Continuity of Lyapunov exponents

Marcelo Viana
(joint work with C. Bocker and with A. Avila)

Instituto de Matemática Pura e Aplicada
Consider $A_1, \ldots, A_N \in \text{GL}(d)$ and $p_1, \ldots, p_N > 0$ with $\sum_j p_j = 1$. Let $(B_n)_n$ be identical independent random variables in $\text{GL}(d)$ with probability distribution $\mu = \sum_j p_j \delta_{A_j}$. The Lyapunov exponents

$$\lambda_+(\mu) = \lim_{n} \frac{1}{n} \log \|B_n \cdots B_1\|$$

$$\lambda_-(\mu) = \lim_{n} -\frac{1}{n} \log \|(B_n \cdots B_1)^{-1}\|$$

exist almost surely.
Consider $A_1, \ldots, A_N \in \text{GL}(d)$ and $p_1, \ldots, p_N > 0$ with $\sum_j p_j = 1$. Let $(B_n)_n$ be identical independent random variables in $\text{GL}(d)$ with probability distribution $\mu = \sum_j p_j \delta_{A_j}$. The Lyapunov exponents

$$\lambda_+(\mu) = \lim_{n} \frac{1}{n} \log \| B_n \cdots B_1 \|$$
$$\lambda_-(\mu) = \lim_{n} -\frac{1}{n} \log \| (B_n \cdots B_1)^{-1} \|$$

exist almost surely.

Theorem (Carlos Bocker, MV)

For $d = 2$, the functions $(A_{i,j}, p_j)_{i,j} \mapsto \lambda_\pm$ are continuous.
What about $d > 2$? (ongoing project, with Artur Avila).
What about $d > 2$? (ongoing project, with Artur Avila).

$\mathcal{G}(d) = \{\text{compactly supported probability measures on GL}(d)\}$
with the following topology:

ν is close to μ if ν is weak*-close to μ and $\text{supp}\, \nu \subset B_\varepsilon(\text{supp} \, \mu)$.
What about $d > 2$? (ongoing project, with Artur Avila).

$G(d) = \{\text{compactly supported probability measures on } \text{GL}(d)\}$ with the following topology:

ν is close to μ if ν is weak*-close to μ and $\text{supp} \nu \subset B_\varepsilon(\text{supp} \mu)$.

"Theorem"

For any $d \geq 2$, the functions $\mu \mapsto \lambda_{\pm}(\mu)$ are continuous on $G(d)$.
Example

For $A_1 = \begin{pmatrix} 2^{-1} & 0 \\ 0 & 2 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ we have $\lambda_+ = 0$ if $p_2 > 0$ but $\lambda_+ = \log 2$ if $p_2 = 0$.

"Counterexamples"
“Counterexamples”

Example

For $A_1 = \begin{pmatrix} 2^{-1} & 0 \\ 0 & 2 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ we have $\lambda_+ = 0$ if $p_2 > 0$ but $\lambda_+ = \log 2$ if $p_2 = 0$.

Mañé-Bochi-V:
For any ergodic measure preserving transformation $f : M \to M$, the continuity points for Lyapunov exponents in the space of $GL(d)$-cocycles over f are very special cocycles: the Oseledets splitting is dominated.
Given $\mu \in G(d)$:

- $L < \mathbb{R}^d$ is μ-invariant if $g(L) = L$ for every $g \in \text{supp } \mu$.
- A probability η in \mathbb{PR}^d is μ-stationary if $\int g_* \eta \, d\mu(g) = \eta$.

Marcelo Viana (joint work with C. Bocker and with A. Avila)
Given $\mu \in \mathcal{G}(d)$:

- $L < \mathbb{R}^d$ is μ-invariant if $g(L) = L$ for every $g \in \text{supp } \mu$.
- A probability η in $\mathbb{P}\mathbb{R}^d$ is μ-stationary if $\int g_\ast \eta \, d\mu(g) = \eta$.

Equivalently, $\Psi(x, g_1, g_2, \ldots, g_n, \ldots) = (g_1(x), g_2, \ldots, g_n, \ldots)$ preserves $\eta \times \mu^\mathbb{N}$. We call η ergodic if $\eta \times \mu^\mathbb{N}$ is ergodic for Ψ.

Marcelo Viana (joint work with C. Bocker and with A. Avila)
Representation of exponents

Given $\mu \in \mathcal{G}(d)$:

- $L < \mathbb{R}^d$ is μ-invariant if $g(L) = L$ for every $g \in \text{supp} \mu$.
- A probability η in $\mathbb{P}\mathbb{R}^d$ is μ-stationary if $\int g \ast \eta \, d\mu(g) = \eta$.

Equivalently, $\Psi(x, g_1, g_2, \ldots, g_n, \ldots) = (g_1(x), g_2, \ldots, g_n, \ldots)$ preserves $\eta \times \mu^\mathbb{N}$. We call η ergodic if $\eta \times \mu^\mathbb{N}$ is ergodic for Ψ.

Theorem (Furstenberg-Kifer)

There exist $r \geq 0$ and numbers $\beta_0 > \beta_1 > \cdots > \beta_r$ and μ-invariant subspaces $L_0 > L_1 > \cdots > L_r > L_{r+1}$, with $\beta_0 = \lambda_+$ and $L_0 = \mathbb{R}^d$ and $L_{r+1} = 0$, such that for every $v \in L_i \setminus L_{i+1}$ and $0 \leq i \leq r$,

$$\lim_{n \to \infty} \frac{1}{n} \log \| (g_n \cdots g_1)(v) \| = \beta_i \quad \mu^\mathbb{N}\text{-almost surely}.$$
Define $\phi : \text{GL}(d) \times \mathbb{PR}^d \rightarrow \mathbb{R}, \phi(g, v) = \log \left(\frac{\|g(v)\|}{\|v\|} \right)$. Then:

The β_i are the possible values of $\int \phi \, d\mu \, d\eta$ when η varies in the set of all μ-stationary ergodic measures.

$L_i = \text{largest subspace such that } \eta(L_i) = 0 \text{ for every } \mu\text{-stationary ergodic measure } \eta \text{ with } \int \phi \, d\mu \, d\eta > \beta_i$.

$\int \phi \, d\mu \, d\eta > \beta_i$ for every $\mu\text{-stationary measure } \eta, \text{ ergodic or not, such that } \eta(L_i) = 0$.

Marcelo Viana (joint work with C. Bocker and with A. Avila)
Examples

Example

For $A_1 = \begin{pmatrix} 3^{-1} & 0 \\ 0 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 2 & 1 \\ 0 & 2^{-1} \end{pmatrix}$, $p_1 = p_2 = 1/2$
we have $r = 1$ and $L_1 = X$ - axis and $\beta_1 = \log 2/3$

Example

For $A_1 = \begin{pmatrix} 3 & 0 \\ 0 & 3^{-1} \end{pmatrix}$, $A_2 = \begin{pmatrix} 2^{-1} & 1 \\ 0 & 2 \end{pmatrix}$, $p_1 = p_2 = 1/2$
we have $r = 0$.

So: $r > 0$ means that there exists some μ-invariant subspace (reducibility) which, in addition, is “mostly contracting”.

Marcelo Viana (joint work with C. Bocker and with A. Avila)
Theorem (Furstenberg-Kifer)

If \(r = 0 \) then \(\mu \) is a continuity point for \(\lambda_+ \).

Proof: Given \(\mu_n \to \mu \), take \(\mu_n \)-stationary ergodic measures \(\eta_n \) such that \(\lambda_+(\mu_n) = \int \phi \ d\mu_n d\eta_n \).

Suppose that \(\eta_n \to \eta \). Then \(\eta \) is \(\mu \)-stationary and \(\int \phi \ d\mu_n d\eta_n \) converges to \(\int \phi \ d\mu \ d\eta \).

The hypothesis \(r = 0 \) implies that \(\int \phi \ d\mu \ d\eta = \lambda_+(\mu) \).
A partial result

Theorem (Furstenberg-Kifer)

If $r = 0$ then μ is a continuity point for λ_+.

Proof: Given $\mu_n \to \mu$, take μ_n-stationary ergodic measures η_n such that

$$\lambda_+ (\mu_n) = \int \phi \, d\mu_n d\eta_n.\]

Suppose that $\eta_n \to \eta$. Then η is μ-stationary and

$$\int \phi \, d\mu_n d\eta_n \to \int \phi \, d\mu \, d\eta.$$

The hypothesis $r = 0$ implies that

$$\int \phi \, d\mu \, d\eta = \lambda_+ (\mu).$$

If there exists at most one μ-invariant subspace then $r = 0$ either for the cocycle or for its inverse, and the conclusion follows just the same.

What about the general case?

Marcelo Viana (joint work with C. Bocker and with A. Avila)
Example

For $A_1 = \begin{pmatrix} 3^{-1} & 0 \\ 0 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2^{-1} \end{pmatrix}$, $p_1 = p_2 = 1/2$

there are two μ-stationary ergodic measures in $\mathbb{P}\mathbb{R}^2$, namely, the Dirac masses at the X-axis and the Y-axis. They correspond to different β_j.

Marcelo Viana (joint work with C. Bocker and with A. Avila)

Continuity of Lyapunov exponents
Probabilistic repellers

Example

For $A_1 = \begin{pmatrix} 3^{-1} & 0 \\ 0 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2^{-1} \end{pmatrix}$, $p_1 = p_2 = 1/2$

there are two μ-stationary ergodic measures in \mathbb{PR}^2, namely, the Dirac masses at the X-axis and the Y-axis. They correspond to different β_j.

The invariant subspace $L_1 = X$-axis is a probabilistic repeller. The ideology of the proof is that such probabilistic repellers should be unstable under most perturbations of the probability distribution μ.
"Theorem"
Suppose $r > 0$. For every $\epsilon > 0$ there is $\delta > 0$ and a neighborhood $V \subset \mathcal{G}(d)$ of μ such that for every $\nu \in V$ and every ν-stationary ergodic measure η, either $\eta(B_\delta(L_1)) < \epsilon$ or $\eta(B_\delta(L_1)) = 1$.

Idea: in the last case, η is not a candidate for realizing $\lambda_+(\nu)$.
Instability of probabilistic repellers

“Theorem”

Suppose $r > 0$. For every $\epsilon > 0$ there is $\delta > 0$ and a neighborhood $V \subset G(d)$ of μ such that for every $\nu \in V$ and every ν-stationary ergodic measure η, either $\eta(B_\delta(L_1)) < \epsilon$ or $\eta(B_\delta(L_1)) = 1$.

Idea: in the last case, η is not a candidate for realizing $\lambda_+(\nu)$.

The original Bocker-V approach in $d = 2$ is based on a careful discretization of the phase space \mathbb{PR}^2.

With Artur Avila, we have been trying with a more direct analysis of the random walk in continuum space, based on certain energy estimates.
A nonlinear setting

Let M be a compact Riemannian manifold (examples: $\mathbb{P}\mathbb{R}^d$, Grassmannian manifolds) and \mathcal{M} be the space of probability measures on M.

Let $G < \text{Diff}^1(M)$ (e.g. $G = \text{GL}(d)$) and \mathcal{G} be the space of compactly supported probability measures on G.

Let M be a compact Riemannian manifold (examples: \mathbb{R}^d, Grassmannian manifolds) and \mathcal{M} be the space of probability measures on M.

Let $G < \text{Diff}^1(M)$ (e.g. $G = \text{GL}(d)$) and \mathcal{G} be the space of compactly supported probability measures on G.

A point $v \in M$ is μ-invariant if $g(v) = v$ for every $g \in \text{supp} \, \mu$.

Then, μ^N-almost surely, $L(\mu, \dot{v}) = \lim_n \frac{1}{n} \log \|D(g_n \cdots g_1)(v) \dot{v}\|$ exists for every non-zero $\dot{v} \in T_v M$.

We call v μ-expanding if $L(\mu, \dot{v}) > 0$ for every $\dot{v} \neq 0$.

Marcelo Viana (joint work with C. Bocker and with A. Avila)
Theorem (Artur Avila, MV)
Suppose that ν is μ-expanding and $(\mu_n)_n$ converges to μ in G. For each n, let $\eta_n \in M$ be a μ_n-stationary measure having no atoms in a fixed neighborhood of ν, and assume that $(\eta_n)_n$ converges to some $\eta \in M$. Then $\eta(\{\nu\}) = 0$.

This proves continuity of λ_+ for all $d \geq 2$ when $\dim L_1 = 1$.
Given $\beta > 0$, the β-energy of a measure ξ on $M \times M$ is

$$E_\beta(\xi) = \int d(x, y)^{-\beta} \ d\xi(x, y).$$

The map $\xi \mapsto E_\beta(\xi)$ is lower semicontinuous.
Given $\beta > 0$, the β-energy of a measure ξ on $M \times M$ is

$$E_\beta(\xi) = \int d(x, y)^{-\beta} \ d\xi(x, y).$$

The map $\xi \mapsto E_\beta(\xi)$ is lower semicontinuous.

Let η_1, η_2 be measures on M with $\eta_1(M) = \eta_2(M)$:

A coupling of (η_1, η_2) is a measure ξ on $M \times M$ that maps to η_j on the jth coordinate, for $j = 1, 2$.

Given $\beta > 0$, define $e_\beta(\eta_1, \eta_2) = \inf$imum of β-energy $E_\beta(\xi)$ over all couplings ξ. The infimum is attained.
Optimal self-couplings

Given a measure \(\eta \) on \(M \), define \(e_\beta(\eta) = e_\beta(\eta, \eta) \). The infimum is attained at some symmetric self-coupling, that is, one invariant under \((u, v) \mapsto (v, u)\). We call this a \(\beta \)-optimal self-coupling.
Optimal self-couplings

Given a measure η on M, define $e_\beta(\eta) = e_\beta(\eta, \eta)$. The infimum is attained at some symmetric self-coupling, that is, one invariant under $(u, v) \mapsto (v, u)$. We call this a β-optimal self-coupling.

The energy $e_\beta(\eta)$ is finite iff η has no fat atoms:

$$
\eta(\{x\}) < \frac{1}{2} \eta(M) \text{ for every } x \quad \Rightarrow \quad e_\beta(\eta) < \infty
$$

$$
e_\beta(\eta) < \infty \quad \Rightarrow \quad \eta(\{x\}) \leq \frac{1}{2} \eta(M) \text{ for every } x
$$
Optimal self-couplings

Lemma

If ν is μ-expanding then there exists a neighborhood V of ν, a weak* neighborhood \mathcal{V} of μ and a constant $c > 0$ such that

$$\int d(g(x), g(y))^{-\beta} \, d\nu(g) < (1 - c\beta)d(x, y)^{-\beta}$$

for every $x \neq y$ in V, every $\nu \in \mathcal{V}$ and every small $\beta > 0$.
Lemma

If ν is μ-expanding then there exists a neighborhood V of ν, a weak* neighborhood \mathcal{V} of μ and a constant $c > 0$ such that

$$\int d(g(x), g(y))^{-\beta} d\nu(g) < (1 - c\beta)d(x, y)^{-\beta}$$

for every $x \neq y$ in V, every $\nu \in \mathcal{V}$ and every small $\beta > 0$.

Suppose $\eta(\{\nu\}) > 0$. Fix $U \subset V$ such that $\eta(\{\nu\}) > 0.9 \eta(U)$.

Notice: $e_\beta(\eta \mid U) = \infty$.
Energy estimates

For each n, let ξ_n be a β-optimal self coupling of $\eta_n \mid U$ and let $\tilde{\xi}_n$ be its push-forward:

$$\tilde{\xi}_n(A \times B) = \int \xi_n(g^{-1}(A) \times g^{-1}(B)) \, d\mu_n(g).$$
For each n, let ξ_n be a β-optimal self coupling of $\eta_n \mid U$ and let $\tilde{\xi}_n$ be its push-forward:

$$\tilde{\xi}_n(A \times B) = \int \xi_n(g^{-1}(A) \times g^{-1}(B)) d\mu_n(g).$$

Lemma $\Rightarrow E_\beta(\tilde{\xi}_n) < (1 - c\beta)E_\beta(\xi_n) = (1 - c\beta)e_\beta(\eta_n \mid U)$.

Moreover, $e_\beta(\eta_n \mid U) \leq C + E_\beta(\tilde{\xi}_n)$.
For each n, let ξ_n be a β-optimal self coupling of $\eta_n | U$ and let $\tilde{\xi}_n$ be its push-forward:

$$\tilde{\xi}_n(A \times B) = \int \xi_n(g^{-1}(A) \times g^{-1}(B)) \, d\mu_n(g).$$

Lemma \Rightarrow $E_{\beta}(\tilde{\xi}_n) < (1 - c\beta)E_{\beta}(\xi_n) = (1 - c\beta)e_{\beta}(\eta_n | U)$.

Moreover, $e_{\beta}(\eta_n | U) \leq C + E_{\beta}(\tilde{\xi}_n)$.

Combining these inequalities: $e_{\beta}(\eta_n | U) \leq C / (c\beta)$ for all n.

Then $e_{\beta}(\eta | U) \leq C / (c\beta)$. Contradiction.