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Introduction

These are notes, taken by Alexandre Baraviera, of a graduate course I
taught at IMPA in January-February 1998. The goal was to give an intro-
duction to Conservative Dynamics, including the proof of a KAM theorem.
In the absence of a comprehensive text, I used several references that are
listed in the bibliography. I also benefitted from a series of lectures given by
M. Herman during his 1997 stay at IMPA.

Alexandre and I have been working on polishing the text, but the version
you see here is still rather preliminary.

Marcelo Viana
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1 Hamiltonian systems

Here we give a brief review of some basic notions and results in Classical
Mechanics. Further information and proofs can be found in the book of
Arnold [1].

1.1 The equations of Hamilton-Jacobi

In the Hamiltonian formulation of Classical Mechanics the laws of motion
are described by the equations of Hamilton-Jacobi:

dg; OH dp; oH .

— (1) = 7— ) at’ — () = ——— 5 ,t, Z:].,...,TL. 1

0 api(qp ), () aqi(qp ) (1)
where ¢ denotes time, ¢ = (g1, - - -, qn) are the configuration coordinates, and
p = (p1,---,pn) are the momenta. For the time being we take g to vary

in some open subset U of R” and p € R”, but in the next section we will
introduce a broader setting. The function H : M — R, M = U x R” is
the Hamiltonian, and can often be interpreted as the total energy of the
mechanical system. We shall always consider the system to be autonomous,
i.e., H does not depend explicitly on ¢. Moreover, we suppose that H is of
class C2.

Example 1.1. Take n =1, (¢,p) € R?, and

1
H(q,p) = -p* — gcosq

2
where g is a positive constant. This describes the pendulum with length and
mass equal to 1, subject to a constant gravitational field. The coordinate
g describes the angle relative to the position of (stable) equilibrium, and p
corresponds to the linear momentum. The Hamiltonian can be interpreted as
the mechanical energy of the system: H = kinetic energy + potential energy,
representing by g the gravitational acceleration. The equations of motion are

{ p=—gsing
qg=p

(dots represent derivative with respect to time). This first order system that
can be written as § = p = —gsingq, corresponding to Newton’s third law.



A differentiable function (g, p) is a first-integral of the system if it is con-
stant along all the trajectories of the flow defined by (1): given any solution
(q(t),p(t)) of the equations, then

ST, p0) = 0.4 3= 2L (a(0) p0) S 0) + 5 a0, p(0) () =0

dt
z“: OI0H I OH
0q; Op; Op; 0¢;

) (a(t), p(t)) = 0

i=1

Let us define the Poisson bracket {Fy, F3} of two functions F} and Fy by

"\ OF, 0F, OF, 0F,
F F = - ;
(£, B2} Z Op; 0¢;  0Og; Op;

=1

It is immediate from the definition that {Fj, F,} is a bilinear and anti-
symmetric function of Fy, F,. Moreover, I is a first-integral of (1) if and
only if {H,I} = 0. In particular, the Hamiltonian H itself is always a
first-integral (this is the well-known principle of conservation of energy in
mechanical systems).

A system is said to be integrable (in the sense of Liouville) if it admits n
first-integrals Iy, ..., I, which are

(a) independent: the vectors

ol; 0I; ol; 0I;
ar, = (£ % 9 9 =1
gracd (3(11’8;01’ ’aqn’apn)’ I

are linearly independent on an open and dense subset of M = U x R”.

(b) in involution: the Poisson brackets {I;, Iy} are identically zero on M
foralll<j<nand1<k<n.

A classical theorem of Liouville says that if the system is integrable then the
equations of Hamilton-Jacobi can be solved by quadratures.
Let us list a few important examples of integrable systems.

Example 1.2. Every (autonomous) Hamiltonian system with one degree of
freedom, i.e. with n =1, is integrable: I, = H is always a first-integral , as
noted before. In particular, this applies to Example 1.1.



Example 1.3. Given any n > 1, suppose that the Hamiltonian H depends
only on the variables p = (p1,...,p,). Then the Hamilton-Jacobi equations

reduce to 5H 5H
bi = — 9 (p) =0 and ¢ = 8—1)1(19)

The first equation means, precisely, that every p; is a first-integral , and it
is very easy to see that these first-integrals are independent and in involu-
tion. Observe also that, then the right hand side of the second equation is
independent of time ¢, and so the solutions may be written

o0H
Op;

¢i(t) = ¢:(0) + (p(0))t.

Example 1.4. Lagrange’s top: ***
Example 1.5. Motion in a central force: ***

Example 1.6. Toda’s molecule: This is a system with 3 degrees of freedom
and Hamiltonian function given by

1
H = 5(]?% _|_pg + pg) 4 N2 4 02703 4 o431

These are 3 first-integrals: the energy H, the momentum of the center of
mass P = p; + po + p3, and

1
K =3 (p1 + p2 — 2p3) (P2 + p3 — 2p1)(P3 + P1 — 2p2) —
— (D1 + D2 — 2ps)e™ % — (P2 + s — 2p1)e® ™% — (ps + p1 — 2py)e®™ ™

A few comments are in order on the role of condition (b) above. Let us
define the Hamiltonian vector field of H:

- (0 o o)
T \op U op” 00T 0g.)

Recall also that the Lie bracket of two vector fields X = (Xi,...,X,,) and
Y = (Yi,...,Y,) in R™ is defined by [X,Y] = ([X,Y],...,[X,Y],) with

X, =t

T 9X; aY;
XvY,=) yv— .
[ ) ] ; J 83:]- Jaxj

As noted before, a function I; is a first-integral for the Hamiltonian system of
H is and only if {H, I}. So, to say that I; and I}, are in involution, is just to
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say that each one of them is constant along trajectories of the Hamiltonian
flow of the other. Moreover, these flows commute:

Xj o X}k = X}k o Xy, for every s,t.
Indeed, this is the same as saying that
(X1, X1,] =0, (2)

and this is a consequence of the following lemma (which, on its turn, can be
proved by a direct calculation).

Lemma 1.7. For any C? functions Hy, Hy we have Xy, m,y = [Xu,, Xu,].

Let us push the consequences of condition (b) further on. We restrict
ourselves to those points where the independence condition (a) holds, and so
the Hamiltonian vector fields Xj,, ..., X, are linearly independent.

By Frobenius theorem, the commutation property (2) implies that the
distribution of 2-planes generated by {X I X 1.} is integrable: each point
is contained in a unique surface that is everywhere tangent to the plane
generated by the two vector fields. For the same reasons, the distribution
of n-planes generated by {Xy,,..., X, } is also integrable: each point (g, p)
belongs in an n-dimensional manifold 7" = T, ;) formed by flow lines of these
n vector fields Xy,,..., X, . Moreover, the restriction of every I; to this
manifold 7" is constant. In fact, 7 must coincide with a level set {I = const },
at least locally, since this last set is also an n-dimensional submanifold (in
view of the independence condition). We can always suppose I; = H, and
then T is invariant by the Hamiltonian flow of H, and it is contained in an
energy surface {H = const}.

Proposition 1.8. If T is compact then T s diffeomorphic to the n-torus.

Indeed, every compact n-dimensional manifold that supports n linearly
independent fields and pairwise commuting vector fields is diffeomorphic to
the n-torus. See [1, §49] for a proof.

In the proof one also constructs angular coordinates ¢ = (¢1, ..., ) on
the torus 7" such that the transformation

(g,p) = (o, 1)

defines a change of coordinates that preserves the form of the Hamilton-
Jacobi equations (a canonical transformation). Let us explain this in more
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detail. First of all, a differentiable map ¥ : T" x B! — M, (¢,I) — U(p, 1)
is constructed which is a diffeomorphism from the product of the standard
n-torus T" by an r-ball B C R" onto a tubular neighborhood of T'. FEach
set {I = cte} is an invariant torus of the Hamiltonian flow, which, in these
coordinates, is still given by equations of the form (1):

do; OH dl; OH
= — I _ = —

(note that we continue to denote H the expression of the Hamiltonian in
the new coordinates, an abuse of language will be recurrent throughout our
text). Since the I; are first-integrals of the system, the second equation gives

_dl,  0H

el e 7
o 8gOi(so, ),

which means that H does not depend on the variables ¢ (H is constant on
each torus). Compare Example 1.3, the right hand side of the first equation is
constant in time. As a consequence, the Hamiltonian flow on each invariant
torus is linear, in ¢ coordinates

i) = 30+ (0 ()= O

(I).

Such 1, are usually called action-angle variables. Observe that what we
have been saying implies that typical solutions of integrable systems can be
written in the form

t = U(p(0) + w()t, 1) = Yy(),1 (W) (3)

where the function v,),r : R* — M is Z"-periodic.

1.2 Non-integrability. The N-body problem

Having obtained such a complete description of the behaviour of integrable
flows, it is natural to ask how typical is the property of integrability among
Hamiltonian systems. Let us discuss this problem in the setting of the N-body
problem, for which it was first formulated, and where it is directly related to
the problem of the stability of the Solar system.

One considers N massive bodies of neglectable dimensions moving in
d-dimensional space (usually, d = 2 or d = 3) and interacting through New-
tonian gravitation. That is, denoting m;, 1 < ¢ < N, the masses and
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Qi = (¢i1,---,a), 1 < i < N, the positions, the jth body is subjet to
a force

szm Qz_Q
F J J
Z 1Q: — Q5lI* |Qi — Q4

where G is the universal grav1tat10nal constant. It is not difficult to see that
this force field derives from a potential:

m;m;

F; =0U/0Q; where U(Qi,...,Qn) = E:GHQZ Q;ill

i#£]

The system has n = Nd degrees of freedom, with ¢;; as configuration co-
ordinates and p;; = m;¢;; as momenta. The Hamiltonian is just the total
energy

N
1
H:Z§p§+U(Q1,...,QN).
i=1

A few first-integrals can be found from physical laws of conservation (the
energy, linear momenta, angular momenta), from which one can show that
the system is integrable when N = 2.

However, it was soon realized that this is a rather special, and that “solv-
ing” the equations of motion for systems with more than 2 bodies, including
our Solar system, posed formidable difficulties. A source of inspiration came
from the fact that the mass of the Sun, denoted m;, is much larger than the
mass of any other object in the Solar system. Thus, as a first approxima-
tion, one may try to solve the equations of motion neglecting the interaction
between these other objects: the potential U is replaced by

m;my
Us(Qu, ..., G——
0(Q1,-- -, Qn) = ; T

This approximation corresponds, simply, to N — 1 uncoupled 2-body prob-
lems, and so it is completely integrable.

The problem is to understand to what extent the mutual attraction be-
tween planets, comets, and asteroids, modifies the overall evolution of the
system. In particular, is the Solar system stable, that is, will it keep the
present form forever ? Or can these secondary gravitational effects cause
trajectories to change so much over long periods of time that some of the
planets will eventually leave the system, or collide with each other ? With
this question in mind, people like Laplace, Lagrange, Leverrier, and oth-
ers, devoted a great deal of effort to calculating with increasing accuracy



the corrections (secular terms) introduced in the solutions of the equations
of motion by the interactions between other bodies (specially the massive
planets Jupiter and Saturn).

Writing the potential U as a perturbation of the integrable one U,

U=U,+el,

where £ > 0 corresponds to the largest quotient of masses m;/m;, i # 1, one
may find successive approximations to the actual motion of the form which
are polinomial in the parameter ¢, with quasi-periodic coefficients. Cf. (3).
In fact, the solutions of the original, unsimplified, system may be formally
expressed as

do(wt) + Z el (wt), (4)

where w,w) € R* and each ¢; is a Z"-periodic function. More precisely,
such a formal series expansion of the solutions can be found for all frequency
vectors w = (wy, . ..,w,) which are non-resonant:

i=1

We illustrate this, as well as the role played by ressonances, through
a simplified problem. Let us consider the system of complex differential

equations
2.1 = iw121
k1 k2

where € > 0, wy,ws € R, and ky, ko are integers. For ¢ = 0 the solutions are
quasi-periodic functions

21(t) = 2:(0)e™" and  2,(t) = 2(0)e™?".

Then, one may try to find the solution of the systems for ¢ > 0 by adding a
perturbation term, analytic in €,

25(t) = 25(0)e™?" + Z e w;(t). (6)



Replacing in the equation of zy,

Z elirj(t) = iws Z elw;(t) +¢ (=1 (O)e"““t)]cl (zg(O)emt + Z e w; (t)) .

Comparing the terms of order 1, one gets a linear non-homogeneous equation
o0
a(t) = n D" wa(f) + AT A = 2 (0 (0),
7j=1

whose solutions are given by
w1 (t) = eiw?t/Aei(klwl-l-(kz—l)wg)s ds.

If kywi + (ko — 1)wy # 0 then

. A
B k1w1 + (kg — 1)(,02

w1 (t) gilkhrorthows)t | peiwat (for some B),

is quasi-periodic and, thus, bounded. On the other hand, the “perturbation
term” ew, (t) may take large values if the divisor kyw;, + (ko — 1)ws happens
to be small. If kyw; + (ke — 1)ws = 0 then

wy (t) = €' (At + B),

is not even bounded. Similar conclusions apply to all the e/w;(t), 7 > 1:
they are all well-defined and quasi-periodic, if one supposes w = (w;,ws) to
be non-resonant; yet, even under this assumption, it is not clear whether the
series in (6) should be convergent, due to the presence of these small divisors.

By the end of last century, king Oscar II of Sweden decided to spon-
sor an international mathematical competition. Weierstrass, invited to join
the jury, suggested the formulation of the Prize Problem: to prove that the
formal series (4) do converge, and thus express the general solution of the
N-body problem. Poincaré was to be the winner of the competition but, to
Weierstrass surprise, he concluded just the opposite!

More specifically, Poincaré was considering the planar restricted 3-body
problem: one of the bodies has mass m3 = 0 (more precisely, one considers
the limit system when m3 — 0) and so it does not affect the motion of the
other two my, mo; consequently, mq, ms move according to solutions of a 2-
body problem, that is, along conic curves; one supposes that these conics are
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Figure 1:

circles, and that ms moves in the same plane as mq, ms. The problem, to
describe this motion of m3 has n = 2 degrees of freedom (the coordinates of
ms in the plane). The special case my = 0 is integrable, in fact it corresponds
to two uncoupled 2-body systems. However, as shown by Poincaré, no first-
integrals can be expressed as convergent power series > /- (my)* ¢y, for small
positive me.

Going on to try and understand this phenomenon from a geometric point
of view, Poincaré realized that resonant invariant tori of an integrable system
tend to be destroyed when the system is slightly perturbed. Part of what is
going on can be described by considering a cross-section X to the flow, and
the first-return map P to X (precise statements wil appear later). Invariant
tori of the unperturbed (integrable) flow intersect 3 in circles C which are
invariant under the first-return map. If the frequency vector w = (w;, ws) is
resonant, in other words, if wy/w; is rational then P is conjugate to the rigid
rotation of angle p/q = ws/w;. In particular, all the points in C' are periodic
for P, with a same period q.

Such a continuum of periodic points is easily destroyed, by arbitrarily
small perturbation of the Hamiltonian. On the other hand, some periodic
orbits do persist in the perturbed system, including at least one hyperbolic
periodic orbit of period q. Moreover, the corresponding stable and unstable
manifolds intersect each other transversely. See Figure 1. Poincaré real-
ized that in the presence of such homoclinic intersections, the behaviour of
nearby trajectories must be extremely complex, and so the system can not
be integrable. See [?, vol 3, p. 389].

In this respect, Poincaré’s intuition went beyond what he could obtain
rigorously at the time. He did not actually prove the existence of homoclinic
orbits in the restricted 3-body problem (which was done only recently). More
important, his methods were not conclusive to prove divergence in the non-
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resonant case:

”... les séries ne pourraient-elles pas, par exemple, converger quand z?
et T3 ont été choisis de telle sorte que le raport ny/ny soit incommensurable,
el que son carré soit au contraire commensurable (ou quand le raport ny/ns
est assujetti a une autre condition analogue a celle que je viens d’énoncer un
peu au hasard) ¢ Les raisonnements de ce Chapitre ne me permettent pas
d’affirmer que ce fait ne se présentera pas. Tout ce qu’il m’est permis de
dire, c’est qu’il est fort invraisemblable. [?, vol 2, pp. 104-105].

The problems of the solvability of the general N-body problem, and of
the stability of the Solar system, were to remain wide open for yet a half a
century.

1.3 The theorem of Kolmogorov-Arnold-Moser

An answer to these problems was finally given by the theorem of Kolmogorov,
Arnold, Moser (KAM): most invariant tori of persist when a (nondegenerate)
integrable system is slightly perturbed. More precisely, a positive fraction (in
volume) of phase space is occupied by invariant tori of the perturbed system,
and this fraction goes to 1 when the size of the perturbation decreases to
zero. A formal statement is given below.

It turns out that persistence or not of an invariant torus is directly related
to the corresponding frequency vector w, more specifically, to its arithmetic
properties. As already mentioned, torus with resonant frequencies

k-w for some k € Z™\ {0}

can be easily destroyed (precise statements will appear later in the text).
So, one may expect that robust tori such as granted by the KAM theorem
should correspond to vectors w which are “far from being resonant”, and this
is indeed so.

Given ¢ > 0 and 7 > 0, we say that w € R" is (¢, 7)-Diophantine if

k-w|>—— forallkezm,
Tl

where ||k|| = |k1|+- - - |kn|. It is a classical fact that this condition is satisfied
by some w € R" if and only if 7 > n — 1. On the other hand, if 7 is fixed
strictly larger than n — 1, then the set of all w that are (¢, 7)-Diophantine for
some ¢ > 0 has full measure in R".

Let Hy be an integrable C'*° Hamiltonian, with n > 1 degrees of freedom.
Let (¢,I) be action-angle variables for Hy, as in Section 1.1: H, depends
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only on I = (Iy,...,1,), each I; is a first-integral for Hy, and each ¢, evolves
linearly with time ¢:

_ 0H,

=50 (D).

pi(t) = ¢(0) +tw;(I),  w;(I)

Recall that ¢ lives in the n-torus T", whereas I may be taken in an open
ball D' C R™.

Let us say that Hy is non-degenerate (or that it satisfies a twist condition)
if the map I — w(I) = (w1(I),...,wp(I)) is a local diffeomorphism, that is,

if
@;) (= (aafgf> (1 ™)

is a linear isomorphism everywhere on D

Theorem 1.9. Let Hy be a non-degenerate Hamiltonian as before. Fixc > 0
and T > n — 1 and a compact subset B of the image w(Dl') of I — w([).
Then there exists a neighbourhood V of Hy in C®°(T" x D R) such that,
given any H € V and any (c, 7)-Diophantine vector w € B, there ezists an
embedded n-torus Ty, C T" x D' such that

a) Th,, ts invariant under the Hamiltonian flow of H, and

b) the restriction of this Hamiltonian flow to Ty, is C*® conjugate to the
linear flow t — z(t) = 2(0) + tw on T".

Moreover, the union of these tori T,, has positive volume in T" x D}.

More detailed information can be given, specially on the way these tori
depend with the Hamiltonian. This will be done later, in Section 2.3, where
we also state a version of this theorem for discrete-time systems (symplectic
diffeomorphisms).

2 Symplectic formalism

In general, the configuration space of a given system can not be described by
an open subset of a Euclidean space. For this reason, one needs to extend
the notion of Hamiltonian flow introduced above to the manifolds context.
A good reference is [1].
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2.1 Symplectic manifolds

Let M be a C* m-dimensional manifold, m > 1. A differential k- form is a
mapping that associate to each point z € M a k-linear alternate transforma-
tion

wy, :T,Mx...xT,M —R

Given a local system of coordinates z = (x1,... ,x,) we can write a k-
linear alternate transformation w, in a unique form

Wy = Z Qg iy, (Z)dﬂle VAN d.’Ezk

1<t << <n

where dx; : T,M — R is the differential at z of the coordinate function
mi(z1,... , Tm) = z; and

d.iCil VAN d.’Ezk (Ul, Ce ,Uk) = Z dﬂ?il (’Ug(l)) s d.’Ezk (Ug(k;))(—l)c(g)

where the sum is over all permutations o of the set {1,...,k} and €(0)
denotes the parity of the respective permutation. The differential form w is
said to be C* if the functions «;,..;, (2) are C* for every choice of coordinates.
In this text, all the forms will be supposed C*°.

The exterior derivative of the k-form w is the (k + 1)-form dw given, in
coordinates, by

Oay yeee sl

1<j<m 1<i; <+ <ip<m J

Note that a O-form is just a C*° function f : M — R. The exterior
derivative is the 1-form df defined by df, = D f(z). In coordinates

df. = ) of (2)dz;

- Z;
1<i<m

It is also easy to see that any k-form with &£ > m must be identically zero.
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Example 2.1. Let M = R?*", with coordinates z = (q1,--- ,Gu; D1, - -« > Pn)-
Then

= Y pdg and w,= Y  dp;Adg

1<i<n 1<i<n
define, respectively, a 1-form « and a 2-form w in M. Furthermore w = da.

A k-form w is closed if dw = 0, and ezact if there is a (k —1)-form « such
that w = da. An exact form is necessarily closed, since d(da) = 0 for every
differential form «. Every m-form is closed and, by convention, every 0-form
is exact.

Let w be a differential 2-form. We say that w is non-degenerate if for all
z € M and for all v; € T, M, there exists vy € T, M such that w,(vy,vy) # 0.
In other words, for all z € M the 2-form w, induces an isomorphism

T,M — (T,M)*

vy = w(vy, ) T,M =R

that maps V5 to w, (v, v2). It’s easy to verify that if such a form exists then
the dimension of the vector space T, M is necessarily even, m = 2n, and
wi™ = w, A ... Aw, is a non-null form.

Now we may define the main notions introduced in this section. A 2-form
w on a manifold M is a sympletic form if it is closed and non-degenerate.
A symplectic manifold is a pair (M,w) where w is a symplectic form on the
smooth manifold M.

If (M, w) is a symplectic manifold then dimM is even and w*" is a volume
form on M, ie., w)™ # 0 in every point z € M. In particular, M must be
orientable.

Example 2.2. The 2-form w in Example 2.1

W, = Z dpz A dqz

1<i<n
is a sympletic form on M = R?". Note that
W™ = (dp1 Adgi) A ... A (dp, A dgy,)

is the usual volume form on R?" (up to a sign).
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The main examples are provided by the following construction, that gen-
eralizes Example 2.2

Example 2.3. Let N be an n-dimensional manifold and M = T*N be its
cotangent bundle. Given ¢ € N and p € (T,N)* there is a canonical identifi-
cation

T(q,p)(T*N) =T,N X Tp(Tq*N) =T,N x T;N.
Then
Apg) * Tigp)(T*N) = R, (u,v) = p(u)

defines a canonical 1-form o on M = T*N. We claim that w = da is a
symplectic form on M. The fact that w is non-degenerate can be read from
its expression in appropriate coordinates (¢, p). Taking the ¢; arbitrary local
coordinates on N, and choosing the p; conjugate coordinates on T'N, i.e.,
p; =dg; for i =1,...,n, one gets

o= Y pdg and w,= Y  dp;Adg

1<i<n 1<i<n

Theorem 2.4. (Darboux) Every symplectic manifold (M,w) admit an at-
las of local coordinates (q,p) in which the symplectic form w is given by

w, =Y dp; Adg;

1<i<n

We shall refer to such (g, p) as canonical coordinates.

2.2 Hamiltonian flows and symplectic maps

Let (M,w) be a symplectic manifold. Given a C* function H : M — R,
k > 2, the Hamiltonian vector field Xy associated to H is the C*~! vector
field on M defined by

It is clear that

dH, Xy (2) = w,(Xg(2),Xg(2)) =0

meaning that the field Xy (z) is tangent to the level hypersurface of H at z
for every point in M, and so the flow leaves H invariant.
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Example 2.5. M =R*, w =Y, ,.,, dpi A dg;. Given H : M — R let us
calculate the corresponding Hamiltonian vector field. One can write

- 0 0
~  Opi 9q;

2

and try to find the coefficients A;, B; through the relation

Zaz +ﬂz, — dH,( Zaz +@8,)

valid for all vectors Y | o ap + ﬁz— € T.M. The result is A; = 5~ A and
B, = 5 and so we have the expression of the field:
<8H 0OH O0H oH )
Xp=(—,...,—, e, ———
6]31 5pn 8ql aQn

Proposition 2.6. The flow ¢' = X!, preserves the symplectic form w, i.e.,

(PLw) (V1. .., vp) = wet(n) (dPbvr, ... ddlvy) = wy(v1,. .. ,vn)
for all t. In particular, @' preserves the volume form w"

Proof. Using the theorem of Darboux, we may write w, = Y, dp; A dg;, in
appropriate coordinates (q1,... ,qn,P1,--- ,Pn)- In other words,

w.((¢,p), (@, P)) =< (¢,p), (=P, Q) >=<(¢,p), J(Q, P) >

=117

Note that J: = —J = J~'. Then we have for all v

where

w,(Xg,v) =dH,(v) <

< Xu(z),Jv >=< gradH,,v >+
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< J'Xp,v >=< gradH,,v >

J'Xy(2) = gradH, <= Xy = JgradH,

A preserving w, is equivalent to say that for all v, w

w,(Av, Aw) = w,(v,w) <=
< Av, JAw >=< v, Jw ><—
< v, A TJAw >=< v, Ju >
A JA=J
Finally

d¢'(z)

0 = X6 @) =

dd(t, x)
dt

= dXp(¢"(2))2(t, z)

dXn(¢'(2)) = d(JgradH)(¢'(z)) =

JhessH (¢'(z))

Hence

d(®'J®
% = (dXz®)'J® + ' J(dXy®) =
(JhessH®)'J® + ®'.J JhessHP

®'hessH(—J)J® + &' JJhessH® = 0

and then ®'J® = J, showing that ® preserves w,.

18



Example 2.7. (Geodesic flow): Let N be a riemannian manifold, M; =
T*N and My =T N; w = da is the canonical structure intoduced above. By
means of the riemannian metric we can identify

M, =T*N =TN = M,

through the map (¢q,v) € My — (¢,p =< v,. >) € My, where <,> is the
inner product. With this identification we can consider the form « as acting
on Ms:

(qu) : T(gw)(TN) =TyN x TN — R

mapping (u,w) to < v,w >. Then w = da defines a symplectic structure in
M,. Consider H : M, — R, H(gq,v) = 1|v|?>. The hamiltonan flow of H is
known as the geodesic flow of N, since the projection of its trajectories are

the geodesics of the manifold.

Definition 2.8. Given a symplectic manifold (M, w), a transformation
fM—>M
is symplectic if preserves w, i.e., fuw = w.

There are two important classes of examples: flows transformations and
Poincaré transformations associated with Hamiltonian vector fields. The first
class corresponds to the proposition above. The second one is object of more
considerations in what follows.

Let Xz be a Hamiltonian field with n degrees of freedom. As was seen,
the trajectories lies on a level hypersurface H = cte. Let z € M be such
that dH, # 0 (and then Xy # 0) and let N be the submanifold H = cte
containing z. Locally N is a codimension 1 submanifold, i.e., dimN = 2n—1.
Let z’ be a point in the same trajectory of z and close to it, and consider
the sections ¥ and Y', transversal to the flow and containing, resp., z and z'.
dimY = dimX¥' = 2n — 2. Then, w|X is a symplectic form on 3 (and w|X' is
a symplectic form on X'):

a) w|X is closed: d(w|X) =0

b) w|X¥ is nondegenerate. Prove it!!

Proposition 2.9. The Poincaré map associated to the flow
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P:x=Y
18 symplectic.

Proof. Take two surfaces S C ¥ and S’ = P(S) C ¥'. Let Q be the region
of the space bounded by S,5” and R. The Stoke’s theorem states that

/w—i-/w—i-/w:/dwzo
s R s’ Q

If £ € R and {Xy(&),v} is a basis for TR then v € T, N and hence,

W(Xn(€),v) = dH(v) = 0

i.e., w|g = 0. Therefore

o[

for a suitable choice of orientation. *** O

Given H,, H, we define the Poisson bracket:

{HI,HQ} = w(XHNXHz) = dHl(XH2)
The following are important properties of the Poisson bracket

a) {, } is bilinear and skew symmetric;
b) {H,KL} = {H,K\L + K{H, L}
¢) [Xu, Xk] = Xim,K}

Now we can define, in this more general context, the notions of first-
integral , integrals in involution, and integrable system, just in the same way
as in the last section.
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Definition 2.10. A symplectic transformation f : T** x R* 1 — T 1 x
R*! is integrable if it has the form

f@,r)=(0+w(r),r)

Proposition 2.11. If f : (N,w) — (N,w) is symplectically isotopic to iden-
tity, then there exists a Hamiltonian flow in N x S' xR that admits Poincaré
transformations conjugated to f.

Proposition 2.12. If f is a sympletic transformation with fized point z
then:

a) if X is eigenvalue of df, then A7 is also eigenvalue of df,;

b) if 1 or —1 are eigenvalue of df, then their multiplicity is even.

Proof. First, note that if \ is eigenvalue of A then ) is also eigenvalue of A’.
If X is eigenvalue of B, B symplectic, then there exists v such that Bv = \wv.

B'JBv = Jv = B'J(Jv) = Jv = AB*(Jv) = Jv

= B'(Jv) = A 1(Jv)

showing that A\~! is eigenvalue of B! and, by the remark above, also of B. [

2.3 Generic symplectic systems

3 Birkhoff normal form

Let f: (M,w) — (M,w) be a symplectic transformation with fixed point z.
We suppose that all the eigenvalues of df, are distinct.

Definition 3.1. w is said to be non-resonant of order s > 1 if k- w) # 0 for
all k € Z"™ such that 0 < ||k|| < s, where ||(k1, ..., kn)|| = D0, kil

Theorem 3.2. If w is non-resonant of order s > 2 then there exists canon-
ical coordinates (q1,- .. ,Gn, P1,5--- ,Pn) SO that

H(Qap) = sz(p2+q2) +H3(7'1,... 7Tn) + "'+Hm(rla--- ,7"”)

: +0(I(a,p) ™)

where r; = %(pf + ¢?), H; is a homogeneous polynomial of degree j and
m = [s/2].
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Example 3.3. For systems with n = 1 degrees of freedom, the normal form
of

order s = 2 is H(q,p) = 2wr + O(|(¢,p)|?);
order s = 3 is H(q,p) = 2wr + O(|(¢,p)|*);
order s = 2 is H(q,p) = 2wr + wer? + O(|(q, p)|?)-

For systems with n = 2 degrees of freedom, the normal form of order s = 4
is H(q,p) = (2wir1 + 2ware) + aniri 4 a1ar1me + aers + O(|(g, p)|°)

Proposition 3.4. Given H and s > 2 the normal form of order s
H®(q,p) = Hy(r) + -+ + Hp(r)
defines an integrable system.

Proof. Consider the symplectic polar coordinates (6;,7;) given by
q; = 2r;cos; and p; = 2r;sinb;

In these new coordinates the Hamiltonian H depends only of r. So, the r;
are first-integrals. O

Definition 3.5. w is (¢, 7)-diophantine if
k- wl = cl[k]T
for all k € Z™ — 0.

Theorem 3.6. (KAM) Let Hqo(I) be an integrable on T" x R", nondegen-
erate; let r < R, ¢ > 0 and 7 > 0 be fixed. Then there exists a neighborhood
W of Hy in C*°(T™ x R™) such that for all H € W and w (c, 7)-diophantine
there s a n-torus T, C T" x R" such that:

a) T, is a graphic on T", lagrangean and invariant.

b) The flow of Xgl|r, is conjugate to the linear flow t — Zy + wt on the
torus.

Let f: (M,w) — (M,w) be symplectic, z = f(z) be an elliptic point with
eigenvalues Ai,..., A\, AT, ..., AL [\ = 1. Then we have the following
result:
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Theorem 3.7. If A = (A1,...,\,) is non-resonant of order s then there
exist coordinates (0,r) so that

s+1

2))

f0.r) = (0 +S(r),r) + 00"
where S is a polynomial of degree m = [s/2] in r.

Example 3.8. For n = 1 the normal form is

s;—l))
Proof. Here we give only the main steps in the proof, that is an indutive

procedure.
First: We have

F(0,7) = (04 ag+arr + -+ amr™,7) + O(r

H(q,p) =Y 2wir; + O((¢,p)?)

=1

Second: Let’s suppose that we have

H(g,p) = 2wiri + Hy(r) + -+ Hy + Pylg,p) + O((g, p)**)

=1

(note that P,(g,p) + O((¢g,p)**") = O((¢q,p)*>. We want to find symplectic
coordinates (@, P) such that:

H(Q,P) = 2wRi+ Hy(R) + -+ Hy(R) + O((Q, P)**)
=1
for s =2m + 1, and
H(Q,P)=) 2wiRi+ Hy(R) + -+ Hu(R) + Hpni1(R) + O((Q, P)*™)
i=1

if s = 2m + 2. We consider the change of coordinates:
(¢,p) = (z,w) = (Z,W) = (Q, P)
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given by
zj = pj +1g;, Wj = pj — 14;
and

In the new coordinates (z,w) the variable r; assumes the form r; = 1(p? +
@?) = z,w, and the is

H(z,w) = ij(zjwj) + Ha(r) + -+ Hu(r)

+ Z (k, ) 2" w' + O((z,w)* 1)
(k,l

where z* means 25 ... zF». Now, in order to define the map (z,w) — (Z, W)
we introduce the generating function

W) = ZZjo + Z ﬁ(k,l)Zle
i=1 =

(k)=

Let us consider

wj = 3—% = W+ 3 py=s B(E, D20
Z] = (,;97] =Zj -+ Z(k‘,l):s ,B(k, l)ljzkwl(‘y)

where k(j) = k—(0,...,1,,...,0) and I(j) = { — (0,...,1;,...,0). The
expressions above define implicitly

2, =2, — Z Bk, D 2Fw'D + O((z,w)*)

(k,)=s

and, due to its definition by means of generating functions this change of
coordinates is in fact symplectic. Using this variables in the expression of H
we obtain
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H(Z,W) =Y wiZiW;+ > | Y [Bk,Dk; — Bk, ;] Z2*W!
j=1 =1 \(

k,)=s

+O((Z, W)™ + Hy(R) + -+ + Hu(R) + Y aZ*W!
(k,)=s

The terms of order s can be collected:

> ok )+ B DI wik; = )] | 2w

(k,)=s

Now, if 377 | w;(k; — ;) # 0 we can take

a(k,l)
> i wilky = 1)
vanishing the corresponding term, that is of order s. As there is no resonance
of order j,

ﬂ(k’l) = -

Y wilkj—1) =0 <= li=ki,... lh=k
j=1

So we can eliminate all terms, except the ones of the form
Zk L Zhw L wke

But those terms exist only when s is even, since s = ky + ...+ k, + k1 +
...+ ky,. Moreover, Z;W; = R;, and so these remaining terms are precisely
the R ... RF» with ky + ...k, = 5/2. O

4 Twist maps

Here we consider the transformation f : A — A, C* (for k¥ > 1), homotopic
to identity, where A is one of the following manifolds: S' x R, S! x [0, c0)
or S x [0,1].

Given a point z € A and an angle ¢ we can introduce the cones C*(c, z)
and C~(c, 2) in the space T, A, that we identify with RZ.

25



Definition 4.1.

Ct(c,2) ={v e R’ 1 v, > (tanc)|v,|}

C (c,2) = {v € R* 1 v, < —(tanc)|v,|}

Definition 4.2. f is said to be a twist map if there exists ¢ > 0 such that
the following conditions hold:

9 +
dfzg e C™(c,2)

U o€ O (e f )

Example 4.3. Symplectic transfomations at the neighborhood of an ellip-
tic fixed point z. If df, = A, A non-resonant of order s, then we can find
symplectic coordinates (,7) such that f assumes the form

f(e,T) = (9 4+ ag+ ar+ -+ ayr™, 7.) + 0(7‘(5*1)/2)

Example 4.4. Convex billiards:
B:S'x (0,7) = S" x (0,)

(80, Ck()) — (81, Ckl)

It’s a well known fact that this transformation preserves the form w(s, a) =
sin ada A ds

4.1 Birkhoff theory

Theorem 4.5. Let f : A — A be a C* twist map, homotopic to identity and
C be an invariant curve that is a graph on S* (i.e., I : St - R, C°, such
that C = graph(+)). Then 1 is Lipschitz with constant depending only of f.
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Proof. Consider the lift f : A — A on the universal covering of A. Let g be
a function such that

As S' is compact we can assume € > 0 independent from # and then,
given 6, 6, in S' we have

9(61) — (62 < <161~ 6]

Definition 4.6. The rotation number p(f) is the real number given by

p(f) = lim o) e

n—00 n

The limit is, in fact, independent of the chosen point z.

Theorem 4.7. Let f be Lebesque preserving. If C = graph(v) is invariant
and p(C) € R — Q then given another invariant curve C' (also graphic of
some function), C N C" =0 and p(C") # p(C)

Proof. The Theorem of Denjoy states that either g has dense orbit (and, in
fact, all the orbits are dense) or g is a Denjoy counter-example.

First case: Given another invariant curve C' # C let us suppose that
CNC'# (. Then CNC"is f-invariant and, due to the irrational rotation
number, is dense in C. Thus, C N C" = C, a contradiction.

Second case: C'NC" is compact. If I is a conex component of C' — [C'NC']
then the images of I by f are disjoint (otherwise they coincide implying the
existence of a fixed point, what is a contradiction since we assume that p is
irrational). Let R be the conex region bounded by I and an arc of C'. The
images of R are also disjoint and then
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Leb(| ] F/(R)) =) Leb(f/(R)) = _ Leb(R) = o0

>0 >0 >0

a contradiction.

Now let us prove that CNC' =0 = p(C) # p(C'). C = graph(y) and
C' = graph(y'), allowing us to define a positive number § = min |¢) — ¢'|.
Then there exists € such that ¢’'(f) > g(#) + € for all 6. In the lift:

g'(0) = g(0) + e

implying, since p is irrational, that p(g') > g. O

Theorem 4.8. (Birkhoff) Let U C S* x [0,00) such that
a) U is diffeomorphic to S* x Ry and contain some subset S* x [0, d].
b) U is f-invariant.
¢) closure(U) is compact and U = interior(closure(U))
Then there exists 1 : S' — R continuous such that OU = graph(v)

See [5, Chp I] for a proof.

Corollary 4.9. Let C; and Cy (both graphs of, resp., 11 and 1) be invari-
ant curves and /P, < Y < 1y that has graphic f-invariant. Then YV}
neighborhood of C1 and YV, neighborhood of Cy there exists z1 € Vi, 29 € V5,
ni,ng > 1 such that f*(z1) € Va and f™*(zq) € V4.

Proof. Let W =J,5, f"(V1) and take

U= WU(domain bounded by C and r = 0)

Then f(W) = W = f(U) = U and then U fullfil the conditions of the
Theorem above, implying that OU = graph(v), ¥ > ;. But we assumed
that Ay < ¥ < 1y = by € S* such that 1(6y) = 1(6y). Now the existence
of the desired point z; follows easily. For z5 the procedure is similar and is
left to the reader. O
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4.2 The Poincaré-Birkhoff theorem

Theorem 4.10. (Poincare-Birkhoff) Let f : S' x [0, 1] — S* %[0, 1] be an
homeomorphism, Lebesque preserving, that admits a lift f : (6,7) — (O, R)
such that ©(6,0) > 0 and ©(0,1) < 0 for all @ € R. Then f has at least 2
fized points.

Proof. For all 0 there exists a unique r(f) such that
f(0,r(9)) € vertical line defined by 6

and this r(0) is differentiable. Define the curve

C={6,r0):0ecS"

This is a differentiable circle. As f is Lebesgue preserving, f(C) N C hat
at least 2 points. If z is one of them, its image is at the same vertical line
showing that f(z) = z. O

Corollary: Let f: S' x [0,1] — S x [0,1] be a C' twist map and Cy, Cy
two invariant curves, both graphic of some function, with p(C;) < p(Cs).
Then, for all p/q € (p(C1), p(Cs)) there exists 2 periodic orbits of period ¢

with p = p/q.

5 The Aubry-Mather theorem

Definition 5.1. a) w € R" is (¢, 7)-diophantine if

c
|kwl| >
k|7

for all £ € Z™ — {0}.

b) w € R*! is (¢, 7)-diophantine in the strong sense if (wy,wsy,...,1) is
(¢, 7)-diophantine.

Obs: If w € R is (¢, 7)-diophantine then

Cc

p
w—=|>—
| q|_\q|7+1
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for all rationals p/q. For a fixed 7,

U D(c,7)

is a full-measure set.

Definition 5.2. F C A is an Aubry-Mather set if:

a) E is f-invariant.

b) There exists K C S* (compact) and ¢ : K — [0,1] such that E =
graph(i).
Example 5.3. A periodic orbit given by the proposition above for some
p/q € [po, p1] is an Aubry-Mather set with p = p/q.

Example 5.4. Invariant curves that are graphic.

Theorem 5.5. Take A = S' x [0,1]. Let f : A — A be a C' twist map,
homotopic to identity and Lebesque preserving. Defines po = p(f|r = 0) and
p1 = p(flr = 1). Then, for all p € [po, p1] there exists an Aubry-Mather set
E = E, with rotation number p.

For the proof we will need some results.

Proposition 5.6. For all p/q € [po, p1] there ezists an Aubry-Mather set E
such that p(E) = p/q.

Proof: Let us define

En+q) =& +1

F(€(n),r(n)) = (€(n+p),r(n+p))

Now we introduce the space @, , whose elements are the sequences £(n) €
R satisfying the following properties:

pl) £(n) is non-decreasing.

p2) {(n+q) =&(n)+1foralln > 1.

p3) 9o(£(n)) < &(n+p) < g1(&(n))

and identifying two sequences if one is only a shift of the other. ®,, can
be embedded on R?/Z (this equivalence identify (xo,...,z,-1) and (zo +
k,...,z41 +k)) through

§={&(n)}tn — (£(0),...,€(¢—1))

This procedure endows @, , with a topology that makes it compact.

30



Definition 5.7.

Lpg:®pg— R

5 = Lp,q(f)

is the continuous map given by

-1

Lyq(8) = A((n),&(n+p))

n

(S

I
<)

where A is a f-invariant measure, positive on open sets.

Lemma 5.8. If L, , reaches its minimum at & then h*(n) = h™(n) for alln
and so (£(n), h*(n)) corresponds to a trajectory of f:

F(€(n), h*(n)) = (E(n +p), h* (n+p))

Proof. Let us suppose h*(n) > h~(n) for some n and {(n — 1) < {(n) <
&(n + 1). Define £(j) = £€(j) for j # n and &(n) = &(n) — J. Then,

Lp-q(g) =Lyy—a—-0F+7=

Lypo(§) = Lpg— B
and then £ is not a minimum, a contradiction. 0

Proposition 5.9. If F is an Aubry-Mather set, graphic of some 1 : K —
[0, 1], then 1 is C-Lipschitz, C' depending only of f.

Proposition 5.10. The set AM = {E : E is an Aubry-Mather set} is
closed and invariant in the Hausdorff topology, and p(.) is a continuous func-
tion of E.

Proof. Let z € closure(AM) = 3E, € AM such that z, — z, z, € E,. By
compacity, we can find a convergent subsequence E,, — E, E € AM. Then
z € E, showing that z € AM.

O
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Corollary 1: The union of all Aubry-Mather sets is closed and invariant.
Corollary 2: For all p € [py, p1] there exists an Aubry-Mather set with
rotation number p.

Proof. p can be approximated by a sequence of rationals p,/g,. For each one
of this numbers there exists F,, = {set of periodic orbits}, that is an Aubry-
Mather set with p(E,) = p,/¢,. We can now take a subsequence E,, — E,
E an Aubry-Mather set, and from the continuity of the rotation numbers
follows that

Pn
—t = p=p(E)

Nk

that is exactly the contents of the Theorem. O

6 KAM theory

6.1 Local linearization theorems

Given w = (w1, ... ,w,) € R* take the constant vector field X, = w on T".

Theorem 6.1. Ifw is diophantine then there exists a neighborhood V' of X,
and for each X € V AN € R” and h € Dif f*°(T") such that X = h. X, + \.

Define T, : T" — T" by T,,(6) = 6 + w.

Theorem 6.2. If w is diophantine in the strong sense then there ezists
neighborhood V' of T,, in Dif f*(T") such that for all f € V I\ € R* and
h € Dif f>°(T") so that f = Ta(h~'T,h).

Obs:

a) If A =0 then f is C*°-conjugate to T,,.
b) If p(f) = w then A = 0.

Let us now prove the Theorems above.
Proof of Theorem 6.1: Consider

® =d,: R* x Dif f°(T") — X>(T")

(A h) = A+ b X,
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Clearly, ®(0,id) = X,. Is ® a bijection between some neighborhoods of
(0,id) and X7 .
Given h € Dif f*°(T",0) we can take one of its lifts h: R* — R",

h(O+Fk)=h@) +k VkeZ"

Let & = h — id : R* — R*. This function induces v : T" — R” that can
be chosen in order to satisfy u(0) = 0. This give us an embedding from
Dif f°(T",0) into C*°(T",R",0), that is a Fréchet topological vector space.
This means that the topology is defined by an increasing sequence of norms,
being, in this case:

[lulln = Jullcn

The convergence is defined as follows:

(uj); > u <= Yn>0 |ju; —ull, —0

Definition 6.3. Given E}, F; topological vector spaces and ¢ : U; C E; —
E, (Uy open set), ¢ is C'-Gateaux if there is D : U; X E; — FE, continuous
and linear in the second variable such that

o1
Dy(z,0) = lim [z + ) — ()
forallz € U; and v € E;.
Definition 6.4.

L, : C®(T",R*,0) — C=(T",R")

u(z) = Du(zr).w

Lemma 6.5. a) L,(C®(T",R",0)) = C°(T",R*) = {v € C>°(T",R") :
Jpnv =0}

b) w nonresonant = L, is injective.

¢) w diophantine = L, is a bijection on C§°(T",R").
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d) If w is diophantine then there exists r > 0 and A; > 0 such that
|L, 0]|; < Ajl|vl]jpr with r =n 47+ 1.

Proof. a)

/ (Luudb = / (Du)wdt =0

since Du;w is an exact 1-form.
b) u: T" — real™ has the Fourier expansion

u(0) =Y _ (k) exp (2mik.0)

kezm™

where

u(k) = /n exp (—2mik.0)u(0)do

Now we have the equivalence:

u — (4(k))gezn <= Lyu — (2mik.wi(k))gezn

Thus, L,u = 0 = 2wik.wi(k) = 0. But w is nonresonant and then
u(k) = 0 for all k # 0, that implies u = cte. As u(0) =0, v = 0 and L, is
injective.

¢) 3C;(n) > 0 j € N4 such that V € C°(T",R"):

1 N : A

= sup |(L+ K[ (k)] < 1715 < C; sup |1+ k)1 f ()]
j keZn keZn

Let us suppose w (¢, 7)-Diophantine and v € C§°(T", R"). Take

oy _0(K)

k) = 2mik.w k70

(4(0) will be determined later). Then the function

u(f) =Y (k) exp (2mik.0)

kezZn
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is C°°:

o li(R)
Al < . 1 k n+j+1 ‘/U(
sl < €5 sup (1 o 15000

But |k.w| > c|k|"". Thus

C; n+j T4
sl < 52 sup (4 K™k 10 (8)]) <

c; .
_J 1 n+j+1+7 2|5 <
ac S2p (14 [K]) [kPok)]) <

C:
2—7;C[Cj+n+1+r|v|n+j+1+v] <00

This calculation also shows that |ul; < Aj|v|jini14r and [L7'w|; <
Aj|v|j+n+1+T7 proving d) O

6.2 The Nash-Moser inverse function theorem

Let E and F' be Fréchet spaces, i.e., topological vector spaces with topology
defined by an increasing sequence of norms | |; that we assume fixed. In this
situation the space is said to be graded.

Example 6.6. C>(T",R") with the sequence | |; = | |¢i.

Definition 6.7. Let U C E be an open set. f : U — F is tame if it’s
continuous and for all p € U 3Ir > 0 and C; > 0 such that |f(z)|; <
Ci(1+ |z|j3r+1) Yz € V(p) and all j > 0.

Example 6.8. The differential operator L : C*°(R,R) — C*°(R,R), Lu =
D"u is tame.

Definition 6.9. a) f:U — F is C'-Gateaux if it is continuous and there
exists Df : U x E — F continuous, linear in the second coordinate,
such that

Df(z,v) = lim > [f (z + tv) — ()

t—0 ¢
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b) f is C*-Gateaux if Df is C* -Gateaux.
c) f is C®-Gateaux if it is C*-Gateaux for all k.

Lemma 6.10. Let E, F,G be Fréchet spaces, U C E, V C F open sets,
f:U—=V,g:V — G Ck-Géiteaur. Then go f : U — G is also C*-Gateaux
and D(go f) = Dg(f(x), Df(z,v)). Furthermore, if f and g are C*-tame,
then g o f is C*-tame.

Example 6.11. L, : C=(T",R",0) — C°(T",R",0) with w Diophantine.
L' is tame.

Example 6.12. Differential operator D" : C®(M,RF) — C®(M,R*).

Definition 6.13. F is a tame space if it is a graded Fréchet space that
admits a family (S(t))+c(1,00) Of smoothing operators S(t) : E — E such that
for all 1 < k < n there exists C(k,n) > 0

a) [S(t)flk < C(k,n)t"*|f]n
b) |f = S(t)flx < Clk,n)t" | fla Vf € E.

Example 6.14. Take £ = C*(T",RP). Fix some ¢ : R* - R, ¢ € C*
with compact support. Define ¢; : R — R by ¢;(2) = t"¢(tz). Then

St f(x)=pix = . oi(x —y) f(y)dy

The proof is a long calculation, and here we give just the first steps.
k=0,n=0:

SOflo <1 [ e(@5( - 100del < Iflo [ ole)a

C(0,0)[flo

[f =5 flo < [flo+15@)flo < (C(0,0) + 1) |flo
k=0,n=1:

D(S(1)1)]o = sup / Dy — y)dy‘ _

[ pat- y)f(y)dy‘ < \7losup
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/WHD%mx—wm4=ﬂﬂww

Flosup /DwWﬂéCWb

|f = 5()flo = sup

1)~ [ el o

= sup
x

[ e - fa- o1
< IDfloy R < O+ DSy (®)

Theorem 6.15. (Hadamard inequality) If exists a family of smoothing
operators then for all 1 < k <n 3C(k,n) > 0 such that

. n=l 1=k
[fle < Ok, )| £ 1f 1A

forall k <1 <n.

B SR
Proof. Take t = |f[, " *|fln *. Then

[Fle SIS@fli+1f = S@) fli <

1 l—n

1 1 -k 1 1
cww(mﬁﬁmxﬁ LM+cwm(mw*m#ﬁ fla <

1

=] S A=
Cl,DIfly " Ifla=" +CUn)fl" | fln
Now define

A

C(k,n) = max [C(k,1) + C(l,n)]

k<I<n
O

Theorem 6.16. (Inverse function) Let E, F be tame Fréchet spaces, U
an open set of E, f : U — F Ck-tame (k > 2). Let mg € U, yo = f(xo). If
Df(x) is a bijection for all x € W (W neighborhood of xo) and
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WxF—FE

(z,w) — Df '(z)w

15 tame then there exist neighborhoods V, and V5, containing respectively x
and yo, and g : Vo — Vi C*-tame such that f o g = go f =1id. Furthermore,

Dg(y) = Df *(9(y)).
this result follows the next theorem.

Theorem 6.17. (Implicit function) Let E, F,G be tamed spaces , U an
open set of E X F, f : U — G Ck-tame, (x9,v0) € U, 20 = f(zo,%). If
there is W neighborhood of (xo,vo) such that Dof(z,y) is a bijection for all
(z,y) € W and Dyf(z,y)~! is continuous and linear in y then we can find
a neighborhood V' of xy and g : V. — F C*-tame such that (z,g(x)) € U
Ve eV and f(z,g(x)) =20 for allz € V.

Proof. The proof is an application of the preceding theorem to
h:U—FEx(G

(z,y) = (=, f(z,y))
0

The proof of the inverse function theorem consists of a modification of the
Newton method to the context of Fréchet spaces. In this case the alghoritm
takes the following form:

go(y) = Zo

n1(y) = ga(y) = S(ta) DF " (gn) (£ (9a(y)) = v)

where ¢, tends to infinity in a fast way, for exmple, ¢, = exp (%n)
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6.3 Proof of the KAM theorem
Theorem 6.18. (KAM) Let Hy € C*(T" x D', R) be nondegenerate (i.e.,

%0 s an isomorphism at all points I € DF),

Hy:T" x D* > R

(0,1) — Hy(I)

Let oo = wo(1ly) with Iy € int(D) and o is Diophantine. Then there ezists a
neighborhood W of Hy in C*°(T" x D R) such that for all H € W there is
an embedded n-torus T, satisfying:
a) T, is a graphic on T, lagrangean, invariant under the flow of Xp.
b) The flow of Xg resticted to T, is C™ conjugate to the flow of X,.
Furthermore, Ty, g depends continuously on H.
Lemma 6.19. Let u € C°(T",R") and T = graph(u). Then the following
propositions are equivalent:

a) T is lagrangean.

b)

8ui
095/ i
18 symmetric.
c¢) The 1-form Y, u;df; is closed.

d) (6,1) — (0,1+ u(f)) is symplectic.
Proof. a) <= b): T is lagrangean <=

(Zd“dgi> (o) (o)) =0 =
=1

8uk 8’U,j_
8_u i mmetri
50 S sy etric
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b) < c¢): Y. u;db; is closed <~

"\ [ Ou; ou;
Y AdY;, =0 — —dl; Ndb; =0 <—
;(593') ,zj:a@' ’

8_u 1 mmetri
50 S sy etric

c) <= d): (0,I) — (0,1 +u(f)) is symplectic <=

D d(I +u(0) Adl; =) dI Adf; =
=1

=1

Xn:dui/\deizo <=

i=1
ou\ . tri
—_— 1 mmetri
50 s symmetric
O

Lemma 6.20. Let T = graph(u) be a lagrangean torus. Then T is invariant
<= H|r = cte.

Theorem 6.21. Given Hy, Iy, as in the KAM theorem there exists a nei-
hgborhood W of Hy in C®(T™ x D', R) and C*®-tame applications

W — R" x C®(T", R, 0) x Dif f(T",0)

H v~ (tu, fu,9n)
such that ty, = Iy, Fu, =0, gu, = id and if we write uy =ty + V fy then:
a) graph(ug) C T" x int(D}') and graph(uy) is a lagrangean torus.
b) Ho(id,uy) = cte. In other words, this torus is invariant.
c)
0H

W(Zda U’H) = (gH)*Xa

The flow of Xy restricted to graph(uy) is conjugate to the flow of X,.
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Lemma 6.22. Let

U={(u,t) € C®°(T",R",0) x R* : graph(t + u) C int(T" x D}')}

and
O:C®°(T" xR R) xU x Dif f*(T",0) — X(T")
H
(H,u,t,g) — 8—(id,u+t) — gL
ol
Then:

a) ® is a C*°-tame application with ®(Hy, Iy, 0,id) = 0
b) D3 4®(H,u,t,g) : R* x C°(T",R") — X>*(T") is invertible for all
(H,u,t,q) close to (Hy,0, Iy, id); furthermore,

(H,u,t,g,At,Ag) — (D®34(H,u,t,g)) (AL, Ag)

18 tame.

Corollary 6.23. There exists a neighborhood V' of (Hy, Iy) and a C*®-tame
applications

T: VR

(H,u) — T(H,u)

and
G:V — Dif f*(T",0)
(H,u) = G(H,u)
such that:
i)

%—?(id, w+T(H,u)) = G(H, u).a

i) (u, T(H,u)) €U, i.e., graph(u+T(H,u)) C int(T" x D")V(H,u) € V
ZZZ) T(H(), I()) =0 and G(H(), I()) = id.
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Proof of the lemma (ideas):

0’H
(D3 4®)(H,u,t,9)(At,Ag) = W(id’ u+t)At — (Dgg’l)(Dgg’l)oz

Hence,
(D34®)(H,u,t, g)(At,Ag) = An

if snf only if

0*H .. .
BIE (id,u+t) o gAt — DgDga = Anog
if and only if
-1 0*H . . -1
(Dg) (id,u +t) 0 gAt — Dga = (Dg) " Anog.

oI?

But Dga = L,g and L, is an isomorphism when « is Diophantine. So we
can choose At such that

L O°H . o
(Dg)" g lidutt)og|At= | (Dg) " (Anog)
Then we take

2

9= 1,* (D) G .00 g0t — (D) (o)

and

Ag = Dg.g
Now let us state some results about tame functions that will be used soon.

Proposition 6.24. Let E, F,G be Fréchet spaces, U an open set of E, V
open set of F, f:U =V and g:V — G C*-tame. Then go f : U = G is
C*-tame and

D(go f)(z,v) = Dg(f(x), Df(x,v))
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Proposition 6.25.

¢ : Dif f(T",0) — Dif {(T",0)

h— ht

is C*-tame and

D¢(h)Ah = —D(h ') (Ahoh™') = —((Dh) *Ah) o h*

Proposition 6.26. Let 7 : Vi, — M, m : Vo — M be fiber bundles of
finite dimension, C'*° on the compact manifold M, U an open set of Vi and
w:U — Vy a C® application that is fiber preserving. Then

& : I°(M,U) — I®(M, Vy)

S+ pos
is C®-tame. (T°(M,U)={s: M —- U, s€ C®:mos=1id} )
Proposition 6.27. Define J'V as the set of jets of order r (r € N) in V.
Then

JriT®(M,V) = J'V;

s+ 77(s)
18 C*-tame.

Lemma 6.28. (inversion) Let E, F,G be Fréchet spaces, U an open set of
E,

A:UxF —@G
linear in the second wvariable and

u:UxF =@
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such that
a) A(z) : F — G is invertible for all x € U and

UxG—F

(z,2) = A7 (2)z

is C'-tame.
b) There exists ©yp € U such that u(xy) = 0 and u satisfies the following

property:
(P)3l,s>1 and A; > 0 such that

u(@)yl; < Aj(1+ |2lj45)lyl,

[u(z1)y — u(z2)yl; < Aj (|21 — Toljps + |T1]j15|21 — 2[s) [Y]s

Then L(x) = A(z) + u(x) is invertible for all x in some neighborhood W of
To and

WxG—F

(z,2) = L™ (2)z
18 tame.

Lemma 6.29. Let E, F,G be Fréchet spaces, U an open set of E and
L:UxF—G
(z,y) = L(z)y

tame and linear in the second variable. Then, given xy € U there exists

V(zo), 7> 1, k> 1 and Aj > 0 such that

\L(x)yl; < Aj ([2]j1eyle + [y]j1r)
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Proof. Take y such that |yl =1 = |Ay|x = |A|. Then

[L()(A)l; = IMIL(2)yl; < [AIB; (1 + [aljpr + lylje) =
By (IMylk + Myl ]j1r + [Ayljr) < Bj ([Aylelzljer +2[Ay]) <

2B; (| \ylklzljr + [Aylj4r)
forr>k—j. O
Lemma 6.30. Let

V=A{(H,[f) e C®°(T" x D}},R) x C*(T",R,0) : (H,uy =df + 1) € V}
where V' is the neighborhood given by lemma 6.22 and

T:Vx R— C®(T",R)

(H, f,E) — Hy(id,us + T(H,us)) — E

Then

a) ¥ is C*®-tame and V(Hy,0, Hy(Iy)) =0

b) the derivative Dy 3V (H, f, E) : C*°(T",R,0) — C*°(T",R) is invertible
for all (H, f, E) close to (Hy, 0, Hy(lp)) and

((H’ fa E)’ (Afa AE)) = (D2,3\II(H5 f,E))_l (Afa AE)
15 tame.

Corollary 6.31. There ezists a neighborhood W of Hy in C*(T" x D', R)
and a C*®-tame application

W — C=(T",R,0) xR

Hw— (F(H),E(H))
such that
i) F(Ho) =0, E(Ho) = Ho(lo)
i) (Hd(F(H))+ 1) €V
ii) Hy(id, d(F(H))+ 1o+ T(H,df + I))) — E(H) =0
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Proof of the Theorem: Take fg = F(H), tg = Iy + T(H,df + 1)), ug =
de + tH and agg = G(H, ’U,H)
Proof of Lemma (7):

DysV(H, f, E)(Af,AE) = %_1;[ o (id,df + Io + T (H,df + Io))d(Af) — AE

+%—§I o(id,df + Iy + T(H,df + 1)) DT (H,df + Iy)d(Af)

Let us call

L(H, f,E)(Af,AF) = %—1;[ o(id,df + In+ T(H,df + I))d(Af) — AE

and [(H, f, E)(Af, AFE) is equal to

aa—i[ o(id,df + Iy + T(H,df + Iy))D.T(H,df + Iy)d(Af)

Claim 1: L(H, f, FE) is invertible for all (H, f, F) close to (Hy, 0, Ho(1y))
and

(H,f,E), (Af,AE)) — L(H, f, E)" (Af, AE)

is C''-tame.
Claim 2:

l(HOa Oa HO(IO)) =0
and [ satisfies P.

Lemma 6.32. Claim 1 + Claim 2 = (L +1)(x) is invertible for all x close
to xo and

(z,2) = [(L+ ()] "2

18 tame.
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Proof.
L:UxF—G and [:UxF —G

First case: Let us suppose L(z) =id and F = G.

UxF —F

(z,y) = (id + I(z))y

Let us consider I(z) : (F,|.|;)) — (F,|.|). I(z) is a bounded linear operator
on (F,|.|;), since

@)yl < A1+ |zigs) [yl

Furthermore,

@)y = Uzo) e < Ai(|@ = woligs + [aligsle — zols)[yl:

Hence, I(z) is close to I(zg) = 0 if z is close to 2. Choosing a neighborhood
V(zo) such that |I(z)|, < 1 for all x € V(z) then Vx € V

(id +1(z)) : (F, [.[) = (F,[-])

is invertible and

[(id + ()7 < (1 = [U(=)]s) "
From (id + I(z))™! = id — I(z)(id + I(z)) ™! we conclude that

|(id+1(z)) " yl; <
< Iyl + (=) (id + U(x)) " yl;
< Iyl + A (1 + |2)j40) | (id + 1(z)) " yly

)"
|
< lyly + A (1 + |2]js) (1= [U)|) e
< ylj + A1+ J2]j46)[1 = (A2 = @olies + [olislz — ols)] 7 yle
< Bi(1+ [@]jst + [Ylj4s1)
General case: write (L+1)(z) = L(z)(id+ L' (2)l(z)) = L(z)(id +1(z)).
Then we are the first case of the lemma, since [(x) satisfies P. 0O

)
)
)
)
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Proof of the Claim 1:
L(H, [, B)(Af,AE) = (g.0) o d(Af) — AE = d(Af)(dg o g™ )a — AE =

[d(Afog)a—AE]og™
Then

L(H, f,E)(Af,AE) = An <= (d(Afog)la—AE)og™ = An <=

Lo(Afog)=AE+ (Anog)

This equation is true if we choose

AEz—/n(Anog)

Af =L (AE+ (Ag))og™

Proof of the Claim 2:

Z(H(), 0, E) (Af, AE) == %(Zd, I() + T(H(), Io)).DQT(H(), I())d(Af) ==
%(IO)I%T(HOJOW(AJC) =0

is true if DyT(Hy, Ip)d(Af) = 0. But

H
68—1 o (id, u + T(H,u)) = G(H, u).a =
0°H
012
For H = Hy and u = I, we have

o (id,u + T(H,u))(Au + DyT(H,u)Au) = (Djo g Ha
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0*H
o0I?

(I())(AU + DQT(H(), I())AU) = D(DQG(H(), I())AU)O!

Integrating over T":

0*H

2 (1) / (Au+ DoT(Ho, Io)Au) = | D(DyG(Ho, Ip)Au)a = 0 =

Tn

Au+ DyTAu=0= D;TAu = — Au

T T

So,

n

DT(d(Af)) = — / d(Af) =0

proving the claim.

7 The closing lemma and the ergodic hypoth-
esis

In the first part of this section we state and prove a theorem of Herman,
implying that the C'*°-closing lemma is false for flows and symplectic maps
in dimension greater than 4.

In the second part, we discuss the relation between the ergodic hypothesis
of Boltzmann and the KAM theorem. We also state another result of Her-
man, showing that even the much weaker version of the ergodic hypothesis
known as the quasi-ergodic hypothesis is false.

Theorem 7.1. Given n even there exists a constant symplectic form w on
M = T™*? and given k > 2n there exists an open set U C C*1(M,R) and
an open interval A C R such that for all H € U and c € A, H™'(c) has no
pertodic orbit.

Proof. We give the proof for n = 2, but the general case is analogous.
Fix a = (1, as, a3) Diophantine (in particular, as # 0). Consider
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0 1 0 -1
. -1 0 0 (675)
B= 0 0 0 o3

-1 —Q —03 0

that is antisymmetric, i.e., B! = —B, and det B = a2 # 0. Take the form

w(v1,v9) =< vy, Bug >

defined on M = T*. Consider

H0(01, (92, 93, 94) = sin (271'04)

U a neighborhood of Hy and A = (—1,+1). Then

H;'(e) = {(0y,...,04) :sin (270,) = ¢} = Ty (Hp) U Ty (Hy)

Then for H € U and ¢ € A, H™!(c) is the union of two 3-torus close to
T1,T,. Hence, they are graphic on (6y,... ,63) € T°. Let Z = P.(Xy|T;(H)),
j=1or j =2, where P denotes the projection on (6;,...,60s). If H is close
to Hy then Z is close to Zy = (27 cos (276,)).ce. From the Local Linearization
Theorem follows that there exists A € R* and h € Dif f*(T?,0) such that

Claim: A =0

Proof: The rotation number of a field on T* is defined as

p(Y)=/TkY

with respect to the Lebesgue measure. To show the Claim is sufficient to
prove that p(Z) = p(h.(Zp)).

o 1 0 -1 oL —oi o1
1 0 0 a oft ol | ‘ol
Xy =BVH = 2 = gé}% = | 96 6}?894
0 O 0 Of3 W Og:,;m
ﬁ 4
—1 —Qy —Q3 0 2—04



By the other hand, T;(H) = graph(+) and H(6:, 62, 03, (6:, 62, 603)) = cte

L OH OHOH _
00, 00,00,

OH 01 o) OH .
7=929v 4 % o 5
=2 =50 g5, T g, T2 ) =54

If H is close to Hy then Z is close to Z, = (1,0, 3) = X, Hence, there
exists A € R® and H € Dif f*°(T?) such that Z = A\ + h.(Z;) and X = 0.

_ o
_/Ts /Tsa—eg+1 691+a2,a3) (1 ()!2,&3)

Now we only need to prove that p(h.(Z,)) =

Claim: Z preserves the Lebesgue measure and then h. Zy also preserves
it.

Proof:

8% 8%

2 = o056, ~ 96,90,

=0=

div(h.Zy) =0 =

both preserve the Lebesgue measure on TS.
But Zy = a and h,Z, are uniquely ergodic, showing that h is Lebesgue

preserving. So,
p(h*Zo) :/ h*ZO = / ZO :/ o=«
T3 T3 T3

finishing the construction. U
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