Continuity of Lyapunov exponents

Marcelo Viana (joint work with C. Bocker and with A. Avila)

Instituto de Matemática Pura e Aplicada

Marcelo Viana (joint work with C. Bocker and with A. Avila) Continuity of Lyapunov exponents

Introduction Representation of exponents A partial result

< A >

Lyapunov exponents

Consider
$$A_1, \ldots, A_N \in \operatorname{GL}(d)$$
 and $p_1, \ldots, p_N > 0$ with $\sum_j p_j = 1$.

Let $(B_n)_n$ be identical independent random variables in GL(d) with probability distribution $\mu = \sum_j p_j \delta_{A_j}$. The Lyapunov exponents

$$\lambda_+(\mu) = \lim_n \frac{1}{n} \log \|B_n \cdots B_1\|$$
$$\lambda_-(\mu) = \lim_n -\frac{1}{n} \log \|(B_n \cdots B_1)^{-1}\|$$

exist almost surely.

Introduction Representation of exponents A partial result

< 口 > < 同 > < 三 > < 三

Lyapunov exponents

Consider
$$A_1, \ldots, A_N \in \mathsf{GL}(d)$$
 and $p_1, \ldots, p_N > 0$ with $\sum_j p_j = 1$.

Let $(B_n)_n$ be identical independent random variables in GL(d) with probability distribution $\mu = \sum_j p_j \delta_{A_j}$. The Lyapunov exponents

$$\lambda_+(\mu) = \lim_n \frac{1}{n} \log \|B_n \cdots B_1\|$$
$$\lambda_-(\mu) = \lim_n -\frac{1}{n} \log \|(B_n \cdots B_1)^{-1}\|$$

exist almost surely.

Theorem (Carlos Bocker, MV) For d = 2, the functions $(A_{i,j}, p_j)_{i,j} \mapsto \lambda_{\pm}$ are continuous.

Introduction Representation of exponents A partial result

Image: A mathematical states and a mathem

Measure space - Stationary measures

What about d > 2? (ongoing project, with Artur Avila).

Introduction Representation of exponents A partial result

Measure space - Stationary measures

What about d > 2? (ongoing project, with Artur Avila).

 $\mathcal{G}(d) = \{ \text{compactly supported probability measures on } \mathsf{GL}(d) \}$ with the following topology: ν is close to μ if ν is weak*-close to μ and $\operatorname{supp} \nu \subset B_{\epsilon}(\operatorname{supp} \mu).$

Introduction Representation of exponents A partial result

Measure space - Stationary measures

What about d > 2? (ongoing project, with Artur Avila).

 $\mathcal{G}(d) = \{ \text{compactly supported probability measures on } \mathsf{GL}(d) \}$ with the following topology: ν is close to μ if ν is weak*-close to μ and $\mathsf{supp } \nu \subset B_{\epsilon}(\mathsf{supp } \mu).$

"Theorem"

For any $d \ge 2$, the functions $\mu \mapsto \lambda_{\pm}(\mu)$ are continuous on $\mathcal{G}(d)$.

Introduction Representation of exponents A partial result

イロト イポト イヨト イヨト

э

"Counterexamples"

Example

For
$$A_1 = \begin{pmatrix} 2^{-1} & 0 \\ 0 & 2 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
we have $\lambda_+ = 0$ if $p_2 > 0$ but $\lambda_+ = \log 2$ if $p_2 = 0$.

Introduction Representation of exponents A partial result

< D > < A > < B >

"Counterexamples"

Example

For
$$A_1 = \begin{pmatrix} 2^{-1} & 0 \\ 0 & 2 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
we have $\lambda_+ = 0$ if $p_2 > 0$ but $\lambda_+ = \log 2$ if $p_2 = 0$

Mañé-Bochi-V:

For any ergodic measure preserving transformation $f: M \to M$, the continuity points for Lyapunov exponents in the space of GL(d)-cocycles over f are very special cocycles: the Oseledets splitting is dominated.

Introduction Representation of exponents A partial result

Representation of exponents

Given $\mu \in \mathcal{G}(d)$: $L < \mathbb{R}^d$ is μ -invariant if g(L) = L for every $g \in \text{supp } \mu$. A probability η in $\mathbb{P}\mathbb{R}^d$ is μ -stationary if $\int g_* \eta \, d\mu(g) = \eta$.

Introduction Representation of exponents A partial result

Representation of exponents

Given $\mu \in \mathcal{G}(d)$: $L < \mathbb{R}^d$ is μ -invariant if g(L) = L for every $g \in \text{supp } \mu$. A probability η in $\mathbb{P}\mathbb{R}^d$ is μ -stationary if $\int g_* \eta \, d\mu(g) = \eta$.

Equivalently, $\Psi(x, g_1, g_2, \dots, g_n, \dots) = (g_1(x), g_2, \dots, g_n, \dots)$ preserves $\eta \times \mu^{\mathbb{N}}$. We call η ergodic if $\eta \times \mu^{\mathbb{N}}$ is ergodic for Ψ .

Introduction Representation of exponents A partial result

< ロ > < 同 > < 回 > < 回 >

Representation of exponents

Given $\mu \in \mathcal{G}(d)$: $L < \mathbb{R}^d$ is μ -invariant if g(L) = L for every $g \in \text{supp } \mu$. A probability η in $\mathbb{P}\mathbb{R}^d$ is μ -stationary if $\int g_* \eta \, d\mu(g) = \eta$.

Equivalently, $\Psi(x, g_1, g_2, \dots, g_n, \dots) = (g_1(x), g_2, \dots, g_n, \dots)$ preserves $\eta \times \mu^{\mathbb{N}}$. We call η ergodic if $\eta \times \mu^{\mathbb{N}}$ is ergodic for Ψ .

Theorem (Furstenberg-Kifer)

There exist $r \ge 0$ and numbers $\beta_0 > \beta_1 > \cdots > \beta_r$ and μ -invariant subspaces $L_0 > L_1 > \cdots > L_r > L_{r+1}$, with $\beta_0 = \lambda_+$ and $L_0 = \mathbb{R}^d$ and $L_{r+1} = 0$, such that for every $v \in L_i \setminus L_{i+1}$ and $0 \le i \le r$,

$$\lim_n rac{1}{n} \log \|(g_n \cdots g_1)(v)\| = eta_i \quad \mu^{\mathbb{N}} ext{-almost surely.}$$

Introduction Representation of exponents A partial result

・ロト ・同ト ・ヨト ・ヨト

Representation of exponents

Define $\phi : \operatorname{GL}(d) \times \mathbb{PR}^d \to \mathbb{R}$, $\phi(g, v) = \log(||g(v)|| / ||v||)$. Then:

The β_i are the possible values of $\int \phi d\mu d\eta$ when η varies in the set of all μ -stationary ergodic measures.

 L_i = largest subspace such that $\eta(L_i) = 0$ for every μ -stationary ergodic measure η with $\int \phi d\mu d\eta > \beta_i$.

 $\int \phi d\mu d\eta > \beta_i$ for every μ -stationary measure η , ergodic or not, such that $\eta(L_i) = 0$.

Introduction Representation of exponents A partial result

< D > < A > < B >

Examples

Example

For
$$A_1 = \begin{pmatrix} 3^{-1} & 0 \\ 0 & 3 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 2 & 1 \\ 0 & 2^{-1} \end{pmatrix}$ $p_1 = p_2 = 1/2$
we have $r = 1$ and $L_1 = X$ - axis and $\beta_1 = \log 2/3$

Example

For
$$A_1 = \begin{pmatrix} 3 & 0 \\ 0 & 3^{-1} \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 2^{-1} & 1 \\ 0 & 2 \end{pmatrix}$ $p_1 = p_2 = 1/2$ we have $r = 0$.

So: r > 0 means that there exists some μ -invariant subspace (reducibility) which, in addition, is "mostly contracting".

Introduction Representation of exponents A partial result

A partial result

Theorem (Furstenberg-Kifer)

If r = 0 then μ is a continuity point for λ_+ .

Proof: Given $\mu_n \to \mu$, take μ_n -stationary ergodic measures η_n such that $\lambda_+(\mu_n) = \int \phi \, d\mu_n d\eta_n$. Suppose that $\eta_n \to \eta$. Then η is μ -stationary and $\int \phi \, d\mu_n d\eta_n$ converges to $\int \phi \, d\mu \, d\eta$. The hypothesis r = 0 implies that $\int \phi \, d\mu d\eta = \lambda_+(\mu)$.

Introduction Representation of exponents A partial result

A partial result

Theorem (Furstenberg-Kifer)

If r = 0 then μ is a continuity point for λ_+ .

Proof: Given $\mu_n \to \mu$, take μ_n -stationary ergodic measures η_n such that $\lambda_+(\mu_n) = \int \phi \, d\mu_n d\eta_n$. Suppose that $\eta_n \to \eta$. Then η is μ -stationary and $\int \phi \, d\mu_n d\eta_n$ converges to $\int \phi \, d\mu \, d\eta$. The hypothesis r = 0 implies that $\int \phi \, d\mu d\eta = \lambda_+(\mu)$.

If there exists at most one μ -invariant subspace then r = 0 either for the cocycle or for its inverse, and the conclusion follows just the same.

What about the general case?

Linear Nonlinear

Probabilistic repellers

Example

For
$$A_1 = \begin{pmatrix} 3^{-1} & 0 \\ 0 & 3 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2^{-1} \end{pmatrix}$ $p_1 = p_2 = 1/2$
there are two μ -stationary ergodic measures in \mathbb{PR}^2 , namely, the Dirac masses at the X-axis and the Y-axis. They correspond to

æ

Image: Image:

3

different β_j .

Linear Nonlinear

Probabilistic repellers

Example

For
$$A_1 = \begin{pmatrix} 3^{-1} & 0 \\ 0 & 3 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2^{-1} \end{pmatrix}$ $p_1 = p_2 = 1/2$
there are two *µ*-stationary ergodic measures in \mathbb{PR}^2 , namely, the

Dirac masses at the X-axis and the Y-axis. They correspond to different β_j .

The invariant subspace $L_1 = X$ -axis is a probabilistic repeller. The ideology of the proof is that such probabilistic repellers should be *unstable* under most perturbations of the probability distribution μ .

Linear Nonlinear

Instability of probabilistic repellers

"Theorem"

Suppose r > 0. For every $\epsilon > 0$ there is $\delta > 0$ and a neighborhood $V \subset \mathcal{G}(d)$ of μ such that for every $\nu \in V$ and every ν -stationary ergodic measure η , either $\eta(B_{\delta}(L_1)) < \epsilon$ or $\eta(B_{\delta}(L_1)) = 1$.

Idea: in the last case, η is not a candidate for realizing $\lambda_+(\nu)$.

Linear Nonlinear

Instability of probabilistic repellers

"Theorem"

Suppose r > 0. For every $\epsilon > 0$ there is $\delta > 0$ and a neighborhood $V \subset \mathcal{G}(d)$ of μ such that for every $\nu \in V$ and every ν -stationary ergodic measure η , either $\eta(B_{\delta}(L_1)) < \epsilon$ or $\eta(B_{\delta}(L_1)) = 1$.

Idea: in the last case, η is not a candidate for realizing $\lambda_+(\nu)$.

The original Bocker-V approach in d = 2 is based on a careful discretization of the phase space \mathbb{PR}^2 .

With Artur Avila, we have been trying with a more direct analysis of the random walk in continuum space, based on certain *energy estimates*.

A nonlinear setting

Let M be a compact Riemannian manifold (examples: \mathbb{PR}^d , Grassmannian manifolds) and \mathcal{M} be the space of probability measures on M.

Let $G < \text{Diff}^1(M)$ (e.g. G = GL(d)) and \mathcal{G} be the space of compactly supported probability measures on G.

A nonlinear setting

- Let M be a compact Riemannian manifold (examples: \mathbb{PR}^d , Grassmannian manifolds) and \mathcal{M} be the space of probability measures on M.
- Let $G < \text{Diff}^1(M)$ (e.g. G = GL(d)) and \mathcal{G} be the space of compactly supported probability measures on G.
- A point $v \in M$ is μ -invariant if g(v) = v for every $g \in \operatorname{supp} \mu$.
- Then, $\mu^{\mathbb{N}}$ -almost surely, $L(\mu, \dot{v}) = \lim_{n \to \infty} \frac{1}{n} \log \|D(g_n \cdots g_1)(v)\dot{v}\|$ exists for every non-zero $\dot{v} \in T_v M$.
- We call v μ -expanding if $L(\mu, \dot{v}) > 0$ for every $\dot{v} \neq 0$.

Linear Nonlinear

Instability of μ -expanding points

Theorem (Artur Avila, MV)

Suppose that v is μ -expanding and $(\mu_n)_n$ converges to μ in \mathcal{G} . For each n, let $\eta_n \in \mathcal{M}$ be a μ_n -stationary measure having no atoms in a fixed neighborhood of v, and assume that $(\eta_n)_n$ converges to some $\eta \in \mathcal{M}$. Then $\eta(\{v\}) = 0$.

This proves continuity of λ_+ for all $d \ge 2$ when dim $L_1 = 1$.

Couplings Energy estimates

▲ @ ▶ < ∃ ▶</p>

- ∢ ⊒ →

э

Given $\beta > 0$, the β -energy of a measure ξ on $M \times M$ is

$$E_{\beta}(\xi) = \int d(x,y)^{-\beta} d\xi(x,y).$$

The map $\xi \mapsto E_{\beta}(\xi)$ is lower semicontinuous.

Marcelo Viana (joint work with C. Bocker and with A. Avila) Continuity of Lyapunov exponents

Couplings Energy estimates

Given $\beta > 0$, the β -energy of a measure ξ on $M \times M$ is

$$E_{\beta}(\xi) = \int d(x,y)^{-\beta} d\xi(x,y).$$

The map $\xi \mapsto E_{\beta}(\xi)$ is lower semicontinuous.

Let η_1, η_2 be measures on M with $\eta_1(M) = \eta_2(M)$:

A coupling of (η_1, η_2) is a measure ξ on $M \times M$ that maps to η_j on the *j*th coordinate, for j = 1, 2.

Given $\beta > 0$, define $e_{\beta}(\eta_1, \eta_2) = \text{infimum of } \beta\text{-energy } E_{\beta}(\xi)$ over all couplings ξ . The infimum is attained.

Couplings Energy estimates

Optimal self-couplings

Given a measure η on M, define $e_{\beta}(\eta) = e_{\beta}(\eta, \eta)$. The infimum is attained at some symmetric self-coupling, that is, one invariant under $(u, v) \mapsto (v, u)$. We call this a β -optimal self-coupling.

Optimal self-couplings

Given a measure η on M, define $e_{\beta}(\eta) = e_{\beta}(\eta, \eta)$. The infimum is attained at some symmetric self-coupling, that is, one invariant under $(u, v) \mapsto (v, u)$. We call this a β -optimal self-coupling.

The energy $e_{\beta}(\eta)$ is finite *iff* η has no fat atoms:

$$\eta(\{x\}) < \frac{1}{2}\eta(M) \text{ for every } x \implies e_{\beta}(\eta) < \infty$$

 $e_{\beta}(\eta) < \infty \implies \eta(\{x\}) \le \frac{1}{2}\eta(M) \text{ for every } x$

Couplings Energy estimates

Optimal self-couplings

Lemma

If v is μ -expanding then there exists a neighborhood V of v, a weak^{*} neighborhood V of μ and a constant c > 0 such that

$$\int d(g(x),g(y))^{-eta} \, d
u(g) < (1-ceta) d(x,y)^{-eta}$$

for every $x \neq y$ in V, every $\nu \in \mathcal{V}$ and every small $\beta > 0$.

Couplings Energy estimates

Optimal self-couplings

Lemma

If v is μ -expanding then there exists a neighborhood V of v, a weak^{*} neighborhood V of μ and a constant c > 0 such that

$$\int d(g(x),g(y))^{-eta} \, d
u(g) < (1-ceta) d(x,y)^{-eta}$$

for every $x \neq y$ in V, every $\nu \in \mathcal{V}$ and every small $\beta > 0$.

Suppose $\eta(\{v\}) > 0$. Fix $U \subset V$ such that $\eta(\{v\}) > 0.9 \eta(U)$. Notice: $e_{\beta}(\eta \mid U) = \infty$.

- 4 同 6 4 日 6 4 日 6

< A >

- ₹ 🖬 🕨

- ∢ ⊒ →

Energy estimates

For each *n*, let ξ_n be a β -optimal self coupling of $\eta_n \mid U$ and let $\tilde{\xi}_n$ be its push-forward:

$$\widetilde{\xi}_n(A imes B) = \int \xi_n(g^{-1}(A) imes g^{-1}(B)) \, d\mu_n(g).$$

Couplings Energy estimates

Energy estimates

For each *n*, let ξ_n be a β -optimal self coupling of $\eta_n \mid U$ and let $\tilde{\xi}_n$ be its push-forward:

$$\widetilde{\xi}_n(A \times B) = \int \xi_n(g^{-1}(A) \times g^{-1}(B)) d\mu_n(g).$$

Lemma $\Rightarrow E_{\beta}(\tilde{\xi}_n) < (1 - c\beta)E_{\beta}(\xi_n) = (1 - c\beta)e_{\beta}(\eta_n \mid U).$

Moreover, $e_{\beta}(\eta_n \mid U) \leq C + E_{\beta}(\tilde{\xi}_n)$.

イロト イポト イラト イラト

Energy estimates

For each *n*, let ξ_n be a β -optimal self coupling of $\eta_n \mid U$ and let $\tilde{\xi}_n$ be its push-forward:

$$\widetilde{\xi}_n(A \times B) = \int \xi_n(g^{-1}(A) \times g^{-1}(B)) d\mu_n(g).$$

Lemma $\Rightarrow E_{\beta}(\tilde{\xi}_n) < (1 - c\beta)E_{\beta}(\xi_n) = (1 - c\beta)e_{\beta}(\eta_n \mid U).$

Moreover, $e_{\beta}(\eta_n \mid U) \leq C + E_{\beta}(\tilde{\xi}_n)$.

Combining these inequalities: $e_{\beta}(\eta_n \mid U) \leq C/(c\beta)$ for all *n*.

Then $e_{\beta}(\eta \mid U) \leq C/(c\beta)$. Contradiction.