SRB measures and absolute continuity for one-dimensional center direction

Marcelo Viana (joint with Jiagang Yang)

IMPA - Rio de Janeiro

Marcelo Viana (joint with Jiagang Yang) SRB measures and absolute continuity for one-dimensional cente

(人間) ト く ヨ ト く ヨ ト

Physical measures

Let $f: M \to M$ be a C^k , k > 1 partially hyperbolic diffeomorphism

$$TM = E^s \oplus E^c \oplus E^u$$

An *f*-invariant probability μ is a physical measure if

$$B(\mu) := \{ x : \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)} \to \mu \text{ in weak}^* \text{ topology} \}$$

has positive Lebesgue measure. $B(\mu)$ is called basin of μ .

伺 ト イ ヨ ト イ ヨ ト

Physical measures

Let $f: M \to M$ be a C^k , k > 1 partially hyperbolic diffeomorphism

$$TM = E^s \oplus E^c \oplus E^u$$

An *f*-invariant probability μ is a physical measure if

$$B(\mu) := \{x: rac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)}
ightarrow \mu ext{ in weak}^* ext{ topology} \}$$

has positive Lebesgue measure. $B(\mu)$ is called basin of μ .

Finitely many physical measures; basins contain almost every point: Bonatti, Viana: for mostly contracting center direction Alves, Bonatti, Viana: for mostly expanding center direction Tsujii: for generic partially hyperbolic surface maps

One-dimensional center

Here we consider dim $E^c = 1$. Let us focus on perturbations of partially hyperbolic skew-products

$$f_0: M \times S^1 \to M \times S^1, \quad f_0(x, \theta) = (g_0(x), h_0(x, \theta)).$$

 g_0 a transitive Anosov diffeomorphism.

More generally, the results are valid for partially hyperbolic, dynamically coherent C^k , k > 1 diffeomorphisms with 1-dimensional center direction and whose center leaves form a circle bundle.

Existence and finiteness

Theorem A

There is a C^k neighborhood \mathcal{U} of f_0 such that, for every $f \in \mathcal{U}$ accessible and with absolutely continuous center stable foliation, there exist finitely many physical measures and the union of their basins has full Lebesgue measure in $M \times S^1$.

伺 ト く ヨ ト く ヨ ト

Existence and finiteness

Theorem A

There is a C^k neighborhood \mathcal{U} of f_0 such that, for every $f \in \mathcal{U}$ accessible and with absolutely continuous center stable foliation, there exist finitely many physical measures and the union of their basins has full Lebesgue measure in $M \times S^1$.

Accessibility is C^1 open and C^k dense near f_0 (Nițică, Török).

Existence and finiteness

Theorem A

There is a C^k neighborhood \mathcal{U} of f_0 such that, for every $f \in \mathcal{U}$ accessible and with absolutely continuous center stable foliation, there exist finitely many physical measures and the union of their basins has full Lebesgue measure in $M \times S^1$.

Accessibility is C^1 open and C^k dense near f_0 (Nițică, Török).

Avila, Viana, Wilkinson: For conservative maps near f_0 absolute continuity is often a rigid property:

For $M = \mathbb{T}^2$, if \mathcal{W}_f^c is absolutely continuous then it is smooth, and f is smoothly conjugate to $(x, \theta) \mapsto (g(x), \theta + \omega(x))$.

高 と く ヨ と く ヨ と

Abundance of absolute continuity

Theorem B

Suppose f_0 is accessible and has some periodic center leaf ℓ in general position. Then for every f in a neighborhood of f_0 ,

- \mathcal{W}_{f}^{cs} , \mathcal{W}_{f}^{cu} , and \mathcal{W}_{f}^{c} are absolutely continuous
- both f and f^{-1} have unique physical measures (assuming accessibility).

General position:

- f_0 is Morse-Smale on ℓ with single attractor a and repeller r,
- $\phi(\{a, r\})$ is disjoint from $\{a, r\}$, for some holonomy loop ϕ .

イロト イポト イヨト イヨト 三日

Volume preserving accessible maps near $f_0 = g_0 \times id$:

Shub, Wilkinson: $\{\lambda^c \neq 0\}$ accumulates on f_0 and

 $\lambda^{c}(f) \neq 0$ implies \mathcal{W}_{f}^{c} is not (even leafwise) absolutely continuous

leafwise absolute continuity:

 $\operatorname{Leb}_{L}^{c}(Y \cap L) = 0$ for almost every leaf L implies $\operatorname{Leb}(Y) = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Volume preserving accessible maps near $f_0 = g_0 \times id$:

Shub, Wilkinson: $\{\lambda^c \neq 0\}$ accumulates on f_0 and

 $\lambda^{c}(f) \neq 0$ implies \mathcal{W}_{f}^{c} is not (even leafwise) absolutely continuous

leafwise absolute continuity:

 $\operatorname{Leb}_{L}^{c}(Y \cap L) = 0$ for almost every leaf L implies $\operatorname{Leb}(Y) = 0$

Ruelle, Wilkinson:

 $\lambda^{c}(f) \neq 0$ implies Leb has atomic disintegration on center leaves

- 4 周 ト 4 ヨ ト 4 ヨ ト

Volume preserving accessible maps near $f_0 = g_0 \times id$:

Shub, Wilkinson: $\{\lambda^c \neq 0\}$ accumulates on f_0 and

 $\lambda^{c}(f) \neq 0$ implies \mathcal{W}_{f}^{c} is not (even leafwise) absolutely continuous

leafwise absolute continuity: Leb^c_L $(Y \cap L) = 0$ for almost every leaf L implies Leb(Y) = 0

Ruelle, Wilkinson:

 $\lambda^{c}(f) \neq 0$ implies Leb has atomic disintegration on center leaves

Avila, Viana, Wilkinson:

either \mathcal{W}_{f}^{c} is absolutely continuous or Lebesgue has atomic disintegration

and if \mathcal{W}_{f}^{c} absolutely continuous then $f \sim (g(x), \theta + \omega(x))$.

Volume preserving accessible maps near $f_0 = g_0 \times id$:

Corollary

There is a C^1 open and dense set $\mathcal{U}^- \subset \{\lambda^c < 0\}$ such that every $f \in \mathcal{U}^-$ has leafwise absolutely continuous center stable foliation.

 $\mathcal{U}^{-} \leftrightarrow$ accessibility and minimality of the strong unstable foliation

Volume preserving accessible maps near $f_0 = g_0 \times id$:

Corollary

There is a C^1 open and dense set $\mathcal{U}^- \subset \{\lambda^c < 0\}$ such that every $f \in \mathcal{U}^-$ has leafwise absolutely continuous center stable foliation.

 $\mathcal{U}^{-} \leftrightarrow$ accessibility and minimality of the strong unstable foliation

Corollary

There is a open set \mathcal{V}^- accumulating on f_0 such that every $f \in \mathcal{V}^-$ has absolutely continuous center stable foliation.

 $\mathcal{V}^- \leftrightarrow$ accessibility and periodic center leaf in general position

For $f \in \mathcal{V}^-$ the center unstable foliation can not be absolutely continuous (e.g. because the center foliation is not).

Volume preserving accessible maps near $f_0 = g_0 \times id$

Problem

- For a C¹ open and C^k dense subset of {λ^c < 0}, the center stable foliation is absolutely continuous (and the center unstable foliation is not) ?</p>
- ② For f ∈ {λ^c = 0} \ {W^c absolutely continuous}, neither W^{cs}_f nor W^{cu}_f are absolutely continuous ?

(人間) ト く ヨ ト く ヨ ト

Theorem A

Theorem A

There is a C^k neighborhood \mathcal{U} of f_0 such that, for every $f \in \mathcal{U}$ accessible and with absolutely continuous center stable foliation, there exist finitely many physical measures and the union of their basins has full Lebesgue measure in $M \times S^1$.

直 と く ヨ と く ヨ と

Gibbs *u*-states

A Gibbs *u*-state (Pesin, Sinai) is an invariant probability absolutely continuous along strong unstable leaves.

・ 同 ト ・ ヨ ト ・ ヨ ト

Gibbs *u*-states

A Gibbs *u*-state (Pesin, Sinai) is an invariant probability absolutely continuous along strong unstable leaves.

Assume accessibility and absolutely continuous \mathcal{W}^{cs} :

Proposition 1

The center Lyapunov exponent $\lambda^{c}(m)$ is non-negative, for every ergodic Gibbs *u*-state of *f*.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Gibbs *u*-states

Proposition 2

If *m* is an ergodic Gibbs *u*-state with $\lambda^{c}(m) = 0$ then

- the conditional probabilities of *m* along center leaves are equivalent to Lebesgue measure, with bounded densities;
- 3 *f* is conjugate to $(g(x), \theta + \omega(x))$ by some homeomorphism Lipschitz continuous along center leaves;
- m is the unique Gibbs u-state and the unique physical measure, and the basin B(m) has full Lebesgue measure.

イロト 不得 とうせん きょうしゅ

Gibbs u-states

Proposition 2

If *m* is an ergodic Gibbs *u*-state with $\lambda^{c}(m) = 0$ then

- the conditional probabilities of *m* along center leaves are equivalent to Lebesgue measure, with bounded densities;
- 3 *f* is conjugate to $(g(x), \theta + \omega(x))$ by some homeomorphism Lipschitz continuous along center leaves;
- m is the unique Gibbs u-state and the unique physical measure, and the basin B(m) has full Lebesgue measure.

If $\lambda^{c}(m) < 0$ for all Gibbs *u*-states then *f* has mostly contracting center direction. In this case, the conclusion of the theorem had been obtained before, by Bonatti, Viana.

Proof of Proposition 1

Suppose $\lambda^{c}(m) > 0$. Let Γ be the set of $x \in M \times S^{1}$ with

$$\lim_{n\to+\infty}\frac{1}{n}\log\|Df^n\mid E_x^c\|=\lambda(m).$$

Then $m(\Gamma) = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Proof of Proposition 1

Suppose $\lambda^{c}(m) > 0$. Let Γ be the set of $x \in M \times S^{1}$ with

$$\lim_{n\to+\infty}\frac{1}{n}\log\|Df^n\mid E^c_x\|=\lambda(m).$$

Then $m(\Gamma) = 1$.

Lemma

There is $N \ge 1$ such that $\#(\Gamma \cap \mathcal{W}_x^c) \le N$ for every x.

Extracted from Ruelle, Wilkinson. Our proof holds in the C^1 case with any center dimension.

Proof of Proposition 1

Let ℓ be any periodic center leaf intersecting supp m.

Lemma

Every point $x \in \ell$ is periodic, with period $\leq N \operatorname{per}(\ell)$.

Proof of Proposition 1

Let ℓ be any periodic center leaf intersecting supp m.

Lemma Every point $x \in \ell$ is periodic, with period $\leq N \operatorname{per}(\ell)$.

Then supp m contains no hyperbolic periodic points. That contradicts a well-known result of Katok.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Proof of Proposition 2

Consider $\pi: M \times S^1 \to M \times S^1/\mathcal{W}^c$ and let

$$f_c: M imes S^1/\mathcal{W}^c o M imes S^1/\mathcal{W}^c$$

be the hyperbolic homeomorphism induced by f in leaf space.

-

Proof of Proposition 2

Consider $\pi: M \times S^1 \to M \times S^1/\mathcal{W}^c$ and let

$$f_c: M imes S^1/\mathcal{W}^c o M imes S^1/\mathcal{W}^c$$

be the hyperbolic homeomorphism induced by f in leaf space.

Lemma

If \mathcal{W}_{f}^{cs} is absolutely continuous then $\pi_{*}m$ has local product structure, for any Gibbs *u*-state *m*.

That is, π_*m is locally equivalent to a product measure in coordinates associated to local stable and unstable sets of f_c .

イロト イポト イラト イラト

Proof of Proposition 2

Suppose $\lambda^{c}(m) = 0$. Local product structure allows us to use the Invariance Criterion of Avila, Viana to conclude

Corollary

m admits a disintegration $\{m_{\ell} : \ell \in M/W^c\}$ along center leaves which is continuous and invariant under both stable and unstable holonomies.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of Proposition 2

Suppose $\lambda^{c}(m) = 0$. Local product structure allows us to use the Invariance Criterion of Avila, Viana to conclude

Corollary

m admits a disintegration $\{m_{\ell} : \ell \in M/W^c\}$ along center leaves which is continuous and invariant under both stable and unstable holonomies.

Moreover,

Lemma

The conditional probabilities m_{ℓ} are equivalent to arc length on the center leaves, with densities bounded from zero and infinity.

イロト イポト イヨト イヨト

Proof of Proposition 2

This leads to

Corollary

f is conjugate to $(f_c(x), \theta + \omega(x))$ by a homeomorphism Lipschitz continuous along the center leaves.

It follows that the center Lyapunov exponent vanishes for every Gibbs u-state.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of Proposition 2

This leads to

Corollary

f is conjugate to $(f_c(x), \theta + \omega(x))$ by a homeomorphism Lipschitz continuous along the center leaves.

It follows that the center Lyapunov exponent vanishes for every Gibbs *u*-state.

Actually,

Lemma

m is the unique Gibbs *u*-state, and the basin B(m) has full Lebesgue measure.

Marcelo Viana (joint with Jiagang Yang) SRB measures and absolute continuity for one-dimensional cente

・ロト ・同ト ・ヨト ・ヨト

-

Theorem B

Theorem B

Suppose f_0 is accessible has some periodic center leaf ℓ in general position. Then for every f in a neighborhood of f_0 ,

- \mathcal{W}_{f}^{cs} , \mathcal{W}_{f}^{cu} , and \mathcal{W}_{f}^{c} are absolutely continuous
- both f and f^{-1} have unique physical measures (assuming accessibility).

Criterion for leafwise absolute continuity

Suppose $\lambda^{c}(m) < 0$ for every ergodic Gibbs *u*-state, that is, *f* has mostly contracting center direction. By Andersson this is a C^{2} open condition.

By Pesin theory, *m*-almost every point has local stable manifolds which are embedded disks of dimension dim E^{cs} . Moreover, these local manifolds form an absolutely continuous lamination.

Criterion for leafwise absolute continuity

Suppose $\lambda^{c}(m) < 0$ for every ergodic Gibbs *u*-state, that is, *f* has mostly contracting center direction. By Andersson this is a C^{2} open condition.

By Pesin theory, *m*-almost every point has local stable manifolds which are embedded disks of dimension dim E^{cs} . Moreover, these local manifolds form an absolutely continuous lamination.

Proposition 3

If f has mostly contracting center then \mathcal{W}_f^{cs} is leafwise absolutely continuous.

If $\operatorname{Leb}^{cs}(Y \cap \mathcal{W}_f^{cs}(x)) = 0$ for Lebesgue a.e. x then $\operatorname{Leb}(Y) = 0$.

Criterion for absolute continuity

Proposition 4

If f has mostly contracting center and has some periodic center leaf in general position then W_f^{cs} is absolutely continuous.

General position:

- f_0 is Morse-Smale on ℓ with single attractor a and repeller r,
- $\phi(\{a, r\})$ is disjoint from $\{a, r\}$, for some holonomy loop ϕ . This is also a C^1 open condition.

(4月) (1日) (1日)