MAXIMAL TRANSVERSE MEASURES
OF EXPANDING FOLIATIONS
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ABSTRACT. For an expanding (unstable) foliation of a diffeomorphism, we use
a natural dynamical averaging to construct transverse measures, which we call
maximal, describing the statistics of how the iterates of a given leaf intersect
the cross-sections to the foliation. For a suitable class of diffeomorphisms, we
prove that this averaging converges, even exponentially fast, and the limit mea-
sures have finite ergodic decompositions. These results are obtained through
relating the maximal transverse measures to the maximal u-entropy measures

of the diffeomorphism (see [UVYY]).

1. INTRODUCTION

Let F be a foliation on a manifold M and F be a leaf with non-exponential
growth. A classical result of Plante [Pla75], Goodman, Plante [GP79] asserts that
any accumulation point of the normalized intersections of large discs in F' with
cross-sections to JF is an invariant transverse measure, that is, a family of measures
defined on cross-sections to the foliation which is invariant under the corresponding
holonomy maps. Invariant transverse measures describe the asymptotic behavior
of leaves at a statistical level, and have a major role in foliation theory. See for
instance [FLP12], [PPS15], [Alv18], and the references herein.

The overall purpose of this paper is to develop new methods for analysing the
asymptotic behavior of foliations arising from dynamical systems such as diffeomor-
phisms f : M — M. In this context, we has at our disposal an alternative averaging
scheme, of a dynamical nature. Namely, we can fix a disk £ inside any leaf, and
look at the normalized intersections of its iterates f™(£) with cross-sections to the
foliation. It is assumed that the foliation is expanding for f, in which case the
leaves are homeomorphic to an Euclidean space and the Plante non-exponential
growth condition is satisfied (compare Gromov [Gro81]).

On the other hand, the iterates f™(£) themselves grow exponentially fast with
n. The accumulation points of their normalized intersections with cross-sections
to the foliation describe the statistical behavior of the leaf’s orbit. So it is most
natural to ask whether those normalized intersections converge as n — oo and, in
any case, whether their accumulation points are invariant transverse measures? In
the event of convergence, one is also interested in understanding how fast it is, an
issue which is perhaps not so relevant in the classical topological setup.

Another novel point in our investigation is that we can try to relate the folia-
tion’s invariant transverse measures to the invariant measures of the diffeomorphism
f itself, a class of objects for which a rich theory exists already. Indeed, we are
going to see that the invariant transverse measures constructed in this paper are di-
rectly connected to the so-called measures of maximal u-entropy of f (see [UVYY])
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via projections along the foliation leaves. Thus we call them mazimal transverse
measures.

In a nutshell, we study the connections between these three different kinds of
transverse objects:

e invariant transverse measures, arising from foliation theory;

e hitting measures, given by the intersections of leaf iterates with cross-
sections, a topological/dynamical type of information;

e and quotients of certain invariant measures under the foliation’s holonomy
maps, originating from ergodic theory.

In the following we consider the class of partially hyperbolic diffeomorphism that
factor over Anosov introduced in [UVYY]. Namely, we take f : M — M to be a
partially hyperbolic, dynamically coherent diffeomorphism on a compact manifold
M, with partially hyperbolic splitting TM = E & E**. We denote by F“* the
strong-unstable foliation, that is, the unique foliation tangent to E** at every point.
In this setting, dynamical coherence means that there exists an invariant center-
stable foliation F°° tangent to E°° at every point.

We say that f factors over Anosov if there exist a hyperbolic linear automor-
phism A : T4 — T on some torus, and a continuous surjective map 7 : M — T¢
such that

(H1) mof = Aom;

(H2) 7 maps each strong-unstable leaf of f homeomorphically to an unstable leaf

of A;
(H3) 7 maps each center-stable leaf of f to a stable leaf of A.

Several examples of diffeomorphisms that factor over Anosov are described in
[UVYY, Sections 6 to 9].

Let R = {R1,..., Rk} be a Markov partition for the linear automorphism, and
M = {My,..., M} be defined by M; = 77 1(R;). We denote by W?% and W,
respectively, the stable and unstable foliations of A. The connected components of
the intersection of their leaves with each element of R will be called stable/unstable
plaques of A. Center-stable plaques and strong-unstable plaques of f are defined
analogously, considering the leaves of 7¢° and F“* instead.

Let us state our three main results. Some of the technical notions involved in
the statements will be defined along the way.

Theorem A (Existence of transverse measures). Let f : M — M be a partially
hyperbolic C' diffeomorphism that factors over Anosov. Then there exist positive
constants c1, . . ., ci such that, for any f-invariant measure p of maximal u-entropy,
T, = {cifts : S C M;} is an invariant transverse measure for the strong-unstable
foliation F"*, where S denotes a cross-section to the strong-unstable foliation, and
fis is the projection of p | M; to S along the strong-unstable plaques.

A partially hyperbolic diffeomorphism f : M — M is said to have if the center
Lyapunov exponents of every ergodic measure of maximal u-entropy are negative.
This is a variation of the notion of diffeomorphism with mostly contracting center,
which was introduced in [BV00] and has been developed by several authors, for
instance in [Cas02, Dol00, DVY16]. Examples and more information on systems
with c-mostly contracting center, including alternative equivalent definitions, can

be found in [UVYY] and Section 4 below.

Theorem B (Exponential convergence). Let f : M — M be a partially hyperbolic
diffeomorphism that factors over Anosov and has c-mostly contracting center. Let
w be an ergodic measure of mazrimal u-entropy whose support is connected. Then
for any strong-unstable plaque £“(x) with x € supp u, and any cross-section S
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contained in some M; with (M;) > 0, and any Hélder real function ¢ supported
inside S,

1 . 1 .
#(fr (€ @) nS) 2 “‘f“m/ ¢diis

q€fm (&% (z))NS
exponentially fast as n — oo.

Ezxample 1.1. Let f : M — M be any partially hyperbolic diffeomorphism on a
3-dimensional nilmanifold M # T3. Then f factors over Anosov. Moreover, f
is C'* and admits some hyperbolic periodic point then any diffeomorphism in a
Cl-neighborhood has c-mostly contracting center. Thus Theorems A and B apply
to it. Indeed, in this case there is exactly one measure of maximal u-entropy, and
its support is connected. See [UVYY, Section 7].

Remark 1.2. A version of Theorem B remains true when the support of p is not
connected. That is because in general the support has finitely many connected
components, and the normalized restrictions of i to each connected component are
ergodic for a suitable iterate f!. See Lemma 4.9 and equation (28) in [UVYY]. Then
the previous statement can be applied to the restriction of f' to each connected
component. Corresponding observations apply to Theorem C, Theorem 6.1 and
Theorem 8.1.

For the next theorem we assume that the center-stable bundle admits a domi-
nated splitting £°° = E*® @& E°, where F®° is uniformly contracting. We denote by
F?*% the strong-stable foliation, that is, the unique foliation tangent to E°° at every
point. The assumption that f is dynamically coherent implies that there exists a
center foliation F€¢ tangent to E° at every point.

Theorem C. (Ergodicity) Let f : M — M be a C* partially hyperbolic diffeo-
morphism that factors over Anosov and has c-mostly contracting center. Assume
furthermore that the map m: M — T? is a fiber bundle whose fibers are the center
leaves of f, and those fibers are compact. Then, for any ergodic measure of maximal
u-entropy p, the invariant transverse measure 7, has a finite ergodic decomposition.

An interesting question is whether this theory can be extended to other classes
of partially hyperbolic diffeomorphisms, for example, perturbations of the time-1
map of an Anosov flow or, more generally, center-fixing diffeomorphisms (in the
sense of [AVW15]).

2. PRELIMINARIES

Throughout this paper, we take f : M — M to be a partially hyperbolic C*
diffeomorphism which factors over an Anosov automorphism A : T¢ — T¢. We
start by completing the definition of these concepts.

2.1. Partial entropy. A C'! diffeomorphism f : M — M on a compact manifold
M is partially hyperbolic if there exists a D f-invariant splitting

TM = E° D Fuw
of the tangent bundle such that Df |guu is uniformly expanding and dominates
Df |ges. By this we mean that there exist a Riemmanian metric on M and a
constant w < 1 such that
IDf@]
1D f(z)or]| —
for any unit vectors v** € ES° and v** € EY*, and any z € M.

The strong-unstable sub-bundle E"" is uniquely integrable, meaning that there
exists a unique foliation F"" which is invariant under f and tangent to E"" at

1) IDf(e) ) > = and
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every point. The corresponding holonomy maps are Holder continuous: see [BP74,
Corollary 2.1] and [HP70, Theorem 6.4], which use a stronger (absolute) partial
hyperbolicity condition; a proof for the (pointwise) notion of partial hyperbolicity
we assume here can be found in [Via]. See also [PSW97, Theorem A’].

We assume that f is dynamically coherent, meaning that the sub-bundle £ is
integrable, and we denote by F° some f-invariant integral foliation. See [HPS77].
A compact f-invariant set A C M is u-saturated if it consists of entire leaves of
FU%  Then it is called u-minimal if every strong-unstable leaf contained in A is
dense in A.

The topological u-entropy of f, denoted by h(f, F**), is the maximal rate of
volume growth for any disk contained in an strong-unstable leaf. See Saghin,
Xia [SX09]. The u-entropy of an f-invariant measure p, denoted as h,(f, F**),
is defined by

hy(fop) = Hy (f7H€0 ] €Y)
where £ is any measurable partition subordinate to the strong-unstable foliation.
Recall that, according to Rokhlin [Rok67, Section 7], the entropy h,(f) is the

supremum of H,, (f~¢ | £) over all measurable partitions £ with f~'¢ < & Thus
we always have

(2) hu(f, F*) < hy(f).-

See Ledrappier, Strelcyn [L.S82], Ledrappier [Led84], Ledrappier, Young [LY85],
and Yang [Yan21]. We call u a measure of mazimal u-entropy if it satisfies

hu(f; F*) = h(f, ).

By Hu, Wu, Zhu [HWZ21], the set MM“(f) of measures of maximal u-entropy is
always non-empty, convex and compact. Moreover, its extreme points are ergodic
measures.

2.2. Markov partitions. Let R = {R4,..., Ry} be a Markov partition for the lin-
ear automorphism A : T? — T<. By this we mean (see Bowen [Bow75, Section 3.C])
a finite covering of T¢ by small closed subsets R; such that

(a) each R; is the closure of its interior, and the interiors are pairwise disjoint;

(b) for any a,b € R;, W¥(a) intersects W7 (b) at exactly one point, which we
denote as [a, b];

(c) A(W¢(a)) € W2(A(a)) and A(Wi(a)) D W} (A(a)) if a is in the interior
of R; and A(a) is in the interior of R;.

Here, W} (a) is the connected component of W*(a) N R; that contains a, and
W?(a) is the connected component of W*(a) N'R; that contains a. We call them,
respectively, the unstable plaque and the stable plague through a. Property (b) is
called local product structure.

The boundary OR; of each R; coincides with 0°R; U 9*R;, where 9°R; is the
set of points & which are not in the interior of W (z) inside the corresponding
unstable leaf, and 0"R; is defined analogously. By product structure, 0*R; consists
of stable plaques and 9"R; consists of unstable plaques. The Markov property (c)
implies that the total stable boundary 0°R = U;0*R; is forward invariant and the
total unstable boundary 0“R = U;0%R; is backward invariant under A. Since the
Lebesgue measure on T¢ is invariant and ergodic for A, it follows that both 9*R and
O"R have zero Lebesgue measure. Then, by Fubini, the intersection of 0°R with
almost every unstable plaque has zero Lebesgue measure in the plaque. It follows
that the same is true for every unstable plaque, since the stable holonomies of A,
being affine, preserve the class of sets with zero Lebesgue measure inside unstable
leaves. A similar statement holds for 0“R.
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Next, define M = {My,..., My} by M; = 7=Y(R;). For eachi =1,...,k and
x € M, let £*(x) be the connected component of F**(x) N M, that contains z,
and ££%(x) be the pre-image of W7 (m(x)). By construction,

3) f(& () 2 &5 (f(x)) and f(&7°(x)) C &5 (f ()

whenever x is in the interior of M, and f(x) is in the interior of M;. We refer to
€l (z) and £ (x), respectively, as the strong-unstable plague and the center-stable
plagque through x.

The local product structure property also extends to M: for any x,y € M;
we have that £¥(z) intersects £7°(y) at exactly one point, which we still denote as
[z,y]. That can be seen as follows. To begin with, we claim that 7 maps &(x)
homeomorphically to W (m(x)). In view of the assumption (b) above, to prove this
it is enough to check that w(£}*(x)) = W (w(z)). The inclusion C is clear, as both
sets are connected. Since £!(x) is compact, it is also clear that 7(&(x)) is closed
in W(m(x)). To conclude, it suffices to check that it is also open in W (n(z)).
Let b = 7(z) for some z € £¥(x). By assumption (b), for any small neighborhood
V of b inside W*(b), there exists a small neighborhood U of z inside F* that is
mapped homeomorphically to V. By definition, a point w € U is in M; if and
only if m(w) is in R;. Thus = maps U N M, homeomorphically to V N'R;. That
implies that b is in the interior of W (), and that proves that m(£}(x)) is indeed
open in W (w(x)). Thus the claim is proved. Finally, [x,y] is precisely the sole
pre-image of [7(z), 7(y)] in £“(z); notice that this pre-image does belong to £7°(y),
by definition.

This shows that M is a Markov partition for f, though not necessarily a generat-
ing one. In any event, the fact that f is uniformly expanding along strong-unstable
leaves ensures that M is automatically u-generating, in the sense that

(4) () £ (& (f" (@) = {a} for every z € A.
n=0

We call center-stable holonomy the family of maps Hg® : &(z) — &/'(y) defined by
the condition that

& (2) = &' (H, (2))
whenever z,y € M; and z € £'(z).

2.3. Reference measures. By pulling the Lebesgue measure along the unstable
leaves of A back under the factor map m, one obtains a special family of measures
on the strong-unstable plaques of f that we call the reference measures. More
precisely, the reference measures are the probability measures v;', defined on each
strong-unstable plaque (z), x € M, 1 € {1,...,k} by

TV = VOl 1,y = normalized Lebesgue measure on W (7 (x)).
Since the Lebesgue measure on unstable leaves are preserved by the stable holonomy

of A (as the latter is affine), the construction in the previous section also gives that
these reference measures are preserved by center-stable holonomies of f:

(5) Vzu,y = (H;sy) vi.

% t,x
for every z and y in the same M;. Similarly, the fact that Lebesgue measure on

unstable leaves has constant Jacobian for A implies that the same is true for the
reference measures of f: if f(M;) intersects the interior of M, then

(6) f* (V’ZI |f*1(£;*(f(z)))) = ngm (f_l (E}L(f(x)))) V;’ff(z)
for every x € M; N f~1(M;).
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Remark 2.1. Properties (5) and (6) imply that @ — v}, (f '€} (f(x))) is constant
on M; N f~1(M,), for any i and j such that f(M;) intersects the interior of M.
Thus this function takes only finitely many values.

Remark 2.2. Let « be on the boundary of two different Markov sets M; and M.
Then the restrictions of v!, and v}, to the intersection &;'(z) NE} (x) are equivalent
measures, as they are both mapped by 7, to multiples of the Lebesgue measure on

Wit (m(x)) N W (m(x)).

Remark 2.3. As observed before, the intersection of 9°*R with every unstable plaque
W (zx) has zero Lebesgue measure inside the plaque. Since 7 sends each M, to R;,
with each £“(z) mapped homeomorphically to W (w(z)), it follows that 9°M N
&i'(z) has zero v}, -measure for every x € M; and every i.

2.4. ¢-Gibbs u-states. An f-invariant probability measure p is called a c-Gibbs
u-state if its conditional probabilities along strong-unstable leaves coincide with the
family of reference measures v',. More precisely, for each i, let {uf, : v € M;}
denote the disintegration of the restriction p |, relative to the partition {{¥(z) :
r € M;}. Then we call p a c-Gibbs u-state if p . = v}, for p-almost every z. The
space of invariant ¢-Gibbs u-states of f is denoted by Gibbs, (f).

Proposition 2.4 (Corollary 3.7 and Proposition 4.1 in [UVYY]). Gibbs!(f) is
non-empty, convez, and compact. Moreover,

(1) almost every ergodic component of any u € Gibbsj,(f) is a c-Gibbs u-state;
(2) the support of every u € Gibbs,(f) is u-saturated;
(8) for every x € M; and |l € {1,...,k}, every accumulation point of the

sequence
n—1

1 i
M = n ];) *Vl,m
is a c-Gibbs u-state.
(4) an f-invariant probability measure i is a measure of maximal u-entropy if
and only if it is a c-Gibbs u-state.
(5) the union Ule OM; of the boundary sets has measure zero with respect to
every c-Gibbs u-state.

2.5. c-mostly contracting center. We say that f has c-mostly contracting center
if

1
(7) limsup — log || Df" |ges || <0
non
on a positive measure subset relative to every reference measure. See [UVYY]. The
following proposition, together with part (4) of Proposition 2.4 shows that this is
equivalent to the definition given in the Introduction.

Proposition 2.5 (Proposition 4.2 of [UVYY]). f has c-mostly contracting center
if and only if all center-stable Lyapunov exponents of every ergodic c-Gibbs u-state
of f are negative.

2.6. Invariant transverse measures. By a transverse measure! of a foliation F,
we mean a family 7 = {ig : S € S} of measures, where S is a family of small
cross-sections S to the foliation such that

e every r € M belongs to some S € S;

e if S €5 and S’ is a measurable subset then S’ € S;

LAll transverse measures are taken to be not identically zero, unless stated otherwise.
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and each pg is a non-negative Borel measure on the corresponding cross-section S.
See Calegary [Cal07]. We call the transverse measure invariant if every holonomy
homeomorphism h : S; — So of F between cross-sections Sy, 52 € S maps the
measure fig, to the measure fig,.

The family of (invariant) transverse measures is preserved by any re-scaling jis —
cits with ¢ independent of S. It is also clear that if 7 and 7 are (invariant)
transverse measures defined on the same family S of cross-sections, then 71 + 75 is
again an (invariant) transverse measure.

We call an invariant transverse measure 7 = {fig : S € S} ergodic if given any
splitting 7 = 7/ + 7" as a sum of two invariant transverse measures 7/ and 7" there
exists ¢ € (0,1) such that 7/ = ¢7. We say that an invariant transverse measure
7 has finite ergodic decomposition if it is a sum of finitely many ergodic invariant
transverse measures.

Lemma 2.6. If 7 and 12 are ergodic invariant transverse measures which are
non-singular restricted to some cross-section then there is ¢ > 0 such that o = c71.

Proof. For each cross-section S, let fi; g and fi2 g be the measures defined on S by
71 and 7o, respectively. Given any rational numbers p < ¢, let [p,q]ls C S be the
set of points where the Radon-Nykodim derivatives satisfies djiz s/dfi1.s € [p,q].
Observe that the Radon-Nykodim derivatives are invariant under holonomies, since
the measures themselves are. Thus, the family of sets [p,¢]s is invariant under
holonomy, and so the families of restrictions of the fi1. ¢ and fiz s to the [p,q|s
define invariant transverse measures 71 and 75 such that 7 < 71 and 75 < 75. We
claim that either 7{ vanishes or 7] = 71: otherwise, by ergodicity, there would exist
¢ € (0,1) such that 7{ = c¢r, and this is not possible because 77 is a restriction of
71. This ensures that, given any p < ¢, the set [p, ¢]s has either zero fi; g-measure
for every S or full ji; s-measure for every S. This implies that there exists ¢ > 0
such that Radon-Nykodim derivative djis s/dfi1,s = ¢ at fi1,g-almost every point
of every cross-section S. That implies the claim. O

Two invariant transverse measures 71 = {ji1,s} and 7 = {/fia s} are said to be
mutually singular if the measures [i1, s and fio ¢ are mutually singular for every S.

Lemma 2.7. If 7 is a non-ergodic invariant transverse measure then there erists
a splitting T = 1 + T2 into mutually singular invariant transverse measures.

Proof. The assumption means that there is some splitting 7 = 71 + 74 and neither
71 nor 7, are not multiples of 7. Write 7{ = {{i] ¢} and 7 = {f} ¢} and, for
each cross-section S and any interval I C [0, o], denote by Ig the set of points
where the Radon-Nykodim derivative satisfies djfia s/dfi1,s € I. Keep in mind that
the Radon-Nykodim derivatives are invariant under holonomies, since the measures
themselves are, and so the family of sets Ig is also invariant under holonomy. The
fact that 71 and 74 are not multiples of 7 ensures that there exist p € (0,00) and
cross-sections S7 and Sy such that such that

ﬂ1,51([0’p]51) > 0 and ﬂl,sl((p’ 00]52) > 0.

Let 71 and 72 be the restrictions of 7 to {[0,p]s} and {(p,o0]s}. Then 7 and
To are (non-vanishing) invariant transverse measures with 7 = 71 4+ 72, and the
construction immediately gives that they are mutually singular. (I

3. PROOF OF THEOREM A

Let p be any measure of maximal u-entropy of f. By Proposition 2.4, u is a
c-Gibbs u-state and its support is u-saturated. Let x; and x; be two points in
the support of p contained in the same strong-unstable leaf and in the interior
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of Markov partition elements M; and M;. See Figure 1. Keep in mind that the
boundaries of the Markov elements have zero y-measure, by Proposition 2.4(5). We
denote by fi; the projection of u | M; to £%(x;) under strong-unstable holonomy
inside M;, and similarly for fi;.

M;

FIGURE 1.

Let H be the strong-unstable holonomy map from a small neighborhood of z;
to a neighborhood of z;. We denote by JH; ; the Jacobian of H with respect to
the measures [i; and fi;. Let vol* denote (non-normalized) Lebesgue measure along
unstable leaves. For each i = 1,...,k, define

1
@@= vol(m&¥(x;))
for any x; € M;. This does not depend on the choice of the point x; because the

volume of the unstable plaques for the linear Anosov map A is constant on each
Markov rectangle R;.

Lemma 3.1. The Jacobian JH; ; is constant equal to ¢;/c; for any i and j.

Proof. Fix N > 1 large enough that f~V(z;) and f~(z;) are contained in the
interior of the same Markov partition element M;. It is no restriction to assume
that the domain E C &°(z;) of H is small enough that f~"(E) and f~"(H(E))
are contained in the interior of M;. By the definition of fi; and fi;, and the fact
that p is f-invariant,

fi(B) = p ( U 5?@)) =p (f‘N (U 5;‘@))) :

and a similar fact holds for fi; (H(E)). It is clear that the sets f~ (U,cx &' (2))

and f~V (UyeH(E) Sf(y)) project to the same set B C £7°(x;) under the strong-

unstable holonomy inside M;. Then, since p is a ¢-Gibbs u-state, Rokhlin disinte-
gration gives that

(8) 7i(E) = /B vt (FNE(N () diuz)

and similarly for fi; (H(E)). By the definition of the reference measures

vol'(x (4 Ver (£V(2))

o —N/ecur N —
Since f is semi-conjugate to the linear automorphism A,
vol* (w(§/*(2))) _ vol* (m(&i' (1)) _ 1

vol'(m (/7€ (1 (2))) = det(AN [E¥)  det(AN [E%)  c;det(AN | B)
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and, analogously,

1
vol'(m (G ) = v Ty

Replacing these last two identities in (8) and (9), we find that
fi;(H(E) c

fii (E) ¢
Since F is arbitrarily small, this gives the claim of the lemma. (I
Next, let S be any cross-section to the strong-unstable foliation inside M. It is
no restriction to assume that S meets every strong-unstable plaque £ (z). Define
fis to be the projection of p | M; to S under strong-unstable holonomy inside M.
It follows directly from Lemma 3.1 that {¢;fis} is an invariant transverse measure.
This proves Theorem A.

4. PROOF OF THEOREM C
Now we prove Theorem C. For each i, let u; denote the restriction p | M.

Lemma 4.1. There is N > 1 and for each i there exists a full p;-measure subset
of M that intersects each center plaque &5 () at not more than N points.

Proof. Since f is assumed to have c-mostly contracting center, the center-stable
exponents of u are all negative (Proposition 2.5), and so, there exist m > 1 and

¢ > 0 such that
1 —m
= [1oglis
m

This inequality remains true for some ergodic component o of u for the iterate
f™. Then, by the Birkhoff ergodic theorem,

Eecs H71 dlj, Z C.

n—1
1 —m _
(10) h}}ng E log||Df Bes(f-imy) | I>e¢
i=0

for pp-almost every y. Let K = max ||Df*! |ges || and fix [ > 1 large enough that
(I —1)c>2mlog K. Since p is assumed to be ergodic for f, it satisfies

1 m—1
n= m Z fipo-
j=0

So, for p-almost every x there exists j = 0,...,m — 1 such that y = f7(x) satisfies
(10), and so

n—1
1 —im -
im = log [ Df "™ |ges(-stmay 7!

=0

1 n—1 ) .

> 117Izn o Z log (K7]|‘Df7lm |Ecs(f7ilm,(y)) ||71K7j)
=0
nl—1

: : -m -1
> —2jlog K + Ilim — ZO log [ Df ™™ | ges (p-im(y)) |
> —2mlog K +lc > c.

(in the second inequality we used the sub-multiplicativity of the norm). By Propo-
sition 3.7 in [VY13] it follows that there exists N > 1, depending only on ¢ and
the maximum volume of the center leaves, and there exists a full y-measure subset
whose intersection with each center plaque contains not more than N points. [
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Let {uf, : © € M;} be a disintegration of y; along the center plaques £f(z). It
follows from the previous lemma that for u;-almost every x the conditional proba-
bility 47, is supported on not more than N points.

We are going to deduce a similar statement for the conditional probabilities fif ,
along center plaques £¢(x) of the projection fi; of u; to the center-stable plaque

& (@)
Lemma 4.2. For fi;-almost every x € §°(x;), the conditional probability fif , is
supported on not more than N points.

Proof. By the local product structure, we may find coordinates (x,,z.s) on M;
for which the unstable plaques &' and the center-stable plaques £§° are given by
relations x.s = const and =% = const, respectively. Let

(1) p= [ e i)

£5%(x4)
be the disintegration of p along the unstable plaques. Since p is a measure of max-
imal u-entropy and, thus, a c-Gibbs u-state, we have that i, = v}, . Since (5)

gives that the reference measures v;', are invariant under center-stable holonomy,
;

it follows that p;',  is actually independent of z.s. We write ', = p;’, and then
(11) becomes

(12) = i X fig
Let fif be the quotient measure of fi; with respect to the family of center plaques

&£(#), which we may view as a measure on the stable plaque &7 (x;). Then

(13) o= [ adi(e)
&5 (z4)
Combining this with (12), we find that
p= [ i),
&5 (zi)

and so the conditional probabilities uf"; of u; along center-unstable plaques are
again product measures:

(14) pis = i X g

In particular, the conditional probabilities of 4", along center plaques &f (y) coincide
with if . (which is constant on the center-unstable plaque). On the other hand, by
the transitivity of the disintegration (see [VO16, Exercise 5.2.1]), the conditional
probabilities of 1§, along center plaques & (y) coincide with i, at pi-almost every
point. This proves that if , = uf, p;-almost everywhere. Thus the claim follows
from Lemma 4.1. O

A foliation is said to be uniquely ergodic if it admits a unique invariant transverse
measure, up to constant factor.

Lemma 4.3. The unstable foliation of every Anosov linear automorphism A is
uniquely ergodic.

Proof. To each invariant transverse measure 7 for the unstable foliation of A we
associate the finite measure w on M constructed in the following way. Given any
foliation box B of F* and any associated cross-section D (D cuts every unstable
plaque inside B transversely at a unique point), define

(15) wl|B= /DVOIZ dr(x)

where vol}, is the volume measure on the unstable plaque through x.
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This does not depend on the choice of the cross-section D because 7 is taken
to be transversely invariant. For the same reason two such measures w | By and
w | Bz coincide on the intersection of the corresponding foliation boxes By and
Bs. Thus w is well defined on M. Moreover, since the volume measure on each
unstable leaf is invariant under translations of the leaf, the measure w is invariant
under any rigid translation of the torus tangent to the unstable direction. Now,
every translation on the torus can be approximated by a translation tangent to the
unstable direction, since the unstable leaves of A are dense on the torus. It follows
that w is actually invariant under every translation of the torus, and so, w must
coincide with the volume measure on T up to a factor. Noting that the relations
(15) also define 7 from w, we conclude that the invariant transverse measure 7 is
unique. (I

We are ready to complete the proof of Theorem C. It 7, is ergodic, there is
nothing to do. Otherwise, by Lemma 2.7 we may split is as 7, = 71 + 7 where
71 and 7o mutually singular. The projections of both under 7 are invariant trans-
verse measures for the unstable foliation of the linear automorphism A. Thus, by
Lemma 4.3, they are multiples of each other. For j = 1,2 and any i, let

(16) 7 | €8 (xe) = / 7 diy(2)

be the disintegration of 7; | ££°(x;) along center plaques ££(z). By the previous
remarks, 71 and 72 are multiples to each other. So, the fact that 7 | £5%(z;) and
T2 | §§°(w;) are mutually singular implies that 7{ , and 75, are mutually singular
for 7;-almost every z. The sum 77 , + 75 . is the conditional probability 7; . of the
measure 7, | £°(z;) which, by Theorem A is a multiple of ji§. By Lemma 4.2, the
latter is supported on no more than N points. Thus the supports of the measures
71 . and 75 , must be disjoint, and this decomposition procedure cannot be repeated
more than N times. This completes the proof.

5. PROOF OF THEOREM B

Let ;1 and x5 be any two points in supp p. Up to renumbering the elements of
the Markov partition if necessary, we may suppose that 1 € M; and x5 € Mo.
For i = 1,2, denote Y; = &¥(x;) x [0,1]. Equip each Y; with the probability measure
m; = Z/Z“zl X dt.

The main technical step in the proof of Theorem B is the following lemma,
whose proof we postpone to Section 7. This is also the one step where we use the
assumption that the support of u is connected.

Lemma 5.1 (Coupling Lemma). There are a map 7 : Y7 — Yo with Tom1 = ma, a
function R: Y1 — N, and constants C1,Co > 0 and p1,p2 € (0,1) such that

(1) If T(x,t) = (y,s) then f*(x) and f™(y) belong to the same Markov compo-
nent M; for some i, and d(f(x), f*(y)) < C1p} ™" for n > R(z,t).
(2) mi(R >n) < Capi for everyn > 1.

Let S be a cross-section contained in some M; with u(M;) >0,and ¢ : S = R
be any Holder real function supported inside S. In the remainder of this section, we
take ¢ : M — R to be the extension of ¢ which is constant along unstable plaques
on M; and vanishes on M \ M. Since ¢ is taken to be supported inside S, the
extension ¢ vanishes on the unstable boundary 0“M; = 7~ (9“R;). Notice also
that ¢ is Holder restricted to M, since ¢ is Holder and so are the strong-unstable
holonomy maps.
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Corollary 5.2. Given ¢ : S — R there are C > 0 and 0 < p < 1 such that for any
points x,y € supp i

<Cp"

[eatm) - [eatem,)

for every n > 1, where M; 3 x and My > y.

Proof. Tt is no restriction to suppose that ¢ = 1 and k = 2. Define ¢ : M x[0,1] = R
by @(z,t) = p(z). Then

a0 [l = [eo . = @m0 dm,

By Lemma 5.1, the map 7 : &, x [0,1] = &, x [0,1], (2,1) = (w,s) = 7((2,1))
sends the measure my to msy. Thus,

(18) / pd (i) = / B (w), 5) dma(w, 5) = / B (w), 5) dma (2. 1).

We are going to break both (17) and (18) as a sum of integrals over the two
domains {R(z,t) < n/2} or {R(z,t) > n/2}. Let C5 and a3 be Holder constants
for ¢ restricted to M;. By part (1) of Lemma 5.1,

/ (207 (2),1) — @7 (w), )] dma 2.1
R(z,t)<n/2

/ (o) = (7" )] dm (2,1
R(z,t)<n/2

<

< 03003 p2am/?,

n—R(z a3
/ 03 (C1P1 R ’t)) dml(z,t)
R(z,t)<n/2

By part (2) of Lemma 5.1, the integrals over {R(z,t) > n/2} are bounded above
by CZPZ/Q sup |p|. The claim is a direct consequence of these two estimates, with
C = 0509 + Cysup|p| and p = max{p*/?, pi/}. O
Lemma 5.3. There is ng > 0 such that for any n > ng, any x € M;Nsupp p, and
any i

cvl ) = (fovd j L D
Jeatmi) = () M) g Y Ha)

qefr (& (2))NS

Proof. By the Markov property, the intersection of f™(£}*(x)) with M; consists of
the unstable plaques £f'(q), ¢ € f"(§'(z)) N S. The assumption that f is semi-
conjugate to a linear Anosov map A ensures that there exists ng > 1 independent
of x such that this intersection is non-empty for every n > ng. Since ¢ is constant
on unstable plaques inside M,

/ pd(frvs) = 3 L (EN )R (),

gefm (& ())NS

By the definition of the reference measures, each term vy’ (f~"(£¥(q)) coincides
with the Lebesgue measure of the image of f _”(f}% (¢)) under the semi-conjugacy,
which is the A7"-image of an unstable plaque R;. Since all these unstable plaques
have the same Lebesgue measure, and the Jacobian of A™" along the unstable
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direction is constant everywhere, we find that v, (f~"(£}(¢))) is independent of q.
Therefore,

vie(f7"(&5 (q) =

1 ., .
FEm N 2 M (TE W)

we fr (& (x))NS

! (Frv,) (M)

T #(Er@)nS)

The claim follows directly from these two identities. O

We are ready to complete the proof of Theorem B. By assumption, p is a
measure of maximal u-entropy, and so it is a c-Gibbs u-state. This means that its
conditional measures along unstable plaques &¥(x) are the reference measures 7
Thus, recalling also that p is f-invariant, Corollary 5.2 implies that

/wd( Iz —/wdu

for every n > 1. Then, using Lemma 5.3,

< Cp"

nyy ; 1 P _ n
" ( ’ W) (Mj)#(f"(ég(x)) N S) qefn(gz))ﬂsw(q) /wdu =cr

for every n > ng. By the definition of the reference measures,
(Fvi) (M) = (A voll oy ) (Ry)

since the projection 7 : M — T? is a homeomorphism on each strong-unstable leaf.
It is a classical fact about linear Anosov maps that the right hand side converges
to vol(R;) exponentially fast, where vol denotes the Haar measure on the torus.
Since p is a ¢-Gibbs u-state, we can use [UVYY, Corollary 3.5] to conclude that

vol(R;) = u(M;) = sl
Keep also in mind that [ pdp = [ ¢djs. Thus, (19) implies that

1 1
NI B
P E@wns) %EW“"(") 7 Tasl [ ons

exponentially fast as n — oo.
The proof of Theorem B is now complete.

6. LARGE DEVIATIONS

We say that a system (f, ) satisfies a large deviations principle for continuous
observables if for every a > 0 and every continuous function ¢ with | v Pdp =20
there exist positive constants C,, and ¢, such that

n—1
1 ; ,
(20) plsxeM:|— E o(fI(x))| >ap |) < Cqe ™ for every n > 1.
n
=0
In this section we prove (recall also Remark 1.2):

Theorem 6.1. Let f : M — M be a partially hyperbolic diffeomorphism that
factors over Anosov and has c-mostly contracting center. Let i be a measure of
mazimal u-entropy whose support A is connected. Then (f,pn) satisfies a large
deviations principle for continuous observables.

The proof occupies the remainder of this section. Throughout, it is assumed that
1 is a measure of maximal u-entropy and thus (compare part (4) of Proposition 2.4)
a c-Gibbs u-state.
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6.1. Probability measures with Ho6lder densities. Let us fix some element M;
of the Markov partition (recall Section 2.2). It is convenient to consider a certain
family of spaces E;(R) consisting of probability measures on M; N A whose con-
ditional probabilities along the partition &' are absolutely continuous with respect
to the reference measures, with Holder densities. We begin by giving the definition
of this space, which is mostly borrowed from Dolgopyat [Dol00, Section 5].

Let v € (0,1) be fixed. For each R > 0 and i =1, ...,k denote by C;(R) the set
of all probability measures n on M; N A of the form

(21) n=ev,,
where x € M; N A and p: §(x) — R is an (R, )-Holder function:
(22) |p(z1) — p(22)| < Rd(z1, 22)" for any z1, 29 € £(z).

For instance, C;(0) consists precisely of the reference measures vity, © € M;NA.
Every C;(R) is a weak*-closed subset of the space of all probability measures on
M; N A, because the reference measures v}, vary continuously with x, and the
space of (R,~y)-Holder functions is equicontinuous. Thus C;(R) is compact for the
weak™ topology, for every R > 0.

Next, let E’i(R) be the space of all probability measures on the compact space

Ci(R). Note that E;(R) is compact for the weak* topology. Consider the map

IT : E;(R) — {probability measures on M; NA}, II({) = / ndé(n).
Ci(R)

In other words, II({) is the probability measure on M; N A such that

/medn@ - /Ci(R) (/medn) di(n)

for any bounded measurable function ¥ : M; N A — R. Take 1 to be continuous.
Then it is clear that

(23) DGR SR G = [ v
MiNA
is continuous. Let (fj) ; be any sequence converging to some Cin EAl(R) Then
[owangy= [ dag [ dai= [ wan)
M;NA Ci(R) Ci(R) M;NA

as j — 00. Since 1 is an arbitrary continuous function, this proves that the map II
is continuous.

Let F;(R) = II(E;(R)). It follows from the previous observations that F;(R) is
a weak*-compact subset of the space of all probability measures on M; N A.

Lemma 6.2. A probability measure ( on M; N A is in E;(R) if and only if its
conditional measures with respect to the partition £* are elements of C;(R), that is,
probability measures of the form (21).

Proof. Suppose that ¢ € E;(R). Then, by definition, there exists { € C;(R) such

that ¢ =TI(¢). Consider the canonical map
H:Ci(R)—¢&', H (epugfz) — & (x),
and let CN = H*é . The partition of &' into points is measurable, because £}* itself is

a measurable partition of M; N A, and so, its pull-back under H is a measurable
partition of C;(R). Let {Cp : P € &} be the disintegration of ¢ with respect to the
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pull-back: each (p is a probability measure on C;(R) with lp (H’l(P)) =1, and
these probabilities satisfy

L= (], o) air
Ci(R) & \VHU(P)

for every bounded measurable function ) : Ci(R) > R. Let ¢ : M;NA — R be
any bounded measurable function, and ¢ be as in (23). Then,

[ owic= [ wang= [ pai- | </ @d&:) a(p)
MinA MiNA Ci(R) v \JH-1(P)
Moreover, by the definition (23),

Sy Prdertn = [ [, pandntn
- /med< / I(P)ndfp(n))

This means that the conditional probabilities of { with respect to the partition &
are the measures

/ ndip(n), P et
H-1(P)

Consider any P = £*(x). The condition n € H~!(P) means that 7 is a measure of
the form e”v;!,. Then

o _ o o1n u
LI(P)UdﬁP(U) (/6 dCz,m(p)) i,z

where (; ; is a probability measure on the space of (R,7)-Holder functions. To
conclude it suffices to note that the function

y o log ( / W) dcz-,z@))

is (R,~)-Holder. This proves the ’only if” part of the statement.

Now suppose that the disintegration ¢ = fgu (p df(P) of ¢ with respect to &} is
such that (p € C;(R) for every P € £. Consider the measurable map P +— (p
from & to C;(R), and let ¢ be the push-forward of ¢ under this map. Then ( is a
probability measure on C;(R), that is, an element of Ei(R), and

g/ci(mndc

In other words, ¢ = H(é), which proves that ¢ € F;(R). O

Finally, define C'(R) to be the disjoint union of all C;(R), i = 1,...,k, and E(R)
to be the space of probability measures on C'(R). Clearly, the latter coincides with
the space of convex combinations

k
6 = Zal& with Zai =1 and 61' c EZ(R) for all 4.
=1

Finally, define E(R) to be the space of convex combinations

k k
= a;G with Y a; =1 and {; € E;(R) for all i.

i=1 i=1

It is clear that C(R), E(R) and E(R) are weak*-compact spaces.
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Remark 6.3. The families C;(R), C(R), Ei(R), E(R), E;(R), E(R) are clearly mono-
tone increasing in R. Moreover, they are continuous at R = 0. Indeed, it is clear
that C;(0) coincides with the intersection of the compact sets C;(R) over all R > 0.
It follows that E’i(O) coincides with the intersection of the E’i(R) over all R > 0.
Since R — EA'z(R) is a monotone family of compact sets, and II is continuous, we
also get that

E;(0) = TI(E;(0)) =TI ( ﬂ Ez(R)> = ﬂ I (EZ(R)) = ﬂ E;i(R).
R>0 R>0 R>0
Since this is true for every i, the corresponding statements for C(R), E(R) and

E(R) follow.

Let 1/w > 1 be a lower bound for the expansion rate of f along strong-unstable
leaves as in (1).

Proposition 6.4. f. (E(R)) C E(Re"1°8%) for any R > 0.

Proof. Let us begin by considering n = €', in any C;(R). The push-forward
of the reference measure v}, is a finite convex combination of reference measures

u o U
f*um = Z iV

jeJ (@)
See (6) and Remark 2.1. Thus the push-forward of n may be written as

_ —b;\ bj+poft
f*n e Z (aje J) e’d 14 f V;fyj’
JEJ(3)

Y5 -

where the exponents b; are chosen so that each ebi*r°f “'1ii is a probability
measure. By assumption, p is (R,~)-Holder on the strong-unstable plaque & (z).
Since f~! contracts strong-unstable leaves at a uniform rate €'« it follows that
bj +po f~lis (Re1°ew ~)-Holder. Thus, the previous identity may be written as

« 1] = dA )
= [ G40

where 677 is the element of F (Rel1°8«) given by the convex combination of Dirac
masses at the ebi+p°f71V;fyj, with the aje*bﬂ' as the coefficients.
Now let ¢ be any element of E(R). Then there exists ¢ € E(R) such that

C=T1(¢) = /C R

Then
fe= | padim) = / / Cdéy(C) dé(n)
C(R) C(R) JC(Retr108w)

- /C(Rehloﬁ‘”) Cd </C(R) Cn dC(U)) (C)

To conclude, observe that
[ Gdém € Breion
C(R)
because the latter is a convex compact space and it contains every én- Thus, the
previous identity means that f.¢ € F(Re!71°8«). O

Lemma 6.5. For every n > 1, p is f™-ergodic and it is the unique f™-invariant
probability measure in E(0).
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Proof. By [UVYY, Theorem A], p has finitely many ergodic components for f™,
and their supports are pairwise disjoint. Since A = supp u is connected, it follows
that there can be only one ergodic component, in other words, p is f™-ergodic.
Since p is a ¢-Gibbs u-state, it follows directly from Lemma 6.2 that p € E(0).
To prove uniqueness, let i be any f™-invariant probability measure in E(0). By
definition, i is supported in A and can be written as a convex combination

k
fi =Y aiji; with fi; € E;(0).
i=1

We claim that 2(0M;) = 0 for every i = 1,..., k. Thus the restriction of fi to each
M, coincides with a;fi;. Now, by Lemma 6.2 the conditional probabilities of each
it; along the plaques &' are the reference measures. Thus, fi is a c-Gibbs u-state.
Using [UVYY, Corollary 4.6], we get that i = p, as we wanted to prove.

To prove our claim we only need to check that the projection 7 = m, i is the
Lebesgue measure on T¢. Note that 7 is an invariant probability measure for the
linear Anosov map A, and

k
U= E aiﬁi
i=1

where each U; = m,ji; is a probability measure on the Markov set R;. By the
definition of the reference measures, the conditional probability of 7; along every
unstable plaque W}, is the normalized Lebesgue measure.

Consider any i such that a; > 0, and then let {7, : a € R;} denote the conditional
probabilities of 7 | R; along the unstable plaques W}, Since the Lebesgue measure
vol is invariant and ergodic for A, the set of points b € T¢ such that

1 n—1

24 — 5Aj b) — vol

(24) - ;O ()

has full Lebesgue measure, and is s-saturated. Then, using also the fact that the
stable foliation of A is absolutely continuous (linear, actually) we get that (24)
holds for vol; ,-almost every b € W, and every a € R;. Consequently, (24) holds
for a full 7;-subset of points in R;. Thus, it holds at 7g-almost every point, which
implies that © = vol, as claimed. (]

6.2. Proof of Theorem 6.1. Denote S, = Z;:Ol o fJ for any n > 1 and any

continuous function ¢ : M — R. The first step in the proof of the theorem is:

Lemma 6.6. For any a« > 0 and any continuous function ¢ : M — R with
[ edp < —a, there is C1 > 0 such that

T —

/ Sppdv} <—n%—|—Cl foranyn>1, e M;NA,andi=1,... k,
& ()

Proof. Recall that E(0) is convex, weak*-compact, and f.-invariant, and p is the
unique f-invariant probability measure contained in it (Lemma 6.5). It follows that

1n—1
—> H¢—=un
n -

7=0

for any probability measure ¢ € E(0), and the convergence is uniform in ¢. In

particular,
1

—/ Sngodugfz%/god,u
e (@) A

uniformly in x and 4. This implies the claim of the lemma. (I
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Lemma 6.7. For any € > 0 and any continuous function ¢ : M — R, there exist
C >0 and ne. > 1 such that

1Sne(y) — Snp(2)] < ne +C
for anyn >ne, y,z € fT(EN (), v € M;NA, andi=1,... k.

Proof. This is because ¢ is uniformly continuous, the diameter of ¥ (z) is uniformly
bounded, and f~! contracts strong-unstable leaves uniformly. (I

The Markov property (3) implies that every f"(£¥(z)) may be written as a
(finite) union of strong-unstable plaques & (x). Let

¢j = ¢j(i,z,m) = i, (f7" (&5 (25))),
and note that >, ¢; = 1. Recall also (Remark 2.1) that, for any fixed n, there are
only finitely many possible values for ¢; (i, z, n).

Corollary 6.8. For any a > 0 and any continuous function ¢ : M — R with
f(pdu < —a, there are ay > 0 and nq1 > 1 such that

cj max Sy < —nag,
2 RGN

foreveryn>ny, xe M;NA, andi=1,... k.

Proof. By Lemma 6.6 the average of S, is bounded above by —na/2 + C;. By
Lemma 6.7, its total oscillation is bounded by ne + C. Fix ¢ = a; = «/5 and then
take ny > ne large enough that (—na/2 + C1) 4 (ne + C') < —nay Thus,

¢; max Spp < —naj,
2 RGN

which clearly implies the claim. Il
Lemma 6.9. If Theorem 6.1 holds for some iterate f*, 1 > 1 then it holds for f.

Proof. Start by noting that the assumptions of the theorem hold for f! if (and only
if) they hold for f. Indeed, it is clear from the definition (7) that f has c-mostly
contracting center if and only if f! has c-mostly contracting center. Similarly, u
is a c-Gibbs u-state for f if and only if it is a c-Gibbs u-state for f!. Thus (by
part (4) of Proposition 2.4), the maps f and f' have precisely the same measures
of maximal u-entropy. Moreover, by Lemma 6.5 one has ergodicity with respect to
any of the maps f and f.

Now, we check that the conclusion of the theorem holds for f if it holds for f*.
Indeed, given any continuous function ¢ : M — R, denote

n—1 n—1 -1
Snp=> @ofl, Sup=> pof and®=> pof.
=0 =0 =0

Note that S, = %, ® for every n. Since the theorem is assumed to hold for f*,
and @ is a continuous function,

(25) 1 ({x € M:

Given € > 0, let © € M and n > 1 be such that

lSnw(ﬂﬁ)

n

1
— 3@ ()| > a})) < Cpe™ %™ for every m > 1.
m

(26) > €.

Writing n = ml +r with 0 < r <, we get
Snp(x) = Smip() + Srp(f™ () = En®(@) + Srp(f™ (x))
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Then
1 n |1 1
_qu) = _Sn - —Or mi
2 5n8)| = 2 [L56te) - 15,607 )
n 1 l n l
> {\—snm) - —|<P|CU} > { - —||90||00}-
m n n m n
For n > 2l||¢o||/e this implies that
1 I
—5,.0(z)| > =.
m 2

Then (25) gives that the measure of the set of points = as in (26) is bounded by
Clepoe s

which is bounded above by C.e~%" for suitable choices of C. and ¢.. The cases
n < 2l||¢ol| /¢ are handled by increasing C; if necessary. O

Remark 6.10. Once Theorem 6.1 is proved, it will follow that it holds also for every
iterate f!, 1 > 1 of a map f as in the statement. That is because the assumptions
hold for f! if they hold for f, as observed at the beginning of the proof of the
previous lemma.

Up to replacing f with ™!, which is allowed by Lemma 6.9, it is no restriction
to suppose that the integer n; in Corollary 6.8 is equal to 1. We do so in what
follows.

Corollary 6.11. For any o > 0 and any continuous function ¢ : M — R with
f(pdu < —a, there are s1 >0 and 01 € (0,1) such that

ciexp|s max S, < 07 for every s € [0, s1].
; ’ ( JE () w) ' 051

Proof. Consider the function

g:s—1lo ciexp|s max S,
g; ’ (fl(Ez‘j(rj)) w)

and observe that ¢(0) =0,

/
q'(0) = c; max Spp < —aq
) zJ: A GACH I
and the second derivative ¢” is bounded on [0, 1], uniformly in ¢ and z (because
the c;s take only finitely many values, and the number of terms in the sum is also
uniformly bounded). O

Corollary 6.12. For any o > 0 and any continuous function ¢ : M — R with
[ edp < —a, we have

27 ciexp | s max S, < 97t
(27) ; 7 ( WRIGAT) w) '
foranyn>1,i=1,...,k, andx € AN M,.

Proof. The argument is by induction on n. The first step was done in Corollary 6.11.
Assume that (27) hold for n. Write each f (! (z;)) as a union of plaques &' | (zj,m),
and denote

biym = Vi, (F7HEE i (@5m))
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Here m varies on some finite set which depends on i; and z;, but whose cardinal
is uniformly bounded. Keep in mind that 3 b;, ., = 1 for every i; and z;. Then

e UU&H m(Tjm).

Moreover,

Snt1® < max  Spp + max ®
f- “’*1)(5“ m (@5,m)) for(g (@5)) FHE, o (@5,m)

and so

¢ibi. m exp Snt+1¢
< ciexp | s max S, bi.mexp | s max .
; ’ < L (e) w) ; ’ L )

By Corollary 6.11, the last factor is bounded by 67'. Thus, using the induction
hypothesis,

¢;ibi. mexp max Sni1p | < pinti)se
zj:zm: Y ( I- (n+l)(§u m(IJ m)) * !

as we wanted to prove. (I

We are ready to prove the large deviations property for (f, ). In fact we prove
a slightly more general estimate (28), valid for any probability measure ¢ € E(0).

Consider any continuous function ¢ : M — R with fM pdp =0. For any a > 0,
define ¢, = ¢ — . By Lemma 6.6 and Corollary 6.12 there is 6, € (0,1) such that

cj exp (31 max Sntpa) < 0g,
zj: ! FoE ()

for every € M; NA and i = 1,...,k. Clearly, S, = Spp — na. Thus, the

previous inequality implies that

/ exp (sl(Sncp - na)) dvi', <04
A

for every x € M; NA and i = 1,...,k. In view of the definition of E(0), the
inequality extends to every ¢ € E(0):

/ exp ($1(Spp — na)) d¢ < 0.
A

Then, by the Chebyshev inequality,
CH{z: Snp >na}) <0.
Applying the same argument to —¢, we also get that ¢ ({z : S, < —na}) < 67
Thus,
(28) C({z : [Snep| > na}) < 20,
for any ¢ € F(0). In particular, this holds for ¢ = p, which proves Theorem 6.1.

7. PROOF OF THE COUPLING LEMMA

Here we prove Lemma 5.1. The proof is based on the coupling argument of
Young [You99], in the form developed by Dolgopyat [Dol00, Sections 6-9] for diffeo-
morphisms with mostly contracting center. Throughout, we keep the assumptions
of Theorem B. In particular, A = supp p is taken to be connected and, consequently
(by [UVYY, Theorem A})), u-minimal.
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7.1. Preparing the coupling argument. We start with the following fact:

Proposition 7.1. There are ng > 1 and Ay < 0 such that

(20) L Lrog D fre

¥ (z) MO

ges || dv', < Ao

for every x € M; N A and everyi=1,... k.

Proof. Since f is assumed to have c-mostly contracting center, Proposition 2.5
ensures that the center-stable Lyapunov exponents of i are all negative. Let A°® < 0
denote the largest of these exponents. Then

1 n )\CS
(30) / —log [|[Df" |ges || dp < )
AT 2

for every large n. Take A\g = A°°/2 and let n be fixed such that (30) holds. Consider
any sequences i; € {1,...,k}, z; € M;; N A and m; — oo. Clearly,

1 o
/ —IOgHDf 7 | Ees ||d z] Tj
v (wy) M1

1 m] n mn
(31) S— - E 10g||Df |pes of || v 4,
gu(zj)
1 1 m;—1
- Lrog |IDf™ |per 11d [ — i),
L o et e | (mj > ))

Observe that
1 !
. Z f”l * 111% —H
AL

as j goes to infinity. Indeed, [UVYY, Proposition 4.1] gives that every accumulation
point of this sequence belongs to E(0) and is an invariant probability measure, and
so Lemma 6.5 implies that every such accumulation point coincides with p. In view
of (31), this implies that every accumulation point of

1 in u
L ogl D™ e
g (zy) T
when j goes to infinity is bounded above by
1
/ —log [|Df" |ges || dpn < Ao
AN

This proves that there exists m > 1 such that

1
/ — log [|Df™" |ges || dvi', < Xo
13

(@) TN
for every x € M; N A and every i = 1,..., k. Take ng = mn. O

It is not difficult to check that if the conclusion of Lemma 5.1 holds for the iterate
fro, with maps 79 : Y1 — Y5 and Ry : Y7 — N, then the corresponding statement
holds for the original map f as well, with functions 7 = 79 and R = ngRg, up to
suitable changes of the constants C1,Cs and p1, po. Thus, it is no restriction to
assume that ng = 1, and so

(32 [ 1oz 1D 5
forallz e M;NAandi=1,...,k. We do that in the following.

l/um</\0<0
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Write each f"(€¥(x)), n > 1 as a finite union of strong-unstable plaques & (x5),
and then denote
¢j = ¢z, n) = vi, (F "8 (25)))
Applying Corollary 6.12 to the function ® = log|Df |ges ||, we find constants
s1 >0 and 6; € (0,1) such that

n—1

(33) > e _max || Df [ges | <05
g e @)

for any n > 1.
Fix A < 0 such that
(34) A > max{\g/2,log6,/2}.

Let K > 1 and denote by U"(z) C &'(z) the union of of all the pre-images
f7(E (x5)) for which

n—1
35 max Df |ges || > Ke .
(35) E) fron g (z5) | |

From (33) and (35) we get the Chebyshev-type inequality
Vit (U (x)) Kstersin < o7,

In view of the choice of A, this shows that

(36) v, (U (x) < K-oten

foreveryn >1,x € M;NAandi=1,...,k. Up to fixing K > 1 sufficiently large,
the latter implies that there exists ¢ < 1 such that

(37) vity Ui(z)) < 1

for every x € M; N A and i = 1,...,k, where U;(z) denotes the union of U*(x)
over all n > 1.

We close this section with the following useful fact, which we quote from Alves,
Bonatti, Viana [ABV00, Lemma 2.7], see also Dolgopyat [Dol00, Lemma 8.1]. Let
€ > 0 be fixed such that

dly,z)<e = (DS p=) W) < e 2D o) (2]

Lemma 7.2. If x € M and n > 1 are such that ||(Df7 |ges)(x)|| < Ke™™N for
j=1,...,n, then

PUFE () € F2 (7 (2)
for every 0 < j < n, where r; = Kee /2,

After these preparations, we move to prove Lemma 5.1. Let ) be the set of
rectangles Y = &¥(z) x J with x € M; NA, i =1,--- ,k and J C [0, 1], endowed
with the measures m; = v}, x dt. Write f(z,t) = (f(z),t). Recall that in the
statement of Lemma 5.1 the sets Y7,Y> € ) and the measures mq, mo were taken
to satisfy m (Y1) = ma(Y2). We are going to describe an algorithmic construction
of maps 7 and R as in the statement of the lemma.

This algorithm will be presented in a recursive form. In the first run (to be
detailed in Section 7.2), we will define a stopping time s(y) for the points y € Y3
where the coupling map 7 has not yet been defined, in such a way that the sets

(38) Pr={yeYj:sy)=n}, j=12

are of the form f~"(U,, Yj.n,m), where Yj . m = &' (%) nm) X Ijnm are elements
of Y satisfying m1(Y1,n,m) = m2(Ya,n,m). Finally, we will set P =Y; \ Uy, PJ* for
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7 =1,2, and we will define the function R on the set P°, and the map 7 from Pp°
and P5°.

The purpose of the inductive runs of the algorithm is to extend the domains of
R and 7 successively to include almost every point of Y. This is actually similar to
the first run, and will be detailed in Section 7.3.

7.2. First run of the algorithm. Let us now detail the first run of the algorithm.
Recall that H : £ (y1) — &*(y2) denotes the center-stable holonomy between the
strong-unstable plaques of points y; and y2 in the same Markov set M;. Denote
by d.s the distance along center-stable leaves.

Lemma 7.3. Given € > 0 as in Lemma 7.2, there is ng > 1 such that for any two
points x1 € AN M, and xo € AN M, the iterates f°(§f (1)) and f (&5 (z2))
contain strong-unstable plaques £'(y1) and £¥(y2) inside the Markov domain My
and

des (w,/Hgiyz (w)) < e for any w € &'(y1).

Proof. Since p is a c-Gibbs u-state, its push-forward under the map 7 : M — T¢
is the Lebesgue measure on the torus (see [UVYY, Corollary 3.5]). In particular,
the image of A under 7 is the whole T¢. Fix any point ¢ in the interior of the
Markov set R1 C 'H‘d, and let z € ﬂ_l(q) N A. Note that z is in the interior of M;.
Fix a neighborhood V' of z contained in M; small enough that the distance along
center-stable leaves

des (w, HES (w)) < e for any wy,wy € V and any w € &'(wq).

w1, w2

Since A is w-minimal, there is ng > 1 such that the iterates f"°(&} (x1)) and
o€ (22)) of any 1 € AN M, and z2 € AN M, intersect V. Just take
y1 € fr(& (1)) NV and yp € f70(& (22)) NV O

Consider Y1 = & (z1) x [0,a] and Yz = &} (x2) x [0,a] for any z; € AN M;,,
22 € AN M,,, and a € [0,1]. Take y1,y2 as in Lemma 7.3. For j = 1,2, define

(39) ¢ = Vi, (F7" (6 (05)))

for j = 1,2. It follows from Remark 2.1 that these ¢; take only finitely many values.
Define Y; = £%(y;) x [0,%;], where

- = _ (GEQ/El, a) if 52 S El
(40) (tl, t2) B { (a, 0,51/62) lf El S EQ

This choice ensures that f~"°(Y;) C Y; for j =1,2, and
(41) my (f7"(Y1)) =ma (f7(Y2))

We denote this value as b. On the complements P/ = Y;\ f="° (Y;), we define
the stopping time s(y,t) = ng.

Let us check that the P]”" constructed in this way are indeed of the form described
in (38). Due to the Markov property, each Y; is a union of finitely many sets of the
form

f7"(Z)=nx[0,a] with Z € Y.

The total m, -measure is equal to a, of course. By construction, f~"(Y,) is a
set of the form n x [0,¢;] such that the two mj-measures are the same. Thus,
P = Yj\ fmro (Y;) is a finite union of sets of the form 1 x J, where either
J =[0,a] or J = (t;,a] (note that one of the t; is equal to a, and so in the latter

the corresponding J is empty). It is clear that mq(P;"°) = ma(Py°). Thus, up to
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cutting (in the vertical direction only) each 1 x J into finitely many pieces, in a
suitable way, we may write

(42) P =7 Ygm)

with Y} ng.m € Y satisfying mi1(Y1,ng,m) = m2(Y2,no,m) for every m.
Next, for n > ng we define

(43) PP =f7" (V™(y1) x [0,t1]) and Py = f~" (H® . (V™(y1)) x [0,]) ,

Y1,Y2
where
n—mo—1
(44) Vi) =07 )\ J Urn)
m=0

and U7"(y;) is as defined in (35). It is clear that the V™ (y1), n > ng are pairwise
disjoint and their union coincides with

Ui(y1) = |J U7 ().

Thus the Pj*, n > ng are pairwise disjoint subsets of Y, all with the same height,
and

U pr=g ( SREE [O,m) = 5 a(n) % 0,72)

n>no n>ngo
We also define
PP =Y;\ U P

n>ngo

for j = 1,2. Notice that
Pr=vi\ |J Pr=Mm\P\ J A7

L @)\ £ (Ual) x [0.5)
=7 (& (w1) \ Ur(wn)) x [0,11])

(45)

and, similarly,
(46) Py =7 (Hg? (61 (w1) \ Ui(y1))) x [0,22]) .

A few other simple facts about the sequences P} are collected in the next lemma.
Let K, A, s1, q1, and b be fixed as in (35), (34), (33), (37), and (41), respectively.

Lemma 7.4. For every n > ng we have:

(1) my(Pf') = ma(P§) < berss(n=mo);

(2) mi(P°) = ma(P5°) > b(1 — q1);

(8) fr(P}) may be written as a union \J;, Yjnx of elements Y; 1 of Y with
(47) my(f7" (Yink)) = ma(f 7" (Yo, k));
Proof. By the definitions of m; = v{', x dt and P{* (see (43)),

my(Pl) = ma(f7" (V™ (y1) x [0,E1])) = (4] 4, x dO)(f 70 (V" (y1) x [0, 2a])).
Recall that Yy = &(y1) x [0,71] and my(f~"(Y1)) = b, by (41). Thus
mi(PP) (PP (W, xd) (T (VT (ya) x [0, 1))

b () (i % DT (V1))
o )
v @)
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By the definition (44), V™ (y1)) is a subset of £}'(y1). Thus, as the reference measures
have constant Jacobian for f,
mi(Pf) Vi, (V" ()

“8) b @) e

Similarly,

ma2 (Pn) u cs n

T2 = Vl,yg (Hyl,yg (V (yl)))
As the reference measures are invariant under center-stable holonomies, by (5), this
implies that ma(P3") = my(P]'). Tt is also clear from (44) that V™ (y1)) is contained
in U"""°. Thus, (48) together with (36) yield

i (PP) < b, (U0 (1)) < DK 1A < pernnno)

This completes the proof of claim (1).
Next we prove (2). Since

m;(P°) =m;(Y;) = > mi(PP)=b— Y m;(P}"),
Jj=no j=ng
it follows from the previous remarks that mq(Py°) = mo(P5°). By definition,
Ppe= f7m(g%(yy) \ Ur(y1)) x [0,71]. Thus, similarly to (48),
m(P)
Tl =Viy (&' (y1) \ Us(y1)) -

By (37), this yields
m(P) > b(1 — q1).
This proves claim (2).

By the definition (35), U;"~"°(y1) consists of domains that are mapped by f™~"0
to entire strong-unstable plaques. By the Markov property, it follows that the
image of U{™"(y1) under f™ " consists of entire strong-unstable plaques for every
1 < m < n—mng. Therefore, the set V™(y;) defined in (44) is also a union of
domains whose images under f™~"° are entire plaques. Using the Markov property
once more, we see that the same is true for the image Hy®  (V"™(y1)) under the
center-stable holonomy. Thus, both P, j = 1,2 may be written as unions of sets
of the form f~"(Y; n,m), where Yj ,, , is an element of ) with height ¢;. Moreover,
the images f"~"(Y1,n,m) and f"~"(Y1  m) are in the same Markov domain for each
r € {ng,...,n}, and the center-stable holonomy induces a bijection between them.

We claim that mq (f~"(Y1,n,m)) = ma(f~"(Y2,n,m)) for every m. To see this,
write

I Yinm) = Zjnm x [0,85] with Zj nm C f7 (6 (45))-
Then the claim may be rephrased as

(49) V;Ll,zl (Zl,n,m)fl = V?’;L;,IQ (Z21n7m)z25

Using the definition (39), together with the fact that the Jacobians of the reference
measures are locally constant, we find that
Vi o) Zjnm) Ve, (Zimam) VR (7 (Znm) (2,0 )).
G v o, (F70 (&1 (95))) vy, (€1 () b e
Since the reference measures vy, and vy, are mapped to one another by the

center-stable holonomy H*¥ . we also have that

Vﬁyl (fno (Zl,n,m)) = Vﬁyz (fno (ZQ,n,m))-

It follows that

V;ul,zl (Zl,n,m) Cy = VZ@2 (Z2,n,m) Cy.
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This gives (49), because the definition (40) is such that ¢1t2 = Gt;. This finishes
the proof of claim (3). O

At this point, we define 7 : P — Ps° and R : P — N in the following way
(keep the expressions (45) and (46) in mind). For any (z,t) € P, let

(50) T(x,t) = (y, E—lt) and R(x,t) = no,
C2

where y € & (x2) is defined by

(51) y=f""00oH, of"(@).

Let us check the properties in Lemma 5.1 are indeed satisfied at this stage:

Lemma 7.5. Let (y,s) = 7(x,t) be as in (50) and (51), and r,, be as defined in
Lemma 7.2. Then

(1) d(fn(ZC), fn(y)) S Tn—"o for any n Z noy
(2) T maps my restricted to Py° to ma restricted to Pse.

Proof. By construction, f™(x) € &(y1) \ U1(y1). By the definition (35), it fol-
lows f™0(x) satisfies the assumption of Lemma 7.2 for every positive iterate. By
Lemma 7.3, our choice of y; and yz ensures that f"°(y) = Hy?  (f"°(x)) belongs
to FE(f™(x)). Now claim (1) of the present lemma is contained in the conclusion
of Lemma 7.2.

Next, we claim that the Jacobian of 7 with respect to the measures m, and mo
is constant. Since my(P°) = ma(Ps°), it follows that the Jacobian is actually
equal to 1, which is precisely the content of (2). To prove the claim, observe that
the m; = z/ijmj x dt, 7 = 1,2 are product measures, and 7 is a product map. The
Jacobian of the first-variable map = — y with respect to the reference measures
is constant, since the maps f™ and f~"° have locally constant Jacobians, by (6),
and the Jacobian of the holonomy map H;7  is constant equal to 1, by (5). The
Jacobian of the second variable map t — s, with respect to the Lebesgue measure dt,

is clearly also constant. Thus, the overall Jacobian of 7 is constant, as claimed. [

This finishes the first stage of the coupling algorithm. At this stage, the coupling
map 7 is defined between the P and P5°, and the function R is defined on Pp°.

7.3. Inductive set of the algorithm. Next, we want to extend the definitions of
7 and R to (full measure subsets of) the complements Y; \ P°. This will be done
recursively, in the following way.

For each h > 1, we denote by T" the subset of Y; where 7 and R are still
undefined at the end of stage h. Thus Tt = Y; \ P° = U, P'. By induction, we
may assume that there are sets

Th = UPlNh, Ny = (n1,...,n1)
where each PJN k. j=1,2 is itself a union of sets of the form
FINNY Ny ) INW| =n14 - +np
with Y N, m € Y for nq,...,n, > ng, and
mi (57 Y ,m)) = ma (78 (Vo ) )

Applying the first run (Lemma 7.4) of the algorithm to each Yj n, m, we find

oo : ) .
subsets PPy, ., of Y; and measure-preserving maps

. o o0
TNp,m * Pl,Nh,m — P2,Nh,m
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as in the previous section. Then we extend 7 and R to each
FN P, ) € NN Y ) € T
through
T = ff‘Nh‘ O TN}, .m © fNrand R = |NL| + no.
A key point is that, according to part (2) of Lemma 7.4, each PP, ,, contains a
fraction > 1 — ¢ of the measure of Y} n, .. Moreover, the proportion is preserved

under the backward image, because the map f™'*T"+ has constant Jacobian.
Thus, the measure of the set

T = PR )
Nh,m
satisfies
(52) my (T < qumy (T).
As a direct application of Lemma 7.5, we get:
Corollary 7.6. Let (y,s) = 7(x,t) for (z,t) € PSSy, ., and let r, be as in
Lemma 7.2. Then
(1) d(f™(x), f*(y)) < rn_R((@,t)) for anyn > R(xz,t);
(2) T maps the measure my restricted to Pl"f]\,}“m to the measure mo restricted
to PQ"ONh -

The construction in the previous section also gives that

00 Np,n'
UY‘aNmm\Pj,Nh,m :Uleh‘(P] h )

such that each PN»"

. , j = 1,2 is a union of sets of the form

— Ny |—n'
f [Nn] n(S/},Nhan'7m')

with Y n, n/,ms € Y for n’ > ng, and

mi (f_lNh‘_n/(YLNhyn’,m,)) =My (f_‘Nh‘_n/(Y21Nh1n,7m/)) .

Thus we recover the recursive assumptions for the set T4 1.

From (52) we get that 7 and R are eventually defined at mq-almost every point
of Y7. Part (1) of Lemma 5.1 is given by Lemma 7.5 and Corollary 7.6. We are left
to checking part (2) of the lemma.

Recall that, at each stage h the function R is defined by R = |Np_1| + ng. Fix
some small § > 0. For each n, write the set {R = n} as the disjoint union of two
subsets, depending on whether h < dn or h > dn. It is clear that the latter subset
(corresponding to h > dn), is contained in T|s,). Hence, by (52), its m;-measure
is bounded by

Lon]

(53) m1(T\5n)) < q1

On the other hand, the m;-measure of the former subset (corresponding to h < dn)
is given by

h—1
(54) S o=k S etk

hy (k1 s kp—1) hy (k1 kp—1)
kit-+kp—1+no=n ki+-+kp_1+no=n
k1,...;kn—12n0 k1,...,kn—12n0

This inequality follows from Lemma 7.4 applied at each run ¢ = 1, ..., h, together
with the observation that the pull-back map f~ 1+ +ki-1) has constant Jacobian.
The constant b € (0,1) was defined in (41).
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For each h, the number of terms in the sum is bounded above by
(n—(h+1no+h—1)! < (n+h—1)!
(n—(h+Dng)l(h—1)! = nl(h—1)!

() (o= (D))

(check [BV0O, Corollary 6.7] for a similar estimate using Stirling’s formula). Recall
that we are considering h < dn, and observe that (1 4+ 1/z)* — 1 when =z — 0.
Thus we see that, given any € > 0, the right hand side of (55) is bounded by Ce™
if § is chosen small enough, where C is an absolute constant. From this and (54) we
get that the mj-measure of the subset corresponding to A < dn is bounded above
by

(56) Cee™(6n)er .
Combining (53) and (56), and keeping in mind that ¢; < 1 and A < 0, we get that
mi({R =n}) < ¢"" + ConePorton

decays exponentially fast with n, as long as we choose ¢ small enough. Then,
clearly, mi({R > n}) also decays exponentially fast with n, as claimed in part (2)
of Lemma 5.1.

This completes the proof of Lemma 5.1.

(55)

8. DECAY OF CORRELATIONS

Let f: M — M be as before and p be any f-invariant probability measure. We
say that (f, ) has exponential decay of correlations for Holder observables if for
any v € (0, 1] there exists 7 < 1 such that for all 4-Hélder functions ¢, v : M — R
there exists K (g, 1) > 0 such that

/(wOf")wdu - /wdu/wdu’ < K(p,)7" for every n > 1.

In this section we prove

Theorem 8.1. Let f: M — M be a partially hyperbolic diffeomorphism that fac-
tors over Anosov and has c-mostly contracting center. Let p be an ergodic measure
of mazimal u-entropy whose support supp p is connected. Then (f, u) has exponen-
tial decay of correlations for Holder observables.

Let 7 be a positive number. We denote by C7(M) the Banach space of y-Holder
functions ¢ : M — R with the norm

lp(x1) — p(a2)|
llelly sup o) + S (e, )

We use a similar notation ||¢||, to denote the operator norm of an element of the
dual space (C7(M))*, that is, a linear functional ¢ : C7(M) — R. Every probability
measure on M may be viewed as an element of this dual space, and we will often
do that in what follows.

The push-forward operator f, extends to a linear operator on the whole space
(CY(M))*, which we still denote as f, defined by

[:C:CT (M) =R, fil(p) =C(pof)
This extension f. : (C7(M))* — (C7(M))* is a bounded linear operator: having
fixed any Lipschitz constant L > 1 for f, we have that

(57) 1£«Clly = sup [¢(po /) <IClly sup [lpo flly <I¢ll, L7

llelly=1 llell,=1
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for any ¢ € (C7(M))*.

In what follows we use the sets C(R) and E(R), R > 0 introduced in Section 6.1:
in a few words, C(R) is the set of probability measures on individual strong-unstable
plaques ¥(z), x € M; N A obtained by multiplying the corresponding reference
measure v}, by some density e” where p is (R,v)-Hélder; and E(R) is the space
of probability measures on A, not necessarily f-invariant, which are convex combi-
nations, not necessarily finite, of elements of C'(R). In particular, C(R) is a subset
of E(R). Their restrictions to each Markov element M, are denoted C;(R) and
E;(R), respectively.

Lemma 8.2. There exist C3 > 0 and p3 < 1 such that

12 (G — @)y < Caph
for any n > 1 and any (1, € E(0).

Proof. Assume first that (1, (2 € C(0), that is, they are of the form ¢; = v} with

25,%j

x; € M;;. Denote m; = (; x dt. Then, given any ¢ € C?(M) and any n > 1,

(G = [ o) vt ) = [ o) dmy (a0,

w Y,
€ o, !

for 7 = 1,2, and so,
£ =)= [ pofrdm - [ oo dm
Y1 Y2

:/ [po f* —@o ffor]dmy,
Y1

where 7 : Y7 — Y3 is as in Lemma 5.1. Define Z(n) = {(y,t) € Y1 : R(y,t) < n/2}.
Then, using both parts of Lemma 5.1 for n/2,

(G - ()] < / oo " — o fror| dmy + 2pllom (Vi \ Z(n))

Z(n)

< el (C1pT) + 2]l plloCaps’® < (C3/2)05 Il

for suitable choices of C3 and p3, depending only on Cy, Cs, p1, p2, and 7.

Now consider the case where ¢; € C(0) and ¢ € FE(0). By definition (3 is a
convex combination of measures in F;(0), ¢ = 1,--- ,k, and so it is no restriction
to suppose that (o € E;(0) for some i. By Lemma 6.2, the disintegration

G= [ (pdia(P)
&

of (2 with respect to the partition £ is such that (p € C;(0) for every P € &*.
Then,

(fC2) () = / (7)) dia(P)

&
for any ¢ € C7(M) and n > 1. So,

G - ()] = /E [70) @)~ (1260) )] dia(P)

<
&

Finally, for any ¢; and (» in E(0), we may pick any (3 € C(0) and use the
triangle inequality together with the previous paragraph to conclude that

112G = G)(@)l < Capzlielly

f1(G = Cp)(9)] dla(P) < (Cs/2)p5 1€l
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for any ¢ € C7(M) and n > 1. O

This enables us to prove that the push-forwards of any measure [ € F(0) under
the map f converge exponentially fast to p relative to the norm || - ||,

Corollary 8.3. For any ¢ € E(0) andn > 1,
[£2¢ = plly < Csp5.

Proof. By Lemma 6.5, the invariant measure p belongs to E(0). Thus this is a
special case of the previous lemma. (Il

Proceeding with the proof of Theorem 8.1, we now extend this analysis to mea-
sures in E(R) for any R > 0:

Lemma 8.4. For any R > 0 and any ¢ € E(R) there exists (o € E(0) such that
I f2¢ — fr¢olly < Ref* for any n > 1.

Proof. By definition, every ¢ € E(R) is a convex combination of elements of E;(R),
t =1,...,k So, it is no restriction to assume that ¢ € E;(R) for some i. By
Lemma 6.2, we may write

¢=[ e, dl(z)
M; ’
where ( is a probability measure on C;(R), and each function p, satisfies
(58) / e dvt, =1
£ ()

together with the Hélder condition (22). Let us check that
Go= [ v dia)
M;
satisfies the claim. It is no restriction to assume that the diameters of all £¥(z) are
bounded by 1, and then (22) implies that
e T < ereW=re(x) < oF for every y, 2z € €%(z) and z € M.

Property (58) implies that the minimum (respectively, maximum) of e”> on &} (x)
is less (respectively, greater) than or equal to 1. So, the previous inequality also
yields that

e~ < ereW < eF for every y € €%(z) and z € M.

In particular, |e?= — 1| < Ref® for every x. Then, for any ¢ € C? (M),

‘ [earc- [oaral=|[ [ [eore - duzfz] dé ()

< llpo flloRe™ < flolly Re™.
This gives the claim. (]

Going back to the proof of Theorem 8.1, consider any ¢ € E(R). Let w < 1 be
as in (1). By Proposition 6.4

ek (Re”mlogw) for any m > 1.

Replacing ¢ and R with f™¢ and Re"™1°8¢ in Lemma 8.4, we find that for each
m > 1 there exists (,, € F(0) such that

IFECFC = Gn)lly < ReP™ 108 exp (Re™ 08 ) for any k > 1.
Given any m > 1, let k,m ~ n/2 such that k + m = n. Then
I8¢ = plly S WFECTC = Gy + 1FECm — milly
< Rwhrm exp (Rwl"’m) + Cgplgf
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Take 7 = max{w!/2, p§/2}, and note that it is in (0,1), since w and p3 are. More-
over, the previous inequality ensures that

(59) | f¢ — plly < L7™ for every n > 1

if L > 0 is chosen suitably.

Finally, ¢ be any v-Holder function not identically zero. Then ¥ = ) + 2|10
is a strictly positive function and it is still y-Holder. More to the point, log ¥ is
also y-Holder. Let R be the multiplicative Holder constant. Then the probability
measure

Wi log U—log [,, ¥d
= " = MY OH
¢ f v ¢ I
is in E(R), since p is in F(0). Since the difference ¢ — ¥ is constant, the correlation

'/ (0 f™) dy — /Sﬁdﬂ/ 7/)dﬂ‘

is not affected if we replace ¥ with ¥. So (59) gives that

’/ (po f")pdu— /sodu/ wdu’ ’/ (o fM)Vdu— /wdu/ \Ildu‘
=/M‘Ifdu /M(soOf")dC—/Msodu’

< £EC = plillell- 1% llo
< Lr"{llly[l141lo-

Just take K (p,9) = L||py||¢|lo- The proof of Theorem 8.1 is complete.
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