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Abstract

We present some recent developments in the study of attractors of smooth
dynamical systems, specially attractors whose basin has a global character.
A key point in our approach is to explore the relations between this study
and that of main bifurcation mechanisms.
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1 Introduction

We consider both continuous time dynamical systems (flows) and discrete time
dynamical systems (smooth transformations, diffeomorphisms) on manifolds. In
the first setting we use ¢': M — M, t € R, to denote the flow. In the second one
we let ¢: M —s M be the transformation and denote its t-iterate ¢t = po---0 ¢,
for each integer t > 1; if ¢ is invertible we also write ot = (p?)~1.



A main problem in Dynamics, which we want to address here, is to describe
the (typical) asymptotic behaviour of trajectories ¢t(z2), z € M, as time t goes to
+oo. Let an attractor be a (compact) subset A of the ambient manifold M such
that

e A is invariant under time evolution: ¢!(A4) = A for every t > 0;

e Ais dinamically indivisible: it contains some dense orbit (alternatively, one
may ask that A support an ergodic invariant measure);

e the basin of A, defined by B(A) = {z € M:¢'(z) - A ast = +oo}, is a
large set: it contains a neighbourhood of A (weaker definitions are obtained
by requiring B(A) to have nonempty interior or even just positive Lebesgue
measure).

Then this problem can be rephrased in terms of describing the properties of at-
tractors, namely

e geometric and topological properties (fractional dimensions, topological in-
variants);

e dynamical properties (symbolic dynamics, (non)hyperbolicity, Lyapunov ex-
ponents);

e ergodic properties (asymptotic measures, statistical parameters).

Of particular interest is to investigate the robustness (or persistence) of these
features of the dynamics when the system is perturbed (either deterministically or
randomly).

Besides the beautiful theory developed throughout the sixties and the seven-
ties for the case of Axiom A systems, see e.g. [Sm], [Bo], a great deal of interest
has been devoted in recent years to trying to provide a satisfactory answer to
these questions for more general classes of attractors, lacking uniform hyperbolic-
ity. Motivation comes both from the applications (models of natural phenomena
are seldom uniformly hyperbolic) and from the intrinsic richness of such systems,
which combine (structural) unstability with some remarkable forms of persistence.

A fruitful approach, strongly advocated by J. Palis, has been to try and relate
the study of (nonhyperbolic) attractors with that of the generic processes through
which the dynamics varies as the initial system is modified (bifurcation processes).
More precisely, one considers parametrized families of dynamical systems unfold-
ing a given type of bifurcation (such as nontransverse homoclinic trajectories or
nonstable cycles envolving periodic trajectories, for instance) and one tries to de-
scribe the presence and the properties of attractors in those families. Results such
as [MV], [DRV], [Mo] or [MP], for instance, may be thought of from this perspec-
tive. A second, kind of converse, step has also been proposed by Palis: to show
that generic dynamical systems with nonhyperbolic attractors (or other relevant



unstable phenomena) can be approximated by others exhibiting one of a small
number of bifurcation types. Results of this kind include e.g. [Ur], [Ca].

Here we discuss a number of recent progresses in this general program. In
Section 2 we analyse the basin of Hénon-like attractors, to prove that it contains
a neighbourhood of the attractor, at least for a large set of parameters. This is
well-known in the orientation-reversing case, but the, possibly even more relevant,
orientation-preserving case seems to be new. We also announce a more quantitative
result, of ergodic flavour, recently established by M. Benedicks, and myself: almost
every point in the basin of attraction is generic with respect to the Sinai-Ruelle-
Bowen measure of the attractor.

Section 3 corresponds to joint work with V. Baladi concerning the ergodic
properties of certain nonuniformly hyperbolic unimodal maps of the interval. The
main result asserts that those properties, including the fact that such maps are
exponentially mixing (exponential decay of correlations), are robust under random
perturbations of the map (stochastic stability).

Section 4 was written jointly with S. Luzzatto and contains a discussion of an
extended geometric model for the behaviour of Lorenz equations. The goal of this
model is to provide insight into the way the strange attractor is destroyed through
the introduction of ”folds”, as the parameters are varied. The main statement is
that the attractor persists after the appearance of the folds, but only for a positive
measure set of parameter values.

In Section 5, we report on joint work with M. J. Pacifico and A. Rovella. We
consider smooth flows in 3-dimensional manifolds exhibiting homoclinic connec-
tions associated to equilibrium points of saddle-focus type. Then we prove that a
new type of global attractor, with spiraling geometry, occurs (and is even a persis-
tent phenomenon) in such families.

2 The basin of Hénon-like attractors

In Section 2.1 we prove that the basin of Hénon-like attractors contains a full
neighbourhood of the attractor, for a large set of parameter values, and we also state
two related conjectures. Then, in Section 2.2, we discuss a substantial refinement
of this result: Lebesgue almost every orbit in the basin is (exponentially) asymptotic
to some orbit in the attractor. As a consequence, almost every point in the basin
is generic (in the sense of the ergodic theorem) with respect to the SRB-measure
of the attractor.

2.1 The topological basin

Let (¥,)1<q<2 denote the family of quadratic real maps ¥,(z) = 1—az? (this may
replaced by much more general families of unimodal or multimodal maps of the
interval, see e.g. [DRV, Section 5]). We also consider the corresponding family of
endomorphisms v, of the plane, given by ¥, (z,y) = (¥.(z),0). By a Hénon-like



map we mean here any map ¢ on the plane which is close enough to some 9, in
the C"-sense
lo = Yaller <D, b>0 small

(usually one assumes r > 3; just how small b should be depends on the context).
In all that follows we suppose that ¢ is an orientation-preserving diffeomorphism
but similar arguments apply in the orientation-reversing case.

It is straightforward to check that for every a € (1,2) the map ¥, has ex-
actly two fixed points @, < 0 < P, and that these are both hyperbolic (repelling).
Moreover, the unstable set of P, is a compact interval contained in (Q,, —Q.)-
Then a corresponding statement holds for v,: it has exactly two fixed points
ga = (Qq,0) and p, = (P,,0), which are hyperbolic saddles, and the unstable set
of p, lies inside (Qq4, —Q.) x {0}. Now let p = p(p), ¢ = q(p) be the continua-
tion of these fixed points for a nearby diffeomorphism ¢. Then p and ¢ are still
hyperbolic saddles and the unstable manifold W¥(p) is contained in a bounded
region (Qq, —Q4) X (=b,b). It is well known (see e.g. [BC2]) that the compact set
A = A(p) = closure (W*(p)) has a basin B(A) with nonempty interior. More-
over, [BC2], [MV], proved that very often (positive measure set of parameters) A
contains a dense orbit with expanding behaviour (positive Lyapunov exponent).

Here we want to prove

Theorem 2.1 There exist sequences (I;); of compact intervals converging to a =
2 and (b;); of positive numbers, such that, for any diffeomorphism ¢ satisfying
o — Yallcr < bj for some a € UIj, the basin B(A) contains a neighbourhood of
A.

Proof: In order to exhibit the intervals I; we go back to the quadratic
family ¥,(z) = 1 — az®. An explicit calculation shows that if a is close to a = 2
then P, is close to z = 1/2. Moreover, ¥ (P,) consists of two points P, 1 < 0 <
P,o = P, and ¥_*(P,) consists of four points Ppa < Pa1 <0< Pyo < P, ,. We
denote Jo0 = [Pa0, P, 5] and let J, 1 = [Pa1, P, 3] be the connected component of
U1(J,,0) situated to the left of zero (assuming once more that a is close enough
to 2). More generally, for j > 1 we let Jo,; = [Py, P, ;12| be the connected
component of ¥, 1(J, ;1) contained in {z < 0}. Observe that the J, ; converge
to the repelling fixed point @, as j — +00. Now we fix a slightly smaller compact
interval J, ; C int (J, ;) and define the parameter interval I; by

a€l; <= V,(1) e J,;

(1 is the critical value of ¥,). Remarking that ¥2(0) = @, when a = 2, one
concludes without difficulty that the sets I; defined in this way are indeed compact
intervals accumulating on a = 2.

Now, for a € I; we consider the endomorphism 1,. Note that the stable set
We(pa) = {z: 97 (2) = pq as n — +oo0} consists of all the vertical lines of the form
{(z,y): ¥7(x) = P, for some n > 0}. In particular, it contains the vertical lines
Pai xR, P, ;5 xR, for each i > 0.



Then we let ¢ be any orientation-preserving diffeomorphism sufficiently C*-
close to v,. More precisely, we take ¢ to be defined in some large square S =
[—1,1]2, with [|p — Yallor(sy < bj for some small b;. It is convenient to begin by
extending ¢ to a (proper) diffeomorphism of the whole plane and from now on
¢ will denote such an extension (note that neither A nor the fact that B(A) is a
neighbourhood of it depend on the choice of the extension). Since local invariant
manifolds of periodic points vary continuously with the the dynamics, see e.g. [Shu]
or [PT, Appendix 1], we get that, provided b; > 0 is small enough,
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Figure 1: Invariant manifolds of p

1. W#(p) contains segments C"-near each P, ; x [=21,2l] and P} ;,, x [-1,1]
with 0 <4 < j.

2. W*(p(p)) folds near x = 1; the first (resp. the second) image of this fold is
near ¥ = ¥, (1) (resp. = ¥2(1)) and hence it is contained in the interior of
Ja,j X [—b, b] (resp. Ja,j,1 X [—b, b])

In particular, the segments of W#(p) mentioned in 1 intersect W¥(p) and
W*(q); we denote by p;, p; the points of intersection with the local unstable
manifold of ¢, see Figure 1. Now, W#(p) is an immersed submanifold of the plane
and so these segments must be connected in some way. Using the assumption that
o preserves orientation (hence both eigenvalues of Dp(p) are negative) one checks
easily that the segments passing through p, p}, p1, must be connected as described
in Figure 1. Moreover, iterating backwards we conclude that the segments passing
through p; and pj ,, 1 <14 < j, connect to each other as depicted. Observe here
that each of these segments intersects the boundary of the horseshoe-shaped region
»(S) in exactly four points, and so the corresponding preimage intersects 8.5 also
in four points.

At this point we fix some J; > 0 and denote K; = [—24;,25;] x [-1,1]. As
long as §; and b; are small enough, ¢(K;), ¢*(K;), ¢*(K;) are small regions near



z =1,z = ¥,(1), z = T%(1), respectively. In particular, ¢3(K;) is contained in
the interior of J, j_1 % [—b, b] and, in fact, in the region Q bounded by W*(p) and
the piece of W?(p) connecting the nearly straight segments passing through p;_;
and pj41. It follows from well-known arguments (see e.g. Theorem 4 in [BC2]) that
¢3(K;) C Q is contained in the basin of the attractor A = closure (W*(p)) and so
the same holds for Kj.

We are left to consider those points in a neighbourhood of A whose forward
orbit does not intersect K; and we do this as follows. A result in [Ma] asserts
that the set Ej; of points in the interval whose forward trajectory is disjoint from
(=95, 6;) is a compact hyperbolic set for ¥,. Clearly, E; contains the fixed point P,
and it is not difficult to deduce that ¥,|E; is transitive. Since hyperbolic sets are
persistent under perturbations of the system, see e.g. [Shu] or [PT, Appendix 1], it
follows that the set H; of points whose full orbit remains outside K; = [~d;,4;] x
[—1, 1] is hyperbolic and transitive for ¢. Moreover, the set of points whose forward
orbit never enters K; is contained in the stable set of H;. In other words, all the
points under consideration at this stage are attracted to H;. On the other hand,
Hj contains the fixed point p and so it is contained in closure (W"(p)) = A. This
completes our argument. 0O

It is not difficult to check that the arguments in [MV] can be carried out
within the parameter intervals I; constructed above and so the present conclusions
apply to the Hénon-like strange attractors found in there. Moreover, combining
the present ideas with those in [Vi, Section 3] one obtains a similar conclusion for
the quadratic-like attractors in higher-dimensional manifolds constructed there.

On the other hand, the previous result is somewhat unsatisfactory, in that
one may expect the conclusion to hold for all values of a close to 2 (and small b), as
happens in the orientation-reversing case. In this direction we state the following
two conjectures.

1: There is a positive function b(a), defined for a in a whole interval (aq,2),
such that the conclusion of the theorem holds if ||¢ — 14| o1 < b(a) for some
a € (ag,2).

2: Moreover, b(a) may be taken so that if p(z,y) = (1 — az? + by, £bx) (a
Hénon map) with b < b(a) then its nonwandering set §2(¢) coincides with

Qp) U A(p).

2.2 Exponential convergence and the ergodic basin

Another important problem is to characterize the ergodic basin of attraction of A.
Let us formulate this more precisely. It was shown in [BY2] that for the param-
eter values such as in [BC2], [MV] the attractor A supports a measure of Sinai-
Ruelle-Bowen. By such they mean an invariant probability measure p supported
on A, which is ergodic, has a positive Lyapunov exponent and, most important,



induces absolutely continuous conditional measures along unstable manifolds (ab-
solute continuity is with respect to the riemannian measure on the unstable mani-
fold). Then standard arguments yield the following key property: u determines the
asymptotic behaviour of time averages of all continuous functions g: B(A) — R

o~ | =
~

ig((pj(x)) - /gdu ast = 400
=0

for a positive (two-dimensional) Lebesgue measure set of points x € B(A). Of
course, one would like to know whether this property holds for a full measure
subset of the basin and this is the problem we are considering here.

Now, it is very easy to see that any (forward) asymptotic trajectories have
the same (forward) limit time averages, for all continuous functions. Therefore,
the previous problem is somewhat related to the question whether all (or almost
all) the orbits in the basin are asymptotic to some orbit inside the attractor (as in
the Axiom A case). Unfortunately, the elementary arguments we used in the proof
of Theorem 2.1 seem of little help for solving this question. However, it turns out
that the answer to both questions above is indeed positive, as shown recently by
M. Benedicks and myself. More precisely, we prove that for the parameter values
in [BC2] or in [MV], the attractor A = A(yp) satisfies

Theorem 2.2 Through Lebesgue almost every point in B(A) there is a local stable
manifold which intersects A. Moreover, we have

t—1

1 .

;Zgww))ﬁ/gdu as t = +oo,
j=0

for every continuous function g and for Lebesgue almost every x € B(A).

Recall that Lebesgue refers to the two-dimensional Lebesgue measure. Also,
by a stable manifold we mean a curve which is exponentially contracted under all
positive iterates of ¢. The proof of Theorem 2.2 is to appear elsewhere.

3 Stochastic stability and exponential mixing

In this section we deal with nonuniformly hyperbolic unimodal maps of the interval
p:I — I, with ¢(I) C int(I). Our goal is to describe the main results and
techniques in our paper with V. Baladi [BaV]. In an ongoing joint work with M.
Benedicks we are extending part of these results (stochastic stability) to attractors
of dissipative diffeomorphisms in higher-dimensional manifolds.

For simplicity we take ¢ to be quadratic, ¢(z) = a — 2%, but our arguments
hold for general unimodal maps with negative schwarzian derivative and nonde-
generate critical point. We formulate the nonuniform hyperbolicity property in
terms of the orbit of the critical point ¢ = 0: let us assume that



L |[(¢*)'(0(c))| = AF (positive Lyapunov exponent);
2. |<pk (c) — c| > e~ % (exponential recurrence bound)

for every k£ > 1 and for some constants 0 < @ < 1 < A.. We also suppose that ¢
is topologically mixing (on the interval ¢*(I)).

This formulation is motivated by [BC1], [BC2], where it is proved that 1
and 2 above are satisfied by quadratic maps for a positive measure set of values
of the parameter a. It follows from condition 1 and [Si] that ¢ can not have
attracting periodic orbits. In contrast, as observed already by [BC1], [BC2], maps
ps(x) = p(x) + s with small s may exhibit such periodic attractors. This means,
in particular, that the dynamics of ¢ is very unstable under perturbations of the
map. However, here we want to prove that from a different, statistical, perspective
the dynamics of such maps is, in fact, quite robust. In order to state this in a
precise way let us comment a bit more on conditions 1 and 2.

It is now well understood, [No], that condition 1 implies the conclusion of
[Ja]: ¢ admits an invariant probability measure po which is absolutely continuous
with respect to the Lebesgue measure m on I (even equivalent to m restricted
to ¢?(I)). This measure po is unique, ergodic, and determines the asymptotics of
typical orbits of :

o~ | =
<

t—1
Zg((pj(x)) — /gduo ast = +00
j=0

for every continuous function g and m-almost all z € I.

Now we want to consider the effect of adding random noise to the iteration
of . More precisely, we want to compare the asymptotic behaviour of ¢! with
that of ¢s, 0--- 0 s, , where s1,...,s; are chosen randomly and independently in
some small interval [—¢,¢e] (we shall denote by 6. the corresponding probability
distribution). Under general conditions, satisfied in our context, such a random
scheme admits a stationary measure p., with

t—1

1

?Zg(%j oy (7)) = /gdus as t = +00
Jj=0

for every continuous function g, m-almost all z € I, and almost all choices of
(87)j>1 (in the present context . is unique and absolutely continuous with respect
to Lebesgue measure).

Then we say that ¢ is (weakly) stochastically stable if u. is close to po (in
the weak*-sense) when the noise level ¢ is close to zero.

Theorem 3.1 [BaV] ¢ is strongly stochastically stable (hence stochastically sta-
ble), that is
dpie dpo

— —— in the L'-sense, ase — 0.
dm dm




That is, small random noise has a neglectable effect on the asymptotic be-
haviour of the map. Results such as this may be thought to provide some con-
ceptual legitimacy to information concerning “chaotic” systems extracted from
finite-precision numerical experiments (although round-off errors are not really
random noise).

Before sketching the main points underlying Theorem 3.1, let us introduce
another important, somewhat related, notion. We say that (p, uo) is exponentially
mizing (equivalently, has exponential decay of correlations), if there exists 7 < 1
such that, given test functions f and g,

‘/Ué(f)-gduo—/fduo/gduo

(U denotes the spectral operator Up(f) = f o ¢). In other words, f o ¢! and g,
viewed as random variables, become independent exponentially fast as t — +oo.
Formally speaking, f and g should be taken in some convenient Banach space, in
our case this will be the space BV (I) of functions of bounded variation on I. One
can also define a notion of exponential mixing for the random scheme ¢y, |s| <,
just by replacing above pg by e, and Uy by the perturbed spectral operator

Ue(N)(x) = [ f(ps())0<(5) ds.

Theorem 3.2 [BaV] Both ¢ and its random perturbation schemes (ps)s|<<, are
exponentially mixing, with mizing rates 7, 7., uniformly bounded away from 1.

<C(f,g)rt forallt>1

Not all the content of Theorems 3.1, 3.2 is new in [BaV]. Weak stochastic
stability for quadratic maps was first proved by [KK], for uncountably many pa-
rameters, and by [BY1], for a positive measure set of parameters (but see also [Co],
where strong stability was already considered). Exponential decay of correlations
for (unperturbed) quadratic maps was proved independently by [KN] and [Yo].
See also [Ki] for many other references and general background.

3.1 Towers, co-cycles, and transfer operators

Now we outline the main ingredients in the proof of Theorems 3.1 and 3.2, referring
the reader to [BaV] for details. The global strategy is inspired by [BaY], where
similar results were obtained for certain uniformly hyperbolic systems.

Here we have to circumvent the lack of hyperbolicity and a first step in this
direction is to construct a tower extension ¢: I — I of ¢: I — I. We fix positive
constants 8 & 2a and é < a and then define

o I = Urk>o(Brk, x {k}), with By = I and By, being the e ?*-neighbourhood of
¥ (c) for each k > 1.

e p(z,k) = (p(x),k + 1) whenever p(x) € Biy1 and either K > 1l or k =0
with |z| < 4; in all other cases ¢(z, k) = (¢(z),0).



A main point in this construction is that return maps to the “ground floor” Ey =
By x {0} are uniformly expanding:

(a) there is a constant A\ > 1 such that |(¢*)'(z)| > A2* whenever (z,0) € Ey,
Pk (x,0) € Ey, and ¢¥(x,0) ¢ Ey for 0 < i < k.

Note also that extensions @,: I — I of the perturbed maps cps:f — I can be
defined in just the same way. .
Next, we introduce a co-cycle wo: I — [0, 00), given by

o if (y,k) = ¢*(z,0) for some x € By then wo(y, k) = A\¥/|(p*)'(z)| (in partic-
ular, wo = 1 on Ey); otherwise wo(y, k) = 0.

This definition ensures that the map ¢ is A-expanding with respect to the metric
wo dz on the tower I: this is automatic at points (z, k) with ¢(z, k) = (¢(z), k+1)
and (a) implies that it remains true when ¢(z, k) = (¢(z),0). Then we also need
a perturbed version w. of wg, which we define by

1 Ak
wa(y,k) - 5/ |((’08k P 09081),(3781_“3 )|05(81)d81 . ..Hg(Sk)dsk,

where the integral is taken over (@s, 0+ -0 Qs )(Zs,-..5,,0) = (y, k) (the factor 1/2
is introduced to compensate for the noninjectiveness of @5, on Eg).

Now we define transfer operators Lo and L., associated to ¢ and its random
perturbations @, |s| < e,

LoDk = >

Lihwn=[ > ZELIRD

@s(z,0)=(y,k) We

acting on the Banach space BV(f ) of functions f :I —» R such that

f

_— va.rf+sup|f|+/|f|wodx<oo

(var f denotes the total variation of f on I , that is, the sum of the variations on
each By, x {k}). Note that (both for € = 0 or for £ > 0) we have the duality relation

(b) IUE(/?)'gw5d$=ff-£5(g)w5d$

(UE is defined in the same way as U, with ¢ replaced by ). The main analytic
step is to prove that

(¢) Lo bounded and quasi-compact on BV (I);
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(d) Le is “close” to Lo (in a convenient sense, which we borrow from [BaY]) if &
is small.

Here quasi-compactness means that the spectrum of £y splits as o(Lo) = {1} U Sp
with Sy contained in a disk of radius 7 < 1. Then the closeness in (d) implies that,
for all small ¢, the operator L. is also quasi-compact: o(L;) = {1} U S: and S;
contained in a disk of radius 7. bounded away from zero (uniformly in ).

The proof of (c) and (d) relies on a delicate analysis of the action of the
transfer operators on the L!-norm, the supremum, and the variation (inequalities
of Lasota-Yorke type), which falls outside the scope of this sketch. On the other
hand, once these spectral properties have been derived the conclusions of our
theorems follow through fairly standard arguments.

Indeed, if py is an eigenfunction of Ly associated to the eigenvalue 1 then
fio = powp dzx is an invariant measure for ¢ (use (b)). We normalize pg so that
fto be a probability and this defines pg uniquely. Then the absolutely continuous
invariant probability measure of ¢ is given by o = p«(fio), where p: I — I is the
canonical projection. Similar statements hold for p., L., we, fie, . Moreover, the
fact that L. is close to Lo in the sense of [BaY] ensures that p. is close to pg in
L'-norm. From this one deduces that . is close to u, as claimed in Theorem 3.1.

In order to prove Theorem 3.2 one uses the fact that (both for e = 0 or € > 0)
the spectral projection 7. associated to S is given 7.(f) = f — p. [ fwodz. As a
consequence of this and the duality (b),

[0y -gdi [ fane [gdn = [ Fetiniap . do

and, since £, acts as a T.-contraction on 7, (BV(f )), this proves exponential mixing
(with mixing rate bounded by 7.) at the tower level, for test functions in BV (I).
Finally, exponential mixing in BV (I), as claimed in the theorem, is easily deduced
by lifting bounded variation functions f,¢9:I — R to BV(I) via the canonical
projection p: I—1.

4 Destruction of Lorenz attractors ( joint with S.
Luzzatto )

In this section we describe an extended geometric model for the dynamics of the
system of differential equations

T=—0x+0Y
Y=rr—y—I2
Z=—-bz+xy

introduced by Lorenz [Lo]. Numerical analysis of this system for parameter values
o = 10, b~ 8/3, and r ~ 28 led Lorenz to identify sensitive dependence to initial
points as a main source of unpredictability in deterministic dynamical systems.
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A rigorous description of the dynamics for these parameter values remains a
challenging open problem to the present day, although some limited facts can be
proved by classical methods. For instance, it is easy to see that, for all parameter
values, there exists a singularity (equilibrium point) at the origin. Also, using
the theory of Lyapunov functions one can find a (large) neighbourhood of this
singularity which all trajectories enter and never leave. Since Lorenz equations
are dissipative, this implies that there exists a compact invariant set A of zero
Lebesgue measure containing the omega-limit sets of all trajectories. However it
seems hard to prove any specific properties of this attractor (see [Sp] for a thorough
discussion of numerical studies and classical approaches).

Results in this direction include [Ro], [Ry], where the existence of a “strange”
attractor was proved for systems of (cubic) differential equations similar to that
of Lorenz. Also, rigorous computer assisted proofs have been announced recently,
see e.g. [HT], concerning the existence of “chaotic” sets of trajectories in Lorenz
equations. Such sets do not seem, in general, to be attracting and thus, even though
their presence is very significant both from a mathematical and an experimental
viewpoint, they only concern a set of trajectories of zero Lebesgue measure.

In fact, a large share of what we believe to know about chaotic behaviour
in Lorenz equations comes from the study of geometric models. These were first
introduced in [ABS], [GW], to try to describe the dynamics for the parameter
values considered by Lorenz himself. Numerical studies of those equations indicate
the presence of a nontrivial attractor containing the singularity at the origin and
with strongly hyperbolic behaviour (exponentially contracting and exponentially
expanding directions transverse to the flow). The papers mentioned above describe
flows exhibiting attractors which do have these properties, and prove rigorous re-
sults on the corresponding topological, geometrical, and dynamical features. More
recent results [BS], [Bu], [Pel], [AP], [Pe2], [Sa] have built an extensive theory
of such generalized hyperbolic attractors. Even more recently, [ACL], [Mo], [MP],
provided a fairly detailed picture of the way these attractors can be formed already
at the boundary of Morse-Smale flows.

Let us note that the methods used to study generalized hyperbolic sys-
tems are nontrivial generalizations of those developed for uniformly hyperbolic
systems without singularities (e.g. geodesic flows on manifolds of negative curva-
ture). Indeed the presence of a singularity constitutes an intrinsic obstruction to
the existence of a uniform hyperbolic structure: since the hyperbolic decomposi-
tion E* @ E* @ E° of the tangent space at regular points must include a neutral
direction E° tangent to the flow, which has no analog at singularities, such a
decomposition can never be continuous on invariant sets containing regular trajec-
tories accumulating at a singularity. This lack of a hyperbolic structure has more
serious consequences than one might expect: the dynamics of flows is very often
analysed in terms of Poincaré return maps to convenient cross-sections, however
several features of smooth uniformly hyperbolic systems, like local product struc-
ture or continuous foliations by stable or unstable leaves, do not exist in general
for such maps. This is related with the fact that the presence of singularities in
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the vector field naturally translates in the form of discontinuities for the return
maps (e.g. at the intersection of the cross-section with the local stable manifold
of some singularity). As a consequence, global invariant (stable or unstable) sets
are, in general, not connected and local invariant manifolds may have arbitrar-
ily small size. An additional complication, which affects the ergodic properties of
the attractor, is that the contraction and expansion rates are unbounded as the
discontinuity is approached.

In the geometric models, and in most of the papers we mentioned above, these
problems were partly overcome by assuming the existence of a smooth invariant
stable foliation transverse to the flow. This is also the case in [Rv], which exhib-
ited the first examples of attractors containing sungularities and with measure-
theoretical (but not full) persistence. This hypothesis permits to reduce the anal-
ysis of the flow to that of a one-dimensional map and, in this way, to deduce
several strong results (e.g. ergodicity of the attractor) from their one-dimensional
analogs. However, this strategy breaks down in many other important situations,
such as the one we want to consider here and which we describe in detail in the
next section: the geometry of the problem (more precisely, the presence of criti-
calities) obstructs the existence of invariant foliations with any reasonable degree
of regularity.

4.1 Critical and singular dynamics in Lorenz equations

The first part of Figure 2 is well-known: it describes the image of certain Poincaré
return maps associated to the geometric models of [ABS], [GW]; the features
of these return maps are coherent with the numerical data concerning Lorenz
equations, for the original parameters of Lorenz. Subsequent numerical analysis of

N N

T -
<ﬁ S

> >

Figure 2: Formation of criticalities in the return map

these equations, [Sp], [GS], revealed that as the parameter 7 is increased to values
of around 30 the flow begins to twist and fold in such a way that the image of the
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return map becomes as shown in the righthand half of Figure 2: it consists of two
“hooks”. See [GS] for an interpretation of this folding effect.

The new picture strongly suggests that the dynamics now contains criti-
calities (that is, nontransverse intersections between stable and unstable leaves)
which, as we already mentioned, constitute a definite obstruction to the existence
of regular invariant foliations (or of any uniform hyperbolic structure). The con-
sequences of the loss of hyperbolicity due to the creation of such criticalities have
been and continue to be the object of intense study, see [PT] and references therein
for a presentation of the rich theory of homoclinic tangencies and a detailed study
of the various dynamical phenomena occurring in their unfolding.

Flows with the characteristics above were first considered by [HP], [He], who
introduced a family of smooth plane diffeomorphisms (the famous Hénon family)
as a simplified model for the first return maps of the flow. These diffeomorphisms
exhibit dynamical features arising from the presence of criticalities, without the
additional complexity coming from the presence of a singularity. Notwithstanding
this simplification, Hénon maps have been remarkably difficult to study rigorously.
A major breakthrough occurred with the work of [BC2] in which new ideas and
techniques were introduced to prove the existence and (measure-theoretical) per-
sistence in the Hénon family of nontrivial attractors containing a dense orbit with
a positive Lyapunov exponent. This result was generalized to strongly dissipative
quadratic-like diffeomorphisms in [MV], [Vi] and the existence of SRB-measures
for these attractors was proved in [BY2].

Our objective here is to recover the original project of Hénon-Pomeau and
to develop a model for the dynamics exhibited by the Lorenz equation in the re-
gion of parameter values in which both criticalities and singularities are present.
We define a class of one-parameter families of vector fields which exhibit, for a
certain range of parameter values, generalized hyperbolic attractors as discussed
above. As the parameter is varied a sequence of bifurcations takes place through
which criticalities are formed. Beyond this sequence of bifurcations we encounter
attractors in which features deriving from the presence of a singularity coexist
with features related to the presence of criticalities. We study the way in which
these two dynamical phenomena interact and show that a form of hyperbolicity
remains, in a measure-theoretically persistent way.

Theorem 4.1 There exists an open set of families {X,} of smooth vector fields in
R3 with the following properties. Let ()¢ denote the flow generated by the vector
field X,. Then there exists a set A of positive Lebesgue measure in parameter space
such that for each a € A the flow (¢!): exhibits an attractor A, and

1. A, contains an equilibrium point with real eigenvalues and an infinite number
of critical trajectories (consisting of criticalities).

2. A, is transitive and (nonuniformly) hyperbolic in the following sense: there
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ezists a point z € A, and a vector v € T,R? such that

closure (U 0l (2))=A, and limsup 1 log || DT (2)v]| > 0.
>0 T—o0 T

A final remark is in order, concerning an important difference between this
theorem and the kind of results discussed above for generalized (or even uniformly)
hyperbolic attractors. There, some form of hyperbolicity is assumed a priori and
the effort then goes into proving that various dynamical properties follow from
this hyperbolicity. In the presence of criticalities, however, one can expect a wide
variety of dynamical behaviour, including periodic and quasi-periodic attractors,
which occur intermittently alongside each other. For the theorem presented above
we make some assumptions on the geometry of the flow and from this we draw the
conclusion that there are indeed many parameter values for which a certain form
of hyperbolicity exists. This is clearly a first fundamental step towards a more
detailed analysis of the dynamical properties of the attractor.

4.2 Recurrence control yields positive Lyapunov exponent

The proof of Theorem 4.1 consists of two main parts. First we give a condition
which implies the existence of an attractor with a positive Lyapunov exponent
along certain “critical” orbits. Then we show that this condition is satisfied for a
positive measure set of parameters and that for most of these parameters some
critical orbit is dense. In this brief outline we shall concentrate on the first part,
which already contains several interesting aspects from the point of view of the
dynamics. A detailed proof is to appear in [LV1], [LV2].

-

o/

Figure 3: Defining the first-return map

Let {X,} be a smooth family of vector fields in R*® with a singularity at
the origin having real eigenvalues A\gs < Ay < 0 < Ay such that |As/Ay| < 1/2
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and |Ass/Ay| > 1. We define a first return map ®, to a horizontal cross-section
¥ C {z = €} C R? associating to each point (z,y) € ¥ the point ®,(z,y) € ¥ given
by the first intersection with ¥ of the positive semi-trajectory {¢!(z,y,€)}i>o0,
see Figure 3. Notice that ®, is not defined on N = X N W} _(0), since points
belonging to this set (which we assume to be given by {z = 0} C X) never leave
a neighbourhood of the singularity and thus never return to intersect X. On the
other hand, we always assume that ®,(X \ N) C I, to guarantee the existence of
some attracting set to which most orbits converge. Then we can write ®, = ¥,0 P
where U, is a diffeomorphism, corresponding to the holonomy of the flow far from
the singularity, and P describes the holonomy of the flow near the origin. ¥, is
responsable for the “folding” which we discussed above and which gives rise to the
formation of criticalities. If one takes the flow to be locally linearizable then P has
a simple explicit expression

P(z,y) = (ja| */*lsgn(z), y|z| /)

Note that the presence of the singularity yields some strong (local) hyperbolicity.
Indeed, |As/ M| < 1 gives |8, P1| ~ |z|(As/2|=1) 5 00 as 2 — 0, corresponding to
a powerful horizontal expansion. Similarly, |8, Ps| ~ |z|I**s/*/=t — 0 as z — 0,
corresponding to a strong contraction in the vertical direction.

Our strategy to obtain measure-theoretical persistence of positive Lyapunov
exponents is very much inspired by [BC2], but we also have to deal with a difficulty
which has no analog in the smooth case: controlling the recurrence of trajectories
to the vicinity of the discontinuity N of ®,. Let us explain how this is done.

For the time being, the parameter a is fixed. Suppose that a certain set C of
critical points is well defined for ®, (these lie roughly in the preimages of the folds
and correspond to special points of nontransverse intersection between stable and
unstable leaves). We fix some small neighbourhood A = A, U Aq of the critical
set C and of the line of discontinuity {# = 0}. Let {c¢;}32, be the orbit of some
critical value ¢y € ®,(C). According to a procedure which will be briefly recalled
below, every iterate i is either free or bound. We say that v is a returnif ¢, € A. A
return is either free or bound according as to whether v is a free iterate or a bound
iterate. If v is a return and ¢, € Ag we let |||c, ||| denote the distance between ¢,
and the line of discontinuity, if ¢, € A, then we let |||c,||| denote the distance
between ¢, and some critical point ¢ € C chosen so that the straight line joining
¢, and ¢ is essentially horizontal (“tangential position” [BC2]).

The key condition for controlling the recurrence to both the critical region
and the singular region is the following. We fix some small & > 0 and then we say
that a critical point ¢ satisfies condition () if

Z —log||lev||| £ an for allm > 1,

v<n

where ¢, = ®“T!(c) and the sum is taken over all free returns v < n. We also
denote w;(cyp) = D®J(cp) - (1,0). Then we have, if a > 0 is small enough,
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Proposition 4.2 If all the critical points ¢ € C satisfy condition (x), then there
exists a constant A > 0 such that

lwn(co)|| > €™ for all n> 1 and all co € B,(C).

The proof of this fact relies on the decomposition of the orbit of each critical
point into free and bound iterates mentioned above. Let a critical point ¢ be
fixed and v be the first time that ¢, € A.. Then the first v iterates are free, by
definition. A crucial lemma says that during these iterates the vectors w;(co) are
growing exponentially fast: there is Ao > 0 such that ||w;(co)|| > e for all j < v.
This expresses the fact that ®, has some hyperbolicity outside A.: vectors which
are roughly horizontal remain roughly horizontal and are expanded exponentially.
The problems begin precisely when points fall into A., since there ®, is strongly
contracting in all directions and, possibly even worse, rotates tangent vectors. This
last fact means that w,1(co) is likely to have large slope, making it difficult to
control its growth during following iterates. Indeed, the hyperbolicity of ®, in the
complement of A, means that nearly horizontal vectors are expanded, but vectors
which are almost vertical tend to be sharply contracted. The key to bypassing this
effect is condition (x), which implies |||, ||| > e~ *¥, thence prevents the return
from occurring too close to the critical set C. This allows us to control the norm
and the slope of w,+1(co) and to prove the following estimate:

Proposition 4.3 There ezxist § > 0 and p =~ log]|||c,||| such that
lwyp(co)ll = [[DRE (e, )w, (co) | > 7P [|w, (co) -
Moreover, the vector w,, s roughly horizontal.

All iterates contained in the interval [v+1,v+p) are called bound iterates. Starting
at v + p we then have a sequence of free iterates which continues until the next
return to A.. After this return another interval of bound iterates starts, followed
by more free iterates, and so on. The above estimates are actually valid for each
interval of free or bound iterates, respectively, and we get ||w,(co)|| > e*@t5F for
n > 1, where P is the total number of bound iterates less than n and Q =n— P is
the number of free iterates. If the bound iterates correspond to returns vy, ..., v,
then by Proposition 4.3 and (x) we have P =37 p; = > ;_, —log||lcs; ||| < an,
which implies that @ = n — P > (1 — const a)n. From this we easily get

||wn(CO)” Z erQ—i-ﬂP Z e)\o(l— const a)n Z e)m,

for some 0 < A < (1 — consta), if « is small enough. This completes a heuristic
outline of the proof of Proposition 4.2.

The second part of the proof of the theorem consists of an algorithm for
excluding parameters for which condition () fails. Though we shall not go into
any detail concerning this algorithm, let us make a couple of brief remarks. Our
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estimates to guarantee that a positive measure set of parameters survives all the
exclusions depend heavily on a global uniform bound on the distortion. This can be
obtained only by controlling the recurrence of critical points near the discontinuity
as well as in the critical region and that is one of the reasons why returns to Ag
must also be taken into account in (x). A second remark is that, just as in the
Hénon case, the set of critical points which we have implicitly assumed in the
proposition is not given a priori but rather needs to be constructed by successive
approximations. This construction proceeds alongside the algorithm for excluding
parameters and even depends on it in the sense that it can be carried out at each
iteration n only for those parameters which are not excluded up to that time. So,
eventually, a set C of critical points is well defined only for those parameters for
which all critical points satisfy (x) at all times n > 1.

Finally, to obtain the statement in the theorem we need to show that the ex-
ponential growth of the vectors w;(co) for the map ®, implies exponential growth
of the w;(cp) also with respect to the (continuous) flow (¢%);. The problem here
is that return times to ¥ are unbounded as points approach the discontinuity and
so a given expansion may be distributed along longer and longer time intervals. In
principle, this could give rise to a strictly subexponential growth for the flow but
the control over the recurrence of critical points near the discontinuity provided
by condition (x) allows us to show that this is not the case. Some difficulty arises
from the fact that we have to worry about all (both free and bound) returns to
Ay, since all of them give rise to large return times, whereas () only commits
explicitly the free returns. However, using the fact that every bound return to Ag
occurs during bound periods associated to free returns to A., one can show that

3 —log]lleilll < const 3" ~logllesll] < constan

itc; €A

where the second sum is taken over all free returns. Now this allows us to deduce
that the total contribution to the return times corresponding to bound returns
is dominated by that of the free returns. Indeed, let ¢(z) denote the return time
for the point z and let ¢ty be the supremum of return times for points outside
Ag. If |z| denotes the distance of z to the discontinuity, then #(z) = log|z|, by
straightforward computation. Thus, for each ¢y € ®,(C), and corresponding to
each iterate n > 1 of the return map, we have a “continuous flow time”

1

T, = t(®(co)) < Z to + Z t(c;) < ntg + constan < yn
i iAo i:c; €EAp

3
|

©
Il
<

for some constant v > 0. Then T, !log||lw,| > (An/yn) = (A\/v) > 0, which
implies the desired result.
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5 GGlobal spiral attractors

Our goal in this section is to prove that “chaotic” attractors with spiraling geom-
etry occur, even in a measure-theoretically persistent way, in certain families of
vector fields. This corresponds to very recent joint work with M. J. Pacifico and
A. Rovella. The possible existence of spiral attractors seems to have been first
mentioned by Ya. Sinai. Our results are motivated by the observations in [ACT]
for which, in particular, they provide rigorous confirmation.

5.1 Saddle-focus connections

We consider smooth flows (¢!);cr in 3-dimensional space exhibiting a double
saddle-focus homoclinic connection. By this we mean the following, see Figure 4.
The flow has an equilibrium point O, at the origin say, which is of saddle-focus
type: one expanding eigenvalue # > 0 and two complex contracting eigenvalues
A £ wi, where A < 0 and w # 0. Moreover, both unstable separatrices of O are
contained in the stable manifold of O, that is, they are homoclinic trajectories.

w{o)

wi0)

Figure 4: Double saddle-focus connections

For simplicity we assume that the flow is symmetric with respect to the origin,
i.e. invariant under (z,y,z) — (—z, —y, —2), but this is not strictly necessary for
what follows. Furthermore, a convenient reformulation of our results holds when
there is a single homoclinic connection, cf. comments below. These results also
extend in straightforward way to general 3-dimensional manifolds. Generalization
to higher dimensions was not yet carried out but seems a realistic task and is,
certainly, an interesting one.

We want to describe the typical asymptotic behaviour of points in a neigh-
bourhood of the homoclinic connections, not only for the initial flow (p!); but
also for “generic” nearby flows. More precisely, we consider smooth parametrized
families of flows (¢!,)ier, p € (—6,0), generically unfolding the homoclinic con-
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nections: (p}); = (¢%); and as the parameter u varies the unstable separatrices
move with nonzero speed with respect to the (local) stable manifold. Then we
want to describe the attractors of such flows, close to the unstable separatrices,
for a sizable portion of parameter values.

The answer to this problem depends crucially on the relative strength of the
contracting and the expanding eigenvalues, that is on the value of @ = —\/6.
The contracting case a > 1 is comparatively simple. The union Ag of the two
homoclinic connections is an attracting set for the unperturbed flow (¢});, with
basin containing a neighbourhood of Ay. Moreover, this attracting set is, in some
sense, persistent: varying u leads to the formation of attracting periodic orbits
close to (and with basins containing) the unstable separatrices. Therefore, periodic
asymptotic behaviour is typical for small parameter values.

The dynamics is much richer in the erpanding case a < 1, as was already
attested by the pioneer work of Shil’nikov [Shi]: he proved that infinitely many
periodic orbits of sadlle type (contained in suspended horseshoes) coexist in this
situation. The main result in the present section states that, under convenient
assumptions to be described below, for a large (positive Lebesque measure) set
of values of u the flow (gof)t admits o unique (global) attractor A,, close to Ag.
Moreover, this attractor is chaotic (sensitive dependence on initial conditions) and
singular (contains the equilibrium point as well as regular trajectories) and has
an intrincate spiraling geometry.

Before going into discussing this result, let us point out that some complex
dynamical phenomena are also present in the case @ = 1. Recently, Pumarifio [Pu]
used this context to give examples of coexistence of suspended Hénon-like attrac-
tors: he even finds parameter values for which infinitely many such attractors occur
simultaneously.

Figure 5: Constructing the first-return map

From now on we restrict to the case @ < 1. In order to analyse the dynamics
of the flow in the vicinity of the homoclinic connections we follow the standard
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procedure of considering the first-return map F' to some convenient cross-section
3. We take ¥ intersecting one of the homoclinic trajectories and the local stable
manifold of O; we also consider auxiliary cross-sections ¥, symmetric to ¥, and
YE, intersecting the two local unstable separatrices. Then 7rli, 7r2i, and 7 denote
corresponding Poincaré maps, as indicated in Figure 5, and we let

+ ot :
F(;U,z):{ w5 oy (z,2) ifz>0

nom, omy (z,2) ifz<0

(F is not defined on the line {z = 0} of intersection between ¥ and the local
stable manifold of the singularity). We assume our flows to be linearizable near
the equilibrium (a generic condition), so that it is easy to calculate 7, 7r1i explicitly
and to see that the images of wli are spiraling regions in ¥F accumulating at the
points W _(0) N F. On the other hand, 7 are diffeomorphisms. Then, under

open conditions on 73, the image of ¥ under F' consists of two spiraling regions
contained in the interior of X, see Figure 6.

2 2

NI
VIR

Figure 6: Trapping regions for double and for single connections

Furthermore, this implies that F,(X) C X for all small p, where F), is the
return map to ¥ associated with the flow (QOZ) u- Then all the asymptotic dynamics
of points in this “trapping region” X is concentrated inside the maximal invariant
set A, = Np>oF}(X). In general, A, need not be dynamically indivisible, indeed
it may contain several different types of dynamical behaviour. However, we have

Theorem 5.1 For families of vector fields {X,} unfolding double saddle-focus
connections as above, there exists a positive Lebesgue measure set S C (—4,0)
such that A, is a (global) chaotic attractor of F, for all € S.

This means, in particular, that for these parameter values A, contains dense
orbits with positive Lyapunov exponent. Of course, the basin of A, contains the
whole section X. Successive images F;'(¥) give increasingly better approximations
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to the remarkably complex geometry of A,, recall Figure 6. Note that the sus-
pension A, = closure (User¢!, (A,)) contains the equilibrium point of the flow, in

~

particular it can not be uniformly hyperbolic; A, also contains criticalities and so
it is not even a generalized uniformly hyperbolic attractor, recall Section 4.

Closing this section, we point out that our arguments to prove Theorem 5.1
apply also to the unfolding of flows with a unique saddle-focus connection, e.g. as
in [Shi]. A main difference is that in this case one must consider large parameter
values, i.e. far from the one for which the homoclinic connection occurs, in order
to enforce invariance of ¥ under the return map, cf. Figure 6.

5.2 Interval maps with infinitely many critical points

In this final section we give a brief discussion of the difficulties involved in the
proof of Theorem 5.1 and of the methods we use to overcome them. A detailed
presentation is to appear in [PRV1], [PRV2].

Explicit calculation of the return map along the lines sketched above leads
to F(z,2) = (14 zg(z),zf(2)) where

bi|z|*sin(Blog ) if z >0
f2) = ag; 1y
b_|z|*sin(S log \ZI) if z<0

(we write @ = —\/0, f = w/6, and the constants by depend only on the flow) and
g has a similar expression, with sin replaced by cos and b replaced by constants
a+. Actually, these statements are accurate only for z close to zero (f must be
modified away from the origin to create the trapping region), and then again
only as a first-order approximation, but here we will allow ourselves this technical
simplification.

A first difficulty arises from the fundamentally higher-dimensional nature of
the system. It is not difficult to convince oneself, e.g. observing Figure 6, that F
can not admit smooth invariant foliations, and so it can not be reduced in this
way to a one-dimensional system; recall Section 4.1. To try to bypass this difficulty
we assume the constants |as| to be small. This is related with the small jacobian
hypothesis in [BC2], but we observe that in our context having a4 close to zero
does not imply volume-dissipativeness (at least not if @ < 1/2). Then we have
F(1,z) = (1, f(2)), which suggests that the dynamics of F' may, to some extent,
be mimed by that of the one-dimensional map f. This turns out to be only very
roughly true, but it is indeed useful to study a version of our initial problem
for such one-dimensional maps. In what follows we concentrate on discussing this
simpler version, which is also interesting in itself, without further discussing the
(considerable) work required to extend our conclusions back to the original setting
to get Theorem 5.1.

More precisely, we want to consider unfoldings of f by parametrized families
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Figure 7: Maps with infinitely many critical points

of transformations of the interval I = [—1,1] to itself, of the form

J fR)+eqp ifz>0
f“(z)_{ f(z)—ci_p ifz<0

where ci are positive constants and p is a parameter close to zero. The way f,
depends on this parameter is meant to emulate the unfolding of the homoclinic
connections by the flows (@Z)t or, more precisely, the way the second coordinate
of F,(x,2) depends on pu. It is easy to check that f = fo has two sequences of
critical points accumulating at zero, see Figure 7; we denote them by arki, with
z, <0< a:;c'“ Of course, every f, has the same set of critical points, and we
denote the corresponding critical values by z,:f (1) = fu(:cki). Then we prove that
the maps f,, have global chaotic behaviour in a measure-theoretically persistent
way, in the sense of the following theorem.

Theorem 5.2 There exist 0 > 1 and a positive Lebesgue measure set S of values
of w for which

1 |(fﬁ)'(z,:ct)| > o™ for all k and alln > 1;
2. almost every z € I has positive Lyapunov exponent.

An important difference between this and similar results for quadratic maps
of the interval, [Ja], [BC1], lies on the nature of the initial parameter p = 0.
Indeed, persistent chaotic behaviour for smooth unimodal maps is usually found
at parameter values close to one for which the critical point is nonrecurrent (e.g.
preperiodic): (almost) nonrecurrence allows the critical orbit to build-up expan-
sion during initial iterates ant then one proceeds by induction to prove that this
initial expanding behaviour is preserved in the subsequent iterates, as long as the
parameter is chosen conveniently. In contrast, here 4 = 0 corresponds to the origin
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being fixed under the map, and the origin is a particularly nasty point: not only it
is a point of nonsmoothness/discontinuity of the dynamics, it is also accumulated
by critical points of f, f,.

This means that a first main step in the proof of Theorem 5.2 must be
devoted to proving that all the critical orbits do exhibit initial expansion, at least
for a large set of parameters. We fix constants 7 > 0, £ > 0, v € (a,1) and for
each p € (—¢,¢) and z € (—¢,¢) we let j(u, z) be the smallest iterate j for which
fﬂ(z) ¢ (—¢,¢e). Then the main ingredient is to show that the set G of parameter
values p € (—¢,¢) for which every critical value z = i (i) satisfies

L £t (2)] 2 [£i(2)] for 0 < i < j(p, 2);
2. |f;(z) - a:li > T|£L'l:t| for 0 <4 < j(u,2) and every critical point :cli

has almost full measure in (—¢,¢) if £ and 7 are small. Condition 1 implies that
the orbit of z = z,:ct moves away from the origin very fast and condition 2 means
that while doing it it avoids the neighbourhood of the critical points. We prove
that under these assumptions the orbit of z is expanding during the time interval
[0,7(p,2)) it spends near zero.

In a second step we proceed from this set of parameters G, using arguments
inspired in [BC1], [BC2]. The main difficulties at this point, with respect to the
quadratic case, come from the nonsmoothness of f,, and, most important, from the
fact that it has infinitely many critical points. However, we are able to prove that,
for parameters in a positive measure subset of G, all these critical orbits exhibit
exponential growth of the derivative at all times, as stated in the theorem.
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