Lyapunov exponents, holonomy invariance, rigidity

Marcelo Viana with A. Avila, J. Santamaria, A. Wilkinson

IMPA - Rio de Janeiro

Marcelo Viana with A. Avila, J. Santamaria, A. Wilkinson Lyapunov exponents, holonomy invariance, rigidity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivations and set-up

Partially hyperbolic diffeomorphisms Cocycles with holonomies Absolute continuity implies rigidity Cocycles over partially hyperbolic maps Dichotomy for the central foliation

Outline

Motivations and set-up

- 2 Partially hyperbolic diffeomorphisms
- 3 Cocycles with holonomies
- Absolute continuity implies rigidity
- 5 Cocycles over partially hyperbolic maps
- 6 Dichotomy for the central foliation

Linear cocycles

Let $\pi: \mathcal{V} \to M$ be a finite-dimensional vector bundle and

$$\begin{array}{cccc} L: \mathcal{V} & \to & \mathcal{V} & \text{acting linearly on fibers} \\ \pi \downarrow & & \downarrow \pi \\ f: M & \to & M & \text{preserving some probability } \mu \end{array}$$

Definition (extremal Lyapunov exponents)

 $\lambda_{+}(L, x) = \lim \frac{1}{n} \log \|L_{x}^{n}\| \qquad \lambda_{-}(L, x) = \lim \frac{1}{n} \log \|(L_{x}^{n})^{-1}\|^{-1}$

They are defined μ -almost everywhere if $\log \|L_{\mathbf{x}}^{\pm 1}\| \in L^{1}(\mu)$.

Question (going back to Furstenberg)

When is $\lambda_{-}(L, \cdot) < \lambda_{+}(L, \cdot)$?

Marcelo Viana with A. Avila, J. Santamaria, A. Wilkinson Lyapunov exponents, holonomy invariance, rigidity

Linear cocycles

Let $\pi: \mathcal{V} \to M$ be a finite-dimensional vector bundle and

$$\begin{array}{cccc} L: \mathcal{V} & \to & \mathcal{V} & \text{acting linearly on fibers} \\ \pi \downarrow & & \downarrow \pi \\ f: \mathcal{M} & \to & \mathcal{M} & \text{preserving some probability } \mu \end{array}$$

Definition (extremal Lyapunov exponents)

 $\lambda_{+}(L, x) = \lim \frac{1}{n} \log \|L_{x}^{n}\| \qquad \lambda_{-}(L, x) = \lim \frac{1}{n} \log \|(L_{x}^{n})^{-1}\|^{-1}$

They are defined μ -almost everywhere if $\log \|L_x^{\pm 1}\| \in L^1(\mu)$.

Question (going back to Furstenberg)

When is $\lambda_{-}(L, \cdot) < \lambda_{+}(L, \cdot)$?

Linear cocycles

Let $\pi: \mathcal{V} \to M$ be a finite-dimensional vector bundle and

$$\begin{array}{cccc} L: \mathcal{V} & \to & \mathcal{V} & \text{acting linearly on fibers} \\ \pi \downarrow & & \downarrow \pi \\ f: \mathcal{M} & \to & \mathcal{M} & \text{preserving some probability } \mu \end{array}$$

Definition (extremal Lyapunov exponents)

 $\lambda_{+}(L, x) = \lim \frac{1}{n} \log \|L_{x}^{n}\| \qquad \lambda_{-}(L, x) = \lim \frac{1}{n} \log \|(L_{x}^{n})^{-1}\|^{-1}$

They are defined μ -almost everywhere if $\log \|L_x^{\pm 1}\| \in L^1(\mu)$.

Question (going back to Furstenberg)

When is $\lambda_{-}(L, \cdot) < \lambda_{+}(L, \cdot)$?

Marcelo Viana with A. Avila, J. Santamaria, A. Wilkinson

Lyapunov exponents, holonomy invariance, rigidity

Partially hyperbolic diffeomorphisms

 $f: M \to M$ partially hyperbolic: $T_x M = E_x^s \oplus E_x^c \oplus E_x^s$

Question

When are the Lyapunov exponents along E^c nonzero?

Assuming dynamical coherence (foliations W^c , W^{cu} , W^{cs} exist)

Question

What are the metric properties of the central foliation \mathcal{W}^c ?

イロン イボン イヨン 一旦

Partially hyperbolic diffeomorphisms

 $f: M \to M$ partially hyperbolic: $T_x M = E_x^s \oplus E_x^c \oplus E_x^s$

Question

When are the Lyapunov exponents along E^c nonzero?

Assuming dynamical coherence (foliations W^c, W^{cu}, W^{cs} exist)

Question

What are the metric properties of the central foliation \mathcal{W}^c ?

イロン イボン イヨン 一旦

Partially hyperbolic diffeomorphisms

 $f: M \to M$ partially hyperbolic: $T_x M = E_x^s \oplus E_x^c \oplus E_x^s$

Question

When are the Lyapunov exponents along E^c nonzero?

Assuming dynamical coherence (foliations W^c , W^{cu} , W^{cs} exist)

Question

What are the metric properties of the central foliation \mathcal{W}^c ?

Smooth cocycles

 $\pi: \mathcal{E} \to M$ a fiber bundle with a Riemannian metric.

$$\begin{array}{rccc} F: \mathcal{E} & \to & \mathcal{E} & \text{acting by diffeomorphims on the fiber} \\ \pi \downarrow & & \downarrow \pi \\ f: M & \to & M & \text{with } \| DF_x^{\pm 1} \| \text{ uniformly bounded.} \end{array}$$

Definition (extremal Lyapunov exponents)

 $\lambda_{+}(F,\xi) = \lim \frac{1}{n} \log \|DF_{x}^{n}(\xi)\| \qquad \lambda_{-}(F,\xi) = \lim \frac{1}{n} \log \|DF_{x}^{n}(\xi)^{-1}\|^{-1}$

Question

When is $\lambda_{-}(F, \cdot) < \lambda_{+}(F, \cdot)$?

Smooth cocycles

 $\pi: \mathcal{E} \to M$ a fiber bundle with a Riemannian metric.

$$\begin{array}{rccc} F: \mathcal{E} & \to & \mathcal{E} & \text{acting by diffeomorphims on the fiber} \\ \pi \downarrow & & \downarrow \pi \\ f: M & \to & M & \text{with } \| DF_x^{\pm 1} \| \text{ uniformly bounded.} \end{array}$$

Definition (extremal Lyapunov exponents)

 $\lambda_{+}(F,\xi) = \lim \frac{1}{n} \log \|DF_{x}^{n}(\xi)\| \qquad \lambda_{-}(F,\xi) = \lim \frac{1}{n} \log \|DF_{x}^{n}(\xi)^{-1}\|^{-1}$

Question

When is $\lambda_{-}(F, \cdot) < \lambda_{+}(F, \cdot)$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Smooth cocycles

 $\pi: \mathcal{E} \to M$ a fiber bundle with a Riemannian metric.

$$\begin{array}{rccc} F: \mathcal{E} & \to & \mathcal{E} & \text{acting by diffeomorphims on the fiber} \\ \pi \downarrow & & \downarrow \pi \\ f: M & \to & M & \text{with } \| DF_x^{\pm 1} \| \text{ uniformly bounded.} \end{array}$$

Definition (extremal Lyapunov exponents)

 $\lambda_{+}(F,\xi) = \lim \frac{1}{n} \log \|DF_{x}^{n}(\xi)\| \qquad \lambda_{-}(F,\xi) = \lim \frac{1}{n} \log \|DF_{x}^{n}(\xi)^{-1}\|^{-1}$

Question

When is $\lambda_{-}(F, \cdot) < \lambda_{+}(F, \cdot)$?

Marcelo Viana with A. Avila, J. Santamaria, A. Wilkinson

Lyapunov exponents, holonomy invariance, rigidity

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Applications

• Lyapunov spectra of linear cocycles [ASV] $F_x = \mathbb{P}(L_x)$ acting on $\mathcal{E}_x = \mathbb{P}(\mathcal{V}_x)$

central foliations of partially hyperbolic maps [AVW]

 $\begin{array}{cccc} F: \mathcal{E} & \to & \mathcal{E} & & \mathcal{E}_{x} = \mathcal{W}^{c}(x), & F(x,y) = f(y) \\ \pi \downarrow & & \downarrow \pi & \\ f: M & \to & M & & \text{central extension of } f \end{array}$

- conservative skew-products, e.g. Anosov×standard [AV]
 Livsič theory for partially hyperbolic maps [W]
- rigidity of quasi-Anosov automorphisms [AV, in progress]
- partially hyperbolic group actions [AVW, in progress]

Applications

- Lyapunov spectra of linear cocycles [ASV] $F_x = \mathbb{P}(L_x)$ acting on $\mathcal{E}_x = \mathbb{P}(\mathcal{V}_x)$
- central foliations of partially hyperbolic maps [AVW]

$$\begin{array}{cccc} F: \mathcal{E} & \to & \mathcal{E} & & \mathcal{E}_{x} = \mathcal{W}^{c}(x), & F(x,y) = f(y) \\ \pi \downarrow & & \downarrow \pi \\ f: M & \to & M & & \text{central extension of } f \end{array}$$

conservative skew-products, e.g. Anosov×standard [AV]
Livsič theory for partially hyperbolic maps [W]
rigidity of quasi-Anosov automorphisms [AV, in progress]
partially hyperbolic group actions [AVW, in progress]

Marcelo Viana with A. Avila, J. Santamaria, A. Wilkinson Lyapunov exponents, holonomy invariance, rigidity

Applications

- Lyapunov spectra of linear cocycles [ASV] $F_x = \mathbb{P}(L_x)$ acting on $\mathcal{E}_x = \mathbb{P}(\mathcal{V}_x)$
- central foliations of partially hyperbolic maps [AVW]

$$\begin{array}{cccc} F: \mathcal{E} & \to & \mathcal{E} & & \mathcal{E}_{x} = \mathcal{W}^{c}(x), \quad F(x,y) = f(y) \\ \pi \downarrow & & \downarrow \pi \\ f: M & \to & M & & \text{central extension of } f \end{array}$$

- conservative skew-products, e.g. Anosov×standard [AV]
- Livsič theory for partially hyperbolic maps [W]
- rigidity of quasi-Anosov automorphisms [AV, in progress]
- partially hyperbolic group actions [AVW, in progress]

Outline

Partially hyperbolic diffeomorphisms

- 3 Cocycles with holonomies
- Absolute continuity implies rigidity
- 5 Cocycles over partially hyperbolic maps
- 6 Dichotomy for the central foliation

Perturbations of Anosov×id

Let
$$f_0: \mathbb{T}^2 \times S^1 \to \mathbb{T}^2 \times S^1$$
 be given by $f_0 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} imes \mathsf{id}$

Theorem [AVW]

Let *f* be perturbation of f_0 preserving μ = volume.

- (a) If W_f^c is absolutely continuous then *f* is smoothly conjugate to a rotation extension of an Anosov diffeomorphism.
- (b) If f is accessible then either W_f^c is absolutely continuous or the disintegrations of μ along central leaves are atomic.

イロト イポト イヨト イヨト 三連

Some history

Accessibility is open and dense on a neighborhood of f₀ [Nitiçă, Török]

- *f*₀ is approximated by stably accessible maps with λ^c ≠ 0; then W^c is not absolutely continuous [Shub, Wilkinson]
- if λ^c ≠ 0 then the disintegrations are atomic (finitely many atoms) [Ruelle, Wilkinson]
- there exist perturbations of f₀ for which λ^c = 0 and the disintegrations are Dirac (one single atom) [A. Katok]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Some history

- Accessibility is open and dense on a neighborhood of f₀ [Nitiçă, Török]
- *f*₀ is approximated by stably accessible maps with λ^c ≠ 0; then W^c is not absolutely continuous [Shub, Wilkinson]
- if λ^c ≠ 0 then the disintegrations are atomic (finitely many atoms) [Ruelle, Wilkinson]
- there exist perturbations of f₀ for which λ^c = 0 and the disintegrations are Dirac (one single atom) [A. Katok]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Some history

- Accessibility is open and dense on a neighborhood of f₀ [Nitiçă, Török]
- *f*₀ is approximated by stably accessible maps with λ^c ≠ 0; then W^c is not absolutely continuous [Shub, Wilkinson]
- if λ^c ≠ 0 then the disintegrations are atomic (finitely many atoms) [Ruelle, Wilkinson]
- there exist perturbations of f₀ for which λ^c = 0 and the disintegrations are Dirac (one single atom) [A. Katok]

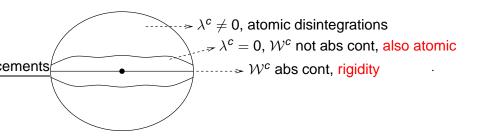
・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Some history

- Accessibility is open and dense on a neighborhood of f₀ [Nitiçă, Török]
- *f*₀ is approximated by stably accessible maps with λ^c ≠ 0; then W^c is not absolutely continuous [Shub, Wilkinson]
- if λ^c ≠ 0 then the disintegrations are atomic (finitely many atoms) [Ruelle, Wilkinson]
- there exist perturbations of f₀ for which λ^c = 0 and the disintegrations are Dirac (one single atom) [A. Katok]

・ロン ・回 と ・ 回 と ・ 回 と

Summary (accessible case)



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Perturbations of time 1 maps

Let f_0 the time 1 map of an Anosov flow in dimension 3.

Theorem [AVW]

Let *f* be perturbation of f_0 preserving μ = volume.

- (a) If W_f^c is absolutely continuous then f is the time 1 map of an Anosov flow.
- (b) If f is accessible then either W_f^c is absolutely continuous or the disintegrations of μ along central leaves are atomic.
 - all volume preserving time 1 maps in dimension 3 are accessible, except for the constant time suspensions [Burns, Pugh, Wilkinson]

・ロン ・回 と ・ ヨン ・ ヨン

Outline

- 2 Partially hyperbolic diffeomorphisms
- Cocycles with holonomies
- Absolute continuity implies rigidity
- 5 Cocycles over partially hyperbolic maps
- 6 Dichotomy for the central foliation

Cocycles with holonomies

Assume $f: M \rightarrow M$ is partially hyperbolic.

Definition (s-holonomies) (u-holonomies)

An *s*-holonomy for \mathcal{E} is a family of homeomorphisms $H^s_{x,y} : \mathcal{E}_x \to \mathcal{E}_y$ defined for $y \in \mathcal{W}^{ss}(x)$, such that (a) $H^s_{y,z} \circ H^s_{x,y} = H^s_{x,z}$ (b) $(x, y, \xi) \mapsto H^s_{x,y}(\xi)$ is continuous. We say the *s*-holonomy is invariant if (c) $F_y \circ H^s_{x,y} = H^s_{f(x),f(y)} \circ F_x$.

Example: in the central extension, holonomies come from the strong-stable and the strong-unstable foliations of f.

Holonomy invariance criterion

Assume $f : M \to M$ is hyperbolic (Anosov), $F : \mathcal{E} \to \mathcal{E}$ admits invariant holonomies, and $\mu = \pi_* m$ has local product structure:

 $\mu \approx \mu_{u} \times \mu_{s}$, locally.

Theorem [Bonatti-Gomez Mont-V, Avila-V]

If $\lambda_{-}(F,\xi) = \lambda_{+}(F,\xi) = 0$ for *m*-almost every point $\xi \in \mathcal{E}$, then *m* admits a disintegration $x \mapsto m_x$ which is weak* continuous and invariant under both *s*-holonomy and *u*-holonomy.

Extends a result of Ledrappier on products of random matrices.

イロン イヨン イヨン イヨン

Holonomy invariance criterion

Assume $f : M \to M$ is hyperbolic (Anosov), $F : \mathcal{E} \to \mathcal{E}$ admits invariant holonomies, and $\mu = \pi_* m$ has local product structure:

 $\mu \approx \mu_{u} \times \mu_{s}$, locally.

Theorem [Bonatti-Gomez Mont-V, Avila-V]

If $\lambda_{-}(F,\xi) = \lambda_{+}(F,\xi) = 0$ for *m*-almost every point $\xi \in \mathcal{E}$, then *m* admits a disintegration $x \mapsto m_x$ which is weak* continuous and invariant under both *s*-holonomy and *u*-holonomy.

Extends a result of Ledrappier on products of random matrices.

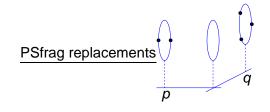
・ロン ・四 ・ ・ ヨン ・ ヨン

A simple application

Assume $F: M \times S^1 \to M \times S^1$, $F(x, \xi) = (f(x), F_x(\xi))$ satisfies

- $f: M \rightarrow M$ has wo fixed points, p and q;
- F_p is a north pole/south pole map;
- F_q has no periodic orbit of period less than 3.

Then $\lambda_{\pm}(F,\xi) \neq 0$ for *m*-almost every point, for any *F*-invariant ergodic probability such that supp (π_*m) contains $\{p, q\}$.



・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

- 2 Partially hyperbolic diffeomorphisms
- 3 Cocycles with holonomies

Absolute continuity implies rigidity

- 5 Cocycles over partially hyperbolic maps
- 6 Dichotomy for the central foliation

Proof of rigidity

We use a variation of this holonomy invariance criterion that applies to central extensions of partially hyperbolic maps: absolute continuity of the central foliation replaces local product structure.

 W^c absolutely continuous \Rightarrow central Lyapunov exponent =0 \Rightarrow disintegrations bi-invariant (both *s*-holonomy and *u*-holonomy) and depending continuously on the base point.

 W^c absolutely continuous \Rightarrow disintegrations are continuous measures (equivalent to arc-length) along the leaves.

・ロン ・回 と ・ ヨン ・ ヨン

Proof of rigidity

We use a variation of this holonomy invariance criterion that applies to central extensions of partially hyperbolic maps: absolute continuity of the central foliation replaces local product structure.

 \mathcal{W}^c absolutely continuous \Rightarrow central Lyapunov exponent =0 \Rightarrow disintegrations bi-invariant (both *s*-holonomy and *u*-holonomy) and depending continuously on the base point.

 \mathcal{W}^c absolutely continuous \Rightarrow disintegrations are continuous measures (equivalent to arc-length) along the leaves.

・ロン ・回 と ・ 回 と ・ 回 と

Proof of rigidity

We use a variation of this holonomy invariance criterion that applies to central extensions of partially hyperbolic maps: absolute continuity of the central foliation replaces local product structure.

 \mathcal{W}^c absolutely continuous \Rightarrow central Lyapunov exponent =0 \Rightarrow disintegrations bi-invariant (both *s*-holonomy and *u*-holonomy) and depending continuously on the base point.

 \mathcal{W}^c absolutely continuous \Rightarrow disintegrations are continuous measures (equivalent to arc-length) along the leaves.

イロト イヨト イヨト イヨト

Proof of rigidity

Using the disintegrations to reparatrize the leaves one gets a homeomorphism:

 $\phi: \mathcal{E} \to M \times S^1, \quad \phi(\mathbf{x}, \xi) = (\mathbf{x}, m_{\mathbf{x}}([\mathbf{x}, \xi])).$

After conjugacy by ϕ the holonomies are isometries and so is f on each leaf: in other words, it acts by rotations. This gives topological rigidity.

Using classical methods one upgrades the regularity of the conjugacy (assuming f is close enough to f_0).

イロン イボン イヨン 一旦

Proof of rigidity

Using the disintegrations to reparatrize the leaves one gets a homeomorphism:

$$\phi: \mathcal{E} \to M \times S^1, \quad \phi(\mathbf{x}, \xi) = (\mathbf{x}, m_{\mathbf{x}}([\mathbf{x}, \xi])).$$

After conjugacy by ϕ the holonomies are isometries and so is f on each leaf: in other words, it acts by rotations. This gives topological rigidity.

Using classical methods one upgrades the regularity of the conjugacy (assuming f is close enough to f_0).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Proof of rigidity

Using the disintegrations to reparatrize the leaves one gets a homeomorphism:

$$\phi: \mathcal{E} \to M \times S^1, \quad \phi(\mathbf{x}, \xi) = (\mathbf{x}, m_{\mathbf{x}}([\mathbf{x}, \xi])).$$

After conjugacy by ϕ the holonomies are isometries and so is f on each leaf: in other words, it acts by rotations. This gives topological rigidity.

Using classical methods one upgrades the regularity of the conjugacy (assuming f is close enough to f_0).

イロト イヨト イヨト イヨト

Outline

- 2 Partially hyperbolic diffeomorphisms
- 3 Cocycles with holonomies
- Absolute continuity implies rigidity

Cocycles over partially hyperbolic maps

Dichotomy for the central foliation

Holonomy invariance criterion - step 1

Assume f is C^2 , partially hyperbolic, center bunched.

Theorem [ASV]

Assume *f* is volume preserving and *F* admits holonomies. Let *m* be an *F*-invariant measure with $\pi_*m =$ volume. If $\lambda_-(F,\xi) = 0 = \lambda_+(F,\xi)$ at *m*-almost every point then the disintegrations of *m* are bi-essentially invariant.

Definition (s-essential invariance) (u-essential invariance)

There is a full measure set $M^s \subset M$ such that $(H^s_{x,y})_* m_x = m_y$ for any $x, y \in M^s$ with $y \in W^{ss}(x)$.

Holonomy invariance criterion - step 2

Let $\mathcal{X} \to M$ be a (2-countable) fiber bundle with holonomies. For instance, \mathcal{X}_x = probability measures on the fiber \mathcal{E}_x .

Theorem [ASV]

- (a) For any bi-essentially invariant section $\Psi : M \to \mathcal{X}$ there exists a bi-invariant section $\tilde{\Psi} : M \to \mathcal{X}$ on a full measure bi-saturated set, with $\Psi = \tilde{\Psi}$ almost everywhere.
- (b) If *f* is accessible then every bi-saturated section is continuous.

The proof of (a) is based on methods of [Burns, Wilkinson].

・ロト ・ 日 ・ ・ ヨ ・

Linear cocycles over partially hyperbolic maps

Theorem [ASV]

Assume *f* is C^2 , volume preserving, partially hyperbolic, center bunched, and accessible. Then the subset of cocycles *L* such that $\lambda_{-}(L, \cdot) = \lambda_{+}(L, \cdot)$ almost everywhere has codimension ∞ among dominated linear cocycles.

Definition (domination)

F is dominated if it is β -Hölder, $\beta > 0$, and there is $\theta < 1$ s.t.

 $\|DF_x\| \|D^u f_x^{-1}\|^eta \le heta$ and $\|DF_x^{-1}\| \|D^s f_x\|^eta \le heta.$

Dominated cocycles admits *s*- and *u*-holonomies (robustly).

Linear cocycles over partially hyperbolic maps

Theorem [ASV]

Assume *f* is C^2 , volume preserving, partially hyperbolic, center bunched, and accessible. Then the subset of cocycles *L* such that $\lambda_{-}(L, \cdot) = \lambda_{+}(L, \cdot)$ almost everywhere has codimension ∞ among dominated linear cocycles.

Definition (domination)

F is dominated if it is β -Hölder, β > 0, and there is θ < 1 s.t.

$$\|DF_x\| \|D^u f_x^{-1}\|^{\beta} \le \theta$$
 and $\|DF_x^{-1}\| \|D^s f_x\|^{\beta} \le \theta$.

Dominated cocycles admits s- and u-holonomies (robustly).

Outline

- 2 Partially hyperbolic diffeomorphisms
- 3 Cocycles with holonomies
- Absolute continuity implies rigidity
- 5 Cocycles over partially hyperbolic maps

(6) Dichotomy for the central foliation

Ideas in the proof

If λ^c then the disintegration is atomic [SW,RW]. So we may suppose $\lambda^c = 0$.

Then the criterion yields a continuous bi-invariant family $M \ni x \mapsto m_x$ with supp $(m_x) \subset W^c(x)$. There are two cases.

If supp (m_x) contains points of bilateral accumulation, it must be the whole S^1 . It follows that m_x is constant on central leaves and equivalent to arc-length.

Otherwise the support is countable. By ergodicity it must be finite. (Generically it consists of a single point.)

・ロン ・回 と ・ ヨン・

Ideas in the proof

If λ^c then the disintegration is atomic [SW,RW]. So we may suppose $\lambda^c = 0$.

Then the criterion yields a continuous bi-invariant family $M \ni x \mapsto m_x$ with supp $(m_x) \subset W^c(x)$. There are two cases.

If supp (m_x) contains points of bilateral accumulation, it must be the whole S^1 . It follows that m_x is constant on central leaves and equivalent to arc-length.

Otherwise the support is countable. By ergodicity it must be finite. (Generically it consists of a single point.)

・ロン ・回 と ・ ヨン ・ ヨン

Ideas in the proof

If λ^c then the disintegration is atomic [SW,RW]. So we may suppose $\lambda^c = 0$.

Then the criterion yields a continuous bi-invariant family $M \ni x \mapsto m_x$ with supp $(m_x) \subset W^c(x)$. There are two cases.

If supp (m_x) contains points of bilateral accumulation, it must be the whole S^1 . It follows that m_x is constant on central leaves and equivalent to arc-length.

Otherwise the support is countable. By ergodicity it must be finite. (Generically it consists of a single point.)

・ロン ・回 と ・ ヨン ・ ヨン

Ideas in the proof

If λ^c then the disintegration is atomic [SW,RW]. So we may suppose $\lambda^c = 0$.

Then the criterion yields a continuous bi-invariant family $M \ni x \mapsto m_x$ with supp $(m_x) \subset W^c(x)$. There are two cases.

If supp (m_x) contains points of bilateral accumulation, it must be the whole S¹. It follows that m_x is constant on central leaves and equivalent to arc-length.

Otherwise the support is countable. By ergodicity it must be finite. (Generically it consists of a single point.)