Poincaré, Mittag-Leffler e o rei Oscar II

Na origem dos Métodos Novos da Mecânica Celeste

Marcelo Viana

IMPA, Rio de Janeiro

Uma revolução científica

Em 1890, Henri Poincaré (1854–1912) publicou na revista *Acta Mathematica* um artigo de 270 páginas:

Sur le problème des trois corps et les équations de la dynamique tem um papel fundador na teoria dos sistemas dinâmicos. Nele aparece a primeira descrição matemática de "caos".

Uma revolução científica

Na década seguinte, Poincaré iria expandir esse artigo num livro em três volumes (mais de 1.300 páginas) que revolucionou esta área da ciência: Les Méthodes Nouvelles de la Mécanique Céleste.

Na origem de tudo: o aniversário de um monarca; um erro de proporções históricas; e muitos, muitos problemas.

Oscar II

O 60º aniversário do rei Oscar II da Suécia e Noruega foi em 21 de janeiro de 1889, mas os preparativos começaram muito antes.

Oscar II (1929–1907) não era um monarca qualquer: estudara matemática na faculdade e tornou-se protetor dessa ciência. Chegou a patrocinar a criação de uma revista científica, a *Acta Mathematica*, até hoje uma das mais prestigiosas do mundo.

Gösta Mittag-Leffler

Entre seus conselheiros estava o matemático Magnus Gösta Mittag-Leffler (1846–1927), elegante, culto, bon-vivant, que se casou com uma das herdeiras mais ricas da Suécia e gastou alegremente o dinheiro do sogro.

Ele deve ter influenciado a decisão inusitada do rei de assinalar o seu aniversário por meio de um prêmio para "uma descoberta importante no domínio da análise matemática superior".

O prêmio

A premiação consistia numa medalha de ouro e 2.500 coroas suecas (cerca de 4 meses de salário de um professor universitário). Além disso, o trabalho seria publicado na *Acta Mathematica*.

O prêmio

A premiação consistia numa medalha de ouro e 2.500 coroas suecas (cerca de 4 meses de salário de um professor universitário). Além disso, o trabalho seria publicado na *Acta Mathematica*.

Mittag-Leffler, encarregado de presidir o júri, não perdeu tempo para transformar a situação numa oportunidade de autopromoção.

O prêmio

A premiação consistia numa medalha de ouro e 2.500 coroas suecas (cerca de 4 meses de salário de um professor universitário). Além disso, o trabalho seria publicado na *Acta Mathematica*.

Mittag-Leffler, encarregado de presidir o júri, não perdeu tempo para transformar a situação numa oportunidade de autopromoção.

Inicialmente, o júri seria formado por cinco matemáticos: um sueco (Mittag-Leffler), um francês ou belga, um alemão ou austríaco, um inglês ou americano e um russo ou italiano.

O júri

Mas as dificuldades de comunicação – distâncias, idiomas, ciúmes – tornaram o plano inviável. Mittag-Leffler teve que se contentar com um júri menor: além dele, o alemão Karl Weierstrass (1815 – 1897) e o francês Charles Hermite (1822 – 1901), dois dos maiores matemáticos do século 19.

A competição foi anunciada na *Acta Mathematica* em 1885, e as dificuldades começaram imediatamente.

Kronecker

O alemão Leopold Kronecker (1823–1891), rival de Weierstrass, ofendido por ter sido preterido, criou todo tipo de controvérsias.

Mittag-Leffler tentou acalmá-lo, explicando que Weierstrass tinha sido escolhido por ser mais velho. Não sabemos se ele deu a mesma explicação a Weierstrass...

Problema dos N corpos

O júri preparou uma lista de quatro problemas, dos quais cada candidato deveria escolher um.

O primeiro deles dizia respeito ao estudo do comportamento de um sistema formado por um número qualquer de corpos que se atraem mutuamente segundo a lei da gravitação de Newton

$$\frac{d^2 r_j}{dt^2} = \sum_{i \neq j} \frac{Gm_i(r_j - r_i)}{\|r_j - r_i\|^3}$$

onde $r_1,\ldots,r_N\in\mathbb{R}^3$ representam as posições dos N corpos em função do tempo t.

Isaac Newton (1643–1727) provara que, se ignorarmos a interação gravitacional entre os planetas, a lei de gravitação implica que os planetas se movem em órbitas elíticas com o Sol num dos focos, tal como proposto por Johannes Kepler (1571–1630).

Isaac Newton (1643–1727) provara que, se ignorarmos a interação gravitacional entre os planetas, a lei de gravitação implica que os planetas se movem em órbitas elíticas com o Sol num dos focos, tal como proposto por Johannes Kepler (1571–1630).

Laplace, Leverrier, Adams e outros grandes astrônomos obtiveram soluções cada mais precisas, incorporando sucessivamente as interações entre os maiores planetas (Júpiter, Saturno, Urano). Assim foi descoberto Netuno, por Urbain Leverrier e Johann Galle.

Isaac Newton (1643–1727) provara que, se ignorarmos a interação gravitacional entre os planetas, a lei de gravitação implica que os planetas se movem em órbitas elíticas com o Sol num dos focos, tal como proposto por Johannes Kepler (1571–1630).

Laplace, Leverrier, Adams e outros grandes astrônomos obtiveram soluções cada mais precisas, incorporando sucessivamente as interações entre os maiores planetas (Júpiter, Saturno, Urano). Assim foi descoberto Netuno, por Urbain Leverrier e Johann Galle.

Isto conduz a tentar obter as soluções do problema na forma de expansão em séries trigonométricas ('séries de Lindstedt'). Era dado como certo que essas séries convergem...

Problema da estabilidade

A acumulação dos efeitos das atrações entre os planetas ao longo do tempo afetará substancialmente a evolução do Sistema Solar, fazendo com que a sua estrutura (número e posições dos planetas) mude radicalmente no longo prazo?

Newton acreditava que sim, e que o Sistema Solar só se mantém estável por meio da intervenção regular de Deus.

Problema da estabilidade

A acumulação dos efeitos das atrações entre os planetas ao longo do tempo afetará substancialmente a evolução do Sistema Solar, fazendo com que a sua estrutura (número e posições dos planetas) mude radicalmente no longo prazo?

Newton acreditava que sim, e que o Sistema Solar só se mantém estável por meio da intervenção regular de Deus.

Na época de Poincaré esse problema estava ligado à questão da convergência das séries de Lindstedt. Ele viria a se estender ao longo do século 20 e as respostas ainda são parciais:

- teoria de Kolmogorov, Arnold, Moser (1954–1962)
- simulações numéricas de Jacques Laskar (1990s).

Nada excede os limites das estrelas

O regulamento do Prêmio determinava que cada trabalho estaria identificado apenas por uma frase em latim, sendo acompanhado por um envelope fechado contendo a frase e o nome do autor. Claro que, como os trabalhos eram manuscritos, o anonimato era relativo.

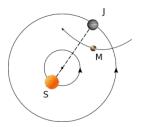
Nada excede os limites das estrelas

O regulamento do Prêmio determinava que cada trabalho estaria identificado apenas por uma frase em latim, sendo acompanhado por um envelope fechado contendo a frase e o nome do autor. Claro que, como os trabalhos eram manuscritos, o anonimato era relativo.

O júri reconheceu imediatamente o trabalho de Poincaré: além de ter um estilo inconfundível, ele não leu o regulamento direito e identificou o artigo com seu próprio nome... Bons matemáticos tendem a ser pessoas distraídas.

Nada excede os limites das estrelas

O regulamento do Prêmio determinava que cada trabalho estaria identificado apenas por uma frase em latim, sendo acompanhado por um envelope fechado contendo a frase e o nome do autor. Claro que, como os trabalhos eram manuscritos, o anonimato era relativo.

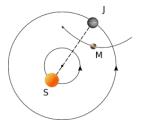

O júri reconheceu imediatamente o trabalho de Poincaré: além de ter um estilo inconfundível, ele não leu o regulamento direito e identificou o artigo com seu próprio nome... Bons matemáticos tendem a ser pessoas distraídas.

A sua frase em latim, *Numquam praescriptos transibunt sidera fines*, sinalizava que ele optara pela questão dos *N* corpos: *Nada excede os limites das estrelas*.

Problema restrito dos 3 corpos

Mais precisamente, Poincaré tratou um caso particular chamado problema restrito dos 3 corpos, com massas satisfazendo

$$m_1\gg m_2\gg m_3=0.$$



As séries de Lindstedt envolvem o pequeno parâmetro $\mu=m_2/m_1$.

Problema restrito dos 3 corpos


Este sistema tem 2 graus de liberdade, associados ao movimento (planar) do terceiro corpo:

Os seus estados são descritos por quatro coordenadas, duas lineares (I_1,I_2) e duas angulares (θ_1,θ_2) , sujeitas à conservação da energia $E(I_1,I_2,\theta_1,\theta_2)=c$. Logo, o espaço de estados tem dimensão 3.

Contribuição de Poincaré

Poincaré introduziu um ponto de vista completamente novo, e métodos e ideias originais: fluxos, seções transversais, integrais invariantes, recorrência, trajetórias periódicas etc.

Foi fácil para o júri escolhê-lo como vencedor, por unanimidade. No dia 20 de janeiro de 1889, véspera do aniversário, Mittag-Leffler foi ao palácio levar ao rei a boa nova. O pior ainda estava por vir...

Gyldén

O astrônomo sueco Hugo Gyldén (1841–1896) afirmou que ele mesmo já tinha feito a maior parte do trabalho de Poincaré. Na verdade, era muito diferente: Gyldén era um bom astrônomo, enquanto que o trabalho de Poincaré era matemático.

Só que a comunidade científica sueca ficou do lado dele, deixando Mittag-Leffler na posição desconfortável de defender, sozinho, a decisão do júri.

Phragmén

No meio tempo, o jovem sueco Edvard Phragmén (1863 – 1937) penava para revisar o difícil trabalho de Poincaré para publicação.

O autor respondia solicitamente a suas perguntas – embora por vezes a resposta fosse do tipo "É assim mesmo." – e o artigo ia ficando cada vez mais longo...

Então veio a bomba: respondendo a Phragmén, Poincaré descobriu um erro grave, que jogava no lixo boa parte do trabalho.

Então veio a bomba: respondendo a Phragmén, Poincaré descobriu um erro grave, que jogava no lixo boa parte do trabalho.

Para o vaidoso Mittag-Leffler, que apostara a sua reputação nesse prêmio, era uma catástrofe!

Ele não perdeu tempo: mandou Poincaré e Phragmén guardarem segredo e recolheu todas as cópias da revista que já haviam sido distribuídas.

Então veio a bomba: respondendo a Phragmén, Poincaré descobriu um erro grave, que jogava no lixo boa parte do trabalho.

Para o vaidoso Mittag-Leffler, que apostara a sua reputação nesse prêmio, era uma catástrofe!

Ele não perdeu tempo: mandou Poincaré e Phragmén guardarem segredo e recolheu todas as cópias da revista que já haviam sido distribuídas.

Restou uma cópia na biblioteca do Instituto Mittag-Leffler, em Djursholm, subúrbio de Estocolmo, que folheei anos atrás.

Uma anotação manuscrita em sueco informa: "edição completa destruída".

Poincaré ficou transtornado: "Não vou esconder a angústia que isto causou em mim. Para começar, não sei se ainda acho que os resultados que sobraram merecem esta grande distinção", escreveu a Mittag-Leffler.

Poincaré ficou transtornado: "Não vou esconder a angústia que isto causou em mim. Para começar, não sei se ainda acho que os resultados que sobraram merecem esta grande distinção", escreveu a Mittag-Leffler.

Este respondeu informando que Poincaré teria que arcar com o custo da reimpressão da revista: 3.585 coroas, muito mais que o valor do prêmio! O francês pagou sem questionar.

Poincaré ficou transtornado: "Não vou esconder a angústia que isto causou em mim. Para começar, não sei se ainda acho que os resultados que sobraram merecem esta grande distinção", escreveu a Mittag-Leffler.

Este respondeu informando que Poincaré teria que arcar com o custo da reimpressão da revista: 3.585 coroas, muito mais que o valor do prêmio! O francês pagou sem questionar.

Mas os problemas de Mittag-Leffler não acabavam nunca: agora Weierstrass insistia em mencionar o erro no relatório final do júri, o que seria muito embaraçoso.

Poincaré ficou transtornado: "Não vou esconder a angústia que isto causou em mim. Para começar, não sei se ainda acho que os resultados que sobraram merecem esta grande distinção", escreveu a Mittag-Leffler.

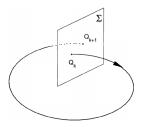
Este respondeu informando que Poincaré teria que arcar com o custo da reimpressão da revista: 3.585 coroas, muito mais que o valor do prêmio! O francês pagou sem questionar.

Mas os problemas de Mittag-Leffler não acabavam nunca: agora Weierstrass insistia em mencionar o erro no relatório final do júri, o que seria muito embaraçoso.

Felizmente, o idoso Weierstrass não encontrava tempo e disposição para escrever o relatório, o que deu a Mittag-Leffler a chance de 'esquecer' o assunto.

Poincaré ficou transtornado: "Não vou esconder a angústia que isto causou em mim. Para começar, não sei se ainda acho que os resultados que sobraram merecem esta grande distinção", escreveu a Mittag-Leffler.

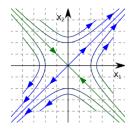
Este respondeu informando que Poincaré teria que arcar com o custo da reimpressão da revista: 3.585 coroas, muito mais que o valor do prêmio! O francês pagou sem questionar.


Mas os problemas de Mittag-Leffler não acabavam nunca: agora Weierstrass insistia em mencionar o erro no relatório final do júri, o que seria muito embaraçoso.

Felizmente, o idoso Weierstrass não encontrava tempo e disposição para escrever o relatório, o que deu a Mittag-Leffler a chance de 'esquecer' o assunto.

Poincaré recebeu enfim o seu prêmio, e o artigo corrigido saiu na Acta Mathematica de abril de 1890.

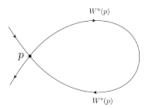
O erro de Poincaré


Um das ferramentas mais profícuas introduzidas por Poincaré é o uso de seções transversais para analisar o fluxo:

Uma trajetória periódica do fluxo, corresponde a um ponto fixo da transformação de retorno à seção transversal.

O erro de Poincaré

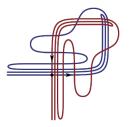
O caso mais interessante é quando o ponto fixo é de tipo sela:



Por ele passam duas curvas notáveis:

- estável, formada por trajetórias que convergem para o ponto fixo no futuro
- instável, formada por trajetórias que convergem para o ponto fixo no passado

O erro de Poincaré


Poincaré analisou a possibilidade de que essas curvas se aproximem uma da outra. Ele "provou" que nesse caso elas precisam coincidir, formando um laço:

Mas o raciocínio tinha uma lacuna: ele não levava em conta a possibilidade de que as duas curvas, estável e instável, se cortem transversalmente...

Trajetórias homoclínicas

Corrigindo essa lacuna, Poincaré descobriu o estranho fenômeno das trajetórias homoclínicas transversais. Sabemos hoje que ele está na origem do chamado caos determinístico.

"É impressionante a complexidade desta figura, que eu nem mesmo tento traçar. Nada é mais adequado para nos dar uma ideia da complicação do problema dos três corpos e, em geral, de todos os problemas de Dinâmica..."

Legado

Apesar das dificuldades, o prêmio foi um sucesso espetacular. A matemática ficou mais rica, e a Acta Mathematica mais conhecida.

E, não fosse pelo erro de Poincaré, o aniversário do rei Oscar II já teria sido esquecido.

Legado

Apesar das dificuldades, o prêmio foi um sucesso espetacular. A matemática ficou mais rica, e a Acta Mathematica mais conhecida.

E, não fosse pelo erro de Poincaré, o aniversário do rei Oscar II já teria sido esquecido.

Referências:

Poincaré and the Discovery of Chaos, June Barrow-Green.

Poincaré and the three-body problem, Alain Chenciner, 2012.

Poincaré, cientista e matemático universalista, Marcelo Viana, 2012.