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High Dimension Diffeomorphisms
Displaying
Infinitely Many Sinks

By J. PALis and M. VIANA

Introduction

We extend to higher dimensions a remarkable two-dimensional result of
Newhouse proved in the seventies: many (residual subset of an open set)
smooth diffeomorphisms near one exhibiting a homoclinic tangency have in-
finitely many coexisting sinks. The saddle associated with the homoclinic
tangency is taken to be sectionally dissipative. In this general setting we have
to circumvent a major difficulty: the usual lack of (transversal) differentiability
of invariant dynamic foliations of codimension higher than one. Also, in gen-
eral there is no global smooth center manifold and so the problem cannot be
reduced in this way to the two-dimensional case.Instead the question is solved
by producing hyperbolic sets whose foliations are “essentially” differentiable
(& la Whitney) with a large fractal dimension (thickness).

The recent development of (dissipative) dynamics has been much influ-
enced by the discovery of some striking bifurcating phenomena such as the
Lorenz-like attractors, the Hénon-like attractors, the Feigenbaum and Coullet-
Tresser cascades of period doubling bifurcations and Newhouse’s infinitely
many coexisting sinks (attracting periodic orbits).

This last phenomenon, although more than twenty years old, has remained
essentially a topic in the study of surface diffeomorphisms. That is, the known
examples in higher dimensions were obtained by taking a two-dimensional pro-
totype and “multiplying” it by a strongly contracting diffeomorphism. In the
present paper we are able to extend the original result to other dimensions
(even to infinite dimension) in its full strength, showing in general the abun-
dance (from the topological point of view) of the diffeomorphisms displaying
infinitely many coexisting sinks. Indeed, we prove the following result

MAIN THEOREM. Near any smooth diffeomorphism exhibiting a homo-
clinic tangency associated to a sectionally dissipative saddle, there is a residual
subset of an open set of diffeomorphisms such that each of its elements displays
infinitely many coexisting sinks.
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We point out that our methods also imply a one-parameter version of
this theorem: a generic unfolding of such a (quadratic) homoclinic tangency
yields residual subsets of intervals in the parameter line whose corresponding
diffeomorphisms exhibit infinitely many sinks. For surface diffeomorphisms
this version has been obtained in [Rob].

Smooth in the statement above means of class C? and near means closeness
in the C? sense. Recall that a homoclinic tangency is just a tangency between
the stable and unstable manifolds of a saddle periodic point. The saddle is
called (codimension-one) sectionally or strongly dissipative if it has just one
expanding eigenvalue (positive Lyapunov exponent) and the product of any
two eigenvalues has norm less than one, i.e. any contracting eigenvalue is
stronger than the expanding one. We observe that in order to get abundance
of sinks when unfolding a homoclinic tangency, we assume that the associated
saddle is sectionally dissipative for otherwise we are bound to obtain periodic
orbits of smaller index (saddles, sources); see [Rom]. On the other hand, when
we generically unfold such a quadratic homoclinic tangency in any dimension,
we obtain a rather striking list of dynamical phenomena:

e Hénon-like strange attractors [MV], [V], based on the remarkable work
of Benedicks-Carleson [BC];

e cascades of period doubling bifurcations of sinks [YA];

e residual subsets of open sets of intervals in the parameter line whose
elements exhibit infinitely many coexisting sinks [N2], [N3], [Rob], and the
present paper.

Thus, since homoclinic tangencies are a common bifurcating dynamic fea-
ture, the existence of diffeomorphisms with infinitely many coexisting sinks is
rather abundant. It is quite possible, however, that in a parametrized form in
terms of Lebesgue measure in the parameter space this is a rare phenomenon
(measure zero). This is a subject of much interest and we refer the reader to
[PT] for a discussion on this and other related questions.

As pointed out above, a basic difficulty to extend Newhouse’s original
result from two to higher dimensions is the usual lack of differentiability of in-
variant foliations (in our case, unstable foliations) of codimension bigger than
one, which are in general just Holder continuous. This has been a major ob-
stacle in order to make sense of (transversal) fractal dimensions of invariant
Cantor sets. In particular, this is the case of thickness, a concept used by New-
house to show that many pairs of Cantor sets in the line necessarily intersect
each other unless one lies in a gap of the other; see Section 1. These inter-
sections correspond to homoclinic tangencies that in turn generate sinks when
unfolded. Also, the question treated in this paper has a semi-global character,
involving the whole orbit of tangency. In particular, it cannot be solved by just
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assuming that we can locally linearize the map near the associated saddle, e.g.
by supposing that it has nonresonant eigenvalues. Even more, we cannot apply
the standard procedure of “reducing dimensions” through projection along the
strong contracting directions onto a central manifold, which in fact does not
exist in general. The key idea introduced here to circumvent these difficulties
is to obtain a hyperbolic set whose higher-codimension unstable foliation is
indeed “differentiable” (or “intrinsically differentiable”) if we avoid the strong
contracting directions. This idea may be useful in other similar dynamic sit-
uations involving fractal dimensions of hyperbolic sets or, more directly, the
differentiability of their invariant foliations.

The formal definitions of intrinsic differentiability and thickness for the
unstable foliation are given in Section 1 and developed in Sections 2 through
4. Specially, in Section 2 we briefly describe some basic properties of intrinsic
differentiability. A new relevant condition on the homoclinic tangency is made
explicit in Section 3: assumption (3.2) in Proposition 3.2 yields the construc-
tion of hyperbolic sets whose unstable foliation is intrisincally differentiable,
since we can then “avoid” the strong contracting directions as suggested above.
In Section 1 we also present a sketch of the whole proof of our main result.
It follows more closely a new proof of Newhouse’s two-dimensional result pre-
sented in [PT] than the original papers. For the sake of simplifying the argu-
ment, we show in Section 5 that we may assume that the saddle associated to
the homoclinic tangency has a unique least contracting eigenvalue. In Section
6 we construct thick invariant Cantor sets that appear when we unfold the ho-
moclinic tangency and whose elements have stable and unstable manifolds that
transversally intersect those of the associated saddle. This is done through a
renormalization technique. Finally, in Section 7 we finish the proof of the the-
orem by just assembling together the facts established in the previous sections.
We also briefly indicate how the parametrized version we stated above follows
from these arguments.

1. Main ingredients and sketch of the proof

We begin by recalling a few notions and facts, mostly from [N1], [N3],
which play a central role in the arguments below.

Let K C R be a Cantor set and K be its convex hull. A presentation of
K is an ordering U = (U,),, of its gaps, i.e. of the connected components of
K\ K. For each n and u € 8U, let 7(K,U,u) = length(C)/length(U,), where
C is the connected component of K \ (U; U--- U U,) that contains u. The
thickness of K is defined as

7(K) = supinf 7(K,U, u)
u u
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where the supremum is taken over all presentations of K and the infimum over
all points u € 0U,, as above. The local thickness of K at x € K is

7(K,z) = liII(l)(Sup{T(L)! L C KNz —¢,z+ ¢] a Cantor set}).
e—>

Recall that a basic set for a diffeomorphism is a compact, invariant, tran-
sitive, hyperbolic set, with a dense subset of periodic orbits and which is
the maximal invariant set in a neighbourhood of it. A basic set is persis-
tent: any C*-small perturbation of the map, k > 1, yields a unique basic set
near the initial one, called the “analytic” or “smooth” continuation of it. Let
now A be a (nontrivial) basic set of a C? diffeomorphism ¢: M — M, whose
stable foliation is of codimension one, i.e. such that dimW5(z) = m — 1,
m = dim M, for all z € A. Let 2 € W*(A) and ¢:[—a,a] - M be a C! embed-
ding transverse to W*(A) at z = ¢(0). The local stable thickness of A at z is
T5(A, z) = 7(¢~1(W®(A)),0). This is independent of the choice of ¢, as a conse-
quence of the fact that (under the codimension-one assumption) the holonomy
maps (i.e. the projections along the leaves) of the stable foliation of A can be
extended to C!' maps. Actually, this smoothness of the holonomy of W5(A),
together with the transitivity of ¢ | A, also implies that 75(A, z) has the same
value for every z € W5(A). We denote by 75(A) this constant value and call it
the (local) stable thickness of A. This is a strictly positive finite number and
depends continuously on the diffeomorphism, in the sense that if A, denotes
the analytic continuation of A for a diffeomorphism v which is C2-close to ¢,
then 75(Ay) is close to 75(A). Local unstable thicknesses T%(A,z) and 7%(A)
are defined in a similar way, when W"(A) has codimension one. In particular,
both the stable thickness and the unstable thickness are well defined if M is a
surface.

Now we outline the proof of our main result. We start by recalling the
main ideas in the proof of Newhouse’s theorem ([N1], [N2], [N3]), as presented
in [PT], and then describe the key ingredients involved in extending these
arguments from two to higher dimensions. This extension will be carried out
in the forthcoming sections.

Let us consider first the case of a homoclinic tangency (on a surface) in-
volving a thick horseshoe. By this we mean that the homoclinic tangency
is associated to a periodic point p belonging to some basic set A such that
T%(A) - 78(A) > 1. A crucial fact here is the gap lemma: if K;, Ky are Cantor
sets in the real line such that 7(K;)-7(K2) > 1 and K is not entirely contained
in a gap of Ky nor vice-versa, then K; N Ky # (). By considering the line £
of tangencies between the stable and the unstable foliations of the basic set A
and applying the lemma to £N'W"(A) and £ZNW?3(A), one concludes that there
exists a C?-open set of diffeomorphisms A/ (whose closure contains the diffeo-
morphism ¢ exhibiting the tangency) such that every ¢ € N has tangencies
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between leaves of the stable and unstable foliations of the analytic continua-
tion Ay of A. In particular, a dense subset of diffeomorphisms 1 € N exhibits
homoclinic tangencies associated to periodic points in Ay (e.g. to the analytic
continuation of p). We assume ¢ to be dissipative at the saddle-point involved
in the tangency, i.e. ‘det Dy (p)| < 1, k =period of p, and then the same holds
for 9 € N. Recall that, under this dissipativeness assumption, a small pertur-
bation of a diffeomorphism exhibiting a homoclinic tangency yields a periodic
sink and that, moreover, a sink is persistent through small perturbations of the
map. Thus, for each positive integer n, the subset of N consisting of elements
with n sinks is open and dense. Then, by a standard Baire category argument,
the elements of a residual subset of A display infinitely many coexisting sinks.

In order to prove Newhouse’s theorem in the general 2-dimensional case
we just assume the existence of a homoclinic tangency, not necessarily associ-
ated to a thick Cantor set. Then we proceed as follows to construct an open
set A as above. We continue to take the diffeomorphism ¢ to be dissipative at
the saddle-point p. Also, we may suppose that p belongs to a nontrivial hyper-
bolic basic set Aj: if this is not the case then we just perturb ¢ so as to create
transverse homoclinic orbits together with a new orbit of tangency associated
to p. We then consider 7%(A1) = 7%(A1,p) > 0 and further perturbations of
the diffeomorphism are to be taken small enough so that A; and 7%(A;) persist
essentially unchanged. The crucial step in the argument consists in showing
that any small unfolding of the tangency produces new horseshoes Ay with
arbitrarily large stable thickness, in particular satisfying 75(Ag) - 7%(A1) > 1.
In [PT] such Ay are constructed via a renormalization procedure as follows.
Let (¢u)ue(—ee)s Po = ¢, be an arc of diffeomorphisms generically unfolding
the tangency. Then one finds parameter values u, — 0 and small domains
Qn C M converging to the tangency, such that ¢, (Qn) N Qn # 0 and, up to
appropriate n-dependent rescaling of (), the return maps ¢} | @, converge
in the C? topology to the endomorphism ¢(z,y) = (1 — 2z%,z) as n — oo
(convergence holds in the C* topology, any k > 1, if the arc is taken to be C®).
From the fact that ¢ is conjugate to ¥(z,y) = (1 —2|z|,z) one concludes that
it has invariant hyperbolic sets with arbitrarily large thickness. Then we take
A2 to be the analytic continuation for ¢} | Q, of some of these ¢-hyperbolic
sets. One checks that leaves of W"(A;) and W®(A;) have some transverse
intersections with, respectively, leaves of W*(A3) and WY(A2). Finally, a het-
eroclinic tangency associated to periodic points p; € A1, pa € Az, may be
created, again by a small perturbation (thus with a negligible effect on Ay and
75(A2)). This is done through an auxiliary saddle P that also originates from
the 1-dimensional endomorphism: it exhibits a homoclinic tangency and its
stable and unstable manifolds have points of transverse intersection with the
dual invariant manifolds of points both in A; and As. Thus, arguing as in the
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FIGURE 1

particular case above, there exists an open set in Diff?(M) with persistent het-
eroclinic tangencies involving A1 and As and so also with persistent homoclinic
tangencies associated to A; or As.

Now we discuss in more detail than in the Introduction the main difficulties
in extending this result to higher dimensions. We also present in a more formal
way the ideas to overcome them. As we said before some of these ideas (like the
intrinsic differentiability of invariant foliations or the definition and invariance
of local thickness) are quite general and do not require the assumptions of
codimension 1 or of sectional dissipativeness.

It is by now classic that the unfolding of a homoclinic tangency of an
m-~dimensional diffeomorphism leads to the creation of nontrivial basic sets
([Sm]). It is easy to check that we can get these basic sets together with new
homoclinic tangencies outside them. Therefore, we may again assume that p
is part of a nontrivial basic set A1. However, it is not clear what 7%(A) should
be taken to mean now, since transverse sections to W"(A1) are no longer lines.
Another, perhaps even more serious difficulty arises from the fact that, W"(A1)
having codimension bigger than 1, the projections along its leaves may have
a bad metric behaviour: in general they are not Lipschitz but just Holder
continuous.

In order to bypass these difficulties we proceed as follows. The first step
is to show that the unfolding of a homoclinic tangency yields the formation,
for arbitrarily small values i of u, of other homoclinic tangencies associated
to periodic points p; of ¢z, such that

(I) D(pf; (Pa), £ =period of pj, has a unique weakest contracting eigenvalue
which, as a consequence, is a real number.
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Hence, we may assume right from the start that D(plg(p), k =period of p,
satisfies (I). What we do then is to construct A; embedded in the manifold M in
an infinitesimally 2-dimensional way, transversely to the strongest contracting
directions of Dy*(p). By this we mean that A; is taken such that at every
x € Ay, the intrinsic tangent space

IT,A; = span {v: there is (), € AN so that In 7T, ’U}
2 — 2|

(for simplicity we consider here M = R™) is 2-dimensional and, like the plane
generated by the unstable and the weakest stable directions, is (uniformly)
transverse to the codimension-two plane generated by the strongest contracting
directions. By abus de langage, we say that the angle (meaning its trigonomet-
ric tangent) between the above 2-planes is bounded from above. For such a A;
we prove that the projection maps m: 2gNWY(A1) — 31 NWY(A;) along leaves
of W¥(A4) are intrinsically differentiable, ¥, 31 being transversal sections to
leaves of W¥(A1). That is, there exists a continuous map ¥y N W%(A1) 5 z —
or(z) € L(R™ 1, R™ 1) such that for every x € 3o N W¥(A1), we have

7(z) — w(z) — On(x) - (z — 2)

[z = ]|

where 31 is identified with a disk in R™~!. Here and in what follows £(R?,R9)
denotes the space of linear maps from RP to R?. Then we define the local
unstable thickness of A1 at © € Ay by (A1, z) = 7(F(W(A1) N Xg), 7(x)),
where X is a transversal section to W¥(A1) at z and m: W¥(A1) N Xy — R
is any intrinsically differentiable map such that 07 |IT,(W"(A1) N ¥p) is a
bijection. Intrinsic differentiability of the unstable foliation allows us to check
that this definition does not depend on the choices of ¥y and T and to prove
that (A1, x) is strictly positive and independent of x € Ay. Also it varies
continuously with the diffeomorphism ¢ € Diff?(M). We then show that by
arbitrarily small perturbations (essentially not affecting A; and 7%(A1)) one
obtains a hyperbolic basic set Ay with codimension-one stable foliation and
large stable thickness, namely 7"(A1)7°(A2) > 1. This is done by a natural
extension to higher dimensions of the renormalization scheme mentioned above.
We also check that A; and Ay may be taken to be heteroclinically related
(existence of mutual transverse intersections between leaves of their stable and

— 0 as z = z with z € ¥y N W¥(A4),

unstable foliations) and, moreover, to exhibit a tangency g between W"(p1)
and W3(p3), p1 € Ay, po € Ay periodic points. We recall that the stable
foliation of A, being of codimension one, admits an extension to a C' foliation
F5(A2) defined in a neighbourhood of Ay (which we may assume to contain
q). An implicit function argument shows that there exists an intrinsically
differentiable map m1: W" (A1) N W5 (p1) — M such that 71(p1) = ¢ and each

loc

mi(z), x € W' (A1)N'W; (p1), is a point of tangency between leaves of W"(A1)

loc
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FIGURE 2

and F5(Az) (the image of 7 is the set of tangencies, see the figure). We let o
be the projection along the leaves of F5(Ay) onto Wi (p2), which we identify
with an interval in R. Then the theorem follows by an application of the gap
lemma to the Cantor sets 7o o w1 (W' (A1) NW5 (p1)) and WS(A2) NWE (po2).

loc loc

2. Intrinsically smooth maps

In this section we describe a notion of “intrinsic” differentiability of func-
tions on compact subsets of R™, closely related to Whitney [W], and we list
some of its basic properties. The main result is Proposition 2.10, on intrinsic
differentiability of invariant sections of (contracting) bundle morphisms.

Let X C R™ be a compact set and ¢: X — R" be continuous. We say
that ¢ is intrinsically C* on X if there exists a continuous map Ap: X x X —
L(R™,R") such that

o(z) — p(z) = Ap(z,2) - (. — 2) for all z,z € X.

Such a Ap (which is, in general, far from unique) is called an intrinsic deriva-
tive of . We say that ¢ is intrinsically C'*7 on X if it admits some y-Holder
continuous intrinsic derivative.

Ezample 2.1. Let ¢:U — R", U an open rectangle in R™, be a C! map.
Then | X is intrinsically C! on X, for every compact X C U: one may take
A(,D(.’I}, Z) = (A’L(p](xa z))l,j where, denOting y(z) = (wla s s Ly Bty e azm)a

() (4 i=1) )
pi () =iy )’ if 2 £ 2

Aipj(w,z) = { o

Z—“;’jf(y(“), it zi=2z
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If, moreover, ¢ is C? then this A is Lipschitz continuous and so ¢ is intrinsi-
cally C'*7 on X for every 0 < vy < 1.

Ezample 2.2. Let ¢:R? — R? be given by ¢(z,y) = (0z, py) with 1 <

o < pand let X C R? be defined as follows. Take K to be the standard middle-

third Cantor set and let f: K — K be the unique continuous map satisfying

f(0)=0, f(1) =1and f (3,1’%1 +4)=1f (3,(1%) + 3% for all p,q € N. This

is an intrinsically C! function on K with Af(k,k) =0 for all k € K. We take
X = graph (f) and then
o

Ap(z,2) = (pAf(M) 8) | denoting z = (k, £(K)), 2 = (£, (&),

is an intrinsic derivative for ¢ on X. Observe that |Ap(z,z)| = o for all
z € X; compare with the previous construction.

This second example illustrates the main point in the proof that Ay, as
constructed in Section 3, has intrinsically C' unstable foliation (Proposition
3.4): one uses the geometry of the domain to obtain an intrinsic derivative
with the smallest norm of the derivative of the map “restricted to factors”.
The proof of the following properties of intrinsically C' (or C'*7) maps is
immediate.

LEMMA 2.3 (Chain Rule). Let p: X — R"™ and ¢¥:Y — RP be intrin-
sically C* (resp. C'17) with o(X) C Y. Then 1o is intrinsically C* (resp.
C'*7) and one may take A(thop)(z,2) = Atp(p(z), ¢(2)) - Ap(z, 2).

LEMMA 2.4 (Uniform limits). Let a sequence pr: X — R™ of intrinsically
C! maps converge uniformly to p: X — R™ and admit intrinsic derivatives Ay,
converging uniformly to ®: X x X — L(R™,R"™). Then ¢ is intrinsically C*
and one may take Ap = .

LEMMA 2.5 (Restrictions). Let p: X; x Xo — R"™ and for 11 € X3
and o € Xo define maps @g,: Xo — R™ and ¢™2: X7 — R" by @g, (z2) =
p(z1,32) = 9™ (21).

(a) If ¢ is intrinsically C* then the same holds for every ¢, and %2,
with Ay, (T2,292) - vo = Ap((z1,12), (%1, 22)) - (0,v2) and Ap™ (z1,21) - v1 =
Ap((z1,22), (21, 22)) - (v1,0).

(b) If all oz, and ¢*2 admit intrinsic derivatives Apyz, and Ag®? which,
moreover, vary continuously with x, and xo then ¢ is intrinsically C' with
Ap((z1,22), (21,22)) - (v1,v2) = Ap* (21, 21) - v1 + Ay, (T2, 22) - V2.

Remark 2.6. The following simple remark will be used in the forthcoming
sections. Let ¢: X — R™ be Lipschitz continuous and U C X x X be such that
{llz = 2||: (z,2) € U} is bounded away from zero. Then there is a Lipschitz
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continuous map A: U — L(R™,R") such that ¢(z) — ¢(z) = A(z,2)(x — 2)
for every (z,z) € U.

Let us also observe that intrinsic differentiability is a local property. We
say that ¢: X — R™ is locally intrinsically C' (resp. C'*7) if every z € X has
a neighbourhood V,, C X such that ¢ |V, is intrinsically C! (resp. C117).

LEMMA 2.7. ¢: X — R™ is intrinsically C* if and only if there exists a
continuous map dp: X — L(R™,R™) such that

o 92) = 9(2) = 0p(@) - (2 = 2

2= ||£E - Z”
zeX

=0 for every z € X.

In particular, ¢ is intrinsically C* if and only if it is locally intrinsically C'.

Proof. The “only if” affirmative is proved by fixing an intrinsic derivative
Agp of ¢ and taking dp(x) = Ap(x,z). For the proof of the “if” part we take
Oy as in the statement and define : X x X — L(R™,R") by

0(z,2) - (z — 2) = p(z) — p(2) — Ip(z) - (£ — 2) and
O(z,z)-v=0 whenever v-(z —2z) =0.

Then 6(z, z) depends continuously on (z,z) € X x X and Ap(z,z) = dp(x) +
0(x,z) is an intrinsic derivative for ¢. The second part of the lemma is an
immediate consequence of the first one. O

Remark 2.8. Notice that, for a sequence (¢y)x converging uniformly to
¢: X — R", having dyj, converging uniformly to some ®: X — L(R™,R") is
not sufficient to assure that ¢ is intrinsically C'.

Remark 2.9. The same construction permits to check that ¢ is intrinsi-
cally C'*7 if and only if Oy as above can be found which is y-Hélder continuous
and, moreover, satisfies

lp(z) = (=) = dp(@)(z — ) < Clla = 2"

for some C > 0 and every z,z € X. In particular, by Whitney [W] (see also
[St]), any intrinsically C'*7 function, v > 0, admits a C'*? extension to an
open neighbourhood of its domain. However, in the present paper we make
no use of such extension, except for the simple one-dimensional situation in
Lemma 4.4 where an explicit construction is provided.

Proposition 3.4 will be proved by means of the following general result on
contracting bundle morphisms, which is a version for intrinsic differentiability
of Theorem 6.1 in [HP]. Let Xy C X be compact subsets of R™ and B = Bg(0)
be a compact ball in R™. Let f: X; — X be a homeomorphism and F: X X
B — X x B be a continuous map of the form F(z,v) = (f(z), Fy(v)). Assume
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that, for some ¢ < 1 and every x € Xy, F; has Lipschitz constant < ¢, so that
there is a unique continuous section : X — B satisfying o(f(z)) = F;(5(z))
for all z € Xy (F-invariance).

PropPoOSITION 2.10.
(a) Suppose that F and f~1 are intrinsically C* (on their domains) and there
is a < 1 such that

(2.1) |AFy (v, w) HAf (z,2)|| <a,

for any z,z € X, y € Xo and v,w € B. Then & is intrinsically C' on X.
(b) Suppose that F and f~! are intrinsically C**7 (on their domains) and
there is b < 1 such that

(2.2) |AF, (v,w)| - |Af " (z,2)| <b
for any z,z € X, y € Xo and v,w € B. Then & is intrinsically C'T7 on X.

Proof. Let S (resp. S) be the space of continuous maps o: X — B (resp.
Y: X xX — L(R™,R")), endowed with the sup-norm. Define 7: SxS§ — SxS§
by F(o,X%) = (¢/,%') with
(2.3) o'(z) = Fz(o(z))
(2.4) Y (z,2) = AFTO)N(Z,Z) o Af Yz, 2)+

+ AF3(0(Z),0(2)) 0 B(T,Z) o Af ™z, 2)

where, for simplicity, we denote * = f'(z), z = f (2). By construction
(recall also Lemma 2.5), if 3 is an intrinsic derivative for o then X' is an
intrinsic derivative for ¢’. Observe now that F is a fiber contraction:

(i) Given (01,%1),(02,%2) € S x S and denoting (0},%}) = F(oi, i),
1<i<2,and == f (x)

o} — a5 = sup | F(01(7)) — Fe(02(7))|| < esup|lo1(z) — o2(@)]
< clloy — oo (e <1);
(ii) Given o € S and ¥1,X9 € S and denoting (¢/,X}) = F(0,%;), 1 <7 < 2,
andZ = f 1(z), 2= f (2)
|21 - 25| < sup([|AFz(0(z), 0(2))] - |21z, 2) = 22(@:2)| |Af =, 2)]))

§a||21—22|| (CL<1).

It follows ([HP]) that F has a unique fixed point (7,%) and F*(0, %) —
(7,%) as n — 400, for every (o, %) € SxS. Clearly & = . Choose now oy € S
intrinsically C' and ¥y an intrinsic derivative of og. Writing F™(og, Zo) =
(on,2n) we have that 3, is an intrinsic derivative of o, for every n. Since
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(on)n — & and (), — 3, it follows from Lemma 2.4 that ¥ is an intrinsic
derivative for . This proves (a). Now we show that under the assumptions of
(b) % is y-Hélder continuous. Fix C' > 0 large enough so that AFy, z € X,
AFY, v € B, and Af ! are all (C,v)-Holder continuous. Let z1,z0,z € X.
Subtracting the equalities

(wi,2) = AF7E)(2;,2)0 A f ™ (21, 2) + APy, (5(%i), 5(2)) oL (i, 2) 0 A f (i, 2)
(recall (2.4)) we obtain
1E(21,2) = S(x2,2)[| < Clz1 =T - [|AF M| + [[AF|| - Cll21 — 227
+Clla(z1) —0($2)||7||E|| [V
+AR|IE(@1,2) - E(@2,2)] - |Af 7]
+[[AE - [IZ]] - Cllzy — 22|17,
where | AF"|| = sup,,,., |AF?(@, )] and | AF,]| = supy 0 | APy (v, )] Not-
ing that & is ||X||-Lipschitz continuous we get
15(21,2) = S(x2,2)|| < Cillar — 2o+
+ (AR AFTHDISG w1, fr2) = B0 e, f02)|
with C1 = (C|AfTH)H7 + CAF ||+ (CIASHHIEN) 7 +CIAE |Z]. By
recurrence and using the fact that
IAFAF T = 7 el < HAENIAF T lys — el
< bllyr — yel|”
we find, for every k£ > 1

k-1

£ (21, 2) = S22, 2)|| < CL QB lar — a7+
0

+ (AR AL NEIS(f 21, f52) = S(F Fae, £ F2)].
On the other hand

IAFAF 7 < max {JAF|, JAFJIAF 77} < max {c, b} <1

and so passing to the limit as k — +oo leads to
1521, 2) — S, 2)ll < O ZbZ 7

In the same way one proves that ¥ is v-Holder continuous in the second vari-
able. O

Remark 2.11. It is an interesting question whether the conclusion of
the proposition still holds under the slightly more general (and more natural)
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assumptions
|AF -1z (v, w)|| - |Af (z,z)|| <a<1, forallz € X,v,w € B
|AF 1z (v, w)|l - IAfHa, )| < b <1, forallz € X,v,w € B.

We close with another simple example which will be of future use.

Ezample 2.12. Tt is well a known fact that the map x:u — (I +u)™ ! is
defined and smooth on {u € L(R™,R™): ||u|| < 1}. In what follows we let Ay
be some (fixed) intrinsic derivative for x on, say, {u:||lu|| < 1/2}; observe that
we must have ||Ax(0,0)|| = ||[Dx(0)|| = 1. Let R > 0 be fixed and B = Bg(0)
denote the closed R-ball in L(R™,R™). Let also H € L(R™T" R™t") be fixed
and write H = (if Z) a € LR™ R™), b € L(R",R™), ¢ € L(R™,R),
d € L(R™",R™). Suppose || Ha*IH < 1/(2R), so that the graph transform
induced by H

T:h (c+dh)-(a+bh)! = (ca™ +dha™t) - x(bha™?)
is well defined on B. For hi,hy € B and g € L(R™,R"), we let
AT(hy, hy) - g = (dga™ 1) - x(bhia )+
+ (ca™ ! + dhoa™ 1Y) - Ax(bhia b, bhoa™t) - (bga 1)

Then, clearly, AT is an intrinsic derivative for I" on B. Observe that AT'(hq, ho)
is (uniformly) close to g — dga™" if ||b]| ||a™!|| is close to zero.

3. Intrinsically smooth foliations of basic sets

Let gp be a transverse homoclinic point of some hyperbolic fixed (or pe-
riodic) point p of a C? diffeomorphism @: M — M. Our goal here is to prove
that if go ¢ W5 (p), and under another mild (open and dense) transversality
condition to be stated below, there exists a hyperbolic basic set A; containing p
and gy and whose unstable foliation is intrinsically C!. For the sake of simplic-
ity we restrict to the case when ¢ is C2-linearizable on a neighbourhood of p.
Apart from the corresponding nonressonance assumptions no other conditions
on the eigenvalues of Dy(p) (or the dimensions of W"(p), W3(p)) are required
for this construction. Moreover, a dual result holds when gy ¢ W"(p).

Ezample 3.1. Let f:R?® — R3 be a C® diffeomorphism such that for
(z,y, z) close enough to the origin f(x,y,z) = (oz,A\y,0z) witho > 1> X >
6 > 0 and A > of. Suppose moreover that p = (0,0,0) has a transverse
homoclinic point of the form ¢y = (0,0,6), ¢ small. Let us parametrize a
segment y of W"(p) near gy by [—¢,¢] 2 z — (z,y(z),2(z)) and assume that
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y'(0) # 0. For n > 1 sufficiently large ©™ () intersects {z = a}, a small, in
the point ¢, = (a, \"y(ac™™), 0"z(ac™™)). On the other hand g, = ¢"(qo) =
(0,0,6™0) and so

H(jn B (Oé, Oa 0)”
Therefore, the projection from {z = 0} to {x = «a} along W¥(p) is not even

Lipschitz on {p} U {gn:n > 0}. This illustrates the main obstruction for an
invariant foliation of a basic set (with codimension bigger than 1) to be smooth.

A n
~ const y'(0) (E) — 00.

Starting our construction of Ay, let us denote by o1,... ,04, A1,---,As,
u + s = m, the eigenvalues of Dy(p), with |oy| > -+ > |o1| > 1 > |A\i] >
- > |As]. We define 1 < w < sby |Ai] =+ = [Ap| > [Awt1] = -+ >

|As| and let E® = EY @ E® be the invariant splitting such that Dy(p) |E"_"
has eigenvalues Aq,... , A, and Dy(p) | E®® has eigenvalues Ayi1,...,A;. We

choose C? linearizing coordinates (£1,...,&y,C1,...,{s) on U and, clearly, we
may assume that
(A1) Wig.(p) C{G1="--=( =0} and Wi, (p) C {& =+ =& =0}
(A2) EVY = {0} x R" x {0°~*} and the strong stable manifold (tangent to
ESs at p) satisfies Wlscs)c(p) C {51 == =0=--=(p= 0}

Up to a convenient choice of riemannian metric we have, for o = |o],

A= A1l = |Ay| and 0 = |Ay+1],

(B1) (o —¢)|lv|| < ||De(p)v|, for all v € EY
(B2) (A—¢) v < IDe(p)v|| < (A+¢)|lvl|, forallveEY
(B3) IIDp(p)vll < (0 +e¢)|lvll, forallveE®

where ¢ > 0 is fixed small enough so that 6 +2e < A —2e < A+ 2e < 0 — 2e.
(In the case w = s, i.e. if all contracting eigenvalues have the same norm,
Es = {0}, W*(p) = {p} and we leave # undefined). Fix points ¢ € W; (p)

loc

and r = ¢~V (q) € W .(p) in the orbit of go. Take V = V5 = {||(&1,... ,&)| <
0} x {|l(¢1,---,¢s)|| < p} where § > 0 is small and p > 0 is fixed in such a
way that {p,q} C int (V) C V C U. Let n = n(d) be minimum such that
r € int(¢™(V)). (We suppose & conveniently adjusted so that " TN (V) cuts V

in two cylinders as in the figure.) We let A = (1,5 "+ NkE(17) and then take

simply A = 7f+N ¢*(A). The next proposition expresses the crucial geometric
property of A: the intrinsic tangent space to W}, (A) at every z € Wi (A) is

contained in a (u + w)-dimensional subspace whose angle to R¥t% x {05~%} is
uniformly bounded from above. We denote by (v, vss) the components of a
vector v € R™ with respect to the splitting R™ = R*T% x RS,
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FIGURE 3

PROPOSITION 3.2. There are C > 0 and v > 0, independent of the n
chosen in the definition of A, and there exists some (C,~y)-Hélder continuous
map A: Wi (A) x Wi _(A) = L(R*T™,R*™") such that

|A(z, 2)|| < C and (z — z)ss = A(z,2) - (z — z)uw for all z,z € Wi .(A).

Proof. Let W = WY(A) NV, ¥ = "tV and Vi, V5 be the two connected
components (cylinders) of (V)N V. For k > 0 let U, C W x W be the set of
pairs (z, z) such that

(i) ¥7%(z), 9 ~*(2) belong to the same Vj;, j; = 1,2, for 0 < i < k;
(ii) ¥ *(z), ¥ *(z) belong to different V;’s.

Observe that W = o U is dense in W x W: in fact (z,2) € W x W\ W
if and only if  and z belong to the same local unstable leaf. We construct A
on each Ug, by recurrence on k, and then it extends from W to W x W by
uniformity. The definition of A | Uy is rather arbitrary. Clearly, there is K > 1
(independent of n) such that

[(z — 2)ss|| < K and [|(z — 2)uw|| > K forallz € V;, 2z€V;, i#j.

Therefore, by Remark 2.6, for Cy > 0 sufficiently large (depending only on K)
there are Cy-Lipschitz continuous maps Ag: Uy — L(R*T, R*™%) with norm
< Cp and satisfying

(x — 2)ss = Ao(z,2) - (T — 2)uw for all (z,z) € Uyp.
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FIGURE 4

We take A|Uj to be any such map. Let now (z,z) € Uy, k > 1, and denote
Z =1 1(x), Z=1"1(z). Observe that (Z,%) € Uy_1. We write

LTL
o — ( ] 19”) . Le LR RY™), TeL(RT,R™Y)

with (recall above) ||L7!|| < (A—¢)~! and ||T|| < (0+¢). Moreover, we choose
as in Example 2.1 a Lipschitz continuous intrinsic derivative

AquSllW ASS¢HW )
Ad =
¢ (Aqusss A

of ¢ = ¢ on a neighbourhood of {p,r}. Then A (n,¢) = Ad(¢p™n, p"(¢) o ™
defines an intrinsic derivative for 9 and so, denoting y = (¢"T, ¢"Z)

(-7; - Z)uw = Auw‘]ﬁuw(y) L™ (E - z)uw + Ass‘ﬁuw(y) ST - (E - E)ss

= (Auwﬁbuw(y) + Assqsuw(y) -T" - A(f, 2) : L_n) -L"- (f - E)uw

and analogously

(T — 2)ss = (Auwdss(y) + Assbss(y) - T" - A(Z,2) - L7") - L™ - (T — Z)uw-
We want to define
A(:C, 2’) = (Auw(]sss(y) + Assqsss(y)TnA(Ea E)Lin)o

o (Auwbuw (y) + Asspuw (V) T A(T, Z) L") "

so that, automatically, (z — 2)ss = A(z,2) - (£ — 2)uw- In order to show that
(3.1) makes sense we need the following generic (open and dense) hypothesis

(3.1)

(3.2) Dyw®uw(7) is an isomorphism.
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Here D denotes the usual derivative and (3.2) means that unstable/weak-stable
directions are not sent to strong-stable directions by ¢”. Notice now that
if § > 0 is small (and then n is large) Vi and V5 are small and so y =
(¢~ N(z),o N(z)) must be close to either (r,r) or (p,p). This means that
(up to reducing §) we may assume Auy@uw(y) to be close to Dyyouw(r) =
Agwbuw (1, 7) 0F Dywduw () = Auwduw (P, p). On the other hand, if n is large
we also have

v 0+e\"
Busbin ()T A2 )2 < comsCy (55

small. It follows from (3.2) that (Aywduw(y) + Assbuw(Y)T"A(T,Z) L") is
invertible and the norm of its inverse is at most

a1 = 1 + max {|| (Duwuw () "I, ||(Duwbuw (1) " [I}-

Moreover, the same argument also shows that if n is taken large enough the
norm of (Aywdss(y) + Agsbss(Y) T A(Z,Z) L") is at most

ag = 1 4 max {|[Duy s (p) [|; [Duwbss (7)]}-

This proves that (3.1) is indeed defined and gives ||A(z, z)|| < Co, as long as
we take from the beginning Cy > ajao. Successive repetition of this procedure
extends the definition of A to W = Uks>o U (keeping ||A]| < Cp) and now
the proof will be complete if we show that such A is (C,~)-Holder continuous
for some v > 0 and C > Cy. Let (x,2) € Uy and (#,2) € Uj with k < k.
Denote z; = ¥ *(z), Z; = U (%) and z; = ¥ *(2), for i > 0. If K < k then
zy and Ty belong to different V;’s and so ||A(zg,zk) — A(Zk, 2z1)|| < 2Cp <
20K ||z — & If, on the contrary, k = k then both (zy,z2) and (i, z)
belong to Uy and so, by construction, ||A(zg, zx) — A(Zk, 2x)|| < Co ||k — Zk||-
Now we proceed by induction: let 0 < ¢ < k£ and assume that

|A(@i+1, zit1) — A(@iv1, zip1)| < Cllzigr — Tiga|”
for some 0 < 4 < 1 and some large C > 0. Clearly,
=i — Zill > (D )" N2y — Figa -

On the other hand, expressing A(z;, z;) and A(Z;, z;) in terms of A(zi11, 2i+1),
A(Zi41,2i+1) and then subtracting we get

|A(zi, zi) — A(Zi, zi)|| < a3 ||z — Zi|| +

0+e\" -
tag |y | [ A@ir1, 2i41) = A@i1, 21l

with a3, a4 depending only on ¢ = V. Taking C' > 0 sufficiently large with
respect to az and diam (U) we obtain a3 ||z; — Z;|| < (C/2) ||z; — %;||”. On the
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other hand
6+e\" s
o (512 MAleiss,2a01) = Al s <
. 0+e¢ . " -
< CadlDp I ($EE- 1Dy 1) s — il

C .
< 5 llwi = a7,
as long as we fix v < log((A — €)/(0 + €))/log ||Dp!|| (and take n large
enough). Hence ||A(z;,zi) — A(Z,2)| < C||lz; — Z;]|” and by induction this
gives || A(z, z) — A(Z, z)|| < C||z — Z||. By symmetry, Holder continuity in the
second variable also follows. O

Remark 3.3. It is also clear from the argument that A(p,p) = 0, i.e.
IT,W} (A1) CE*@EY.

PROPOSITION 3.4. For Ay as above the map F:W"(A1) 3 z — T,W"(z)
is intrinsically C* on compact parts of W*(Aq).

Proof. Given any compact K C W%(A;) there is £ > 0 such that K C
U oF (W) where, as before, W = W¥(A)NV. Note that the pF+i (W), 1 <
i < n+ N, are two by two disjoint and also that F(p*t%(z)) = Dkt (z)- F(x)
for all z € WY(A;). Therefore, the proposition will follow if we prove that
the restriction of F to W is intrinsically C' and we proceed to do this. The
argument goes as follows. Let

_ (Dutha Dethy _ (Dudu Ditu
D¢_<Duws Dsws) and D¢_(Du¢s Dsqss)

denote the expression of the derivatives of 9 = "™ and ¢ = ¢” in the
splitting R™ = R* x R®. Note that for z € W

Dye) = Date") - (1)

with U € L(R*,R"), § € L(R*,R?) satisfying |[U™!|| < (0 —¢)™" and ||S]| <
(A + €). We use Proposition 2.10 with f = 4, Xo = W, X = f(W), B a
closed disk of radius R = ||Dugs|| ||(Du¢u)_1|| +1in L(R* R’) ~ R**® and
F: Xy x B — X x B being the graph transform induced by D: given z € X
and h € B

(3.3) Fy(h) = (Dus(z) + Dsps(z) - h) - (Dutbu(z) + Dsthu(z) - h)_l'
Observe that, as long as n is taken sufficiently large (by choosing § small),

[Dstpu(z) - b - (Dutpu(@)) || < RIDspull [[(Dug) | (A + )" (0 — )™ <1
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and, analogously, HDsws ) - h- (Dythu(z)) ™! || & 1. Therefore F (h) is well
defined by (3.3) and it belongs to B: || Fy(h || < ||Du¢s ) - (Dytpu(z)) M| +1 <
R. Clearly, F is intrinsically C! (it extends to a C' map on a neighbourhood of
Xy x B) and the combination of the constructions in Lemma 2.5 and Example
2.12 yields an intrinsic derivative
_ Af (.’131, .’132) 0
AF((.’L‘l, hl), (1‘2, hg)) =
AFhl (.’El,{L‘Q) AFwQ(hl,hg)

satisfying, for some C; > 0 (depending only on ¢),

’\+E> for all y € X and all hy, hy € B.
13

|AFy(h1,ho)|| < Cy (

It is also clear that f~! is intrinsically C* but choosing Af~! in such a way that
the hypothesis of Propositin 2.10 holds is somewhat delicate. Using Proposition
3.2 we may write for z,z € X

fHz)—fH(z) =
= (/7@ = @), AU TH2), FHED @) = F7H(2))uw)
= (L7(¢7 (=) = ¢7(2)uw, AT (@), FTH) LT (@7 () — 67 (2) uw)-
Therefore, fixing A¢~! an intrinsic derivative for ¢!,
L= 0
Af~Hz,2) = D¢ (2, 2)
A(f M=), f M) - L7 0
is an intrinsic derivative for f. Recall moreover that ||L 1H < (A—¢) L. Thus,

for some C5 > 0 depending only on Cj and ¢, ||Af T,z H < Cy(A—¢) ",

for all 2,z € X. In this way, having fixed € > 0 and § > 0 small enough

(34)  [|AF,(hy, )|l |AF M, 2)]| < C1Co (&Y <1
’ A= A—¢e)og—¢)) — 2

for all y € Xy, z,z € X and hy, hy € B. This proves that the invariant section

& of F is intrinsically C' and the proposition follows since clearly T, W!(z) =

graph (6(z)) for every x € W. O

PROPOSITION 3.5. Let z € WY(Ay), %o and %1 be (small) C' sections
transverse to W' (y) and m: g NW" (A1) —» 1 NWY(A1) denote the projection
along the leaves of W*(A1). Then 7 is intrinsically C'.

Proof. Fix coordinates (1,{) = (n1,--- ,Mu;C1,--- ,(s) such that ¥y C
{n=1(0,0,...,00}, X1 C {n=(1,0,...,0)} and each leaf intersecting 3¢ in a
point (0, z) can be written as the graph of a function ( = G(n;z). Then

oG .
graph (a—n(n;Z)> = T(n.amz) W" (1, G(n; 2))
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and so, by the previous proposition, (n, G(n;z)) — %—g(n; z) is an intrinsically
C! map. For —e < t < 1+¢ we define g(t,2z) = G(t7; z), where 7 = (1,0,... ,0),

and then p 56
; ; 49 . N _ 94 (0=,
H: (tg(t:2)) = 51 (52) = 37 (17:2)

is intrinsically C!. Notice that 7(0,z) = (1,G(;2)) = (1,9(1;2)). We fix
an intrinsic derivative AH of H and define, for each ¢, AH((1,(2) - v =
AH((t,¢1), (t,¢2)) - (0,v) (recall Lemma 2.5). For (0, z1), (0, 22) € ZgNW"(A1)
we denote by I'(¢; 21, 22) € L(RY,R") the unique solution of the initial value
problem o
G (t 21, 22) = AHy(g(t;21), g(t; 22)) - T'(t; 21, 22)
{ F(O;zl,ZQ) =id

Then (z1,22) + ['(t;21, 22) is continuous and we claim that it is an intrin-
sic derivative for z — g¢(t;z). In fact, putting 0(t) = g(t;21) — g(t;22) —
['(t; 21, 22) (21 — 22), we get

{ B(1) = AHy(g(t; 1), 9t 22)) - 0(2)
8(0) = 0

Hence 6 is identically zero, which proves the claim. In particular (z1,22) —
['(1; 21, 22) is an intrinsic derivative for z — ¢(1;z) and so 7 is intrinsically C*,
as we stated. O

Remark 3.6. In particular 7 is bi-Lipschitz continuous and so it preserves
metric invariants such as Hausdorff dimension or limit capacity.

Remark 3.7. If one assumes that ¢ is of class C? then stronger conclusions
follow from the arguments above: using Proposition 2.10 (b) one gets that
F:WU'(Ay) > z — T,WY(z) is intrinsically C'*7 for some v > 0 and so the
same holds for the holonomy maps m: Xg N W"(A1) = 31 NW"(A;) of W¥(Ay).
On the other hand, this last conclusion will also be obtained (in the case w = 1)
in Proposition 4.3, by a different approach which applies also if ¢ is just C2.

4. Thickness in higher dimensions

Let A1 be as constructed in the previous section. Here we assume that
w = 1, i.e. Dp(p) has a unique (necessarily real) weakest contracting eigenvalue
A = A1. Then we consider m: A; NW5__(p) — R to be an arbitrary intrinsically

loc

C' map such that ker (Am(p,p)) does not contain IT,(A; N W (p)) = EV

(i.e. Am(p,p)|EY is bijective) and we show that 7(7(Ay NW5 . (p)), w(p)) is
independent of the choice of 7. We call

(A1, p) = 7(7(A1 N Wie(p)), m(p)), any m as above,
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the local unstable thickness of A; at p and prove that it is strictly positive
and varies continuously with the diffeomorphism: a C2-small perturbation of
¢ yields a small variation of 7%(Aq,p).

We keep the notations of Section 3. Let myw: A1 NWF (p) — R be the re-

loc
striction to A;NW} . (p) C {0%} xR? of the projection ({1, .. , &y, C1y- -+ 5, Cs)
(1. We claim that 7wy is a homeomorphism onto its image KV and more-
over 7! is intrinsically C'*” on KV. In fact, by Proposition 3.2, for every

z,z € Ay "W} .(p) we have
(z — 2)ss = Az, 2) - (0%, 7y (7) — 7w (2))
and so (for C > ||A|| as in the proposition)
[T (@) — mw(2)] < |z — 2| <(C+1) [y (z) — 7w (2)] -
This proves that 7 is invertible and ;' is Lipschitz continuous. Moreover,

A (s,1): R 3 v (v, A(m ! (s), 75 (1) - (0%,v)) € RS

W

defines a Holder continuous intrinsic derivative for 1.

Let now m: A1 N W% (p) — R be an intrinsically C! map such that the

loc

kernel of A (p,p) does not contain IT,(A1 NW3,.(p)) = graph (A(p,p) | {0*} x
R). Then 7o ! is intrinsically C' with A(w o 7;1)(0,0) = An(p,p) -
Am;1(0,0) # 0. Since w(A; NWE _(p)) = (7 o m,')(K"Y), we conclude that

T(7(A NW3,.(p), 7(p)) = T(K™,0), as a consequence of the following simple
result.

LEMMA 4.1. Let K C R be a Cantor set, y € K and g: K — R be an
intrinsically C* map with Ag(y,y) # 0. Then 7(g(K),g(y)) = 7(K, ).

Proof. Fix 6 > 0 small and take € > 0 such that
(4.1) |Ag(z1,2z1)] < (14 6)|Ag(ze,22)| for all z1,z9,21,20 € [y — &,y + €.

Clearly, g is a homeomorphism on [y — ¢,y + €] if ¢ is small enough. Hence,
given a Cantor set L C [y — ¢,y +¢], U = (Up)n is a presentation of L if and
only if g(UU) = (g(Uyp))n is a presentation of g(L). From (4.1) we get that for
every u € Uy, n > 1,

T(9(L),g(U), g(u)) < (1+68)7(L, U, ).

Therefore, 7(g(L)) < (1 + §)7(L) for every such L and so 7(g9(K),g(y)) <
(14 6)7(K,y). Since § is arbitrary we conclude that 7(g(K), g(y)) < 7(K,y)
and the reverse inequality is proved in the same way. O

For future use, let us state also the next result, which follows from the
previous properties by well-known arguments: part (a) is a direct consequence
of Proposition 3.5; for part (b) one also uses the transitivity of ¢ |A;.
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PROPOSITION 4.2.

(a)Let g € WY(p), & be a C* section transverse to W' (p) at the point q and
mWU(A1) NS = R be an intrinsically C' map such that IT,(W*(A1) N T) is
not contained in ker (An(p,p)). Then 7(m(W"(A1) N E),w(q)) = 7(A1,p).

(b) More generally, given z € W¥ (A1), ¥ a transverse section to W*(A1) at z
and m: W*(A1) NE — R submmersion with IT,(W*(A1)NX) ¢ ker (An(p,p)),
then 7(r(W(A1) NX), 7(2)) is equal to T%(A1,p).

Our strategy to prove that 7%(A1,p) = 7(KVY,0) is positive is to write
KV as an invariant set of some C'*? expanding map, so that the reasoning in
Proposition 6 of [N3] (in the language of [PT, Ch.IV]) can be applied to it. For
the construction of this map we proceed as follows. Let W be the connected
component of W*(p) NV containing p. By construction, for every z € A; the
connected component of WY(z) NV containing z intersects W in a unique
point, which we denote by ms(z). Observe also that every W, = {z:49(z2) €
V for 0 < j < £ and 9¢(z) € W}, ¢ > 1, has exactly 2¢ components, denoted
by Wi, 1 <5< 2¢. For each £ > 1 we define a map

-1
w -

g K¥ — KV by gg=myomotpy ‘om

Clearly, g, is intrinsically C' and it follows from the next result that it is even
intrinsically C!117.

PROPOSITION 4.3. There are C' > 0 and v € (0,1) such that for every
£>1and1l < j < 2 the map mg|(Wip N A): W, N Ay — W admits a
(C,v)-Hélder continuous intrinsic derivative.

For the sake of clearness we postpone the proof of this result to the end
of the section. Recall also Remark 3.7.

Observe that g, maps K% onto KV in a 2¢ to 1 way: foreach 1 < j < 2¢and
Kjo = mw(pt(W; N A1) the map g¢ | K Kjp — KV is a homeomorphism.
It is also easy to check that the Kj,, 1 <j < 2¢, have their convex hulls K .
two by two disjoint. Moreover, for £ > 1 large enough every (g¢ | K ) is an
expansion:

(4.2) |Age(t,r)|| > 2 (say) for every t,7 € K.

We now fix £ > 1 so that (4.2) holds and denote g = gy and K; = K, ;. At
this stage the fact that KV has strictly positive local thickness can be proved
just by translating, in a more or less straightforward way, the arguments in
[N3], [PT, Ch.IV] into our language of intrinsic differentiability. Alternatively,
one can show that g can in fact be extended to a C'*7 map G defined on a
neighbourhood of KV, which is easy to prove in this one-dimensional setting.
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LEMMA 4.4. Let K C R be a Cantor set and g: K — R be intrinsically
C! (resp. intrinsically C'T7). Then there erists G:R — R a C! (resp. C'17)
extension of g.

Proof. Fix 6:[0,1] — [0, 1] a C* function such that §(z) = 0 and 0(1—z) =
1 whenever 0 < z < 1/3. Let also ag = inf K, by = sup K. We set: G(z) = g(z
if z € K;

G(x) = (9(a)+Ag(a,0) (& — a)) (1 9 (”b” :Z)) +

+ (g(b) + Ag(b,b)(z — b))0 (:Z :Z>

if z belongs to a gap (a,b) of K; G(z) = g(by) + Ag(bo,bo)(x — bo) if z > by
and G(z) = g(ag) + Ag(ag, ag)(z — ag) if x < ag. We also define H: R — R by
putting: H(z) = Ag(z,z) if z € K

H(z) = Agla, a) (1 ~0 (Z’:Z)) + Ag(b,b)0 (fg - a) +

—a

0 (222 (8000.0) - g0+ (22 (@g(6.0) - Ag(ar))

if x € (a,b), a gap of K; H(z) = Ag(bg, by) if z > by and H(z) = Ag(ag, ap) if
x < ag. It is a simple exercise to check that H is continuous (C7 if Ag is C7)
and G'(z) = H(zx) for every z € R. O

This means that KV is a dynamically defined Cantor set, in the same
sense as in [PT, Ch.IV] and our claim that 7(K%,0) > 0 follows.

Let us now observe that (K%, G), as we constructed it, varies continuously
with the diffeomorphism ¢. In order to explain this affirmative we let ¢ be
a diffeomorphism C2-close to ¢ and denote by K (), K;(3), kj(é) and G(@)
the objects obtained by performing the above construction for ¢ (note that we
may, and do, take £(¢) = £ if ¢ is close enough to ¢). Then it is straightforward
to check that (KV(@), G(9)) is close to (KW, G) in the sense that

(a) corresponding endpoints of K;(¢) and K; are close;
(b) G(®) is C'-close to G and their derivatives have nearby Holder constants
(see also the proof of Proposition 4.3 below).

It follows, see again [PT, Ch.IV], that 7(K"Y(g),0) is close to 7(K%,0) and
this proves that the local unstable thickness 7%(A1, p
of the diffeomorphism, as we claimed.

) is a continuous function

We close this section by presenting the proof of Proposition 4.3.

Proof. We keep the notations from the proof of Proposition 3.2. Moreover,
we use C and v as generic notations for constants (C > 0 large, 0 < v < 1)
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depending only on the difftomorphism ¢. Let & = {S(z):z € A;} where
S(z) denotes the connected component of W3(z) NV containing z. Note that
Wje € Sforevery1 <j <2¢£>1. For §,5 € Slet (S, S; -): SNA; — SNA,
be the projection along the leaves of W"(A1), inside V. By Proposition 3.5
(S, S; -) is C-Lipschitz continuous. On the other hand, as observed before,
{l|lz = 2||: (=, 2) € (SxS)NUy, S € S} is bounded away from zero. Hence (see
Remark 2.6) there is a C-Lipschitz continuous map A(S,S; -, -): ((S N A1) x
(SNA1))NUy — L(R*,R?) such that

(4.3) 7(S,8;z) — 7(S,8;2) = A(S, S: 2, 2) - (z — 2)
for every (z,z) € ((SNA1)x(SNA1))NUp. Here and in what follows we identify
each S € § with its image under the projection (§1, cos &us Cutts e oe 1 Cm) —

(Cut1s--- Cm). We write the expression of A(S,S;z,z) with respect to the
splitting R®* = R! x R*~!

A(S, S;z,2) = (AWW AWS) (S,8;z,2)
ASW SS
and then define
Ay = Ay + Ays - A(z, 2) 0
A(S,S’;.’L‘,Z): (S,S;I,Z),
Ag = Agw + Ags - Az, 2) 0

where A(z, 2) is as given by Proposition 3.2. Then A(S, S; -, -) is (C,~)-Holder
continuous and satisfies (4.3). Moreover, A, is uniformly bounded away from
zero and infinity, as a consequence of that same proposition. We also need
some information on how A(S,S; -, ) varies with $, S € § and this is easy to

get. Let us denote dist (S,S) = supgegna,
that A may be taken such that |A(S, S;z,z) — id|| < Cdist(S, S) and so
(4.4) AW(S, 8z, 2) — 1‘ < Cdist (S, §)

for every z,z € SNA;. Note that if S € S then 9(S) C S’ for some S’ € S. We
let Aqﬁ( -, ) be a Lipschitz continuous intrinsic derivative for 9 and denote by
Ay(S; -, ) its restriction to (SNA;) x (SNA1). Through the above identifica-
tion we may think of Ay(S; -, -) as taking values in £(R*,R?). Proceeding as
before for A we construct a new, (C,y)-Hélder continuous, intrinsic derivative
AY(S; -, -) for ¢ | (S N A1) having the form
Ay 0
AY(S;z,2) = <A¢s O) (S;z,2)

with respect to the splitting R®* = R! x R*~!. In the same way we obtain a
(C,~)-Holder continuous intrinsic derivative for 9= | (4(S) N A1)

A -1
aui(sia ) = (gt o) (52

n(S,8;x) — xH It is easy to see
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Observe that Proposition 3.2 implies that Ay is uniformly bounded away
from zero and infinity; moreover, independently of all the choices, we have

A (S5 9(x),4(2)) - Ahe(S; 3, 2) = 1 for every z,z € SN Ay.
We also point out that this construction yields

(4.5) Atpy(S; (S, S; ), 7(8, S; 2)) — Ahy(S; z, 2)| < Cdist (S, 8)”

for every z,z € SN A;. Now we fix So,Sp € S and construct an intrinsic
derivative Am(Sg, So; -, +) for (Sp, So; ) in the following way. For (z,z) €
((SoNA1) x (SoNA1)) Ny we set simply Ax(Sy, So; x, z) = A(So, So; , z). Let
now (z,z) € ((SoNA1) X (SoNA1))NUg, i.e. k> 11is the minimum integer such
that (¢ ~*(z),9¥*(2)) € Uy. We denote & = n(Sy, So; ), z; = %~ (x),&; =
¥ ~9(%) and analogously for Z, z; and Z;, j > 0. We also let S; = S(z;) = S(z;),
S; = 8(i;) = S(2j), 0 < j < k. Then we define
An(So, So; 2, 2) = AP* (S &, 25) - A(Sk, Sk; zh, z1) - A~ (Sy; 7, 2).

We are left to check that with this definition A7(Sp, Sp; -, -) is (C,~y)-Holder
continuous: we consider z, z, w € Sg N A1 and prove that

(4.6) An(Sy, So; x, z) — An(Sy, So; z, w)| < C'lz — w|”

considering (z,z) € Uy, (z,w) € Uy and (z,w) € Up, k,¢,m > 0. Clearly,
J > dist (S, Sj) is exponentially decreasing and j — |z; — w;| is exponentially
increasing, at least while j < m. It follows that, if |z — w| is small enough
depending on D = sup{dist (5’,5"): 5", 8" € S}, then there exists s < m such
that

(4.7) |zs — ws| > dist (S, Ss).

Note that for the purpose of proving (4.6) it is no restriction to assume that
|z — w]| is small with respect to D and we do so from now on. We fix s minimum
satisfying (4.7) and observe that there is A\ < 1 (depending only on ¢) such
that

(4.8) dist (S;,8;) < CN 7% |z —w|" for j > s

(4.9) |zj —w;| < CXNT |z —w|” for 0 < 5 < s.

This is an easy consequence of the definition of s and the exponential variation
of dist (S;,5;) and |z; — w;| mentioned above. Since the 7(S;, S;; -) admit a
uniform Lipschitz constant, we also get that

(4.10) |Zj —wj| < CXNI |z —w|” for 0<j <s.
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Now we take 7 = min{k, ¢, s}. By construction

~ Anmy, 0 ~
An(Sy, So;x,2) = <A7:SV 0) (So, So; z, 2)

with Amy, (So, S0 %, 2) = Ay (Sr; Ero Zr) - Am(Sr, Sri r, 20) - AYGT (Sri 2, 2),
and analogously for (z,w). Then

AWW(SO,§0;$,Z) B AWW(ST,S'T;wT,zT)

AWW(SO,SO;-Taw) AWW(ST,ST;‘TT)wT)
T Ay (855 i, Wg) - Aty (Si; 74, %)
From (4.9), (4.10) and the uniform Hélder continuity and boundedness of
Aty (Si; -, - )y Athyw(Si; -, +) it follows that

(4.11) |R(z,z,w) = 1| < Clz —w]|”.

-R(z,z,w), where

We claim that

A7Tw(Sra S'r; Ly, zr) _

(4.12) :
Aﬂ'w(Sra Sr; Tr, w?‘)

1| <Clz—w|".

Note that this implies (4.6) in an easy way. In fact, from (4.11), (4.12)
we get |A7rw(So,5’0;a:,z) - AWW(S(),S();.’L',’ZHH < Clz — w|” and then, since
Amg(So, So; z,y) = A(E,§) - Amw(So, So; x,y), for y = z or w, the same holds
for Amg. Therefore, the proposition will follow once we have proven this claim.
Suppose first 7 = k; then, because r < s < m, we also have r = £. It follows
that

Ay (Sry Sri Tr,y) = Aw(Sr, St Tr,y) Y = Zr OT Wy,

and so (4.12) is a direct consequence of (4.9) and the fact that Ay, is Holder
continuous and bounded away from zero and infinity. Let now r = s. Once
more by definition,

5 A’(/)W(Sz, Zi, zl)
Aﬂ-w S 75 7-’E 7Z = A S 7S ’:L. 7Z AYAS:: T 2:)
( T r r 7‘) ( k k k k H AQ/]W(S'U:L'Z’ZZ)

Note that dist (S;,S;) < o"dist (S, S,) for r < j < m and so, using (4.5),

H A?ﬁw Szaxz,zz)

—1|<Clz—wl|".
A?ﬁw Sufvzazz) - | |

r+1

On the other hand, by (4.4) and (4.8),

w(Sks Sk; zhy 21) — 1| < C'lz —w|”

and this proves that ‘AWW(ST,S'T;xTzT) — 1‘ < C|z —w|”. In this same way
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one shows that ‘AWW(ST, gr;xr,w,«) —1| £ C|z —w|” and then (4.12) follows
immediately. O

5. Unique least contracting eigenvalue

Let (¢,), be a C? one-parameter family of diffeomorphisms which at y =
0 goes through a homoclinic tangency associated to a hyperbolic fixed (or
periodic) point p of ¢g. We prove here that under a few generic assumptions
to be stated below such a family exhibits, at ji; — 0, homoclinic tangencies
associated to periodic points p; — p such that

(I) D(pf;jj (P;), £; =period of p;, has a unique weakest contracting eigenvalue
which, therefore, is a real number.

A dual statement, for expanding eigenvalues, can be obtained in the same way.
No assumptions on the dimensions of W"(p) or W*(p) are required in this
section.

Observe first that, generically, either Dy (p) satisfies the property in (I)
or else

(IT) Dyo(p) has exactly two weakest contracting eigenvalues and these are
complex conjugate numbers.

In the first case there is nothing to prove, so we assume from now on that
(IT) holds. Using notations analogous to those of Section 3, this means that
w =2, A\ = Xe’®, Ay = Xe™™ with A > |A3| and ¢ € R\ {kn:k € Z}. For
the sake of simplicity we assume that there are C? u-dependent coordinates
(&1,--+ &, €1y - -+ ,(s) linearizing the ¢, for || small, on a neighbourhood U
of the analytic continuation p, of p. Moreover, we may take these coordinates
to satisfy conditions (A1) — (B3) of Section 3. Here we may even assume
that Dy, (py) |EY is conformal with respect to the euclidean metric induced
by the coordinates (1,(2. We also suppose that the tangency is quadratic and
the family (¢,), unfolds it generically. Then we may take, say for p > 0,
points g, € W} _(pu), ru € Wi,
gofy (ru) = qu for some fixed N > 1, rg,qo belong to the orbit of tangency
and 7,,q, are points of transverse intersection of W"%(p,), W*(p,) for every
g > 0. Recall, moreover, that W"(p,) and W*(p,) also have, for a sequence
of parameter values u = p; — 0, points of tangential intersection. For each
fixed p = p; and every sufficiently large n > 1 we may take, as in Section 3, a
neighbourhood V' = V'(j, n) of {p,, g} such that A(j, n) = Npez ¢h™ " (V) is
a (pﬁ"’N -invariant hyperbolic set and goﬁ"’N | A(j,m) is conjugate to the 2-shift.
Then, given any periodic point p € A(j,n), one may find parameter values

(pu) depending continuously on y, such that
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fi arbitrarily close to u; for which ¢; has homoclinic tangenciesassociated to
(the analytic continuation of) p. We consider p = p(j,n) to be the unique
gaLH'N -fixed point in A(j,n) \ {pu}. Clearly, the orbit of p passes arbitrarily
close to p, if j and n are sufficiently large. Therefore, in order to conclude our
argument it is now sufficient to show that

PROPOSITION 5.1.  Given j > 1 (large) there exist arbitrarily large values

of n = n;j for which DgoZ’LN(ﬁ) has a unique weakest contracting eigenvalue.

Proof. For the sake of notational simplicity we continue to denote p = p;
and p = p(j,n). We make use of the following elementary fact whose proof we
omit.

LEMMA 5.2. Let P € GL(R?), Q € GL(R?) satisfy |P7!|| |Q| < 1. Let

A B
= p q
L (C D) € GL(RP? x RY) and denote

- - n
L—lz(é g) and Ln:(g g) (13 é)”)’ n > 1.

Assume that A € GL(RP) (and so also D~ € GL(RY)). Then there are ng > 1
and Cy > 0, depending only on (HP_1|| nel, L, ||L_1H, ”A‘1|| , ||(D_)_1H),
such that for every n > ng there exist linear maps f:R? — R, ¢:R? — RP
satisfying

(@) 7] < Co and gl < Col||P~1] QU™

(b) graph(f),graph(g) are L,-invariant.
Moreover, given 6 > 0 there is n1 = ni1(6) > ng such that for n > nq

(c) ||(7Tan7rJTI)P_" — Al < 6 and ”Q"(Wnglﬂg_l) —D~|| < 6, where
wr:graph (f) — RP and mg:graph(g) — R are the canonical projections.

Let then
Auu AllW AUS Au 0 O
Do) = | Awu Aww  Aws , Do,(p)=| 0 Ay 0
Asu Asw Ass 0 0 AS

be the expressions of Dgofy and Dy, (p) with respect to the splitting R™ =
R* x R? x R®*2 = E! x EV x E®. We also denote

Auu AllW N AIYu AIIW AITS
Al-t = ( A A ) and D‘P; = Av;u AVT/W Av;s
R A Asw A

and assume the generic property (cf. (3.2))

(5.1) A,=o(ro), and so also A (= 0,qp), is an isomorphism.
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Then a first application of the lemma yields, for 7 and n sufficiently large,
linear maps fuw: R* x R? = R*72, f:R*™2 = R® x R?, whose graphs are

invariant under D" (5) and satisfy
A’n
(i) DcpZ*N(ﬁ) | graph (fuw) is conjugate to K; ( 0“ A”) for some iso-
w

morphism K; € GL(R* x R?) which is close to A“(go;N(ﬁ)) and so also to
AMZO(TO)Q

(ii) Dgo,:(m'N) (p) | graph (fss) is conjugate to A;" K>, some Ky € GL(R*™2)
close to A (p) and therefore also to Ag(p = 0,qp)-

Observe, on the other hand, that A,u(r,) is an isomorphism, since W"(p,,)
and W5(p,) intersect transversely at r,. Then, by using the lemma again,
we obtain linear maps f,:R* — R2, f,:R? — RY such that the pre-images
T (graph (fu)), Tow (graph (fi)) of their graphs under the canonical projec-
tion Tyy: graph (fuw) — R* x R? are D(pﬁ“v (p)-invariant subspaces satisfying

(iii) D¢Z+N(ﬁ) | T (graph (f4)) is conjugate to K3A™ for some K3 € GL(RY)
close to Ayu(ry);

(iv) D<p,:(n+N) (p) | Ty (graph (fi)) is conjugate to A" Ky for some Ky €
GL(R?) close to Agy(qu);
(Agys--- » Ay denoting the entries of A;l). Altogether, and recalling prop-
erties (B1) — (B3) of Section 3, this implies that for j > 1 sufficiently large
there is ¢ > 1 such that for n > j the isomorphism DgoEfH_N) (p) has exactly

(a) u eigenvalues with absolute value 2~c*1(0 —e)™

(b) 2 eigenvalues, say A1, Ao, with |Ar],[A2| € [c71(A — €)™, (A + €)™];

(c) (s —2) eigenvalues with absolute value < ¢(6 + ¢)".

This reduces the completion of our argument to showing that there exist ar-
bitrarily large values of n for which |A;| # |A2|. Note first that Ay (s = 0,70)
is not an isomorphism, since W"(p), W5(p) are tangent at ry. We assume this
tangency to be quasi-transversal, meaning that dimker (Ay,(x = 0,79)) = 1.
Since ker (Ayy,) = Awu(ker (Ayy)) and ker (Ayy) = Agy(ker (Ayy)), it follows
that ker (Ay, (¢ = 0,qp)) is also 1-dimensional. We fix {v;,v2} to be a ba-
sis of R? ~ 7_!(graph (fy)), orthogonal with respect to the euclidean metric
induced by the coordinates (1,2 and such that ve € ker (A, (1 = 0,q)).
Referring always to this metric, we denote by C(v, @) the closed cone in R? of
amplitude o > 0 around the direction of a (nonzero) vector v. By construc-
tion K()(C(’Ul,STI'/].S)) C C(ﬁo,ﬂ'/lS), with 99 = A;VW(,U, = O,QQ) vy, if Ky is
sufficiently near Ay, (4 = 0,qo), i.e. if j and n are large enough (recall (iv)).
Also, since Ay, is conformal, AZ"(C(9g, 7/18)) = C(vp,7/18), 0, = AL - Dp.



30 J. PALIS AND M. VIANA

On the other hand, since the eigenvalues of Ay, are not real, there exist in-
finitely many values of n for which o, = AL" - 99 € C(v1,67/18) and so
C(vp, w/18) C C(vy, 7w/18). This means that for such values of n, A" Ky has
a strictly invariant cone A" Ky(C(v1,87/18)) C C(v1,7n/18) and so its two
eigenvalues (A;)~' and (Az)~! must have different norms. This completes our
proof. O

Remark 5.3. Tt is also clear from (a)-(c) that dim W*(p) = dim W*(p),

*+ =uor s, and D!tV () is sectionally dissipative if Dyg(p) is.

6. Renormalization and thick basic sets

Let ¢y be a C? diffeomorphism with a (nondegenerate) homoclinic tan-
gency associated to a fixed (or periodic) point p. We suppose here that
dim W"(p) = 1 and Dyg(p) is sectionally dissipative, i.e. the product of any
two of its eigenvalues has norm less than one. The main goal is to show that
the unfolding of such a tangency by a generic one-parameter family of dif-
feomorphisms (¢,), yields the formation, for arbitrarily small values of p, of
hyperbolic basic sets Ao = As(p) having (codimension one stable foliation and)
arbitrarily large stable thickness 75(A3). For future use we also check that

() A; and As are heteroclinically related, i.e. there exist some mutual
transverse intersections between their stable and unstable leaves;

(B) there exist periodic points p; € A1, po € Ay such that W%(p;) has a
nontransverse intersection with W¥(p2).

Actually, for the proof of («), (8) we consider only the case when Dypy(p) has
a unique least contracting eigenvalue. We suppose in addition that, besides
the homoclinic tangency the point p also has transverse homoclinic orbits and,
moreover, these involve the same separatrix of W¥(p) (resp. the same con-
nected component of W3(p) \ W3 (p)) as the tangency. Since any diffeomor-
phism with a homoclinic tangency may be approximated by another satisfying
these conditions, they represent no restriction for the purpose of proving our
main result.

For the construction of Ay we first deduce a higher-dimensional version
of the renormalization scheme in [TY], [PT, Ch.ITI]. The basic idea is to show
that, under a few generic assumptions, the unfolding of (¢,), contains the
unfolding of families of nearly quadratic diffeomorphisms. More precisely, one
shows that restrictions of iterates of ¢, to appropriate domains close to the
tangency have the form

(z,Y) = (2% + v,24) + (v, 2,Y) for some A € R™ ! and ¢ C?-small,
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when written in conveniently chosen coordinates (z,Y) € R x R™~! and pa-
rameter v.

Let us describe this construction in more detail. We assume once more
that the ¢,, p small, admit C? p-dependent linearizing coordinates (£, Z) €
R x R™~! on a neighbourhood of p. We fix these coordinates in such a way
that W} (p,) C {¢ = 0} and W} (py) C {#z = 0}. The assumption on the
eigenvalues of Dyg(p) means that we may choose the norm in R™ to be such
that

6.1 ou| - |ISul| <1 (for every small
I I

where o, is the expanding eigenvalue of Dy, (p,) and S, = Dy, |E*(p,). Let
g = (0,Q0) € Wi,.(p) and 79 = (po,0) € W} .(p) belong to the orbit of
tangency, say ro = goaN(qO), N > 1. Then for (u,&,2) close to (0, pg,0) we
may write goﬁ(&, Z) as

(vp + a2Z + b(€ — po)* + b1 (€ — po)p + bop® + h(p, & — po, Z),

Qo+ Vu+ Ai(§ —po) + A2Z + H(p,§ — po, Z))
where we have v,b,b1,bo € R, az € LR™ L, R), V,A; € LR, R™ 1), Ay €
LR™ 1 R™ 1) and
(6.2) Dh =0, DH =0, O0ih=0,h=0,h=0 at (0,0,0).

We also assume that the homoclinic tangency is quadratic and that it is gener-

ically unfolded by the family (¢,),, which corresponds to having b # 0 and
v # 0. First we introduce n-dependent reparametrizations

(6.3) 7 = On(p) = voy" 1+ (a207"SjiQo — pooyy)-

Let K > 0 (large) be fixed. It is not difficult to check that for n > 1 suf-
ficiently large 6, maps some small interval I, close to zero in the p-space,
diffeomorphically onto [-K, K|. We denote 6, = (0, |I,)~'. Now we intro-
duce (n, p)-dependent coordinates (Z,Y") defined by

(64)  (&2) =9nu(@Y) = (0,""F + poo,", 0,"Y + Qo+ Vp)

and take U,: [-K, K]™t! — R x M to be given by

U(0,5,Y) = (1,6, 2), p=0u(0), (£2)=pnu(@Y).
Let us also denote ®: R x M — R x M, ®(u,n) = (4, pu(n)). Now a direct
calculation yields the expression of @+ in the coordinates (¥,%,Y):
(010" N\ (0,7,Y) =
(0, b3% + biZo,p + bgai",u2 +u+ agaZSﬁ(f/ + Vo, u) + ai"h(p, Zns Yn),
A1E + As(SY + 018 (Qo + Vi) + o H (i, o, V)
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where y = 0,(v), T, = 0,7, Y, = Sﬁ(a;”l? + Qo + V). Observe that
], |zn| < const |o,| " and ||Yy|| < const[|S,||" and, in view of (6.1), (6.2),
this implies that ai"h(u, T, Yyn) and o) H (4, Ty, Yy) — 0 as n — oo, uniformly
on (7,%Y) € [-K, {(]m—l—l_ Using also (6.3) one concludes that the sequence

(U-1@" N, )(7,%,Y) converges uniformly to

2
$(5,3,7) = (a, b + by 225 + 5,20 4 5, A@)
v v
when n — 0o. Moreover, essentially the same argument applies to the deriva-
tives and we conclude in this way that (¥, '®"*N¥,) — ¥ in the C? topology.
Finally, we introduce
b1po b1po

s orx=bit—— ; Y=Y +A—
7 xz b$+ 210 ) —I'_ 12’l)b

bipe D30 . bbagd

v=>bv+ 20 492 v?2

and then, immediately, the expression of ®"*+" with respect to (v,z,Y) con-
verges (in the C? topology) to

A
(6.5) x(v,z,Y) = (v,z? + v, Az), where A= Tl c R™ L

Remark 6.1. As a consequence, the generic unfolding of a homoclinic
tangency associated to a sectionally dissipative saddle yields the formation of
sinks close to the orbit of tangency. In fact, x,(z,y) = (2% + v, Az) has at-
tracting periodic orbits, say for v close to zero. The presence of such orbits is a
persistent phenomenon under small perturbations. It follows that for arbitrar-
ily small values of p (1 = 0,,(v), v close to zero) ¢, has an attracting periodic
orbit contained in a (const |u|)-neighbourhood of the orbit of tangency.

Now the construction of Ay proceeds in the same way as in the two-
dimensional case; we sketch the main points and refer the reader to [PT, Ch.VI]
for more details. The crucial fact here is the existence for the map = + z? — 2,
and so also for x_o: (z,Y) — (2% — 2, Az), of invariant expanding Cantor
sets K; with thickness 7(K;) — 400 as j — +oo. Moreover, these K; are
transitive and have a dense subset of periodic orbits. It follows that each K;
has, for n large and p = 0, (v), v close to —2, an analytic continuation as a
hyperbolic basic set K;(n, u) of (1/1,1’“09024‘]\701&,;”. In particular, the K(n, i)
have codimension 1 stable foliation and stable thickness 7°(K(n,u)) close to
7(K;) > 1. Then, we just take Ay = 9, ,(K;(n,u)) with j and n large and
p = 6p(v), v close to —2.

Let, moreover, P = (2,2A4) and @ be any other (hyperbolic) periodic point
of x_2. We denote by P(v) and P(n,u) the analytic continuations of P for,
respectively, x,, and (vy, © (pZ‘HV o ¢;}L), n large, p = 0,(v), v close to —2.
We also introduce analogous notations for Q). Now, it is easy to check that
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FIGURE 5

e W5(Q(v)) has transverse intersections with W*(P(v)) for all v close
enough to —2;

e W*(Q(v)) intersects W8(P(v)) if and only if v < —2 and this intersection
is transverse if v < —2.

Combining this with the fact that (compact parts of) stable and unstable
manifolds of hyperbolic periodic points vary continuously with the maps, one
concludes that for each large n there are p-values fi, = 0,(%,), 7y, close to —2,
for which (see the figure)

e P(n,fin) and Q(n, fin) are heteroclinically related;
e WY(Q(n, fin)) also has nontransverse intersections with WS(P(n, fi,)).

This applies, in particular, when @ is a periodic point in any of the K. There-
fore, these comments reduce the proof of properties («), (8) to checking that

(6.6) py is heteroclinically related to P(n, 1) = ¥n,u(P(n, 1))

for arbitrarily large n and y = 6,,(v), v in a fixed neighbourhood J of —2.

The basic strategy to prove this is the same as in 2 dimensions. Let us
first give a brief outline of it. We show that there exist compact domains
% (n,p) C WH(P(n,p)), 3(n,p) € WH(P(n,pn)), o C WH(p), =° C Wi(p)
such that (cf. the figure below)

o P(n,p) € 80" (n, ) N OX3(n, p);
e the point of tangency q¢ belongs to do" N 0%5;
e g'(n,pu) — o and ¥3(n,u) — X% as n — oo (and so p — 0).
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FIGURE 6

Moreover, our assumption on the existence of transverse homoclinic orbits
associated to p, together with the construction of X5, o%, to be described
below, assure that W"(p) (resp. W*(p)) accumulates on o" (resp. ¥°) “from
the appropriate side” so that it eventually intersects ¥° (resp. ") transversely.
Hence, for n large W"(p,) (resp. W*(p,)) cuts X%(n,u) (resp. o%(n,n)) and
the affirmative (6.6) above follows.

On the other hand, this strategy requires considerably more care in the
present higher-dimensional setting, specially in the construction of ¥%(n, u),
3. We concentrate on this, the argument for ¢%(n,u), c* being analogous
(and simpler). As mentioned before, we may suppose that p, has a unique
weakest contracting eigenvalue, which we denote by A,. We also assume once
more the transversality condition (5.1)

(6.7) A=o(ro) is an isomorphism.

First we deduce the following result on existence of invariant splittings in a
neighbourhood of the tangency. As before, we denote E* = {0} x {0} x R™~2,
E"W = R x R x {0™~2}. We also let o = |og|, A = |\o|, @ = ||Dyo(p) | E*®|| and
fix € > 0 such that 8 + 2¢ < A — 2. Moreover, we continue to denote by U a
neighbourhood of p where C? linearizing coordinates for the ¢, are defined.

PROPOSITION 6.2. There ezxist neighbourhoods B of qo and I of 0 € R
and constants Cy > 0 and ng > 1 such that for n > ng and u € I there is a
Holder continuous splitting TpM = EY, @ EP | satisfying

(a) dimE}Y (2) =2 and dimEP (2) =m —2 for z € B;
(b) Ey, admits an integral foliation Fp,.
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FIGURE 7

(c) DgltN(z) - E; ,(2) = E;‘l,.“(gonrN(z)) for x = uw or ss and for every
z€BN (p;(n+N)(B) such that ¢}, (z) € U for 0 <i < n.
(d) For every z as in (c) we have

Co (A= &)" |Ioll < [ D™ (2) - vf| < Colo + )" [lo]l  if v € ERY(2)

and ||D<pZ+N(z) UH <Co@+e)" v if veET,(2)

Proof. The construction of the subbundles E;Y,, EP | is done by a standard
fixed point argument analogous to that in [HP,Theorems 6.1, 6.2] or Section 2
in the present paper. Thus we just present an outline of it, leaving the details
to the reader. We let " be a segment in W} (p) containing p and rq in its
interior and we take B and I to be small neighbourhoods of gy and 0 € R,
respectively, according to certain conditions to be stated in the sequel. For
simplicity we choose B to have the form B, x Bs, B, a neighbourhood of
0 € R ~ E" and B; a neighbourhood of Qg in R™ ! ~ ES. Then we denote
0"B = 0By x Bg and 0°B = By x 0B;. Since we are assuming the tangency to
be nondegenerate we may fix v%, I, By and By in such a way that, for u € I,
goﬁf (") does not intersect 0°B (see the figure). Then, for n sufficiently large,

we have

(6.8) @ N(@" BN Xny)NB =0 (actually 8"BN X, , =0)
(6.9) e N(PB N Xp,) N°B =0

where X, , denotes the set of points z such that goL(z) € U forevery 0 <i < n.
Let us describe first the construction of EJ¥,. We let E; be the constant
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(parallel) 2-dimensional vector bundle on 8°B given by E1(z) = D} (o) - E"v.
By (6.7) this is transversal to E* and so, for n large and any z € 0°BN X, ,,
Dyli(z) - E1(z) is close to E'W. It follows that Ea(n) = D¢Z+N(z) - E1(2),

7= <p;(”+N) (n), defines a two-dimensional bundle on (pZ+N (0°’BnX,,)NB,

with Es(n) uniformly close to Dy} (ro)-E" if B and I are small and n is large.
Then, recall also (6.9), we may take a two-dimensional bundle E on B of class
C! coinciding with Ej, E on their domains and such that E(z) is uniformly
close to D} (ro) - E™: given any § > 0 then, up to choosing B and I small
and n large enough, we may assume that angle (E(z), Dp} (ro) - E™) < § for
every z € B. In what follows we fix 0 < § < angle (D} (o) - E*, E*®). Then
we define X = X (4, E) to be the space of continuous 2-dimensional bundles E
such that

e angle (E(n), Dyl (rg) - E*W) < 2§ for every n € B and

e E(n) = E(n) for every n € B\ @Z’LN(B N Xn,p)-
We also introduce the graph-transform 7: X — X given by

T(E)(n) =Del™(2) - B(2), 2= ¢, ™) (n)

ifn € ¢Z+N(B N X,,) and T(E)(n) = E(n) otherwise. Observe that by
construction every F € X is transversal to E®. It follows in a fairly easy way
that, at least for n large, 7 is well defined (7(X) C X) and a C°—contraction.
Hence 7 has a unique fixed point, which we call Ei%,. Moreover, the same type
of hyperbolicity argument as in [HP] or Section 2 shows that E}Y, is Hélder
continuous. Thus E}Y, satisfies (a), and (c). On the other hand, (d) is a
direct consequence of the transversality of Ef", to E® and the fact that most
iterations are done inside the linearizing neighbourhood U. A similar argument
allows us to obtain E . We start by taking Ei(n) = E*, for n € 9"B,

N
By(2) = Dy "V (1) By (), n = ol TV (2), for z € 9 "V (0 B)N X,y N B

As before, we extend Ey, Ey to a C! (m — 2)-dimensional bundle E on B and
then we define X to be the space of continuous (m — 2)-dimensional bundles
E on B such that

and then proceed as for E only this time taking negative iterates: we set

e angle (E(z),E®) < 2§ for every z € B and
e E(z) = E(z) for every z € B\ (go,:(TH'N) (B)N Xy ).

The graph-transform 7: X — X is defined by
T(E)(2) =Dy, " ™M) - En), n= ¢} N (2)

if z € 90;(n+N)(B) N X, and T(E)(z) = E(z) otherwise. Then, as in the
previous case, we conclude that 7 has a unique fixed point, which is a Holder
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continuous invariant subbundle, and we take this to be EF . Moreover, EZ’ ,
n+N
o

follows. First, when extending F'1, F, above we may take F to coincide with the

can be integrated to a ¢ -invariant foliation F7°,. This can be seen as
tangent bundle of a C! foliation F of B by (m — 2)-dimensional submanifolds.
Now consider the space X of foliations F of B by (m — 2)-submanifolds of class
C! such that the tangent spaces to leaves of F vary continously with the point
and satisfy

e angle (T, F(z),E%) < 26 for z € B and
o T,F(2) = E(2) if z € B\ (¢, "™(B) N Xy ).

We also introduce the graph-transform 7: X — X given by
T (F)(z) = connected component of <p;("+N) (f((pﬁ"’N(z))) N B containing z,

if z € @, (n+N) (B) N X,,, and T(F)(z) = F(z) otherwise. The fact that
negative iterations expand the leaves of foliations F € X assures that 7 is well
defined, at least if n is large enough. Moreover, the same calculations as before
show that 7 is a contraction, with respect to the C’-distance between tangent
bundles. It follows that 7 has a unique fixed point 73, and then, clearly, we
must have T, 7, (2) = E}} ,(2) for every z € B. O

Remark 6.3. For future use let us also state explicitly the following con-
sequences of the renormalization techniques above:
(a) Given 6 > 0 we have angle (EXY (2), Dy (ro) - E"Y) < 6 for every (u,z) €
I x B, as long as B and I are small enough and n is sufficiently large.
(b) Given B and I small and § > 0 then for large n angle (E} ,(2),E*) <6
for every (u,z) € I x B.

Keeping the same notation as before, we take B,I and § to be fixed
(small) and n to be large, depending on y. In particular, we suppose 6, (J) C
I. We observe that for * = uw or ss and all the values of y and n under
consideration, we must have E;‘;,M(P(n,u)) = graph (f,), recall (i) and (ii)

n
in Section 5. Thus, D(pZ+N|EgV’L(15(n,u)) is conjugate to K 06‘ )?n> for
some K € GL(R?) close to A,_g(rg). We let o(n, u), A(n, u) be its eigenléalues,
lo(n, u)| > |A(n,u1)]. The convergence to (6.5) implies that o(n,u) is close to
4 (if n is large and pu = 6,,(v), v close to —2). Hence, A(n, 1) has the same sign
as (det Au—o(r0)(Aooo)™). We claim that for the purpose of proving our main
theorem it is no restriction to suppose that

(6.10) A(n,p) > 0 for p € 0,(J) and n arbitrarily large.

This can be justified as follows. If (Agog) > 0 and det A,—o(ro) > 0
then there is nothing to prove. If (Agop) < 0 we just restrict to the n-values
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having the appropriate parity so that det A,—o(ro) - (Aoog)” > 0. Suppose
now (Agog) > 0 and det A,—o(rg) > 0. We note first that, by the arguments
developed previously in this section, there are u-values fi,, = 6,(2,), U, close
to —2, for which P(n, /i) has homoclinic tangencies. On the other hand, in
the present situation we have A(n,i,) < 0 < o(n, fip). This means that the
¢4, have homoclinic tangencies falling in the second of the previous two cases.
Moreover, it is clear that if the theorem holds for each ¢, then, since fi, — 0,
it also holds for ¢y. Therefore, we may, without any loss of generality, assume
that (6.10) holds.

Finally, we prove (6.6) (for the values of n as in (6.10)). For simplicity we
use = to represent equality up to a (multiplicative) constant not depending on
nor 6 and const to denote such a constant. Distances and angles refer always
to the euclidean metric associated to the coordinates (¢, Z) above. We begin by
introducing the foliations F); = ({{ = const}) and F, = (<pﬁf ({Z = const}))
defined on B. We suppose B small enough so that the leaves of these two
foliations intersect transversely outside a hypersurface

Ly=9p (L)) Lu={(&2): 0 (€. Z) € E°}.
Due to the quadratic nature of the tangency we even have
(6.11) angle (T, F),(z), T,F,(z)) = dist (2, L) for z € B.

A fairly simple calculation shows that f’u may be written as a graph & = g(u, Z)
and, moreover, (p;N(P(n,u)) is at a distance ~ |0,| ™" of L, in {¢ > g(u, Z)}
or {£ < g(u,Z)} depending on whether b is positive or negative. It follows
that P(n,u) is placed at a distance d ~ lou|™™ of Ly, to the side determined
by the vector (0, A) (recall (6.5)). Now we let S be the (d/2)-neighbourhood
of P(n, ) in its stable manifold. For n sufficiently large

(6.12) angle (T,S,E®) <4 |o,|™" for z € S.

This is a direct consequence of the fact that the (local) stable manifold of
P(n,p) = w;,L(P(n,u)) converges to a hyperplane {z = const} as n — oo,
together with the form of the coordinate changes (6.4). Note also that, by
construction,

dist (2, L,) > const |o,|™" for z € S.

We take E" to be the line field on S given by E" (2) = E&¥, (2) N'T,S. Remark
6.3 (a) and (6.12) imply that E" is almost colinear with (0, A): if n is large
then angle (E" (), (0, 4)) < 26 for z € S. We orient E" in such a way that
E".(0,A) > 0 and for each ng € Ty = W(P(n, 1)) NS we define Wo(1p) to be
the positive trajectory of 7o under E". Now we consider the set T' D I’y of points
n= 90;("+N) (no) with ng € Ty and (p;(H_N) (no) € U for 0 < ¢ < n. We point
out that I'N B contains a neighbourhood of P(n, 1) in W*(P(n, 1)) with fixed
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radius & diam (B). This may be seen from the following remarks: (i) <pl:N (To)
contains a neighbourhood of w;N(IE’(n,u)) in W8(o~N(P(n,p))) with radius
~ |o,|”" and, by (6.7), it is transversal to E"Y at every point; (ii) the expansion
during the n (negative) iterations inside U is > comnst |A,|™" > |o,|". For each
i > 1and n €I, we define Wj(n) = (p,:(njLN)(Wi,l(go,(L"jLN) (n))). Since E" is
@L"+N)-invariant and A(n, u) is positive, we have W;(n) D W;_1(n) for every
i >1and n € T. We claim that, as long as they stay inside B, the W;(n)
remain nearly colinear with (0, A):

(6.13) angle (T, W;(n), (0,A)) < 20 for z € Wi(n), i <1, neT.

In order to prove this we note first that T,W;(n) C E"W(z) and thus, by Remark
6.3 (a), angle (T, W;(n), Dp{ (ry) - E®W) < 6. Therefore, (6.13) will follow if we
prove

(6.14) angle (T, W;(n),E®) < élo,|™" for z € Wi(n), 1 >1, n €.

We do this in an inductive way. Let ¢ > 1 and suppose that (6.14) holds
for every T¢Wi_1(n0), mo € To C T and ¢ € Wj_1(n0) (note that for i = 1
this is contained in (6.12)). Let us also point out that, due to the way
we have oriented E", the W;i(no), j = 0,1,...,i — 1, grow in the direc-
tion opposite to L,. Thus, we have dist(¢,L,) > const|o,| " for every
¢ € Wi_i(nm), mo € To. In view of (6.11) and the induction hypothesis
this implies angle (T¢W;_1(m), T.F(z)) > const |o,|™". Then, angle (D, V-
TWi—1(m0),E") > const|o,|™" and so angle (D<p;("+N) - TeWi—1(no), E%) >
const [A,|™". This means that angle (T, W;(n),E®) < [A," < d|oy|™", for
z = <p,:("+N)(C), n= 90;("+N) (n0), and so the proof of (6.13), (6.14) is com-
plete. In particular, for each n € I'NB the curve |J,; W;i(n) contains a segment
W (n) nearly colinear with (0, A) and connecting 1 to the boundary of B. We

~

just let ¥%(n,p) = Upernp W(n) € W3(P(n,p)) and then (6.14), Remark

6.3 (b) and the fact that P(n,u) — go imply that these S%(n, ) converge, in
the C! sense, to a domain X* C W5(p) containing gy in its boundary. Finally,
it is not difficult to check that, given any segment of W"(p) intersecting trans-
versely the connected component of W8(p) \ W*(p) that contains g, then its
positive iterates eventually intersect 3° transversely.

7. Proof of the main result

Finally, we explain how the ideas and results in the previous sections fit
together to prove our main theorem. We start with a general C? diffeomorphism
¢ with a homoclinic tangency associated to a sectionally dissipative saddle p.
We show how to obtain, after a certain number of C?-small perturbations of ¢,
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a new diffeomorphism contained in the closure of an open set N C Diff?(M)
exhibiting persistent homoclinic tangencies. For the sake of clearness we divide
the proof into four steps. In order not to overload the notations we denote all
perturbed diffeomorphisms by ¢; on the other hand we state carefully the
properties obtained after each perturbation.

Step 1: Up to a first perturbation, we may suppose that ¢ satisfies the
(generic) assumptions of Section 5: the homoclinic tangency is quadratic (and
quasi-transversal); the saddle point p is C?-linearizable and has either 1 (real)
or 2 (complex) weakest contracting eigenvalues; finally, the transversality con-
dition (5.1) holds. Then, proceeding as in there, we obtain a diffeomorphism @
arbitrarily close to ¢, exhibiting homoclinic tangencies associated to a periodic
saddle p which (besides being also sectionally dissipative, recall Remark 5.3,
has a unique least contracting eigenvalue. In the sequel we still denote by ¢
and p such ¢ and p, respectively.

Step 2: We may again suppose that the saddle p is C%-linearizable and
the homoclinic tangency is quadratic and satisfies (5.1). Also, we may assume
that the point of tangency is not contained in the strong stable manifold of p.
Then for diffeomorphisms arbitrarily close to ¢, p has transverse homoclinic
intersections together with a new homoclinic tangency. Note that, by continu-
ity, these transverse intersections are also outside W (p) and they satisfy (3.2).
Hence, by Section 3, p belongs to a nontrivial basic set A; with intrinsically
C' unstable foliation. Moreover, the results of Section 4 apply to A; since,
after Step 1, we have a unique weak-stable direction. In particular, 7%(A;) is
strictly positive and remains bounded away from zero under further (small)
perturbations.

Step 3: The new transverse and nontransverse homoclinic orbits are
constructed (Step 2) in such a way that they involve the same connected com-
ponent of W8(p) \ W%(p) and of W¥(p) \ {p}. It is also clear that we may
continue to suppose that the saddle p is C?-linearizable. Moreover, we may
assume that this new homoclinic tangency is again quadratic and satisfies the
generic conditiom (6.7): otherwise we just replace ¢ by some nearby diffeo-
morphism for which this holds. Then, by generically unfolding this tangency
as in Section 6, we obtain arbitrarily small perturbations of ¢ exhibiting basic
sets A; and Ag such that: 7%(A;)7%(A2) > 1 and

e the leaves of W"(A1) (resp. W*(A1)) have transverse intersections with
those of W5(Ag) (resp. W"(A2));

e there are periodic points p; € A1, ps € Ay such that W"(p1) and W*3(ps)
also have a point ¢ of nontransverse intersection (i.e. a tangency).

Step 4: Let Us be a neigbourhood of Ay such that W8(As) admits an
extension to a C! foliation F5 defined on Us. By C! we mean here that the
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tangent spaces to the leaves T,F5(z) vary in a C' fashion with the point z.
Clearly, we may take g to belong to Us and then an implicit function argument
allows us to define the “line” of tangencies between the leaves of W"(A;) and
F35 near g. This is based on the following

LEMMA 7.1 (Implicit function). Let X C R™ be compact and I C R be a
compact interval. Let F: X xI — R be intrinsically C* and (zo,t9) € X xint(I)
be such that

(71) F(l‘o,to) =0 and AFwo (t(), t()) 7é 0.

Then there exist V. C X a compact neigbourhood of o and a unique intrin-
sically C map f:V — I such that f(zo) = to and F(z, f(z)) = 0 for every
zeV.

Proof. Let a > 0, Vj a neighbourhood of zp and § > 0 (small) be such that
|AFy(s,t)| > afor every z € Vy and s,t € [to—0, to+6]. We take V' C Vj so that
|F'(z,t9)] < ad/2 for every z € V. Then, forx € V, F(z,ty—9)-F(z,t9+6) <0
and so there is f(z) € [ty — d,to + 0] such that F(z, f(z)) = 0. Moreover, f(z)
is unique since AF}, is never zero on [tg — d, g + 6]. The same kind of argument
shows that the function f:V — I defined in this way is continuous. Finally,
Af(z,z) = —AFI®) (2, 2)/AF,(f(x), f(2)) (where we use the same notations
as in Lemma 2.5) is an intrinsic derivative for f. O

In order to apply the lemma we first fix U C Us a small neighbourhood of
g and & a C! vector field on U orthogonal to the leaves of F5. By Proposition
3.5, W*(A1) N U contains an intrinsically C! diffeomorphic image Y of X x I
where [ is a compact interval and X is a small compact neighbourhood of
p1 in Ay NW5, _(p1). We let &, be some intrinsically C' vector field on YV
tangent to the leaves of WY(A;) and then we define F(y) = &u(y) - &(y).
Hypothesis (7.1) in the lemma corresponds to having a quadratic tangency
at ¢ and, up to considering an additional perturbation of ¢, we may assume
this to be the case. As a conclusion we get that there exist Vi a compact
neighbourhood of p; in Ay NW3, (p1) and 71: Vi = W¥(A{)NU an intrinsically
C! map such that each (), € Vi, is a point of tangency between W' (z)
and some leaf of F5. We also introduce mp:U — W} (p2), the projection

loc
along the leaves of F35 onto W} (p2) which we identify with an interval in R
(via some C! diffeomorphism). If necessary, we perform a last perturbation of
@ so that Ami(p1,p1) - ITp, (A1 N W3, .(p1)) is not tangent to the stable leaf
F5(g). Then (m2 0m) is intrinsically C' and A(m o 71)(p1,p1) is bijective. We
let K1 = (mp 0 m)(V1) and K5 be a small compact neighbourhood of py in

Ay "WE (p2) and then

e K7 and K> intersect each other at po;
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° T(K11p2) : T(K25p2) = 'Tu(Al) . TS(AQ) > 1.

Now from the gap lemma and the continuous variation of the thickness, we
get that for a whole C2-open set N of perturbations of ¢ the corresponding
sets K1, Ko intersect each other, which corresponds to heteroclinic tangencies
involving A; and As. Since A; and Ay are heteroclinically related, it follows
in an easy way that given any periodic point p in A; U Ay (e.g. p = p) a
dense subset of elements of N exhibits homoclinic tangencies associated to
(the analytic continuation of) p. As explained in Section 1, this implies that
residually in A/ the maps have infinitely many coexisting sinks. This completes
our proof.

On the other hand, the parametrized version of the theorem now follows
by checking that, given a generic one-parameter family of diffeomorphisms
passing through a homoclinic tangency, the previous arguments can be carried
out making use only of perturbations along the parameter: at each step the
new, perturbed, diffeomorphism is taken belonging to the initial family. We
just observe a few points in this direction. First of all, the perturbation de-
scribed in Section 5 is of that kind and so, as before, we may assume that
the periodic point associated to the homoclinic tangency has a unique weakest
contracting eigenvalue. Of course, in performing such a perturbation along
the parameter line we also have to assure that all the conditions concerning
the initial homoclinic tangency are still valid for the new one. Through an-
other small perturbation we obtain a basic set A; like in Section 3, with a
homoclinic tangency associated to a periodic point p; € A satisfying all the
previous transversality conditions. Then, again as before, an additional small
perturbation inside the parametrized family yields a basic set A9 as in Section
6: it has large stable thickness (the product with the unstable thickness of A;
is greater than 1) and, for some periodic point ps € Ao, p; and po are het-
eroclinically related (mutual transverse intersections between their invariant
manifolds) and moreover W"(p1), W*(p2) also exhibit an orbit of tangency.
The last part of the proof is then similar to that of the main theorem.
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