifol ot

Let 79 = 70(v,d) > 0 be as in Proposition 5.5. If | fLot|/|fv]| = 70/2 then the
first part of (10.14) gives that (recall (8.9) also)

(10.14) VA, (gz,gx') =

(10.15) —log VA1 (gz, gz') < —log% <0,

Now suppose that | fLvt|/| fv] < 7'0/2. Then part (2) of Proposition 5.5 gives that

|fvt] o ol 1
(10.16) <3 and > .
| fol Sl T2
Substituting (10.16) and |jv| > ||vE|| in (10.14), we find that
1 Lot |v®
VAL (gr.90') > £ VA (o) LI
8 [t [ fo®]
(1047 1 Dot
= - VA (z,z")—2——
8 o]



60 ARTUR AVILA, ALEX ESKIN, AND MARCELO VIANA

By part (1) of Proposition 5.5 and the choices of £; > 0 and Ni eNin (8.9), this
implies

l018 —log VA1 (gz, gz') < —log VA (z,2") + log8 — 2&1n
(10.18) < —log VA (z,2') — Rin.
The conclusion of the lemma is contained in (10.15) and (10.18). O

Next, let us prove the following extension of Lemma 8.5:

Lemma 10.4. Given § > 0 and n = Ny there exists ki = ki(vx,0,n) € N such
that for any x # x’ in E1(e1) with —log VA (x,2") < 61 + Rin there exists 5,’6'71 =
&1 (Voy 0, , 2") € supp I/](Cn) with V,(Cn)((é'l'c’ 1)) <6 and

(10.19) —logd(gz,gx') < —logd(x,x') —log VA (z,z") — Rin

for every g€ &, and k = k.

Proof. Let P denote the (compact) subset of pairs (v,w) € P x P such that

[0t ]
(10.20) <p1<2p1 <
ol lw]

(as before, v+ and w* denote the vertical components of v and w). Let n > N;

and V be a compact neighborhood of the support of ugl). Since, p1 = p1(Vep, 1), P
and V depend only on v, and n. Condition (10.20) ensures that the angle between
v and w is bounded away from zero and, consequently, so is the angle between gv
and gw for any g € ‘7; both bounds depend only on v, and n. Thus, the map

[Tgugw] foll

(10.21) (v,w,g) — —log —F"— ——

lgvl - Jw]

is well-defined and (uniformly) continuous on the domain (v,w) € P and g € V. In
particular, there exists & = &(vy,n) > 0 such that

Mgogel ol o o0 Irut 2] Tul

ool Tl S [full =]

whenever d(v,u) < & and d(z,w) < & and d(g, f) < & Reducing & if necessary,
depending only on v, and n, we may also suppose that

(10.22) —log +log 2

L L
(10.23) dz,w) <& = —log ”” ”| —log |” ”” + log 2.
w
Fix points (v1, wi), ..., (v, w) € P such that the balls of radius p around these

points cover P. For each (v, w) € P choose j € {1,...,1} such that v € B(v;, &) and
w € B(wj, &) and then define 5k0 =& 0V, 0,m, v w) c G by

(10.24) Ero= [&-neighborhood of &y (v, 6, n, wj)] N supp u,gn),

is given by Proposition 5.5. Since V,i ", uf,j” in the weak*

topology, the limit inferior of the V]g n)

or equal to

where & (v, 0, wl)

-measure of (10.24) as k — oo is greater than

i (80(1/,,5 n, wj ) >1-96
for every j = 1,...,1. In particular, there is k’l’ = k7 (ve, d,n) € N such that

(10.25) V,gn)(ékyo) > 1—4 for every k > k{ and (v,w) € P.
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Given x # 2’ take w = v — v’ to be the difference between unit vectors v and v’
in the directions of z and 2/, respectively. Just as in (8.22),
Mgogw]| o]

lgvll fwl

for any g € G such that |gv|| = ||gv’|| (the case |gv| < ||gv’|| is analogous, reversing
the roles of x and z'). The assumption x € F;(e1) implies that
.

(10.26) —logd(gz, ga') < —logd(x,2") —log

|T H <d(z,E) <e1 < pr.
v

Now assume that —log VA, (z,2’) < 6; + &1n. Then, using (8.19) and (8.23),

(10.27)

Jwt] _ 1 P .
10.2 - VA = —e 1T > 25,
(10.28) ol > 4V 1(z, ) 1€ > 201
Thus, (v, w) € P. Then define
(10.29) Ep1 = Skﬂo(uw,é,n,v,w).

It follows from (10.25) that v\ ((£}.,)°) < for every k > k.
Take u = v; and z = w; as in (10.24). By definition, (u,z) € P and d(u,v) < &
and d(z,w) < &. Let g€ &/, and k > k1. The definitions (10.24) and (10.29) imply

that there exists f € & (vy,d,n, 2%) < supp yf,j‘) such that d(g, f) < &. Replacing
z, w and g with u, z and f, respectively, in (8.24) and (8.25), we find that

[ful _ 1]fu®|
ful = 2 Ju®]

Combining this with (10.26) and (10.22), we obtain

1
and [Ty, f2] = 5| f24.

e fz| |w
—logd(gz, gx') < —logd(z,x’) +log 2 — log %H
10.30
(1050 , £
< —logd(z,z") + log 8 — log BRI

Conditions (10.23) and (10.28) give that

1 1
I R
o]

=1

Substituting this in (10.30), we find that

+1log2 < —log VA (z,2") + log 8.

/ / / [fE2t] Ju®)
—logd(gz, gz') < —logd(z,z") —log VA;(z,z") + log 64 — log PRI
z u
D 1 1
= —logd(z,x') —log VA (z,2") + log 64 — log %
z

By part (1) of Proposition 5.5 and the choice of Ny eNin (8.19), this implies that
—logd(x,2") —log VA (z,2") + 5 — 2k1n
—logd(x, ") —log VA (z,2") — Rin,

—logd(gz, g')

NN

as claimed. O

Now we deduce the following extension of Proposition 8.3:
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Lemma 10.5. For § > 0 and n = Ny and w > 0 there is k{' = k{' (v, d,n,w) €N
and for x # x’ in El(sl) with VA1 (z,2") > w there is &'y = & (v, 0,n, 7, 7', w) ©
supp V,(C ") such that Vk ((5,’6”1)6) <6 and
(10.31) —log 1 (gz, gz';w) < —log )y (z, 2';w) — Kin.
forany g€ &) and k > k{'.
Proof. Fix 6 > 0 and n = N; and w > 0. Recall that
N1 > max {Ni(vo,,8/2), N1 (ver, 6/2), 2601 /(vR1) },
by (8.26). Define
k)" = max{k|(vy,0/2,n,w), kY (ve,/2,n)}
and &y = &1 (v, 6/2,n, 22" ,w) N & (v, 0/2, 3, 2"n).

By construction, 8’”1 is contained in the support of V,i ") and I/k ((Eg’l)c) < 4.

Consider z # 2’ in Ey(e1) with VA;(z,2’) > w. As observed in (9.9), the lat-
ter implies that SVA;(z,z';w) = VA (z,2') and SVA,(gz, gz’;w) = VA1 (gz, gz’).
Thus, the claim (10.31) may be rewritten as

10.33 —log VP (gz, gz';w) < —log VP (2, 2';w) — K)n.
(10.33) g 97,9 g 1

(10.32)

Let g € &) and k > ki". Suppose first that —log VA;(z, ') > 6, + #1n. Then, by
Lemma 10 3
(10.34) —log VA1 (gz, gz') < —log VA1 (z,2') — Rin.
Substituting (10.34) and (8.2) in the definition (8.13), we find that

—log VP (gx, gx') € —log VA1 (z,x') — fin — 71 logd(x, x') + 11 An
(10.35) ;

—log VP (z,2") — %n

Now suppose that —log VA (z,2") < 6, + 71n. In this case, Lemma 10.3 yields
(10.36) —log VA (gz, gz') < 61,
whereas Lemma 10.4 asserts that
(10.37) —logd(gz, gz') < —logd(z,2") —log VA1 (z,z") — Rin.
Substituting (10.36) and (10.37) in the definition (8.13), we obtain
—log VP (gz, gz') < 01 — 1 logd(z, ') — 1 log VA, (z, &) — y1kin
< —log VP (z,2') + 01 + (1 —v1) log VA, (2, z') — v1A1n.
Since VAj(z,2') < 1,11 € l,and n > N; > 291/(71/%1), it follows that
—log VP (gz, g2') < —log VP (x,2') + 01 — y1f1n
(10.38)

< —log VP (z,2') — nm

In view of choice of the constant ] in (8.26), the claim (10.33) is contained in
(10.35) and (10.38). O
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Let us go back to proving Proposition 10.1. Define
(10.39) ki = max{ky, k1, k!, K/, K"}

By construction, k; depends only on vy, §, n and w. Part (i) of the proposition
is an immediate consequence of Lemma 10.2. To prove part (ii), consider the set

(
&y =& (v, 6,m, 2", w) given by Lemma 10.5. Then Vlgn)((é’,’c’fl)c) < ¢ and
(10.40) —log 1 (gz, gr';w) < —log (z,2';w) — kin < —logy (z, 2 w)
for every g € &, and k > k{’. By (9.2), this implies that

nm

(10.41) Uy (gz, go'sw) < U(x,2";w) for every g € &5.

Integrating (10.41) over &, and (10.1) over the complement, we obtain the estimate
in part (ii).

Next, recall that we took &7 = K}/2, ¢ = e=251" and % > 0 such that (9.24)
holds:

—logii(z,2";w) = —log1(z,2) = M /e
for any  # 2’ in F1(e!"). Then, by (9.3) and the first inequality in (10.40),
(10.42) Uy (g, g2';w) < Uq(z,2';w) + log/c = ¥y (z,2";w) — k'

14

for every g € &;. Integrating (10.42) over &, and (10.1) over the complement,
we obtain the estimate in part (iii) of the proposition. This completes the proof of
Proposition 10.1. (I

It is clear from the statements of Lemma 10.2, Lemma 10.3, and Lemma 10.5
that ki, ki, and k" may be taken to increase to oo when w decreases to zero and
Vs, 0, n remain fixed. Then the same is true about the map w — k1 (vy, d,n,w) in
(10.39). Hence, we may find wy 1 = wg,1(Vs, d,n) > 0 such that

(10.43) (wk,1)k decreases to 0 and k = ki (v, 0,1, wh 1)

for every large k € N. For instance, wi,1 = 2inf{w > 0 : k1 (vy,d,n,w) < k}. Fix
k1 = ki(v, 0,n) € N such that (10.43) holds for all k > k;. Define

(10.44) Ypa(x,2") = 1 (z, 2’ ;wi 1) and Uy (z,2') = Uy (z, 2" wk 1)
Then the following statement is contained in Proposition 10.1:

Corollary 10.6. For any 6 >0, n > Ny, and k >k :
(i) For any x # z' in FE1(e1) with Ui 1(x,2') > logQy,

L Ui (gz, g2') dv™ (9) < Wi (z,2') + Ol

(ii) For any x # 2’ in E1(e1) with Uy 1(x,2') > logQy and VA (x,2") > w1,
JG Uy 1(gx, gz') dl/]i") (9) € Up1(z,2") + Cion.

(ili) For any x # 2’ in Eq(e]) with VA1 (z,2') = wi1,

f U1 (g2, g') vl (g) < Uy (z,2') — (K — Co)n.
G



64 ARTUR AVILA, ALEX ESKIN, AND MARCELO VIANA

11. RECOUPLING AND CONCLUSION

Here we resolve the difficulty arising out of the discontinuity of the Margulis
function Wy ;. The main issue is that the inequality in Lemma 10.2 may not hold
when trajectories leave the cut-off region, that is, when Wy 1 (z, z';n) = log {21 but
U(gx,gz’;n) # logy for some g in the support of u,gn). That may cause the
analogue of (6.26) to fail at such points, which is catastrophic for our proof.

From the form of the cut-off, that problem can only happen if both 2 and 2’ are
outside E7(2¢) and at least one of gz or gz’ is inside F4(2¢f). This is a relatively
rare occurrence: for instance, Proposition 5.5 shows that, for every = not too far
from F, the image gx is further away from F for the majority of ¢ in the support
of I/EZZ ). However, we still need to handle those rare cases where at least one of the
points gz or gz’ is in Eq(2£7).

The idea is to modify the dynamics on the space of pairs, more precisely the
self-coupling ’7~7671 of the Markov operator T 1, to allow for the points x and z’
to move in a more independent way: instead of the diagonal embedding, we will
consider couplings supported on pairs (u, ') such that if one of the components is
in E1(2¢f) then the other lies outside Ej(e}). Then Wy 1(u,u') remains bounded
above by a constant, which avoids the catastrophe.

11.1. Recoupling. As in Section 7.2, for each k € N let

Tt B(Ey(e1)) — B(Er(e1)),  Trnola) = L( ) 0

be a continuous Markov operator adapted to (V,(C"),El(al)), and let n; 1 be a Tj 1-
invariant probability measure converging, as kK — o0, to a probability measure 71, 1
such that 7,,1(E) > 0. Recall that e; > 0 was chosen small enough that

1
(11.1) Mo, 1 (E1(e1)\E) < 3570,1 (E).
Then, for every k sufficiently large,
2
(11.2) 1 (Er(erser)) < g5 (Baen)).

Consider X = X' = Ey(e1) and Y = Y’ = Ei(e1), and 7, = 777; = Okly
for every y € Y. Moreover, let K = Diag; be the diagonal of E;(g1)?. Clearly,
K(z) = K'(z) = {«} for every x € X. Since the o 1, are non-atomic measures, it
follows that o 1,4 (K(2")) = o1, (K'(z)) = {0} for every z,2’ and y. Thus (6.10)
holds in this case, and so we may use Proposition 6.9 to find a continuous family

{ék,l,w,w' : (.’II,.’IJ’) € Ey (€1>2}

of generic probability measures on Fj (51)2 such that each ék,l,x,x’ is a coupling of
Ok,1,z and o 1, vanishing on a uniform neighborhood of the diagonal.

Let u,i"l)x and u,i"l)xx, denote the push-forwards of V]gn) under the maps G — P,
g— grand G — P x P, g — (gx,gx'), respectively. Let @ : E1(e1)? — [0,1] be
a continuous function such that &(z,2’) = 0 if  and =’ are both in E;(¢1), and
w(x,z') =1 if either point is outside E4(2£7). Then

(11.3) Gt = (1—@(@,a) vy, o + (@, 2 )1 00



CONTINUITY OF THE LYAPUNOV EXPONENTS OF RANDOM MATRIX PRODUCTS 65

is a coupling of oy 1, and 0,1 .+ depending continuously on (z,z'), and so

Tea : B(Ei(e1)?) = B(Ei(e1)?), Trap(z,2') = J oy, y") dok e (¥,Y),
E;(e1)?

. . . . n o .
is a continuous self-coupling of 7j ;. Since V,(C ) and 0k,1,2,2' are generic measures,

SO iS O,1,2,2'- We are going to modify these Markov operators on the recoupling

region E1(2&1,¢Y)? as follows. See Figure 8.
" (n)

For x € Ey(2¢1,¢7), it follows from (9.16) that the subset of g € suppr,’ such
that gz € E1(2¢) is disjoint from the set Dy (z) given by Corollary 5.7. Hence,

(11.4) Vl(cnl)z (Er(2¢))) < V](cn) (Dr(z)°) < ¢ for every z € E1(281,¢€7).

Keep in mind that oy 1.4 = V,i"l)z if z is in the V,i")—core of Fi(e1).

e core region

Ficure 8. Illustrating the recoupling of the Markov operators.
The black dot at the center marks the point (E, E). The dashed

lined corresponds to the boundary between the V,i")—core and the

V,i")—border of E1(e1). The shaded area is the recoupling region.
On the complement, marked in white, 6% 1.4,0' = Ok,1,2,2- On the
dark gray area oy,1,4,, is replaced with (i 1,2 ./, and on the light
gray area we interpolate between the two.

Consider X = X' = Ei(g,), Y =Y = E1(261,€))?, and n, = n’y = 0y,1,y for
every y € Y. Moreover, let K = E;(g})? u Diag;. Then
K(z') = Ey(e})) v {2} and K'(z) = E1(e}) v {z}

for every (z,z') € Ey(g1)?. Since the oy, 1, are non-atomic measures, it follows from
(11.4) that op 1, (K (2")) and oy 1,4 (K'(z)) are less than § < 1/2 for every z, 2’ and
y. This ensures that (6.10) holds in this case, and so we may use Proposition 6.9
to find a continuous family

{Ck,l@@’ : ($7$,> € E1(2§178,11)2}
of generic probability measures on E(g1)? such that every i 1,4, is a coupling of

0k,1,2 and oy,1 4» which vanishes on a uniform neighborhood of the diagonal and
satisfies

(11.5) e (Er(€1)?) = 0.
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Fix a continuous function 7 : Ey(e1)? — [0,1] such that 7 = 1 on E;(£1,2¢Y)?
and 7 = 0 on the complement of E1(2&1,¢])?. Check Figure 8. Then define
(11.6) Oklma = (1 —7(z,x )) Ok 1wz + 7,2 ) etz

for every (x,2') € F1(e1)?. It is clear that 61,4, is a coupling of oy 1, and o 1 4
depending continuously on (x,z'). Thus

Tin : BEL(1)%) — B(Ey (1)), ﬁw@wv=j oY) A1 00 ()
E1(81)

is also a continuous self-coupling of Ty 1. Moreover, 6 1,5, is a generic measure,

since Oy 1,4,2r and (k1,200 are generic, and it coincides with o1 4. outside the

recoupling region E1(2&1,¢7)%.

Lemma 11.1. Let (z,2') € E1(e1)? be such that
(a) either at least one of the points x or ' is in the V,(Cn)—border of Er(e1),
(b) or both x and x' are in the V,(Cn)—core of Eq1(e1) but outside Eq1(2eY).
Then 61 2.2 (F1(e1)?) = 0 and so 7\7@ 191(z, 2") <log €y + log2.
Proof. Let us begin by proving the claim that 6 1 4, vanishes on Eq(e})?. If x is
in the V,g )_border of E;(e1) then, using (9.17),

k1m0 (B1(£1)%) S ok12(Br(€)) S ok (Xjfn)El (81)) =0.
k

The same argument applies when 2’ is in the u,i")—border of Eq(e1). This settles the
claim in case (a). Now let z and 2’ be as in (b). Keep in mind that oy 1, = I/](Cnl)w
and oy 1 o = I/](gnl)w, By (11.5), (k1,20 vanishes on Fi(g})?, and so (11.6) gives
that

Gktwa (B1(e0)?) = (1 —7(2,2))0k 100 (B1(c1)?) -
If  and 2’ are both in Ej(£1) then T(x z') = 1, and the claim follows. When
x ¢ F1(é1) we get from (9.18) that uk ! I(El( 1)) = 0. Then

G100 (B1(E))?) < onne (Br(€)) = 1) (B () = 0.

The case when 2’ ¢ E; (1) is analogous. We have shown that 6y 1 , . (E1(7)?) =0
also in case (b).
By Lemma 9.5, it follows that ¥y 1(u,u’) < logQq + log2 for 64,1 4 4-almost

every (u,u’) € E1(e1)%. Integrating with respect to 6.1 . we immediately get

that ’7A7€71\Ilk11(:1:,:1:') < log 24 + log 2. O

Proposition 11.2. There ezist k' = k' (vy,) > 0 and CY = C{'(vy) > 0 such
that given any § > 0 and n = Ny the following holds for every k = ky:

(i) For any x # a’ in F1(e1)
7A79,1‘1’k,1(£6,$') < Uy (w, 2’
(ii) For any x # x' in F1(e1) with VA4 (z, ')
Te1Vpa(z,2') < U (z,2') + C"(1 + on).
(iii) For any x # a’ in E1(e)) with VA1 (x,2") = w1,
72,1‘111@,1(117,17 ) < Upa(x,2') — (k7 — CY'O)n.

III

)+
Zwkl7
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Proof. Take k% = &} and CY = max{C},log2}, and let k > k;. We split the
argument into four cases (check Figure 8).

First, suppose that both z and 2z’ are in the V,(C")—core of E1(e1), and at least one
of them is in F; (). This is necessarily the case in the setting of (iii). In particular

(z,z'") is outside the cut-off region,
U1 (z,2') =log(Q + g1 (2, 2") 1) > log Oy,

and there is no recoupling either:
&k,l,w,m’ = V]g71)717117 77@,1\1176,1(:[;71‘./) = J \I]k,l(gxag:b,) dylin) (g)
G

Hence the claims in (i), (ii) and (iii) are contained in Corollary 10.6.

Now suppose that both z and 2’ are in the u,i")—core of F1(e1) but outside E(eY),
and at least one of them is in FEj(2e]). It is still true that (x, ') is outside the
cut-off region, and so Uy 1(z,2") > log€;. Thus the estimates in Corollary 10.6
remain valid for

(117) ka,l d&k,l,x,x = J; \IJk.,l(gIa g'rl) dyl(qn) (g)

However, this time (x,2’) may be in the recoupling region. That is dealt with as
follows. By (11.5), the measure (g 1. .+ vanishes on E;(¢})?. Thus, by Lemma 9.5,

(11.8) J’ Up1dCen ze <logQy +10g2 < Uy (x,2") + log 2.
Ei(e1)?

The claims (i) and (ii) follow because, by (11.6), 7A7€71 U 1(z,2') is a convex combi-
nation of the integrals in (11.7) and (11.8).

Next suppose that both  and z’ are in the u,i")—core of Ei(e1) but outside
Ey(2e7). This corresponds to case (b) of Lemma 11.1: claims (i) and (ii) are
contained in the conclusion of that lemma. Finally, suppose that at lest one of
the points = and 2’ is in the V,(C")—border of Ey(e1). This is precisely the situation
in case (a) of Lemma 11.1, and so claims (i) and (ii) are again contained in the
conclusion of that lemma. 0

11.2. Contradicting dim E = 1. We are going to use the following refinement of
Lemma 6.21:

Lemma 11.3. Let T : B(X) — B(X) be a Markov operator and ¢ : X — [0, 0]
be a measurable function. Suppose that there exist constants ka, k', K’y € R and
pairwise disjoint sets A, B', B" such that X = A u B" v B" and

(i) To(x) < () —ka forze A,
(i) To(z) <¢(x) + Kk forxe B,
(ili) TY(x) <Y(x) + k' for x € B”.
Let 7) be a measure on X with {1 dij < oo and § Tep(zx)dij(z) = § ¥(x)di(z).
Then

kan(X) = (e + Kp)i(B')

11.9 W(B") =
(11.9) i(B") o
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Proof. Conditions (i) - (iii) imply
| v@ i < [ To diw)
b b
< J Y(x) dij(xz) — kab(A) + K'50(B') + kp6(B").
b
Thus, —kaf(A) + KzN(B’) + k51 (B") = 0, which implies (11.9). O

Take X = Ey(e1)2, T = Tha, ¥ = U1, ) = fip.1, and

(11.10) Ay, = {(z,2") € E1(e])? : VAL (2, 2") > wi1},
(11.11) B' = {(z,2') € E1(e1)? : d(x, E) > €} or d(2/, E) > £}'},
(11.12) By = {(z,2") € E1(1)? : VA1 (z,2') < wi1}.

It is clear that A = A, is disjoint from B = B’ u By, and their union is the whole
E1(g1)%. The sets B’ and B” = By are also disjoint if k is sufficiently large, because

VAi(z,2") = d(z + o', E) = max{d(z, F),d(z', E)}

is greater than £} whereas (wy, 1), converges to zero when k — co. Also, AuB’'uB”
is the whole E1(g1)?. Moreover, (7.2) implies that B” = ¢f when dim E = 1.

Proposition 11.2 shows that, assuming that k is sufficiently large, the hypotheses
of Lemma 11.3 are satisfied for these choices, with

ka = (k] = C{0)n, kg =0CY(1+0dn), and x5 = C{'n.

Take 6 > 0 to be sufficiently small, depending on vy, and n € N to be sufficiently
large, depending on v, and 4, that
(11.13) Ka > 9K’

As in Proposition 6.23, we find a sequence (7j.1,;); of probability measures on
FE1(e1)? converging to a Ti,1-invariant self-coupling 7). 1 of 7,1 such that every 71 ;
satisfies SE1(51)2 Uy 1 diy1,; < o0 and

J 7A7c,1\1’k,1($7$')dﬁk,l,j(w,w') > J W1 (z,2") dijg, (2, 2).
E1 (81)2 E1 (61)2

Applying Lemma 11.3 with 7 = ’ﬁﬂ and 7} = fji,1,; we get that

KAk (E1(e1)?) = (KA + KB) k1,5 (B')

11.14 1 (B"Y =
( ) Mk1,5(B") Py

for every j. Passing to the limit as j — oo, we conclude that

KTk (B1(e1)?) — (Ka + K'5)0k1(B')
KA+ K '

(11.15) ka1 (B") =
Observe that 7y 1 (E1(€1)?) = nk.1(F1(e1)) and, using (11.2),

. 4
(11.16) M1 (B') < 2mp 1 (Er(en,el)) < Enk,l(El(El))-
Thus, (11.13) and (11.15) imply

4

KA — =1 KA+ K oK
A~ qglka B)m,l(E1(51)) > ——L 21 (Eier) > 0.

11.17) M1 (B") =
(117) (B > =T T
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When dim F = 1 this yields a contradiction, because B” is empty in that case.
Thus dim F > 2.

11.3. Completing the first step. Let us consider the map
¥ : Ey(e1)%\Diag, — Gr(2,d), X(z,2') =z +2'.

We would like to define 7,2 = 34 (7k,1) but there is a problem in that X(z,2’) is
not defined on Diag; and we cannot exclude the possibility that 7 1 is positive on
the diagonal.
To by-pass this difficulty, we introduce the compact topological spaces
Vi = {(z,2',y) € Gr(1,d)* x Gr(2,d) : x c y and 2’ C y}
Vi(e) = {(z,2",y) € V1 : z,2’ € Ey1(e)} for € > 0,
together with the canonical projections
p1:Y = Gr(1,d)?,  (z,2,y) — (z,2")
p2: V1 — Gr(2,d), (z,2',y) > y.
For (z,2',y) € M1, k € N, and n € N, denote by u,i"l)m o1y the image of V,(Cn) under
the diagonal action
G-V, (97 (97,92, 9y).
Clearly, each u,(;l))m)m,)y is a lift of u,(fl))m)m, relative to p; : 1 — Gr(1,d)%. The
complement of the diagonal in Gr(1,d)? embeds in ) through
(x,2') > (x, 2",z + ).
In particular, every measure ¢ on Gr(1,d)? that vanishes on the diagonal has a
(unique) lift € to V.
From the relations (11.3) and (11.6), we see that
(11.18) Grt e = (1= @@, a)) ")+ (w2 )0h1 e

where & : E1(e1)? — [0,1] is a continuous function that vanishes identically on
E1(£))?, and each ék,1,z,z' is a coupling of oy, 1 5 and oy, 4 vanishing on a uniform
neighborhood of the diagonal. In view of the previous remarks, it follows that the
Ok1,0,2 lift to probability measures

(11.19) Gty = (1—(z,2)) ) o + 0@, 2 ) 1000y

on Y (e1), where 9;6_’1@@/_’7! is the unique lift of ék,Lx,x/- Since v(™ and ék,1,z,z' are
generic measures, so iS 0x,1,4,07,y for every (z,z’,y) € Vi(e1).
It is clear that ﬂ,gngz oy Varies continuously on Y, (1) and, by uniqueness, so does
ék,l,ac,ac’,y- Thus,
Tir s BOAE) —» BOIE)). Toa¥a's) = [ Wdonsaany
Vi(er)

defines a continuous Markov operator. From the definition we see that ’7v7€_’1 is a lift
of Tk.,1, in the sense that

77@,1(1/1 opy) = (7A7c,11/1) op; for every ¢ € B(V1(e1)).

Thus, the construction in Proposition 6.23 can be applied simultaneously to the
two operators, to yield a sequence of probability measures 7,1 ; converging to
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a ﬁyl—invariant measure 7jx1 on YVi(e1), and whose projections down to Ej(e1)?
are self-couplings 7j,1,; of the 11 vanishing on neighborhoods of the diagonal of
FE1(g1)?%, and converging to the ﬁ,l-invariant measure 7y 1.

Next, define 7 2 = paxiik1 and let {dig 1., : v € p2Y1(e1)} be a disintegration of
k1 with respect to the partition {p5*(v) : v € paJi(1)}. Then define

T2 : B(p2Vi(e1)) — B(p2dh(er)),

Tra®(y) = j For (B 0 p2) (@, 7', y) i1 (2, 2").
Py (y)

Equivalently, Tr 2®(y) = Sm)?l (e1) ® doy o,y with

(11.20) O,2,y = J P20k 12,20y Ak, 1,4 (T, ).
Py (y)

Let By = pop; {(BY) = {x + ' : (x,2') € By}, where By is as in the previous
section. Define also nx 2 ; = pasfk,1,; for j € N. Then

M2, (Br) = 1,5 (07 (BY)) = w15 (B).
Passing to the limit as j — o0 and arguing as in (11.14)—(11.17) we find that

5k
Me,2(Br) = ﬁnk,l(El(gl))-
B

Now, the definition (11.12) implies that By converges to E; as k — o0, because
wg,1 — 0. Thus, any accumulation point 7 2 of 75 2 must satisfy

’
SK'g

(11.21) Ne2(E2) = 7,1 (E1) > 0.

KA T Kp

Take ny = n and eo = €. Let V,(C";L denote the push-forward of I/](an) under the

map G — Gr(2,d), g — gy.

Lemma 11.4.

(i) ok2y = V]i"ZL for every y € Ea(ea).

(i) ok2,y (Xﬁn)EﬂEz)) =0 for every y ¢ Ea(c2)
k

(ili) The measure N2 is Ti 2-invariant.
Proof. Tt is clear that VI(C";L coincides with the push-forward of u,(:f))mlm,) , under the
projection ps. Thus (11.19) gives that

p2*6k,1,x,x’,y = (1 - w(xvxl)) V](CTIQQ)L + (ZJ(I, II)pQ*ék,l,z,z',ya

and so,

Fkaoy=|1- J’ O(x, ") dijg,1,y(z, 2) V,(Ctl;)zl
Py () ‘

+ J w(xvxl)pQ*ék,l,x,x’,y df]k_]lyy(.f,xl),
Py ()

If y € F3(e2) then both = and z’ are necessarily in Fj(e2), by (7.1), in which case
)

y» as claimed in (i).

@(z,2') =0. Then oy 2, = V,(Cn;
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In view of the expression (11.20), to prove part (ii) it suffices to show that if
y ¢ Ea(e2) then

(11.22) P2sGht 0ty (Xjn)E2(52)> =0
k
for any z,2’ < y. If x and 2’ are both in E;(e2) then

~ _ (n2) _ . (n2)
D20k 22y = P2sVp 1 g0ty = Yoy

and then the claim follows from Remark 6.26. From now on, we assume that one
of the points, = say, is not in Fj(e3). It follows from the definitions that

vy (Xjﬁn)Eg(gQ)) c X% Ei(e2)? x &%, Ba(ey),
k k k
and so

D240k, 1000y (Xﬁn>E2(52)) < Okt y (X#mel (€2)* x Xﬁ(&n)EﬂE?))
% Vi Vi
(11.23) < Ok1,0,0 (in)El(52)2>

< Ok 1,z (Xj(&n)El(Ez)) .
k
If z is in the V,in)—border of F1(e1) then

Okl,a (ijEl(Ez)) < Ok1z (ijEl(El)) =0,
k k

because the operator Ty 1 is adapted to (l/li"),El (e1)). If x is in the V]gn)-COI"e of

E1(e1) then Remark 6.26 gives that

Okl (Xﬁn)El (52)) = V;ﬁ”l)z (Xﬁn)El (52)) =0.
k k

Thus the right-hand side of (11.23) vanishes in either case. That completes the
proof of (11.22) and of part (ii) of the lemma.
Finally, by definition,

J (776-,2‘1)) d77k,2
p2V1(e1)
B J, J, Tia (0 p2) (2,2, ) diji (2, 2") die2(y)
p2V1(e1) Iy ' (y)
= J’ 77@_]1(@ Op2)($,$l,y) dﬁk,l(x,xl,y)
Vi(e1)

for any ® € B(p2Yi(e1)). Since 71 is ﬁ,l—invariant, this gives

[ G mew = @omes ) dntay
p2V1(e1) Vi(e1)

= J, O dijy 2,
p2V1(e1)

which proves claim (iii). O
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Since the 0,122,y are generic measures and the projection ps is algebraic, it
follows readily from (11.20) and Remark 5.1 that every oy 2., is a generic measure.
Then, conclusions (i) and (ii) in Lemma 11.4 allow us to apply Propositions 6.15
and 6.25 to X = p2)i(e1) and U = Es(e2). In this way we get a continuous

Markov operator adapted to (V]gn2), E5(g2)) which leaves invariant the restriction of
Mk,2 | B2(e2). Replace Ty 2 and ny o with this new Markov operator and invariant
measure, respectively. This finishes the first step of the induction.

Part IV. General step of the induction
12. PREPARING A MARGULIS FUNCTION

Let r > 1 be fixed. Here we extend the construction in Section 8, to find a positive
function ), such that — log ), has some of the features of a Margulis function. The
main result is Proposition 12.8, an extension of Proposition 8.1. Throughout, 6 > 0
and n € N should be seen as free parameters, whose values are fixed at the end of
the construction.

Recall that F(r,d) denotes the set of flags I} ¢ I, c --- c F,_ c F, c R?,
where each F; has dimension i. Moreover,

'E‘;‘> = {(Flu"'aFr) E]‘—(’f',d) . FTEET} and,
El(e) ={(F1,...,F.) € F(r,d) : F. € E(¢)} for each & > 0.

Weuse z = (Fi,...,F,)and o' = (FY,..., F/) to denote generic elements of F(r, d).

Most steps towards Proposition 12.8 are rather straightforward translations of
the arguments in Section 8. One significant difference is that Lemma 8.6 no longer
holds: for r > 1 it is possible to have x and 2’ with F, and F) arbitrarily close to
the equator E without VP,.(z, )" getting close to zero. For that reason, we cannot
take 1, = VP,.. This is dealt with in Section 12.3: instead, we define 1), inductively
in terms of both VP, and ;1.

12.1. Vertical angle function. Assume z,2’ € F(r,d) to be such that F| ¢ F,.
By definition, the great circle through x and ' is the subset y = y(z, z") of Gr(r, d)
defined by
y=1{£eGr(r,d): F,_yc{c F| + F.}.

This is consistent with the case r = 1, as long as we follow the convention that
Fy = {0}. On the other hand, the great circle y depends on x through F,._; and F},
whereas it depends on z’ through F| only. In particular, y(x, z') need not coincide
with y(z',2) when r > 1. Related to this, the analogue of (8.14) is usually false
when r > 1: the values of VA, (z, z') and VP, (z, z) that we define in the following
may change when the roles of x and 2’ are exchanged.

The wvertical angle function VA, is defined by
(12.1) VA, (z,2") = supd(&, E) = supsupd(u, E).

ey ey uel
Note that this is consistent with the case r = 1. Following the intuition from r = 1,
we think of VA, (z,z) as the angle between the great circle y and E,.. Indeed,
(12.2) VA, (z,2")y = sup d(u,E)=d(F| + F,., E),
u€F{+F,

and so VA, (z,2') = 0 if and only if F] + F, c E, that is, if and only if y < E,.

We are going to prove the following extension of Proposition 8.1 for r > 1:
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Proposition 12.1. There exist k). =
any 6 > 0 there exists N, = N,(vy,
ol = pl(Vep,0,n) > 0 such that

kL. (V) > 0 and Cl. = Cl(vy) > 0 and for
0) such that for every n = N, there exists

J’ —log VP, (g, gx') dugf)(g) < —1log VP, (x,2") — (k. — Cl.o)n
e

for every x,x' € EX(pl) with F| & F,.

Begin by noting that the properties (8.5) through (8.7) extend to r > 1. More
precisely, it follows from (12.2) that

Jut)

(12.3) VA, (z,2") = d(u,E) = Tl
u

for any u € F{ + F, and x,2’ € F(r,d) with F| ¢ F,. Moreover, if u € F] + F,

realizes the supremum in the definition (12.2) then

[
(12.4) VA (@.a) = d(u. ) = T
u
Then, combining (12.3) with (12.4),
(12.5) T (€0 RN (€ I I

lgull lgul llut]
(n)

for any g € G. By Remark 3.1, when g € supp vy’ this means that

lgtut] nlgtut] Ju
(12.6) VA, (gz, gz') = > VA, (z,2") —
lgull lgul flut]
Furthermore, just as for (8.7),
(12.7) —log VA, (gz, gz') < —log VA, (z,2') + Bn

for any x,2’ € F(r,d) with F] ¢ F, and g € suppyg,zl).

The proof of Proposition 12.1 is analogous to that of Proposition 8.1, replacing
d(z,2'), d(gx,g2') and d(z, F) with d(F,., F,_1 + F{), d(gF:,g(Fr—1 + F})) and
d(F,, F), respectively, and substituting r for 1 in the subscript. The details follow,
but the reader may choose to skip them and proceed directly to Section 12.3.

Lemma 12.2. There exists Ry, = R.(vy) > 0 and for each § > 0 there exist
= 0,(vye,0) > 0 and N, = Ny(vy,8) € N such that for every n = N, and
x,x’ € F(r,d) with F| & F, there exists & = E.(vyp,0,n,x,2') C suppugo) with
VEC)( &) <6 and

Qb

(12.8)  —log VA, (g, gz') < max{—log VA,(z, ') — &rn,,} for every g € &.

Proof. Analogous to Lemma 8.2. Let kg = ko(vy) > 0, No = No(ve,d) € N, and

E = E (v, 6,m,ut) < supp VS,) and 79 = 79(Vs,9) > 0 be as in Proposition 5.5.

Given z, 2’ € F(r,d) with F| ¢ F;, take u to be a non-zero vector that realizes the
supremum in the definition (12.2). Write u = ¥ + u* with v € E and u! € E+.
Take

Rr = Ko/2, 9T=—1074,
(12.9) i o/ b g(70/4) )
N, > max{Ny,4/k.}, and & = Ey(vyp,d,n,u™).
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Let n > N, and g € &.; then g € suppvi”. If lgtut|/|gu] = 70/2 then the first
inequality in (12.6) implies that

(12.10) —log VA, (gz, g') < —log% <0,.
If |gtut|/|lgu| < 70/2 then part (2) of Proposition 5.5 gives that
o1 Bl 1
w1l L
lgul 2 lgul 2

Substituting the latter inequality and |u] > |u®]| in (12.6), we find that
lgtut] Ju”]
Jutl g

Thus, recalling the definition (5.3) and part (1) of Proposition 5.5,

1
(12.11) VA, (gz,gx") = §VAT(:U,:E')

VA 1 A HDQLEUL” 1
! / Uu "\ Kon
r(gx,ga: ) 2 5 V T(I,I )7”ul“ > 5 \/AT(.I,.I )e on .

By the choices of &, and N, in (12.9), this implies

1919 —log VA, (g, g2') < —log VA, (z,2") +log2 — 2&k.n
(12.12) < —log VA, (z,2") — R
The conclusion of the lemma is contained in (12.10) and (12.12). O

12.2. Vertical projection function. The vertical projection function VP, is de-
fined by

(12.13) VP, (z,2") = VA, (z,2")d(F,, Fr—1 + F{)""

where 7y, = 7, (V) is a small positive constant chosen through the following result,
which extends Proposition 8.3 to r > 1:

Proposition 12.3. There ezist vy = v (V) > 0 and k. = k. (vy) > 0 and for
each § > 0 there exists N, = N, (v, 0) € N such that for every n = N, there exists
ol = pl.(Vy,0,n) > 0 such that for any z,x’ € E2(pl) with F| & F,. there exists
E =& (Vow,0,n,z,2') C supp 4" with yf,f‘)((s;)C) < 4§ and
(12.14) —1log VP, (g, g2') < —log VP, (z,2") — Kkl.n for every g € &,.

For the proof of Proposition 12.3 we need to extend Lemmas 8.4 and 8.5 tor > 1,

which we do in the couple of statements that follow.
Let v € F,. and v' € F._1 + F{ be unit vectors orthogonal to F,_; such that

F. = Fo_y +Ru,
(12.15) Fo_1+F =F._1 +Rv, and
d(F,,Fr_1 + F)) = |sin Z(v,v")].

It is no restriction to take the angle between v and v’ to be non-obtuse. Then the
vector w = v’ — v satisfies (compare Figure 5)

(12.16) d(F,,Fr—1 + F{) < ||Jw| and Z(w,v) =

SE
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Lemma 12.4. Given x,2' € F(r,d) with F{ & F,, let w =v" — v be as in (12.16).
Then
Jwt] 1

> — VA, (z,2).
w4

1
(12.17) d(F,,F) < ZVAT({E,{EI) implies

Proof. Analogous to Lemma 8.4. Let w € F| + F, be any non-zero vector that
realizes the supremum in the definition (12.2). Since F| + F, = span{F,_1,v,w},
we may write u = ug + av + bw with up € F,._1 and a,b € R. Recall that v and
w are orthogonal to F,._1. Moreover, by (12.16) the angle between them is no less
than /4. This implies that |ug + av| and ||bw]| are both less than 2|u||. Thus,

L L L
NP U D (T B
] i ]
L L L
N[ Y i Y [
luo + av]| ol ]
Thus, d(F,, E) and |w|/|w| cannot be both less than VA, (z,z’)/4. O

Take &y = &p(vy) > 0 and 6, = 0, (v, ) > 0 to be as in Lemma 12.2.

Lemma 12.5. There exists &, = Rr(Vy) > 0 and for each 6 > 0 there exists
N, = N, (vy,0) € N such that for each n = N, there exists p, = p}ﬁum,é, n) >0
such that for any x,x' € EX(pr) with F| & F, and —log VA, (z,z') < 0, + Ryn there
exists &, = c‘fr(um, d,n,z,x’) C supp yf,f‘) with uf,j” (c‘:'f) < 6 and

(12.18) —logd(gF,,g(Fr—1 + F{)) < —logd(F,, F._1 + F{) —log VA, (z,2') — k,n
for every g € é.

Proof. Analogous to Lemma 8.5. Let ko = ko(vy) > 0, No = No(ve,d) € N, and
& = E(vy,d,n,vt) c supp V(,n) be as in Proposition 5.5. Given x and 2’ with
F| ¢ F,, let w=1v"—wv be as in (12.16). Take

R = Rr/2, N, =max{No,5/kr},

Pr < e_éT_RT”/lO, and &, = Eo(Vp, 6,1, wh).

Let n > ]’\\fT and g € & supp ug,fl). As observed in (12.16),

(12.20) d(Fy, Froy + FY) < .

(12.19)

Let us suppose that ||gv| = ||gv’||; the case |gv| < |gv’| is analogous, reversing the

roles of F,. and F,_; + Fy. Just as in (8.22),

[Hgogw] ol
lgvl - Jw]

for any g € G. By the condition on p, in (12.19), if d(F;, E) < p, then

(12.21) —logd(gF,,g(Fr—1 + F})) < —logd(F,,F,_1 + F{) —log

4d(F,, E) < e =Frm < VA, (z,2'),
and then Lemma 12.4 gives that
Jwt] _ 1

> —
Jwl 4

1 5 -
(12.22) VA, (z,z') > Ze*"ﬁ*”w".
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Up to further reducing p,, we may also assume that

[hz] _ 1]hz"]

(12.23) >
Iz~ 2 |27

1
and L] > 21T gu]
for any non-zero z = zF + 2+ in E® E+ with |21 /||z| < p» and any h € supp .
The second part of (12.23) implies that

1 1 1 1
(1220) Wbl > L ehul > D ehu] = Lyt = Ljptet)
Noting that |[vt|/||v]| < d(F;, E) < p, take z = v and h = g in the previous two
relations. Thus, substituting (12.23) and (12.24) in (12.21),

- ) < — / N s B G
log d(gFy g(Fr1 + F)) < —logd(Fy, ooy + FY) +logd —log 2t o
Then, using also (12.22) and (5.3),
—logd(gF;, g(Fr—1 + 7))
Lo L 1B
< —logd(F,, F,_1 + F) —log VA, (z,2") + log 16 — log lg 1j’_ | Jv EH
lwt]l llgv®|
D L .,L
= —logd(Fy, Fr—1 + FY) —log VA, (2, 2") + log 16 — log %
w

By part (1) of Proposition 5.5 and the choice of &, and N, in (12.19), it follows
that

—logd(gF,,g(Fr—1 + F{)) < —logd(F,,F,_1 + F{) —log VA, (2, z") + 5 — 2k,n
< —logd(F,,F._1 + F|) —log VA, (z,2') — Rn,

as claimed. O

Proof of Proposition 12.3. Analogous to Proposition 8.3. Take A = A(v,,) as in
(8.2) and then define

vr = min {1, &, /(24)},

K. = min {fir/z%’%rﬁ}’
(12.25) pr. = min{p, (v, 0), pr Ve, 6/2) 1,

N, = max{ﬁr(V%aa/Q)v]Q]T(V”J’a/Q)’ZéT/(FYI%T)}’ and
&l =&, 6/2,m,3,2") 0 Ep(v, 6/2,m,3,2).

By construction, ugl)((c‘:;)c) < 4. The definition (12.13) gives that
(12.26) —log VP, (gz, gz') = —log VA, (gz, gx') — v, log d(gF,, g(F._1 + FY})).

Consider z, 2’ € E7(p).) with F{ ¢ F, and let n > N, and g € ;. First, suppose
that —log VA, (z,2) = 6, + &;n. Then, by Lemma 12.2,

(12.27) —log VA, (gz,92") < —log VA, (x,2") — Fyn
Substituting (12.27) and (8.2) in (12.26) we find that
—1log VP, (g, gz') < —log VA, (z,2") — ken — v, logd(Fy, Fr—1 + FY) + 7. An.
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By (12.26) and the choice of 7, and «!. in (12.25), this yields

(12.28) —logVP,(gx,gx') < —log VP, (z,z') — %n < —log VP,.(z,z") — Kln.

Now assume that —log VA, (z,z") < 0, + f,n. In this case, Lemma 12.2 yields
(12.29) —log VA, (gz, gz') < 0,
and Lemma 12.5 gives that
(12.30) —logd(gF,,g(Fr—1+ F})) < —logd(F,, Fr_1 + F}) —log VA, (z,2") — k,n.
Substituting (12.29) and (12.30) in (12.26) we obtain

—log VP, (g, g2') < 0, — v, log d(Fy, Fr_1 + F}) — v, log VA, (2, 2") — yphrnt

< —log VP, (z,2") + 0, + (1 — v,) log VA, (z,2) — v,k
Since VA, (z,2') < 1,7 < 1,and n > N, > 29~r/('7r"%7‘)7 this yields
—log VP, (gz, gz') < —log VP, (x, ') + 0, — yriern

Yk

(12.31) )
5 S —log VP,.(z,z") — Kki.n.

< —log VP, (z,2") —
The relations (12.28) and (12.31) contain the conclusion of Proposition 12.3. [

12.3. The function —log,. At this point, the proof of Proposition 12.1 is anal-
ogous to that of Proposition 8.1. Take k.. > 0, N, € N and p/. > 0 as in Proposi-
tion 12.3. Let C. = C/(vy) > 0 be given by

(12.32) C' = B+, A.

Substituting (12.7) and (8.2) in the definition (12.13), we find that

—log VP, (gx,g9z")
= —log VA, (gz, gz") — - log d(gFy, g(Fr—1 + FY))
< —log VA, (z,2') + Bn — v, logd(F,, F.—1 + F}) + v An
= —log VP,.(z,2') + Cin.

(12.33)

for any g € supp v and 2,2’ € F(r,d) with F| ¢ F,. Integrating (12.14) over &/
and (12.33) over the complement, and using the fact that i ((E)°) < 6, we get
that
—log VP, (gz, gx') v (9) € —log VP,.(z,2') — ki.n + Cl.on.
G

for every n = N, and z,2’ € E2(pl.) with F{ ¢ F,. This completes the proof of
Proposition 12.1.

However, as mentioned before, for r > 1 it is possible to have x and 2’ with F,
and F! arbitrarily close to the equator E without VP, (z,z) getting close to zero.
Here is a simple example (see also part (2) of Lemma 12.7):

Example 12.6. Denote by (x1, z2, T3, 24) the elements of R* and let E = {4, = 0},
Fi={oy =23 =24 =0}, F = {o3 =24 =0}, F] = {22 = 23 = 0,24 = cx1}
and Fy = {x3 = 0,24 = ex1}. It is clear that F, ¢ E and Fj — E when ¢ — 0.
However,

o VAy(x,2') =d(Fy + F|,E) = 1, since (0,0,0,1) € (Fy + F}) n E+;

o d(Fy, F1 + F}) =1, since (0,1,0,0) € Fy n (Fy + F{)*.
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It follows that VP2 (z, z') remains bounded from zero when £ — 0.

Thus, —log VP,.(z,2’) cannot be used as a Margulis function for the equator E?
in the flag space. To rectify this problem, we define the function v, inductively in
r as follows. Let z_, 2/ € F,_1(R?%) be the truncated flags obtained by dropping
the r-dimensional subspaces from z and z’, respectively. The assumption Fj ¢ F,
implies that F| ¢ F,._1, and so we may assume that 1,1 (x_, 2" ) has already been
defined. Then define

(12.34) (@, 2") = Pr_r(xo,22)P 7 VP, (2, 2),

where the exponent §5,_1 = (,_1(v) is a small constant to be chosen as follows.
It follows from this definition and (12.33) that

—log¥;(gz, gx') + log; (z, ")
< [ —log vy 1(gz, ga') +log ;1 (x,2)] 31 + Cin
for every j = 2,...,r. Thus, recalling also (8.35),
—log ¥, (g, g2')
(12.35) < —log¥p(z,2') + [C1Br- - Broa + -+ Cl_1Br1 + Cr]n
< —log ¢, (z,2') + Cl'n,
where C! = C/(v,,) is defined by

(12.36) Cl=Ci+--+C._1+C).
Take the exponent 8,1 in (12.34) small enough that

1
(12.37) Bra Gy < 5k

where k! = k!.(vy) is as in Proposition 12.1.
The function — log 1), (x, 2’) thus defined does go to infinity when the flags 2 and
a2’ approach the equator E?:

Lemma 12.7. Given any R > 0, there exists p, = pr(Vop, R) > 0 such that for any
z,z’ € EX(py) with F] ¢ F,,

(1) —logtyr(z,2") > R and

(2) —logVP,(z,2') > R unless VA, _1(z_,2") > pp.
Proof. 1t is clear from the definitions (12.2) and (12.13) that VP;(z,2') < 1 for
every 1 < j < r and any z,2’ € F(j,d) with F] ¢ Fj. So, the definition (12.34)
implies that
(1238) — log 1/)7«($, x') 2 — 10g 1/)1 (Fl, Fll)ﬂl L ﬂr—l-
By definition, the 8; depend only on v,,. Then Lemma 8.6 gives that for any R > 0
there exists p > 0 depending only on v, and R such that the right-hand side of
(12.38) is greater than R for any Fy # FY in Ey(p). Since d(F1, E) < d(F;, E) and
d(F{,E) < d(F],E), because Iy c F, and F| c F/, we get that —log,(z,2’) > R
for any x,2’ € E2(p) with F| ¢ F,.. This proves part (1).

To prove part (2), consider z, 2’ € F(r,d) with d(F,., E) < p, d(F}, E) < p, and

(12.39) VA, _1(z_,2") = d(F,_1 + F|,E) < p.
If d(Fy, F)_; + F{) < {/p, then

(12.40) VP, (z,2') < d(F,, Fr_y + F))7 < p7r/2.
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Now suppose that d(F., F}_; + F]) = \/p. Let v and v be unit vectors orthogonal
to Fr_1 as in (12.15). Take u € F] + F, realizing the supremum in (12.2), and write
u = ug+av+bv’ with ug € F,._1 and a,b € R. Since |sin Z(v', F}.)| = d(EF,., F{+F/_;)
is taken to be greater than /p,

2 2
luo + av] < %HUII and [bv'] < —]u]-

NG

Then,
Vi gy < 1 Lo+ vty o
’ Jull ] Jull
<2 Jwotan)t] 2 ()]

e lwotar] e W
Recalling also (12.39), we get that

2 2
—d(F,,E) + —d(F| + F._{,E)) < 4/p.

Since 7, and p may be taken to be smaller than 1, both inequalities (12.40) and
(12.41) imply that

(12.41) VP,(x,2') < VA, (z,2") <

—log VP, (z,2') = —% log p —log 4

for any x,2’ in E2(p) with F{ ¢ F,. The right-hand side is larger than R, as long
as p is chosen to be sufficiently small. ([

For completeness, we include the following version of Propositions 12.1 and 12.3
for the function ., although it will not be needed in what follows (the related
Proposition 13.2 will be used instead):

Proposition 12.8. There exists k' = k! (vy) > 0 such that for each 6 > 0 and
4

n = N, there exists pll = p’(vy,0,n) > 0 such that for any x,x' € E°(pll) with
F| & F, there exists E! = E!' (v, d,n, x,x") < supp uf,j” with Vgl)((c‘:;')c) < ¢ and

(12.42) —log ¥ (gz, gz') < —log ¥, (x, ") — KkI'n for every g € E!

and

(12.43) j—mwwwww@@s—MW@fwmwvmn
G

Proof. The case r = 1 consists of the inequalities (8.15) and (8.1), respectively.
with k] = ], Cf = C1, p{ = pl, and &/ = £]. Now suppose that r > 1. Recall
that C! = C"(vy,) was defined in (12.36). Define also

(12.44) ke =kl(Vp)/2, pr=p.(Ve,0,n) and & = El(vep, b, m, 1, 2').
Consider n = N,, and z,2’ € E2(p!) with F| ¢ F,.. By (12.35),

(12.45) —logv,_1(9z_, 92" ) < —logt, 1(z_,2" )+ Cl_in

for every g € supp u§?>. By Proposition 12.3,

(12.46) —log VP, (gz, gz') < —log VP, (z,2") — Kkln
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for every g € £”. Substituting (12.45) and (12.46) in the definition (12.34), and
recalling the choice of 8,_; in (12.37),

—log ¥ (g, gx') — log ¥r_1(gx—, gz’ )Br—1 —log VP,(gz, gz')
< —log 1/%«—1(17—7 x/—)ﬂr—l + C;,_lnﬁr—l - 10gVPr($7 x/) - H;«n
< —log v, (z,2') — (K,./2)n

for every g € €. This gives claim (12.42). Moreover, integrating this inequality on
& and (12.35) on the complement, we obtain

j —log ¢ (g, gz') v (9) < —log, (w,2) — (KL./2 — Clé)n,
G

which gives claim (12.43). O

13. STABILIZATION AND CUT-OFF

Next we present the analogues for > 1 of the two constructions in Section 9.
Both are fairly straightforward extensions of the case r = 1, but it turns out that
for r > 1 they do not suffice to deal with the questions discussed at the beginning
of Section 9. This difficulty will be handled later, in Section 15. Another issue is
that the function 1, we construct in the following is not symmetric when r > 1.
Thus we will use instead the function z/AJT defined by

1[)7“(17’ II) = max{wT(Ia Il)v 1/%(17/7 x)}

Let k" = k'(vy,) > 0, CF = C/(vy) > 0 and N, = N, (v,,d) € N be as in
Proposition 12.8. Keep in mind that ¢, < p! = p/. < p,, C/ = B + v, 4, and
Cl =C{ +---+ Cl, according to (12.25), (12.32), (12.36), (12.44), and (13.17).

13.1. Stabilization. Let v, = 7,(vy) > 0 and B = B(vy,) > 0 be as in (12.25)
and (8.3), respectively. For each w, > 0 and n € N, define the stabilized vertical
angle

(13.1) SVA, (z,2;w,) = max { VA, (z, '), w.e P"}
and the stabilized vertical projection by
(13.2) SVP,(z,2';w,) = SVA,.(x, 2";w,. )d(F,, Fr—1 + F{)"
for every z,z’ in Ef(e,) with F| & F,.
Given w = (wi,...,wr) € R, let O_ = (wi,...,wr—1) and define the stabilized
function 1, by
(13.3) V(2,2 &) = Yp_1(z_, 2_; 0 _)Pr=1 SVP,. (2, s wy).

The following extension of Lemma 9.1 asserts that the estimate in (12.35) remains

valid for these stabilized functions:
Lemma 13.1. For every g € supp yf,f’), any z,x’ € E2(pl) with F{ & F,, and any

W= (wl,...,wr)eR‘i,

(13.4) —log (g, g2'; W) < —log r(x,2; @) + Cy'n.
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Proof. The case 7 = 1 was done in Lemma 9.1, so let us consider » > 1. By
induction,

(13.5) —log by (g2, g2’_; W) < —logty,(z_, ;W) + C/_in.
We claim that

(13.6) —log SVA, (gz, g2’;w,) < —log SVA,.(z, 2";w,) + Bn.
and

(13.7) —logSVP,.(g9z, g2";w,) < —log SVP,(z,2';w,) + Crn.

The inequality (13.4) follows directly from combining (13.5) and (13.7), and recall-
ing the definition of C” in (12.36):
—log¥n (g2, g2’ ) = —logdh,(ga—, ga’; 0_) B,
—log SVP,.(gx, gx’; w,.)
(13.8) < —logtr(z_, 2 ;0 _)Br_1+ C"_nBr_1
—log SVP,(x,2";w,) + Cl._in
< —log . (z,2';0) + C'n.

Recall also that 8,1 < 1.
We split the proof of (13.6) into two cases. Suppose first that VA, (z,2') < w;.
Then, by the definition (13.1),

—logSVA, (2, 2"; w,) = —logw, and
—log SVA, (g, g2';w,) < —logw, + Bn < —log SVA,.(z,2";w,) + Bn

as claimed. Now suppose that VA,(z,2') = w,. Then, again by the definition
(13.1),

—log SVA,(z,2";w,) = —log VA, (x,z") and
—log SVA, (g, g2';w,) < —log VA, (g, gx').
Together with (12.7), this yields
—logSVA, (g, g2';w,) < —log SVA,.(x,2’; w,.) + Bn,

which completes the proof of (13.6).
Finally, substituting (13.6) and (8.2) in the definition (12.13), and recalling the

definition of C/ in (12.32),
—1logSVP,.(gz, gx';w,) = —log SVA,.(gz, gx'; w,.)

— - logd(gF,, g(Fr—1 + FY))

(13.9) < —logSVA,.(z,2';w,) + Bn
— Y log d(gF, g(Fyr—1 + F1)) — - An
= —logSVP,.(z,2";w,) + (B + 7. A)n
This proves (13.7), and thus completes the proof of the lemma. O

We say that (z,2') is in the stabilization region if VA, (x,2’) < w,. As we have
seen in (12.7),
VA, (gz, gz') = VA, (z,z")e P"
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(n

for any z,z' € F(r,d) with F| ¢ F, and g € supp 1/%). So, if (z, ') is outside the
stabilization region then

SVA,(z,2";w,) = VA.(z,2") and SVA,(g9z,g2';w,) = VA, (gz, gx')

13.10
( ) SVP,.(z,2';w,) = VP,.(x,2") and SVP,(gz, g2’;w,) = VP,(gz, gx')

for any g € supp V(,n) and n € N.

The following analogue of Proposition 12.8 for stabilized vertical angles and the
stabilized vertical projections extends Proposition 9.2 to r > 1:

Proposition 13.2. For every § > 0, n = N,, z,z' in E2(pl) with F| & F,, and

W= (Wi,...,wy) € R‘i with VA, (z,2") = w,,
(13.11) —log ¥, (g, gz'; @) < —log i, (x,2'; &) — K'n for every g € E,
and

(13.12) f log (g, g2'; 3) S (g) < —logain (@, 25 B) — (k7 — C")n
G
for any

Proof. The case r =1 is given by Proposition 9.2 with x{ = &}, C{ = C1, p{ = pl,
and & = &]. Now let us consider r > 1. Let § > 0, n = N,, z,2’ € E2(p), and
w € R? be as in the statement. By (13.3) and (13.10),

P (z,2'; 3) =,_1(x_,2"; 3_)ﬂ“1 VP, (z,2') and

(13.13) - .

br(gz, ga's @) = Pra (g2, ga' ;0 ) 7= VP, (g, g2').
By (13.4),
(13.14) —log¥r_1(g9z_, g2’ w_) < —logthr_1(z_, 2" ;0 )+ C"_in

(n

for every g € supp vy, ). By Proposition 12.3,
(13.15) —log VP, (gx, gx') € —log VP, (z,2') — ki.n

for every g € £. Substituting (13.14) and (13.15) in the second part of (13.13),
and recalling the choice of 8,1 in (12.37),

—log ¢ (g, g2'; &) = —logyy,_1(gz—, g’ ;& _)B,—1 —log VP, (g, gz')
< —logy1(z_, 2" ;w0 _)Br_1 +C_nf
—log VP, (z,2') — ki.n

< —logt,(z,2'; ) — (k),/2)n = —log ), (z,2'; @) — k)n

for every g € €. This gives claim (13.11). Moreover, integrating (13.11) on &” and
(13.4) on the complement, we obtain that

J —log (g, g'; &) vt (g) < —log (o' &) — () — Cylo)n,
G

as claimed in (13.12). O
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13.2. Cutoff. Recall also that the constant s > 0 was chosen at the end of the
initial step of the induction, in Section 11.3. Recall also that it may be taken to be
as small as we want.

For any r > 1, assume that €, = €,(v, d,n) > 0 has been chosen, satisfying

1
(1316) n%,T‘(ET‘(ET)\E) < En%ﬂ“(E)'
and
(13.17) € < min{po, pl},

where pg = po(Vsr,n) > 0 is as in Corollaries 5.6 and 5.7 and p! = p!' (v, 6,n) >0
is as in Proposition 13.2.

Using Remark 7.3 twice, we find €/, = €/ (vy,,d,n) > 0 and &, = £,(vy,d,n) > 0
(n)

with 0 < &/ < &, < &,, and a compact neighborhood W, = W, (v, §, n) of supp vz,
such that
(13.18) gF, € E.(g,;/2) for every F, € E,(2¢,) and g € W, and
(13.19) g 'F. € E,.(¢,/2) for every F, € E,(2¢.) and g € W,.

Let ko = ko(¥o) > 0 be as in Proposition 5.5, and define ¢! = £”(v,,,,n) by
(13.20) g = 3¢’ emr0M2,
Taking p = €7 in Corollary 5.7, and keeping in mind that e, < po, we get that
there are k. = ky(vx,0,n) € N and Dy(F,) = Dy(vy,0,n,F,) C suppy,(gn) such
that V]gn) (Di(F,)¢) < § and

d(gF,, E) > "2 (F, E) > "% > ¢’

for any g € Dy(F,), F, € E(e,, ") and k > k,. In other words, for k > k,,
(13.21) F,. € E(e,el) = gF, ¢ E(2¢).) for every g € Dk(F ).

Increasing ky if necessary, we may suppose that supp I/k c W, for every k = k,.
Then (13.18) and (13.19) imply

(13.22) E,(28,) € X, Ep(e;) and E,(2¢]) in)Er(gr)

(13.23) F. ¢ E.(5,/2) = gF, ¢ E.(2¢.) for every g € supp V,En).

We say that x,z' € F(r,d) are in general position if F| & F,. and F; ¢ F. For
any z, 2’ € E2(e,) in general position and w € R4, define
(13.24)
N 7, 7.\ =1 : (M / (M
U, (2,2 ) = log (QT + Pz, 25 W) ) if x € E2(2e)) or o' € E2(2e))
log €2, otherwise,

where Q, = Q,.(vy,d,n) > 1 is a large constant to be chosen in Proposition 15.1,
and

(13.25) O, 2'; @) = max{y(z, x'-a) V(@' ;D))
It is clear from the definition that W,(-,-; w) is a symmetric function:
U, (z,2';0) = U, (2, x; w) for all z,2’ € E?(e,).

The set EQ(2e!)¢ x E¢(2e”)¢ is the cut-off region at the stage r > 1. Compare
Figure 7.
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Proposition 13.3. There exists k) = k! (vy,) > 0 such that for each § > 0 and

T
n = N, there exists € = " (v, 08,n) > 0 such that given any @ = (w1,. .. ,wy) €
RZ
+

(i) For any x,2' € E2(e,) in general position with U,(z,z'; @) > log .,
J’ gz, g’ &) vl (g) < (w23 &) + Cfn.
a

(i) For any x,2' € E%(e,) in general position with U,(z,2';w) > logQ,,
VA, (z,2") = w, and VA, (2, z) > w,,
| wrtam g0 ) 1 (9) < Wi (o, '55) + Cn
G

mn

(iii) For any x,x' € EZ(el) in general position satisfying VA, (z,2') > w, and

VA, (2',7) > w,,

j U, (g2, g2’ ) dv (g) < V(a5 ) — (57 — C"8)n.
G

"
Proof. Define k” = k!’/2. Let n = N,.. Part (i) of the proposition is a consequence

of the following lemmas:
Lemma 13.4. If x,2' € F(r,d) are in general position and ¥, (z,2';J) > logQ,
then
(13.26) U, (g2, g2"; @) < U, (x,2'; @) + C"n for any g € supp i
Proof. Tt follows immediately from (13.4) that
(13.27) —log ¥, (g, gz'; @) < —log i, (z,2'; @) + C'n
for any g € supp V(,n) Then, using (9.1),
W, (gz, gz'; &) < log (QT + (g, gx'; B)_l) < log (QT + eCrapy(z, B)_l)
< log (QT + (2 3)71) +C"n =V, (x,2';3) + C'n.
This proves the claim. (I
To prove part (ii) we use Proposition 13.2: given any w € R¢ and z,2’ € E2(s,)
with F} & F,,
(13.28)  —logyy(gz, g2'; ) < —logi,(w,a'; W) — kin < —log 4 (x,a'; W)
for every g EA&’O’ . This remains true if we exchange the roles of x and ', of course.
Thus, —1og1/)r(gx,g:1:’;a) < —logdsr(x,x’;a), and so
U, (gx, g2'; w) < log (Q + 1, (g7, g2 5)_1)

(13.29) ) R -
<log (20 + (@, a'56) ™) = Wy(a,a'55)

for every g € £. Integrating (13.29) over &7 and (13.26) over the complement, we
obtain the estimate in part (ii).

Now take ¢ = e~2%"" in the relation (9.3). By Lemma 12.7, there exists £” > 0
depending only on v, 6 and n (through ¢ and 2,.) such that

(13.30) —logt,(z,2; W) = —log ¥, (x,2") = log (Q/1/c)
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for any x,2’ € E,(¢) in general position. Then, using (13.30), (13.28) and (9.3),

T

U, (g2, gx'; &) < log (QT + (g, ga'; o—.;)_l)
(13.31) < log (QT +e 2 (z, 2 3)*1)
< log (QT + 1/3T(:r, x'; B)_l) —kl'n =V, (z,2; 5) —K'n

for every g € £. Integrating (13.31) over &7 and (13.26) over the complement, we
obtain the estimate in part (iii) of the proposition. (I

14. TURNING THE PERTURBATION ON

We show that the conclusions of Proposition 13.3 hold for I/]in) instead of UE,:Z ), as
long as k € N is sufficiently large. The arguments are close to those in Section 10,
but we have to deal with the fact that v, and ¥, are not entirely straightforward
generalizations of 1, and V.

Proposition 14.1. Given § > 0, n = N,, and @ = (Wi,...,wy) € R‘i there is
kr = ky(Vy, 0,n,w,) € N such that the following holds for every k = k,.:

(i) For any x,2’ € E2(e,) in general position with U, (z,z';w) > log €.,
J’ U, (g, g2’ &) dvy (g) < Wy (w, 2’ D) + Cl/m.
G

(i) For any xz,x' € E%(e,) in general position with ,(z,2';w) > logQ,,
VA, (z,2') = wy, and VA, (2, ) > w,,

f U, (gz, ga'; &) dvi () < W, (z,2'; J) + Con.
G

(iii) For any x,x’ € ES(e!) in general position satisfying VA, (z,2') = w, and

VA, (2, 2) > w,,
f U, (gz, g2'; @) dv\™ () < U (w,2sm) — (5 — C5)n.
G

Keep in mind that we have chosen &, < pr=pl < prand C. = B+, A. Recall
also that k, = ky(vy,d,n) € N was chosen so that the relations (13.21) through
(13.23) hold for every k = k..

Proof. We are going to extend to large k € N several estimates in the proof of
Proposition 13.3. This will require a number of conditions on k, depending on v,
4, n and w, that we state along the way. We begin with the following extension of
Lemma 13.4:

Lemma 14.2. Given any n = N, and W= (wi,...,wy) € Ri, there exists ky, =
ky (v, myw,) such that if x,x' € E2(e,) are in general position and w € R? s such
that U, (z,2"; W) > logQ, then

(14.1) U, (g2, 92 @) < Up(z, 25 0) + C'n

for any g € supp V,gn) and k = k.
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Proof. Consider 6 > 0, n > N,, and @ = (wy,...,wy) € R¢. We begin by claiming
that there exists k, = k, (Vo 10y 3) € N such that
(14.2) —logSVA,(gz, g2';w,) < —log SVA,.(z,z';w,) + Bn

for any z, 2" € E?(e,) in general position, g € supp V,(C"), and k > k,. This can be
seen as follows. If VA, (z,2') < w, then, by the definition (13.1),

—log SVA, (z,z';w,) = —logw, and
—logSVA, (g, g2'; w,) < —logw, + Bn < —logSVA,.(z,2";w,) + Bn,

as claimed. Now suppose that VA, (z,z') = w,. The relation (12.7) does not apply
here. Instead, from (12.5) and (13.1) we get that

L
(14.3) —log SVA, (g, gz';w,) < —log SVA, (z, 2";w,) — log |(|gu)| ” %
gu| Ju

for every g € supp u,gn), with u = u(x,2') realizing the supremum in (12.2). The

assumption VA, (z, ') > w, means that |u’] > w,|u|. Since supp vy, converges to
supp vV, in the Hausdorff topology, we may find ry = ri(ve,, n) — 0 such that every

g € supp V,gn) is in the rg-neighborhood of some f € supp yf,?). Then

1 1 Tk L
[(gw)™ = (fu) "I < lgu — full < mefull < —=fu”].
r

Then we may take ky = lAfT(Vm,,n,wT) € N large enough so that this inequality
implies

[ Jul ) NGl

—log < —— +log?2
lgul  Jut] Iful ut]
[l

= —log —— +log 2
Iful ]

<log(f+)7'| +1log | f|| +log2 < Bn

for every g € supp V,(Cn) and k > k,. This proves (14.2).
Substituting (14.2) and (8.2) in the definition (13.2), and recalling the definition
of C! in (12.32), we find that

—1log SVP,.(gz, gz';w,) = —log SVA,.(gx, gx'; w,.)
— Y logd(gF,, g(Fr—1 + Fy)
(14.4) < —logSVA; (z,2';w,) + Bn
— v logd(F,, Fr_1 + F) + v An
< —logSVP,.(z,2";w,) + Cin

for any z, 2’ € E?(e,) in general position, g € supp V]gn), and k = k,.
Next we claim that

(14.5) —log (g, ga'; ) < —log ¢ (x,2';0) + C'n

for any x, 2’ € E?(e,) in general position, g € supp V]gn), and k > k,. The case r = 1
of (14.5) was done in (10.4), so let us consider r > 1. By induction,

(14.6) —log b _1(ga_, gx’;w_) < —log¢r_1(z_, 2 ;0_) + C/_in.
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Replacing this and (14.4) in the definition (13.3), we find that
—log ¢, (w, 23 &) = —fr—1 log d—1(gu—, ga’_; &)
—1log SVP,.(gz, gz';w,.)
~Br-ilogr_i (@, 2l 6-) + B Oy
—log SVP,.(z,2";w,) + Cin
= (2,2 @) + (B,—1C_4 + Cl)n.

Since C? = CJ_; +CJ and f,_1 < 1, this proves (14.5). The estimate remains valid
if we exchange the roles of x and z’, obviously. Thus, we have also shown that

(14.7) —log ¥, (g, gz'; w) < —log i, (z,2';0) + C'n

N

for any x,2’ € E2(e,) in general position, g € supp V](cn), and k > k,.
Combining (14.7) with (9.1) in the definition (13.24), we get that

U, (gz, gz'; Z) < log (QT + 1/;7«(9:17, gz’ B)_l) < log (QT + ecl”dzr(:zr, x'; ;)_1)
< log (QT + (2 3)_1) +C"n =, (x,2';0) + C'n,
as stated. O

Next, we prove the following extension of Lemma 12.2:

Lemma 14.3. Given 6 >0, n = N, and w, > 0, there is k. —k(y,,(snwr)eN
and for any x,x’ € F(r,d) with F| & F and VA, (z,2") > w, there is &

& Vo, 0,m, 2, 2", Wy ) © supp V,(C ") with Vk ((EI’C'T) ) < ¢ and
(14.8) —log SVA,.(gz, gz'; w,) < max{—log SVA, (z, z; w,) — ~pn, 0, }
for every g€ &, and k = k;.

Proof. Fix 6 > 0 and n = N, and w, > 0. Let P, denote the (compact) subset
of all v € P such that |vt|/|v] > w,/2. For v € P, and g in some compact

neighborhood V,,,. of supp VE,:Z ), consider

(14.9) (v,g) — —log

As long as V,,, is sufficiently small, depending on v,,, n and w,, the map (14.9) is
well defined and (uniformly) continuous. So, there exists a = a(vy,n,w,) > 0 such
that

[Ggu)] _ [(fo)

S 0og
lgull ol

whenever d(u,v) < o and d(g, f) < a. Reducing « if necessary, depending only on
wr, we may also assume that

(14.10) —log

+ log?2

Jut] Gl

—log
lul ~ ol

Fix v1,...,v € P, such that P, < B(vi,«a) v --- v B(v,a). For each v € P,
choose j € {1,...,1} such that v € B(vj, o) and define & o = E; 0(Ver, §, 1, v,wy) C

(14.11) dlu,v) <a = —log

— log 2.
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supp V,(Cn) by
(14.12) ko = [a-neighborhood of (v, d,n vl)] N supp V,gn)

2 Yj
) C supp v is as defined in Proposition 5.5. Since V](C") con-

)

where &y (vy,d,n, v+

2 Uj
verges to I/EL ") in the weak* topology, the limit inferior of the V](C")—measure of (14.12)

as k — oo is greater than or equal to

V% (EO(VL,(S n, vj )) >1-9
for every j = 1,...,1. In particular, there is k/. = k! (v, J, n,w,) € N such that
(14.13) I/]in) (ko) >1—4 for every k > k] and v € P,,.

Given z,2' € F(r,d) with F{ ¢ F, and VA, (z,') > w,, take u = u® +u* to be
a non-zero vector that realizes the supremum in the definition (12.2). Then,

1
(14.14) wr < VA (z,2') = % (in particular, uw € P,,.) and
u
1 1
lgull lgul llut]]
for any g € G. Then define
(14.16) Err = Ek oV, 0,1, u,w;).

It follows from (14.13) that I/](Cn)((gg)r)c) < 0 for every k > k.

Let g € &, and k > k].. Then, by definition, there exist v = v* +vtin P, (take
v =v; as in (14.12)) and f € (v, b, n,v1) < supp ™) such that d(u,v) < a and
d(g, f) < a. Thus, substituting (14.10) and (14.11) in (14.15), we find that
1]f+vt] If o] o]
2 | fol Ifol ot

Let 70 = 10(v0,d) > 0 be as in Proposition 5.5. If |f+vL||/| fv]| = 70/2 then the
first part of (14.17) gives that (recall (12.9) also)

(14.17) VA, (gz,gx') =

/—VA( x')

(14.18) —log VA, (gz, gz') < —log% < 0,.

Now suppose that || f+vt|/||fv]| < 7o/2. Then part (2) of Proposition 5.5 gives that
[fot] _ 1 [fo"] 1
< - and so > —.
[fol 2 Ifoll 2
Substituting (14.19) and |jv| > [[v| in (14.17), we find that

(14.19)

1,,L E
VA (g g2 5 v o0y 0 10
S [T 1707
(14.20) "
S SN 1)
S T

By part (1) of Proposition 5.5 and the choices of &, > 0 and N, e Nin (12.9), this
implies

—log VA, (g, gx')

< —log VA, (z,2') + log8 — 2&,n
(14.21) ) g VA (z, ') + log

—log VA, (z,2") — Rn.
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The conclusion of the lemma is contained in (14.18) and (14.21). O

Next, let us prove the following extension of Lemma 12.5:

Lemma 14.4. Given § > 0 andn > N, there exists k, = ]%T(VZL,, 0,m) € N such that
for any x,x' € E2(e,) with F| & F, and —log VA, (x,2') < 0, + R.n there exists
& =& Wy, 6,n,2,2") < supp V,gn) with V,gn)((EZT)C) <6 and

(14.22) —logd(gF,,g(Fr—1 + F})) < —logd(F,,F._1 + F|) —log VA,.(z,2') — kn
for every g€ &, and k > k.

Proof. Let P denote the (compact) subset of pairs (v, w) € P x P such that

[ot]

al
(14.23) o< p1 <2 <

w
]

(v and w! denote the components of v and w orthogonal to the equator). Let

V be some compact neighborhood of the support of V( ), Since, pr = pr(Vep,n),
both P and V depend only on v, and n. Condition (14.23) ensures that the angle
between v and w is bounded away from zero and, consequently, so is the angle
between gv and gw for any g € V; both bounds depend only on v,, and n. Thus,
the map

[Mgugw] o]

(14.24) (v,w, g) — —log
lgvl - Jw]

is well-defined and (uniformly) continuous on the domain (v,w) € P and g € V. In
particular, there exists & = &(vy,n) > 0 such that

Mgugel ol o o0 Irut 2] Tul
lgoll ] FRNE

whenever d(v,u) < & and d(z,w) < & and d(g, f) < &. Reducing & if necessary,
depending only on v, and n, we may also suppose that

(14.25) —log + log

L L
(14.26) diz,w)<a& = —lo ””Z ”| < —log ||7|uu ”” +log 2.
w
Fix points (vl, w1), ..., (v, w;) € P such that the balls of radius p around these

points cover P. For each (v, w) € P choose j € {1,...,1} such that v € B(v;, &) and
w € B(w;, &) and then define 5k0 =& 0V, 0,1, v w) c G by

(14.27) Ero = [&-neighborhood of &y (v, 6, n, wf)] N supp V](Cn),

is given by Proposition 5.5. Since V,g ", V(,n) in the weak™

topology, the limit inferior of the V]g n)

or equal to

where E(Vp, 6,1 wl)

-measure of (14.27) as k — o0 is greater than

V8 (Eo(ve, 8ym,wi)) > 16

for every j = 1,...,l. In particular, there is k, T(uf,, d,mn) € N such that

(14.28) V" (E0) > 1 — 6 for every k = k, and (v,w) € P.
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Given z,z' € E¢(e,) with F] & Fy, let ve F., v' € F,_1 + F] and w = v — v’ be
as in (12.15) and (12.16). Just as in (12.21),

[Hgogw] o]

(14.29) —logd(gF,,g(Fr—1 + F})) < —logd(F,, Fr._1 + F]) —log ool Tl
qgu w

for any g € G such that |gv|| = ||gv’|| (the case |gv| < ||gv’|| is analogous, reversing
the roles of F,. and F,._1 + FY]). The assumption z € E,.(g,) implies that

(14.30)

<d(z,E) <&, < py.

Now assume that —log VA, (z,2’) < 6, + &,n. Then, using (12.19) and (12.22),

Jwt] _ 1 ne L4 A
14.31 SVA(z,2) = Se~trmRm 5 95,
(1431) > TVA @) 3 e > 2)
Thus, (v,w) € P. Then define
(14.32) E;'C')T = Skﬂo(uw,&n,v,w).

It follows from (14.28) that V](C")((E,’c’m)c) < 0§ for every k > k,.
Take u = v; and z = w; as in (14.27). By definition, (u,z) € P and d(u,v) < &
and d(z,w) < &. Let g€ &  and k > k,. The definitions (14.27) and (14.32) imply

that there exists f € & (vo,d,n, 21) < supp uf,j” such that d(g, f) < 6. Combining
(14.29) with (14.25),

114,
g d(gFg(Fro + 1)) < —logd(Fy, Fyos + 1)+ log2 —log Ll
U z
Replacing z, w and g with u, z and f in (12.23) and (12.24), we get that
Iful _ 1[50 L
Z 5 and |z, fz[ = S f~2~.
lul — 2 [u® ' 2

Substituting this in the previous inequality,
[f22 ] u®]

[

—logd(gFy,g(F._1+ F})) < —logd(F,, F,_1 + F}) +log8 — log

Conditions (14.26) and (14.31) give that

1 1
—log ||Z ||| < —log ||w || +log2 < —log VA ,.(z,2') + log8.
z w

Combining this with the previous inequality, we find that
—logd(gFy,g(F._1+ F})) < —logd(F,, F,_1 + F|) —log VA, (z,z")

If 2] u”]
+ log 64 — log
(2 I AT
= —logd(F,,F._1 + F|) —log VA, (z,1')
D 1l L
+10g64—10gw.

[=]
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By part (1) of Proposition 5.5, and the choice of N, € N in (12.19), this implies

that
—logd(gF,,g(Fr—1 + F{)) < —logd(F,, Fr_1 + F{) —log VA,.(x,2") + 5 — 2&,n
< —logd(F,, F._1 + F|) —log VA, (z,2") — R,

as claimed. (]
We deduce the following extension of Proposition 12.3:

Lemma 14.5. For § > 0, n = N, and @ = (w1,...,w,) € RY there is k! =
kY (v, 0,m,wr) € N and for x,a’ € EX(e,) with F] & F, and VA, (x,2') = w, there
is & = & W, 6,m, 2, 2, W) C supp V,(Cn) such that V,(Cn)((gl'c'fr)c) <6 and

(14.33) —log ¥, (g, gz'; ) < —log e, (x,2'; &) — K'n.

forany g€ & and k > k'

Proof. Fix 6 > 0 and n = N, and we R‘i. Recall that

N, > max {N, (v, 8/2), No (v, 6/2), 260, /(i) },
by (12.25). Define
(14.34) k" = max{k. (v, 6/2,n,w), kr (v, 6/2,1)}
and EZfT = 5,2'7T(V%, 8/2,n,z, 2" w) N E,g)r(l/%, 8/2,z,2'n).

By construction, &, is contained in the support of V](cn) and V](cn) ((&,)°) < 0.
w

We claim that given any z, 2’ € EZ(e,) with F] & F,. and VA, (z,2') = w,,
(14.35) —1ogSVP,.(gz, gz';w,) < —logSVP,(x,2";w,.) — ki.n

for every g € &’ and k > k}’. As observed in (13.10), the assumption on (z,z’)
implies that SVA,(z,2";w,) = VA, (x,2’) and SVA,(z,2';w,) = VA, (gz, g2’), and
so (14.35) may be rewritten as

(14.36) —1log VP, (g, gz') < —log VP, (z,2") — K n.

Let g € &, and k > k;’. Suppose first that —log VA, (z,2") > 0, + R,n. Then,
by Lemma 14.3,

(14.37) —log VA, (gz,g9z') < —log VA, (z,2") — R.n.
Substituting (14.37) and (8.2) in the definition (12.13) we find that
—log VP, (gz, gz') < —log VA, (z,2") — Ryn
(14.38) — v logd(F,, Fr_y + F{) + 7. An
< —log VP, (z,2') — %n

(we chose 7y, < &,/(24) in (12.25)). Now suppose that —log VA, (z, ') < 6, + &,n.
In this case, Lemma 14.3 yields

(14.39) —log VA, (gz,gz') <0,
whereas Lemma 14.4 yields

(14.40) —logd(gx, gz') < —logd(z,z") —log VA, (z,z') — R.n.
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Substituting (14.39) and (14.40) in the definition (12.13), we obtain
—1log VP, (g, gz') < =y, logd(E,, Fr_1 + F]) — v, log VA, (z,2") — ke
< —log VP, (z,2) + 0, + (1 = ;) log VA (2, a") — 7 fepn.
Since VA, (z,2') < 1,7, <1l,and n = N, > 29~T/(%/%T), it follows that
—log VP, (gz, gz') < —log VP,.(z, ') + 0, — yrfern

Yrkir
2
Because of the way we chose &/, in (12.25), the relations (14.38) and (14.41) contain
the claim (14.35).
Now we prove the claim (14.33). The case r = 1 was done in (10.31), so let us
suppose r > 1. By (14.6),

(14.41)
< —log VP, (x,2")

—log b _1(ga_, gx’_;w) < —log 1 (v_,2;w) + Cy_yn.
Substituting this and (14.35) in the definition (12.34),
—log ¥y (x,0"; W) = —fr_1 log ¥ (ga—, g2’ w) —log SVP, (g2, ga's ;)
< =Bralogr (e, o’ 5w0) + B O yn
—log SVP,.(z,2";w,) — ki.n
< —log 4y (2,27, &) — 7,
where the last step uses our choices of 8,1, C¥, and ! in (12.37) and (12.44). O
Let us go back to proving Proposition 14.1. Define
(14.42) k, = max{/%r(l/x, 5, n), /%T(Vm, n,wT),/f;(l/x, 5, nwy),
kr(Vopy 8,1, ki (v, 6/2, M wie) }

Then, k. depends only on vy, 4, n and w,. Part (i) of the proposition is an
immediate consequence of Lemma 14.2. To prove part (ii), consider

&= E,Q’fT(u%, 5/2,n,x, 2, ;) ) El'c'fr(u%, 5/2,n, 2, x, (,_J)

where &, is as given by Lemma 14.5. Then V,(Cn) (£¢) < § and

(14.43)  —log¥y(gz, 923 w0) < —logd,(w,a';0) — kyn < —log )y (w,a'; W)
for every g € £ and k > k. By (9.2), this implies that
(14.44) VU, (gz, gr’;w) < V,.(x,2";w) for every g € £.

Integrating (14.44) over £ and (14.1) over the complement, we obtain part (ii).

Next, recall that we took x” = k”/2 = k./2 and ¢ = e 25" and &” > 0 such
that (13.30) holds:

—log 1), (z,2';w) = —log¥(x,a') = Q,/\/e

for any x, 2’ € E2(¢¥) in general position. Then, by (9.3) and the first inequality
in (14.43),
(14.45) U, (g2, g2'; @) < Up(x,2'; @) +log e = U, (2,2 &) — K"n
for every g € £. Integrating (14.45) over £ and (14.1) over the complement, we
obtain part (iii) of the proposition. O
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It is clear from the statements of Lemmas 14.2, 14.3 and 14.5 that one may take
ky, k! and k! to increase to oo when w, decreases to zero and vy, J, n remain
fixed. Then the same is true about the map w — k, (v, d,n,w,) defined in (14.42).
Hence, we may find k, = /vsr(l/x, 9,n) € N and wy , = wir Vo, d,n) > 0 such that

e the sequence (wg, )i decreases to 0, and
o k=k(vy,d,n,wg,) for every k > k.

Denote c_u’kyr = (wk,1,--.,wk,r) and then define
(14.46) U (@, 2') = hp(a, 2 Op ) and Uy (2, 2') = Uy (, 2 Wpr).
15. SPREADING OUT

For 7 > 1 the cut-off in Section 13.2 is insufficient to ensure that U,.(z,2’; &)
is bounded near the border region of EZ(e,). To explain why, let us consider
x=(F,...,F)and x = (F],..., F!) such that F, is near the border and F) is far
from the border of FE,(e,). Then —log VP, (z,z’) is bounded, but the problem is
that the term —log,_1(z—_, z__) may be arbitrarily large, which forces ¥, (z, z’; ;)
to be arbitrarily large as well. For instance, d(Fy, F]) may be very small, in which
case — log 1 (Fy, FY) is very large. Thus, Lemma 9.5 as stated does not extend to
r> 1.

To fix this difficulty, we introduce a “spreading out” Markov operator O, which
leaves F,. and F! fixed, but averages the function out over the pairs of flags whose
r-dimensional components are F,. and F/. This is done only on certain domains
far from the equator: elsewhere we just take O, = id. The main properties of
this operator are stated in Proposition 15.1: roughly speaking, QT\IIT is never much
bigger than W, itself, with equality close to the equator, and it is bounded near the
border region. That replaces Lemma 9.5 when r > 1.

The details of the spreading out construction follow. In Sect1on 16.1 we will
incorporate O, into the definition of our main Markov operators, 77c " defined on

the space of pairs of flags, and 7;#, its lift to the blow-up space V().

15.1. Homogeneous measures on flag varieties. The orthogonal group O(d)
acts transitively on the flag space F(r,d). We denote by p the corresponding
homogeneous measure on F(r,d). This may be described as the image of the Haar
probability measure of the orthogonal group under
O(d) - F(r,d), g~ gz=(9gH1,...,9H;),

for any choice of z = (Hy,..., H,), and it is invariant under the O(d)-action.

Analogously, for any F,. € Gr(r,d), denote by pr, the homogeneous measure on
(15.1) F(F) ={(G1,...,G._1,G,) € F(r,d) : G, = F,.}

corresponding to the natural action of the orthogonal group O(F,.) on F(F,). We
also consider

(15.2) f*(F»:{(Gl,...,cr_l,mef(F) A(Gr,E) > 2d<FT,E>}

It is clear that there exists a, > 0, depending only on 7, such that pp, (F*(F;)) =
ar. See Figure 9. We denote by uj. the normalized restriction of ur, to F*(F).
More generally, there exist ¢, > 0 and b, > 0, depending only on r, such that

(153)  pk ({(G1,...,Gyor, Fr) € F*(F,) : d(Gy, F) < pd(Fy, F)}) < c,p"r
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FIGURE 9. The subset F*(F,) of the flags (G4, ..., Gr_1, F.) such
that d(G1, E) = d(F,, E)/2 is represented (for r = 2 and d = 3)
by the dark gray region. It corresponds to a definite fraction of all
the flags in F(F}.), relative to the homogeneous measure pp, .

for any F' # F,. in Gr(r,d) and p > 0. Also (increasing ¢, and decreasing b, if
necessary),

(15.4) ph ({(G,...,Gro1, Fy) € F¥(F,) 1 d(G1, Fo) < p}) < ¢pp”
for any F_ € Gr(r — 1,d) and p > 0 (because (1 is allowed to vary in a domain

whose dimension is strictly greater than dim F_).

15.2. Spreading out operators. Let §, . denote the Dirac mass at a point
(r,2') € E%(e,)%, and 7 : E,.(¢,)% — [0, 1] be a continuous symmetric function such
that

7=1on E.(e,¢e.) x E.(2¢)) U E.(2e!) x E.(¢,,€")

7 =0 outside E,(g,,¢../2) x E.(3¢!) U E(3€!) x E.(¢r,€./2).
See Figure 10. Then

(15.6) e = (1= (v )00 oty + 7(Fo, Epi, i,

defines a probability measure on F(F,.) x F(F!) < E2(e,)? depending continuously
on (x,2') € E%(e,)%. The spreading out operator is the corresponding continuous
Markov operator

(15.5)

~ o~

(15.7) Qv : B(EX(e,)?) = B(E2(e,)?), Ortd(z,2') = b dirgar.

L(m X F(FL)

It is clear from the definition that O, is a lift of the identity relative to (f, f),
meaning that

(15.8) Qr (Do (f.f) = o(f.f) for every v € B(E:(e,)?),
where f : F(r,d) — Gr(r,d) denotes the forgetfulness map
(15.9) (F1,...,F,) > F,.

Since 7 is assumed to be symmetric, we also have that 9, preserves the space of
symmetric functions.
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JRR— | RE)

; E2(c;)?

| | E(e;/2)?

| B B
B E2 (el

< rrrrrrrrrrrr core region

Ficure 10. Illustrating the spreading out construction. The

black dot at the center marks the point (E, E). The dashed lined

represents the boundary between the V,g ")_core and the 1/ )_border

of E1(e1). On the dark gray area we do full averaging. No aver-
aging is needed on the white area. On the light gray area we
interpolate between the two. In the cut-off region E°(g,,2¢")?
where Uy, . = log2,, averaging is innocuous.

For each fixed @, denote by Q,W,(-,-;&) the image of W,(-,-; w) under the
operator Q,. Since W,(-,-;w) is symmetric, by (13.24) and (13.25), the function
Q.. (- 5) is also symmetric.

Proposition 15.1. There exist K, = K, (vy) >0 and Qp = Q. (v, 0,n) > 1 such
that for every (z,2') € ES(e,)? and @ = (w1,...,w,) € RY with w, < ",
(i) OV, (w,2';w) = Up(z,2";w) if (x,2") € E2(el/2)?;
(i) Qr ¥, (z,2";w) <logQy + K, < U, (z,2;0) + K, if (z,2') ¢ E2(el)?.
(i) QW (z,2';0) < Wy(z,2;0) + K, if (x,2) ¢ Eg(e,/2)%.
The constants K, and €, are determined in (15.27) below. The proof of this

proposition occupies the remainder of the present section. The first step is the
following elementary lemma;:

Lemma 15.2. Leta, b > 0 and (Z,0) be a probability space. Let f : Z — (0,00) be
a measurable function such that 0(Z\Z.) < 7 for every T € (0,1], where Z. denotes
the subset of points z € Z such that

(15.10) f(z) = ar’.
Then
J log(Q + f(2)7")df(z) < log(Q +a~") + 100
z

Proof. Define q(z) = f(z)a™!. The assumption means that q(z) > 7° for every
z € Z;. Then, by (9.1) and (9.2),
log(Q + f(2)7") <log(Q +a™") + max{0,logq(z) ™'}
<log(Q+a™t) —blogT
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for every z € Z.. In particular,
J (log(Q + f(2)™") —log(Q + a™")) db(z) < —erblogT.
Z\Zer

Considering 7 = e~/ and summing over all j, we get

J’Z (log(Q+ f(2) ") —log(Q+a ")) di(z) < eb Z je .
=l

which implies the claim. ([
Keep in mind that we write z = (F1,...,Fp_1,F,) and o’ = (F{,...,F/_,, F)).

We use y = (G1,...,G,—1,F.) and ¢y = (GY,...,GL._1,F!) to denote the generic

elements of F(F,) and F(F)), respectively.

Lemma 15.3. There exist ). = ¢, (py,0,n) > 0, ¢ = ' (pp,0,n) > 0, o =

al(vy) > 0, and o = al(vy) > 0 such that for any 7 € (0,1], z € F(r,d),

©' € E%(ep,el/2), and & = (w1, .. .,w,) with w; € (0,e7) forj=1,...,r

(i) For every y' in a set X < F*(F)) with w (F*(FO\XD) <,

(15.11) —log ¥, (x,y"; @) < =, logd(G', F,) + ¢ — o log 7.
(ii) For every y' in a set X! < F*(F)) with uh (F*(F))\X!) <,

(15.12) —log b, (x,y'; @) < =7, logd(F!, F,) + ¢ — o log 7.
Proof. By assumption, x’ ¢ E?(e!./2), that is, F ¢ E,(¢!./2). Thus,

1
d’E/dF'E el
(17) 2( ) 47‘

for any y' € F*(F)). Consequently, recalling (12.2),
1
SVAL (2, 4/5107) = VA (e,/) = d(F, + G4, E) > d(C4, E) > 1)
for any y' € F(F}). Therefore, using (12.13),
—1ogSVP,.(z,y'; w,) < —log VP,.(z,y')
< —plogd(Fr—1 + G, Fy) —log(e)./4)
< =y logd(Gh, Fr) — 10g(€r/4)

for any y' € F(F)) (keep in mind that d(-,-) is a distance restricted to Gr(r,d)). In
particular, (15.13) contains the case r = 1 of the claim (i):

(15.14) —logy(z,2';w1) = —1log SVPy (z,2';w1) < —y1logd(y', ) + ¢}

with ¢f = —log(e}/4) and o} =0 (and X! = F*(2') = {z'}).
Now let » > 1. By induction, given y" = (GY,...,G._1) in E>_i(g,_1,€._1/2),
one has

(15.15)  —logthr_1(z_, 2" w_) < —yp_1logd(H!, Fr_1) +¢. | — o’ log(1/2)
for every z' = (Hy,...,H|_5,G\_;) inaset Z' < F*(G.._;) with

Wk (FHGL N <7/
we find that

(15.13)

Integrating this estimate over all admissible G)._1,

(15.16)  —logty,—1(w—,y’;W0-) < =1 logd(GY, Fron) + ¢y — af_y log(7/2)
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for every ¢/ in a set Y’ < F*(F)) with

Wi (FHED\Y) < 7/2.
On the other hand, taking 7 = 2¢,p" and F_ = F,_; in (15.4), we find that

1

(15.17) —logd(G},F._1) < 0 (—log T + logc,)
for every ¢/ in a set Y < F*(F)) with

Wi (FHEDWY") < 7/2.
Define X, =Y’ nY"”. Then p}, (F*(F/)\X.) < 7 and, by (15.16) and (15.17),

(15.18) —logtr_1(z_,y_;w_) < & — dylogT
for every 3y’ € X! with
(15.19) ér = 7271 loge, +c._q 4+ a)log?2 and &, = 27 +al

Combining (15.13) and (15.18), we find that

—log (2,4 w) = —fr—1log 1 (r—,y" ;) —log SVP, (2,4 wr)
< Bro1 (& — Grlog ) — v log d(GY, Fy) — log(e}./4)

for every ¢ in X”. This proves the claim (ii), with

(15.21) c. = Br_1¢, —log(el/4) and ol = B,_1a-

Now we deduce the claim (ii). By part (i), there exists X’ < F(F!) such that
b (FHFO\X') < 7/2 and

(15.20)

(15.22) —log i, (x,y; @) < =7, log(GY, F,) + ¢ — o log(7/2).

for every y’ € X'. Taking 7 = 2¢,p’ and F = F' in (15.3), we get that
_logd( '1,FT)$—logd(FT',FT)—1ogp

15.23 1

( ) :_IOgd(FrlvFr)+b_

for every ¢’ in a set Y < F(F)) with p*(F*(F/)\Y) < 7/2. Define X! = X' nY.
Then p, (F*(F))\X)) < 7 and the relations (15.22) and (15.23) imply that (15.12)
holds for every y' € X7, with

(log 2¢, —logT)

(15.24) ¢ =cp+ % log2¢, +allog2 and o = a, + %

This completes the proof of the lemma. (I

Corollary 15.4. There exist K, = K, (vy,) > 0 and Q, = Q,(vsp,d,n) > 1 such
that for all (z,2') € E%(g,)? such that x ¢ E°(e'./2) or x' ¢ E2(g'./2), and for all
W= (w1,...,wr)€ RY with w, < &

(15.25) f U, (2, 2) du, (') and j U, (y, 23 ) du, (9)
F(F}) " F(Fr)

are both bounded above by log Q). + K.
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Proof. Since the function W,.(-, -; ;) is symmetric, it suffices to consider the first
integral in (15.25). Initially, suppose that x ¢ E2(2¢”) and z’ ¢ E?(2¢). Then
U, (x,2'; w) = logQ, and, in fact, ¥,.(-, ;) = logQ, on F(F,) x F(F!). Hence
the integral is equal to log €2, and so the claim is trivial in this case.

From now on, let us assume that some of the points z and 2’ is in E?(2¢!). Since
the other is necessarily outside EZ(g’/2), by hypothesis, it follows that

(15.26) d(F,,F.) > ¢e./2— 2.
We are going to apply Lemma 15.2 to
Z=F(F), §=ph, Q=0,
JW) = n(a,ys @), a=d(F, F)"e™, andb=af.

The assumption (15.10) of Lemma 15.2 corresponds precisely to part (ii) of the
conclusion of Lemma 15.3: given any 7 € (0, 1],

—log ¥ (z,y'; W) < —7, log d(F), Fy) + ¢l — o/l log 7

for every y' in a set Z! < Z with ¢, ,-(Z\Z!) < 7. The conclusion of Lemma 15.2
asserts that

| oD 0) = | tog(@ + e /s8) ) duy (1)
F(FY) F(F})

< 1og(Q + €rd(F,, F1)™"") + 100/
Define
(15.27) Q, = e (el/2 = 2¢") 7 and K, = 10a” + log 2.

Replacing (15.26) in the previous inequality we find that

J U, (2,93 0) duk (i) < log(Qy + e (c)./2 — 2e1) ™) + 10
F(F}) "
<logQ, + K,

as claimed. O

Proof of Proposition 15.1. It follows immediately from the definitions (15.5) and
(15.6) that Q, ¥, = ¥, outside Ef(e,,el/2) x E2(3er) v E2(3e!) x El(eyp,el/2)

T

This contains part (i) of the proposition. We also have that Q, ¥, = ¥, = log(,
on the cut-off region E¢(g,,2¢”)?. Thus (check Figure 10), to complete the proof
of part (ii) we only have to consider the case when (z,z") € E2(g,,€}) x E2(2e)) U
E?(2e7) x E7(gr,e;). In this case G = pf ¥ fifr, and so Corollary 15.4 gives
that

0, W, (x,2'w) = J J U, (u,u'; @) dpfr (u') du, (u)
Fm) Jrem)
< J (logQ, + K,) du}, (u) = log Q, + K.
F(Fr)

This proves the first inequality in part (ii). The second one is an immediate conse-
quence of the definition of W,..
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We are left to proving part (iii) of the proposition. Combining the definition
(15.6) with Corollary 15.4, we see that

J’ U, (u,u'; 3) dGr g 2 (u,u')
F(F)xF(F)

(15.28) < (1= 7(Fy, ) U, (2,23 @) + 7(Fy, F!) (log Q, + K,
<V, (z,2;0) +7(F, F)K, < U, (z,2';0) + K,,

as claimed. O
Corollary 15.5. For any 6§ >0, n = N,., the following holds for any k = k,:

(i) For any z,z' € E2(e,) in general position with ¥y, .(z,x') > log Q,,
J 0, Wy (g, gz') dulgn) (9) < Vpp(z,2') + C'n + K,.
G

(ii) For any z,z’ € E?¢(e,) in general position satisfying Vi r(z,z") > logQ,,
VA, (z,2") = wir, and VA, (2, 2) > wi ,

J QT\I/;”(Q:E, gz') dulgn) (9) < Vg r(z,2") + Clon + K.
G

(iii) For any x,x' € EX(e)) in general position satisfying VA, (x,2’) = w,» and

VAT(.’IJ/, JI) = Wk,r,
J ér‘llk,r(gxa g'rl) dV](gn) (g) < \I/k,r(xv xl) - (K:lrl - C;I(S)TI,
G

Proof. Parts (i) and (iii) of Proposition 15.1 imply that
0, U, (z,2') < U, (x,2") + K, for every (z,2') € E2(e,)?,

Then the claims in parts (i) and (ii) of the corollary follow immediately from the
corresponding statements in Proposition 14.1. In the context of part (iii) of the

corollary, we even have that @T\I/T(x, 2’y = U,.(z,2'), and so the claim corresponds
exactly to part (iii) of Proposition 14.1. O

16. RECOUPLING AND CONCLUSION

By induction, there are constants £, > 0 and n, € N, continuous Markov opera-
tors

(16.1) T : B(Ep(er)) = B(Er(er)), Trro(Fr) = JE ( )1/1d0k,r,FT

adapted to (vk, Er(er)), and Ty -invariant probability measures n, on E,(e,)
such that the sequence 7y, = limy 9 exists and satisfies 1o, » (Er) > 0. Up to
”localizing” the Markov operators as described in Section 6.5, if necessary, we may
assume that e, > 0 is small enough that

1
(16.2) Noo,r (Er(er)\Er) < Enk-,r(Er)-
Then, for every k sufficiently large,
2
(16.3) Me,r (Br(€ry€7)) < Enk r(Er(er)).

We are going to show that this leads to a contradiction when dim £ = r, and to
recover all this information for r + 1 when dim F > 7.
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16.1. Markov operators on flag varieties. Let k£ and r be fixed. We are going
to extend Ty, to a suitable Markov operator 7,7, in the space of flags, as follows.

The first step is to find a suitable lift of o ., to a probability measure on the
group G = GL(R?). For each F, € Gr(r,d) define

¢r. : G — Gr(r,d), g gF,.
Lemma 16.1. There exists a continuous family {{igr r,. : Fr € Er(er)} of proba-

bility measures on G such that (€g, )ik r F. = Ok F,. for every F. € E.(e;).

Proof. Write R = E @ E+. Every F € E,(e,) is the graph of a linear map
up : E — EL. Define

hp:RY—SRY oFf 4ot 0P 4 (’UJ' +uF(vE)) .
Then F' — hp is a continuous injective map from E,(e,) to G = with hp(E) = F.
For each fixed F, € E,.(g,), define
Lr, 1 Er(e,) > G, F>hpohp.
Then £f, is a continuous injection and a right-inverse of &p, :
(16.4) Cr, (£p, (F)) = Lr, (F)F; = (hp o hy)) (Fr) = hp(E) = F
for every F' € E,.(e,). Define pirr, = (£F,.)x0krF,.. It is clear that this varies

continuously with F,.. The claim in the lemma follows directly from (16.4). (]

Since Ty, is adapted to (I/lin), E,(g.)), there exists a neighborhood V' of the V]gn)—
core of E,(e,) such that o, r, coincides with 1/,(:})77‘ = (¢ FT)*I/](CH) for every F,. € V.
Let 7 : E.(¢,) — [0,1] be a continuous function vanishing on a neighborhood
U c V of the u,i")—core of E,(e,), and constant equal to 1 outside U. Define

Vi, = (1= 7(E) 4+ 7(F) i -
Observe that (€g,.)«Vkr.p, = Ok r, for all F. € E.(e,), and so the operator Ty, , :
B(E.(e,)) —» B(E,(s,)) may be rewritten as

Tert(Fr) = | 00F) dvirr, o).
G
We extend this to
(16.5) wr i B(EY (er)) = B(EJ(er)),  Tip¥(x) = J’G Y(gz) dvy,r.F,(9),

where z = (Fi,..., F;) and gz = (gF1,...,gF,). It is clear that T;?. projects to
Ti,» under the forgetfulness map (15.9). Let nj . be a 7T;? -invariant probability
measure projecting to g ,.

16.2. Recoupling. We move to construct suitable self-couplings for the Markov
operators 7,°,.. Begin by writing the definition in (16.5) as

(16.6) Toe) = | o tor v e BB,

where o7, . . is the push-forward of vy, ;. r, under the map G' — F(r,d), g — gz. By

construction, of , . coincides with the push-forward V](C"T) , of V](C") whenever F,. is in

the neighborhood U of V,(Cn) -core of E,(e,). We denote by v the push-forward

k,r,x,x
(n)

of v, under the diagonal embedding G — F(r,d)?, g — (gz, g2’).
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Consider X = X' = E(e,), Y =Y’ = E7(e,), and ny = ny = o}, for every
y €Y. Let K be the (compact) subset Diag, of pairs (z,2') € E¢(e,)* which are
not in general position, that is, such that either F{ < F, or Fy  F!. It is clear
that K(z') and K'(z) are algebraic subvarieties of E2(e,), and so

Ty (B (7)) = 0} ., (K'(2)) = {0}

for every x, 2’ and y. This means that (6.10) holds in this setting, and so we may
use Proposition 6.9 to find a continuous family

(s (0.0 € B2}

of generic probability measures on E?(g,)? such that each 0y ., .+ is a coupling of
0% and of ., vanishing on a uniform neighborhood of Diag, .

Let @ : E2(e.)? — [0,1] be a continuous function such that &(x,2') = 0 if F,
and F/ are both in E2(&,) and &(z,2’) = 1 if either of them is outside E?(2¢,)).
Then

(16.7) 58 o = (L= (@, 2)) v+ 0@, 2 )k 0

’
k,r,x,x

is a coupling of o, and o}, ., depending continuously on (z, '), and so
B = B, Tedes) = [ ot
o(er

is a continuous self-coupling of 7;,.. Just as we did for 7 = 1, we must modify these
operators, by recoupling the measures o} . . and o} . ., in a suitable way on the
region E°(2&,,¢e")%.

For x € E2(2¢,,¢), it follows from (9.16) that the subset of g € supp V,(Cn) such
that gz € E2(2¢!) is disjoint from the set Dy (F).) given by Corollary 5.7. Hence,

(16.8) v (E2(2e0)) < v (Du(F,)°) < 6 for every @ in EY(2Z,, ).

Note that o} ., = Vlgnr)z if F, is in the u,i")—core of Er(er).

Take X = X' = Eﬁ(sT), Y =Y’ = Ep(2&,,¢))?, and 1, = 0}, = o} ., for every
y € Y. Moreover, let K = E2(e])? u Diag,. On the one hand, (16.8) implies that
o ., (E2(er)) and of . (EX(e;)) are less than 6 < 1/2 for every y € Y. On the

T

other hand,

Diag,(¢') = {z € EZ(¢,) : F| € F, or F} c F!} and

Diagl.(x) = {2’ € E2(e,) : F{ € F, or Fy c F/}
are algebraic subvarieties of E7(e,), and so they have zero o, . -measure for every
y €Y. These two observations show that

K(z') = E2(e]) u Diag,(2') and K'(z) = E?(e]) u Diag).(z)
satisfy (6.10). So we may use Proposition 6.9 to find a continuous family
{Chrza : (z,2") € E2(28,,e1)?}

of generic probability measures on E?(e,)? such that every (g, .. is a coupling of
oy .. and oy, vanishing on a uniform neighborhood of Diag, and such that

(169) Ck.,r,x,x’ (E;E(E;«)z) =0.
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Fix a continuous function 7 : E¢(g,)*> — [0,1] such that 7 = 1 on E?(&,, 2¢")?
and 7 = 0 on the complement of E2(2¢,,£”)?, and then define

(16.10) Okt = (1 — 7(z, a:')) Ok + T(, )kt

! i ~O 3 4 <& < 3
for every (z,2') € Ef(e,)?. Then 63, , ./ isacoupling of o} ., and o . ., depending
continuously on (z,z’), and so

,f;:r : B(E;‘)(ET)Q) - B(E:(ET)Q)’ ﬁfri(x7 xl) = J 12) da’;,l,m,m’
ES(e,)?

is another continuous self-coupling of 7;°,, coinciding with ’7~7€°T outside the recou-

pling region E°(2&,,e")?.
Finally, define 7;% : B(E2(e,)?) — B(E2(e,)?) by 7;% =T, © Qr, that is,
(16.11) (ECEOE T
’ B2 (er)?
Let m; : Ey(e,)? > Ey(e,) and 7¢ : E2(e,)? — E?(e,) denote the projections to the
ith factor, i = 1,2, and f be the forgetfulness map (15. 9) By (16.11) and (15.8),
T8 W (f,0) =T (@ (W o (f:1)) = Te (o (f: 1)

for any ¢ € B(E,(e,)?). Take ¢ = 1) o m; for any ¢ € B(E,(e,)). Observing that
o(f,f) = fomy, and keeping in mind that T¢, 1s a self-coupling of 7,° and the

latter projects to 7, under the forgetfulness map, we get that

(16.12) T2 (o fonf) =T (o fonf) =T, (Yo f) onf = (Thrd) o f oms.

In other words, 'ﬁ% projects to Ty, under fow for any ¢ = 1, 2.

Remark 16.2. Unlike ’ﬁfr, this 'ﬁ% is not a coupling of operators on B(E?(e,))

because QT itself is not a coupling. That could be remedied by choosing QT differ-
ently. However, our choice is convenient for lifting these operators to the blow-up
space Y (g,), as we will see in Section 16.4.

We will need the following extension of Lemma 11.1 to r > 1:

Lemma 16.3. Let (v,2') € E2(e,)? be such that
(a) either at least one of the points x or ' is in the V,gn)-border of E2(e,),
(b) or both x and x' are in the u,(gn)-core of E2(e,) but outside E?(2e!).
Then 63, , o (E2(€1)?) = 0 and TS0y, (z,2") < log Q. + K.

Proof. Let us begin by proving the claim that 67 ., ., vanishes on E7 (e "2 If xis
in the V]g )_border of E?(e,) then, using (13.22),

R o (B < 02, B2(E0) < 0 (0, B2(E)) =0

The same argument applies when 2 is in the V,(Cn) -border of E2(e,). This settles the
(n)

k,r,x
and oy . = u,(cnr)m, By (16.9), (... vanishes on E¢(g))?, and so (16.10) gives
that

claim in case (a). Now let  and 2’ be as in (b). Keep in mind that o} . = v

Uk r,x,x’ (E;")( ) ) = (1 - T(I5I,))&Z,T,x,x’ (E;E(E;")z) .
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If x and 2’ are both in E?(é,) then 7(z,2") = 1, and the claim follows. When
x ¢ E2(Z,) we get from (13.23) that v\") (E°(e")) = 0. Then

k,r,x
53 0wt (E2(E)?) < 0f, o (B2(eh) = v (ES(EL)) = 0.

The case when 2’ ¢ EZ(&,) is analogous. Thus 67 .. ..(E2(e})?) = 0 also in case
(b). N

By part (ii) of Proposition 15.1, it follows that Q, ¥y, »(u,u’) < logQ,. + K, for
GF 1w p-almost every (u,u’) € EY(e,)?. Integrating with respect to 67 ., ., we get

that ﬁ%\llkﬂr(x,x’) < log Q) + K, as claimed. O

Proposition 16.4. There ezist k! = k" (vy,) > 0 and C = C(vy) > 0 such
that given any § > 0 and n = N, the following holds for every k = k,.:

(i) For any (x,2') € E¢(g,)?\ Diag,.,
ﬁ%\lfk7T(:v, ') < Vg, (z,2") + Cl'n.
(ii) For any (z,2') € E2(e,)?\Diag, with VA, (z,2") > w.r,
T Wy (z,2") < Upp(w,2') + CF (1 + 6n).
(ili) For any (z,2') € E?(el)\ Diag, with VA, (x,2") = wk.r,
ﬁ%llfk7T(x,x’) < Uy r(z,2") — (k) — CFo)n.

Proof. Take " = k" and C” = C" + K, and let k > k.. We split the argument
into four cases (check Figure 8).

First, suppose that both z and 2’ are in the V,(C")—core of E¢(e,), and at least one
of them is in E2(e”). This is necessarily the case in the setting of (iii). In particular
(x,z") is outside the cut-off region, which means that Uy, ,.(x,2") > log ., and there

is no recoupling either:
&Z,r,z,z’ = V](gtlr)@@’v ﬁ%\pk-ﬂ“(xa II) = J;: éT\I}kﬂ“(gIa g'rl) dyl(qn) (g)

Hence the claims in (i), (ii) and (iii) are contained in Corollary 15.5.

Now suppose that both = and 2’ are in the V,(C")—core of EZ(g,) but outside E?(eV),
and at least one of them is in E?(2e). It is still true that (z, ') is outside the
cut-off region, and so ¥y .(z,2") > log€Q,. Thus the estimates in Corollary 15.5
remain valid for

(16.13) J QT\II;W Ao} v e = J @T\I/;”(g:v, gz') dl/]i") (9)-
B2 (er)? G

By (16.9), the measure (.-, »» vanishes on E¢(g")2. So, part (ii) of Proposition 15.1
gives that

(16.14) J QW dCprwe <logQy + K, < Uy . (z,2) + K,
E2(er)?

By the definition (16.10), ﬁ%\llk,r(x, z') is a convex combination of the integrals in
(16.13) and (16.14). Thus the claims (i) and (ii) follow in this case.

Next suppose that both z and z’ are in the V,in)—core of E¢(e,) but outside
E¢(2e). This corresponds to case (b) of Lemma 16.3: claims (i) and (ii) are
contained in the conclusion of that lemma. Finally, suppose that at lest one of
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the points = and 2’ is in the V,(C")—border of E¢(e,). This is precisely the situation
in case (a) of Lemma 16.3, and so claims (i) and (ii) are again contained in the
conclusion of that lemma. g

16.3. Contradicting dim £ = r. Now we are going to apply Lemma 11.3 with
X = E;«)(Er>2u T = 77@%7 "/] = \I]k,ra ﬁ = ﬁk,ra
(16.15)  Ag = {(a:,:z:') € E2(,)? : VA, (2,2)) > wir, VAL(2',2) > Wi,
d(F,,E)<el, and d(F/,E) < eV},

(16.16) By, = {(z,2') € E2(e,)* : VA, (z,2") > wy,r, VAL (2, 2) > whr,

and d(F,., E) > ¢/ or d(F.,E) > &V},
(16.17)  Bj, = {(z,2') € E2(e,)* : VA, (z,2") < wpr },
(16.18)  Bj = {(z,2") € E2(e,)* : VAL (), 2) < wpr }-
The sets A = Ay, B’ = Bj, and B” = B} u B} are pairwise disjoint, and their
union is the whole E¢(e,)%. Moreover, (7.2) implies that B” = ¢§ when dim E = r.

Proposition 16.4 shows that, as long as k is sufficiently large, the hypotheses of

Lemma 11.3 are satisfied for these choices, with
ka = (ki —CV&)n, *Kg=C"(1+dn), and k5 = C/'n.
Take 6 > 0 to be sufficiently small, depending on vy, and n € N to be sufficiently
large, depending on v, and 4, that
(16.19) Ka > 9K’

Using Proposition 6.6, we find a self-coupling 7§ of 73 ,. vanishing on a neigh-
borhood of Diag, = E?(e,)?. Observe that /¢ projects to ng, under f on{ for any
i =1,2. Then the same is true about every ﬁ%-iterate of 1§, by (16.12). Starting
from 7§ and arguing as in the proof of Proposition 6.23, we find a sequence (ﬁkgr ; )j
of probability measures on E2(e,.)? projecting to ng,» under fow? for any i = 1,2,
converging to a ’TQ -invariant measure nk ., and satisfying SEQ )2 Wy, dnk S <O
and

J ﬁ%kllk,r(x,x')dﬁ,?mj(x,x') > J \Ifkw(:v,x')dﬁk%_’j(x,x')
Bo(er)? Bo(er)?

for every j. Applying Lemma 11.3 with 7 = '?ZQT and ) = ﬁk%ﬁ_’j, we get that

Kafey ;(B2(er)?) — (ka + )0, (B)
KA+ K

(16.20) 02, (B") =

for every j. Passing to the limit as j — o0, we conclude that

rang (B2 (e)?) — (Ka + Kp)02,.(B)
KA+ KT '

(16.21) e (B") =

By definition, B’ is contained in the union of the pre-images (f o wf)fl (Er(gr,e)),
1 =1,2. Thus, using (16.3),

(16.22) e (B") < 201 (Br(er,67)) < %nkr(Er(sr))-
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It is clear that ﬁ,gr(E,?(aT)z) = Nk (Er(g,)). Substituting these relations in (16.21)
and using (16.19), we find that

’
SK'g

4 /
KA — s5KA + K
AT B) L (Bre)) > —2B e (Buer)) > 0.

16.23) #2 (B") > B
( ) m”( ) KA+ KG KA+ Kp

When dim E = r this is a contradiction, because B” is empty in that case. Thus
dimFE = r + 1.
16.4. Completing step r. By (16.23), there exists ¢ = 1,2 such that

i
2K'g

(16.24) Mo (Bi) = ke (Er(er))-

KA + Kp

It is no restriction to assume that ¢ = 1, as the other case can be deduced just by
exchanging the roles of 2 and .
Consider the map

¥ : E2(¢,)?\Diag, — Gr(r +1,d), X(x,2') = F| + F,
and the compact topological spaces
Vo ={(z,2',y) € F(r,d)® x Gr(r +1,d) : F]{ c y and F, C y}
V(&) = {(z,2',y) € Y : z,2’ € E2(g)} for € > 0,

together with the canonical projections

Ve o Fnd, (@) o ()

p:Yr = Gr(r+1,d), (x,2',y)—y.

(n)

For (z,2',y) € Yr and n € N, denote by v, vty Uhe image of V](cn) under the
diagonal action

G-V, (9~ (92,92, gy).
,i"r)xx,y i nr)zz, relative to p1 : V, — F(r,d)?. The
complement of Diag,. in F(r,d)? embeds in ), through
(5,2) > (2,2', F, + Fy).

Clearly, each v s a lift of V](c

In particular, every measure & on F(r,d)? that vanishes on Diag, has a (unique)
lift € to V.

From the relations (11.3) and (16.10), we see that
(16.25) 65 v = (L= @@, 2)) i+ 0@, 200

k,r,x,x’
where @ : E2(e,)? — [0,1] is a continuous function that vanishes identically on
E2(e")?, and each 0y ., o is a coupling of ¢, . and o3, ., vanishing on a uniform
neighborhood of Diag,.. In view of the previoﬁé remarks, it follows that the o g
lift to probability measures

(16.26) Fhraary = (1 — @z, 2")) V,(cnr)zz,y + (w0, )0k 2ty

on Y, (e,), where ék%z’zgy is the unique lift of ékmz’z/’y. This lift is continuous: it
is clear that Dlinr)xx,y varies continuously and, by uniqueness, so does ékmw,m,7y.
We claim that the spreading out measures G, 5 5 in (15.6) also lift continuously

to measures Gz 4,y on Vy(g,). Indeed, it is clear that {0, 4y : (#,2",) € Vr(er)}
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is a continuous lift of {d, . : (z,2) € E?(e,)?}, and so it suffices to show that the
family

{up, x uf : (z,2') € B (er,6,/2) x E7(3e7) v EX(3€7) x Ef (e, €,/2)}
lifts uniquely to V(). The latter is a direct consequence of the fact that

(16.27) (u%, x i) (Diag,) =0

for any (F,, F!) € E (e, £../2) x E(3el) v E(3¢!) X E.(gr,€../2), To prove (16.27),
let us write u = (G1,...,G,) and v’ = (G}, ...,G,). By definition,

(uk, x ut,) (Diag,) < uk, (W' € F(F)) : G1 € By}

(16.28)
+uk, ({ue F(Fy) : Gy < Fi})

The key point is that in this setting we always have F,. # F!. Thus the set of
u' € F(F!) such that G| c F; is a subvariety of F(F)) of strictly smaller dimension,
and so it has zero p}, -measure. Thus the first term on the right-hand side of (16.28)
vanishes identically, and then so does the second term, by symmetry. This proves
the claim. R R N

These observations ensure that the Markov operator 7;% = Trr 0 Q, admits a
continuous lift

776@7‘ 1 B(Yr(er)) = B(Yr(er)), ﬁ%q’(xaﬂc'ay) = J ( )Qd&kgmz-,z’-,y’
Vr(er
given by
6’8%1.1'.74 = J Gryu,ul v dﬁkﬂ“@@';l/(”? u, v).
o Yr(er)

Since the measure 7§ was taken to vanish on a neighborhood of Diag, < E2(e,)?,
it also admits a (unique) lift 7§ to Vr(e,). Applying the construction in Propo-
sition 6.23 simultaneously to the operators ’72% and ’\7;%, starting from 7§ and 7§
respectively, we find a sequence (ﬁkgﬂj) ; of probability measures on Y, (e,) converg-
ing to a ﬁ%—invariant probability measure ﬁ,ﬂQ)T and such that (up to restricting to
a subsequence) each ﬁkgmj projects to ﬁkgm ; under p;. Observe that ﬁ,%r and each
ﬁkg-,m' project to ny, under fonf opy fori=1,2.

Next, define ny 41 = pg*f]kQ)T and let {dijg v : v € p2Yr(e,)} be a disintegration
of ﬁ,ﬂQ)T with respect to the partition {p; ' (v) : v € padr(g,)}. Then define

77€,r+1 . B(p2yr(€r>> - B(p2yr(5r>>7

Trw1®(y) = j T2 (® 0 po) (2,2 y) iy (1, 2.
2 (y)

py (Y

Equivalently, Ty ,+1®(y) = szyr(sr) ® do, r11,4 With

(1629) Ok,r+1y = J pQ*&kQ,r,z,z’,y dﬁkﬂ‘;y(x? xl)'
Py ()

Let By, = pop; '(B}) = {F{ + F, : (x,2') € B}}, where B} is as in the previous
section. Define also 7 r41,; = pg*ﬁ,?_ﬁj for j € N. Then

M1, (Br) 2 12,5 (01 (BR)) = 2, ;(Br)-
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Passing to the limit as j — oo, and arguing as in (16.20)-(16.23), we find from
(16.24) that

5k’
Nreyr1(Br) = ﬁnk,r (Er(er))-
B

Now, since wy, — 0, the definition (16.17) implies that By converges to E, as
k — co. Thus, any accumulation point 7,41 of Nk r+1 must satisfy

5K 5K/
B ” n%,r(ET(ET)) = 7B,n%,T(ET) > 0.

16.30 o1 (B > —=
( ) Noor+1(Ery1) Py Py

(nry1) Mrg1)

Take n, 41 = n and .41 = &7, Let v ) Y
under the map G — Gr(r + 1,d), g — gy.

denote the push-forward of V](C

Lemma 16.5.

(i) Okri1y = V,gflrrii))y for every y € Erp1(ert1).

(11) Ok,r+1,y (Xj(én)ErJrl(ErJrl)) =0 fOT every 'y ¢ Er+1(5r+1)
k
(ili) The measure N r+1 18 Tiri1-invariant.

(nr41)

k! y under

Proof. 1t is clear that ulgnrji)u coincides with the push-forward of v

the projection po. Thus (16.26) gives that

p2*6k,r,x,x’,y = (1 - (ZJ(.I, x/)) VIE:I;Ii))U + (ZJ(I, I,)pQ*ék,r,z,z',ya

and so,
Okr4ly = (1 - J’71 O, ") dijg .y (2, x')) Vlgtlrji,)y
Py ()
+ J, (;}(:17, Il)p2*ék,r,x,1",y dﬁk,r,y(x, $I)7
Py ()

If y € Ey11(er41) then both = and 2’ are necessarily in E(e,41), by (7.1), in which

case w(z,z') = 0. Then op ry1,y = V,(Cn;ﬁ)u, as claimed in (i).

In view of (16.29), to prove part (ii) it suffices to show that if y ¢ Er41(gr41)
then

(16.31) p2*5’k,r,x,x’,y (Xﬁn)ET"l‘l(ET"Fl)) =0
&

for any x,2’ c y. If x and z’ are both in E?(e,41) then

. _ (nrt1)  _  (rg1)
P24 0k, ra,a'y = p2*yk,r,m,;ﬂ’,y — Ykr+ly

and then the claim follows from Remark 6.26. From now on, we assume that one
of the points, = say, is not in E?(g,41). It follows from the definitions that

p51 (Xﬁn)Er+l(5r+l)> < Xﬁn)E$(€T+1)2 X Xﬁn)Er+l(5r+l)v
k k k
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and so

p2*6k,r,z,z’,y (‘Xﬁn) E’I"-‘rl (5T+1))
k

< 67{:,7‘,;6,;3/)‘1/ (Xﬁn)E:(€T+1>2 X Xﬁn)ET+1(ET+1))
(16.32) § §

< 62,7",&0,&0’ (in)Eﬁ(ErJrl)2)
< UZ,T,I (Xﬁn)Eﬁ(E’r‘-‘rl)) .

k
If z is in the V,in)—border of E2(e,) then

T (X B2lern)) < oh (X1 B2 =0
k k
because the operator Ty 1 is adapted to (u,i"),Eﬁ(ar)). If = is in the V,gn)—core of
E?(e,) then Remark 6.26 gives that

UZM (Xﬁn)Eg(ar+l)> = Vl(ctlr),m (Xﬁn)Eg(ar+l)> =0.
k k

Thus the right-hand side of (16.32) vanishes in either case. That completes the
proof of (16.31) and of part (ii) of the lemma.
Finally, by definition,

J (77c,r+1‘1’) dﬁk,r+1
szT(Er)
[ R @op) e ) i) i ()
p2Yr(er) Ip3 ' (¥)
= J ﬁ,’r(q)op2)(x7x/7y) d’l?kﬂ‘((E,CE,,y)
yT‘(aT)

for any ® € B(p2Y,(er)). Since 7, is ﬁyr—invariant, this gives

J (77€,r+1(1)> (y> d77k,r+1(y> = J ((I) Opg)(l’,$/7y) d’l?kﬂ‘(ZC,ZE,,y)
szT(Er) yT‘(aT)

- J B i i,
p2Yr (57‘)

which proves claim (iii). O

Since the &y 4.4y are generic measures and the projection po is algebraic, it
follows readily from (16.29) and Remark 5.1 that every oy 41, is a generic measure.
Then, conclusions (i) and (ii) in Lemma 16.5 allow us to apply Propositions 6.15
and 6.25 with E,1(e,4+1) and p2Y.-(e,) in the roles of X and U, respectively. Thus
we get a continuous Markov operator adapted to (l/,im‘“), r+1(er41)) and which
leaves the restriction of nx 11 | Ery1(er4+1) invariant. Replace Tr 41 and ng r41
with these new Markov operator and invariant measure, respectively. This finishes
step r of the induction.

The proof of Theorem 7.1 is now complete.
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