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Abstract Every volume-preserving accessible centre-bunched fibred partially
hyperbolic system with 2-dimensional centre either (a) has two distinct cen-
tre Lyapunov exponents, or (b) exhibits an invariant continuous line field (or
pair of line fields) tangent to the centre leaves, or (c) admits a continuous
conformal structure on the centre leaves invariant under both the dynamics
and the stable and unstable holonomies. The last two alternatives carry strong
restrictions on the topology of the centre leaves: (b) can only occur on tori,
and for (c) the centre leaves must be either tori or spheres. Moreover, under
some additional conditions, such maps are rigid, in the sense that they are
topologically conjugate to specific algebraic models. When the system is sym-
plectic (a) implies that the centre Lyapunov exponents are non-zero, and thus
the system is (non-uniformly) hyperbolic.
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1 Introduction

In this paper we investigate the behaviour of the Lyapunov exponents of
volume-preserving and symplectic diffeomorphisms under small modifications
of the dynamical system. We are especially concerned with the following pair
of fundamental questions: How often can one perturb the diffeomorphism in
order to make it (non-uniformly) hyperbolic? Which obstructions are there to
the existence of such perturbations?

In a nutshell, we conclude that non-uniformly hyperbolic systems are promi-
nent in the contexts we deal with and, indeed, diffeomorphisms that are not
approximated by non-uniformly hyperbolic ones present very rigid features.
Our arguments benefit from a combination of methods, both classical and
new, that have much broadened this field of research in the last couple of
decades or so.

The concept of Lyapunov exponents originated from the stability theory
of differential equations developed by A.M. Lyapunov [48] around the end of
the 19th century. Consider a differential equation of the form

x′ = L(t)x+R(t, x), (1)

where L(t) : Rd → Rd is a linear map and R(t, x) is a non-linear perturbation of
order greater than 1. Fix any t0 and for each v ̸= 0 denote by xv(·) the solution
of the linearised equation x′ = L(t)x with initial condition xv(t0) = v. The
stability theorem of Lyapunov asserts that if the Lyapunov exponent function

λ(v) = lim sup
t→∞

1

t
log ∥xv(t)∥ (2)

is negative for every v ̸= 0 then, under an additional condition called Lyapunov
regularity, the solution x(t) ≡ 0 is exponentially stable for the equation (1).
See Barreira, Pesin [12] for a detailed presentation of this topic.

The flow of a differentiable vector field may always may be written in the
form (1) around any given trajectory. Furstenberg, Kesten [34] proved that
the limit in (2) exists (for all v ̸= 0) for almost every trajectory, relative
to any measure 1 invariant under the flow. A few years later, Oseledets [53]
proved that Lyapunov regularity also holds for almost every trajectory, again
with respect to any invariant measure. Corresponding facts for discrete-time
dynamical systems, such as diffeomorphisms on manifolds, follow easily. These
results brought the subject of Lyapunov exponents firmly to the realm of
ergodic theory, where it has prospered since.

The next major step, initiated by Pesin [54,55], was to develop the non-
linear theory, namely, to establish that in the absence of vanishing Lyapunov
exponents the dynamical system must exhibit special geometric features, in-
cluding the existence of stable and unstable sets that are smooth embed-
ded disks at almost every point. See also Ruelle [61], Fathi, Herman, Yoc-
coz [32], and Pugh, Shub [56]. Such a geometric structure is at the basis of

1 In this paper all measures are finite Borel measures.
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several deep results about non-uniformly hyperbolic systems, that is, whose
Lyapunov exponents are non-zero almost everywhere, by Pesin [55], Katok [43],
Ledrappier [44], Ledrappier, Young [46], Barreira, Pesin, Schmeling [13], Shub,
Wilkinson [62] and others.

All this points at the following central question: Is every dynamical system
approximated by a non-uniformly hyperbolic one? In other words, can one al-
ways get rid of zero Lyapunov exponents by slightly perturbing the dynamical
system?

Work of Herman (see Yoccoz [68, Section 4]) implies that the answer may
fail to be positive in the context of volume-preserving diffeomorphisms. Also,
results of Mañé, Bochi [49,14] show that vanishing Lyapunov exponents are
actually quite common among C1 area-preserving surface diffeomorphisms.
The latter was extended by Bochi, Viana [18,15] to volume-preserving and
symplectic diffeomorphisms in any dimension.

On the other hand, general perturbative techniques have been developed
for removing vanishing Lyapunov exponents. See, in particular, Herman [37],
Shub, Wilkinson [62], Avila, Bochi [5], Dolgopyat, Pesin [28], Baraviera, Bon-
atti [11], Bochi, Fayad, Pujals [16], and Marín [52]. For more references and
an extended discussion, check Bochi, Viana [17] and Bonatti, Díaz, Viana [19,
Section 12.5].

An alternative approach which has been particularly fruitful in recent years
is to deal with the phenomenon of zero Lyapunov exponents by means of the so-
called Invariance Principle, formulated by Ledrappier [45] and Bonatti, Gomez-
Mont, Viana [20] for linear cocycles, and Avila, Viana [7] in the full non-linear
setting. Roughly speaking, the Invariance Principle asserts that systems whose
Lyapunov exponents do vanish must satisfy certain stringent conditions that
can often be excluded a priori for different reasons, for instance, topological.
Among the main applications, let us mention Hertz, Hertz, Tahzibi, Ures [60],
Avila, Viana, Wilkinson [9,10], and Viana, Yang [67].

In a related setting of fiber-bunched cocycles over volume-preserving par-
tially hyperbolic diffeomorphisms, Kalinin, Sadovskaya [41,42] proved that if
the extremal Lyapunov exponents coincide then, up to finite covering, there ex-
ists a continuous invariant flag whose factor bundles carry continuous invariant
conformal structures. More recently, Butler, Xu [27] studied the Lyapunov ex-
ponents of partially hyperbolic diffeomorphisms along the stable (respectively
unstable) bundle, finding conditions under which the extremal exponents co-
incide.

Partial hyperbolicity (see Section 2.1 for definitions) provides a particularly
convenient context for studying the persistence of zero Lyapunov exponents.
On the one hand, in that setting one needs only consider the system’s Lya-
punov exponents along the centre bundle, Ec, as the exponents along the sta-
ble and unstable bundles, Es and Eu, are clearly bounded from zero. On the
other hand, the geometric structure exhibited by partially hyperbolic systems,
especially their admitting invariant stable and unstable foliations tangent to
Es and Eu, respectively, makes them particularly suited to the approaches
mentioned before, particularly to the application of the Invariance Principle.
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In this paper we deal with fibred partially hyperbolic systems in the sense of
Avila, Viana, Wilkinson [10, Section 3.2] (see also Avila, Viana [8, Section 6]).
By this we mean that the diffeomorphism f : N → N is partially hyperbolic
and there exists an f -invariant continuous fibre bundle π : N → B whose fibres
are C1 sub-manifolds tangent to the centre bundle Ec of f . In all the cases
we shall consider here, the fibres will be modelled after a compact orientable
surface S. Moreover, the diffeomorphism will be taken to be accessible and
centre-bunched, and to preserve some measure in the Lebesgue class of N .

Our first conclusion is that the topology of the fibre S has profound impli-
cations on the dynamics of such maps and, in particular, on their Lyapunov
exponents. Indeed, in Theorem A we find that if the genus of S is strictly
greater than 1 then the centre Lyapunov exponents of f must be distinct. In
particular, symplectic fibred partially hyperbolic systems are necessarily hy-
perbolic unless S = S2 or S = T2. A similar phenomenon was highlighted by
Avila, Viana [7, Theorem 6.6] in a different setting.

The arguments in the proof of Theorem A also lead to information on the
dynamics of the exceptional diffeomorphisms for which the centre Lyapunov
exponents coincide. For this we restrict ourselves to a subclass of fibred par-
tially hyperbolic systems, namely, perturbations of certain partially hyperbolic
skew-product maps. By a partially hyperbolic skew-product we mean a partially
hyperbolic centre-bunched diffeomorphism of the form

f0 : M × S → M × S, (x, v) 7→ (g0(x), Γx(v)) (3)

where g0 : M → M is a transitive Anosov diffeomorphism on a compact
manifold M , each Γx : S → S is a diffeomorphism on a compact orientable
surface S, and the centre bundle of g coincides with the vertical direction
{0} × TS ⊂ T (M × S). It is assumed that f0 preserves a measure µ in the
Lebesgue class of M × S, and the results that follow concern the dynamics of
nearby µ-preserving maps.

In Theorem C we take S to be the torus T2, and f0 : M × T2 → M × T2

to be an elliptic affine extension of g0, that is, a diffeomorphism of the form

f0(x, v) = (g0(x), L0v + w0(x)) , (4)

where L0 is any elliptic element of SL(2,Z). We prove that every nearby ac-
cessible µ-preserving map f which is not hyperbolic must be topologically
conjugate to an elliptic affine extension of g0, unless it admits some invariant
line field or some pair of transverse line fields. We also check that the lat-
ter alternative may be excluded in some cases (Corollary D), but not always
(Example 3).

In Theorem E we take S to be the sphere S2, and f0 : M × S2 → M × S2
to be a Möbius extension of g0, that is, a diffeomorphism of the form

f0(x, v) = (g0(x), ζx(v)) (5)

where each ζx(v) = (axv + bx)/(cxv + dx) is a Möbius transformation, viewed
as a diffeomorphism of the sphere via the stereographic projection P : S2 →
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C∪{∞}. Then we prove that if a nearby accessible µ-preserving map f is not
hyperbolic then it must be topologically conjugate to a Möbius extension of
g0.

This manuscript is organised as follows. In Section 2 we give the precise
statements of all these results, including the formal definitions of the notions
involved. Section 3 collects a few main tools from the literature that are used in
the proofs of our results. Theorem A and Corollary B are proved in Section 4.
In Section 5 we check that the assumptions of Theorem C are very common.
The material in there is not used in the proof, and may be skipped at a first
reading. Theorem C is proved in Section 6 and the proof of Corollary D is
given in Section 7. Theorem E is proved in Section 8.

Acknowledgements We are grateful to the anonymous reviewer for carefully
reading the manuscript and pointing a number of corrections, especially about
our bunching assumption.

2 Definitions and statement of results

This section contains the statements of our main results, including the precise
definitions of the notions involved.

2.1 Partially hyperbolic diffeomorphisms

A diffeomorphism f : N → N on a compact manifold N is partially hyperbolic
if the tangent space TN admits a non-trivial Df -invariant continuous splitting
TN = Eu ⊕ Ec ⊕ Es such that:

– there are positive continuous functions χ, χ̂, ν, ν̂, γ, and γ̂ on M satisfying

χ < ν < 1 < ν̂−1 < χ̂−1 and ν < γ < γ̂−1 < ν̂−1;

– there is a Riemannian norm ∥ · ∥ on M such that for any unit vector
vp ∈ Tp(M), we have

χ(p) < ∥Dfp(vp)∥ < ν(p) if vp ∈ Es(p)
γ(p) < ∥Dfp(vp)∥ < γ̂(p)−1 if vp ∈ Ec(p)

ν̂(p)−1 < ∥Dfp(vp)∥ < χ̂(p)−1 if vp ∈ Eu(p).
(6)

Eu and Es are called, respectively, the unstable bundle and the stable
bundle of f . There exist f -invariant foliations Fu and Fs tangent to Eu and
Es, respectively, at every point. Moreover, both the unstable foliation Fu and
the stable foliation Fs are unique. See [23,40]. Ec is called the centre bundle
of f . It need not be integrable, in general. One calls f dynamically coherent
if there exist f -invariant foliations Fcu and Fcs tangent at every point to
Eu ⊕ Ec and Ec ⊕ Es, respectively. Intersecting their leaves, one obtains an
f -invariant centre foliation Fc tangent to Ec at every point. See [35,26]. A
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partially hyperbolic diffeomorphism f : N → N is said to be accessible if any
two points p and q in N are connected by some su-path in N , that is, some
piecewise differentiable oriented curve each of whose (finitely many) legs is
contained in a single leaf of either Fu or Fs.

It is clear that one may always find α ∈ (0, 1] such that f is α-pinched :

ν < min{γχα, γχ̂α} and ν̂ < min{γ̂χα, γ̂χ̂α}. (7)

Then (check Hirsch, Pugh [39, § 6] and Pugh, Shub, Wilkinson [58]), as long
as we take f to be C2, the centre bundle Ec is α-Hölder. Let α be fixed from
now on, uniformly on a neighborhood of f . We call f centre-bunched if the
functions in (6) and (7) may be chosen to satisfy

να < γγ̂ and ν̂α < γγ̂. (8)

2.2 Lyapunov exponents

The Lebesgue class of a compact manifold N is the set of measures on N
equivalent to one given by the integration of any volume form (this does not
depend on the choice of the form). We call a diffeomorphism f : N → N
volume-preserving if it preserves some measure µ in the Lebesgue class, and
we call it µ-preserving if we want to specify that measure.

The theorem of Oseledets [53] asserts that for µ-almost every point p ∈ N
there exist k(p) ∈ N, real numbers λ1(p) > λ2(p) > · · · > λk(p)(p) and a
Df -invariant splitting TpM = E1

p ⊕ E2
p ⊕ · · · ⊕ E

k(p)
p such that

lim
|n|→∞

1

n
log ∥Dfn

p (vp)∥ = λj(p) for all non-zero vp ∈ Ej
p.

The numbers λj(p) are called the Lyapunov exponents and the Ej
p are the

Oseledets spaces of f at p. When the system (f, µ) is ergodic the functions
p 7→ κ(p), λj(p),dimEj

p are constant on a full µ-measure set. We use θ1(p) ≥
· · · ≥ θdimN (p) to denote the Lyapunov exponents counted with multiplicity:
the multiplicity of each λj(p) is the dimension of the subspace Ej

p, and so this
means that we have θi(f, p) = λj(f, p) for dimEj

p different values of i. The
map f is said to be non-uniformly hyperbolic for µ if the set of points where
the Lyapunov exponents are all non-zero has full µ-measure.

A symplectic form on the manifold N is a closed non-degenerate differential
2-form ω on N . Such a form exists only if the dimension of N is even, and
then ωdimN/2 is a volume form on N . The associated volume measure will be
denoted as vol. A diffemorphism f : N → N is said to be ω-symplectic if it
preserves ω and, consequently, the measure vol. In this setting, the Lyapunov
exponents have the following symmetry property: at vol-almost every point,

θj(f, q) + θdimN+1−j(f, q) = 0 for every j = 1, . . . ,dimN/2. (9)
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If f : N → N is partially hyperbolic and symplectic then (see [17, Sec-
tion 4]) dimEu = dimEs and Eu ⊕ Es coincides with the symplectic orthog-
onal of the centre bundle Ec:

ωp(u1, u2) = 0 for all u2 ∈ Ec
p ⇔ u1 ∈ Eu

p ⊕ Es
p.

In particular, the restriction ωc = ω|Ec is non-degenerate at every point. Thus,
assuming the diffeomorphism is dynamically coherent, ωc defines a symplectic
form (an area form) on each centre leaf. Clearly, this symplectic structure is
preserved by the restriction of f to centre leaves.

2.3 Fibred partially hyperbolic systems

Recall that we call fibred partially hyperbolic system on a compact manifold
N any partially hyperbolic diffeomorphism f : N → N such that there ex-
ists an f -invariant continuous fibre bundle π : N → B whose fibres are C1

sub-manifolds tangent to the centre bundle Ec of f . Then f is dynamically
coherent, with the fibration as a centre foliation. In all the cases we consider,
the fibres are modelled after a compact orientable surface S.

Given r ≥ 1 and a measure µ in the Lebesgue class, we shall denote by
Fr

µ(N,S) the space of all µ-preserving centre-bunched Cr fibred partially hy-
perbolic systems. Analogously, given r ≥ 1 and a symplectic form ω, we shall
denote by Fr

ω(N,S) the space of all ω-symplectic centre-bunched Cr fibred
partially hyperbolic systems. It is clear that Fr

ω(N,S) ⊂ Fr
µ(N,S) if µ = vol

is the volume measure induced by ω.

Example 1 Let f0 : M×S → M×S be a Cr partially hyperbolic skew-product,
as defined in (3). If f0 preserves a probability measure µ in the Lebesgue class
of M × S then f0 is in the interior of Fr

µ(M × S, S) among all µ-preserving
maps. Analogously, if f0 preserves a symplectic form ω on M × S then f0 is
in the interior of Fr

ω(M × S, S) among all ω-symplectic maps.
Indeed, let f : M × S → M × S be any diffeomorphism in a small Cr-

neighbourhood of f0. By normal hyperbolicity theory (see [40, Theorem 4.1]),
f is partially hyperbolic and dynamically coherent, with a centre foliation
Fc whose leaves are uniformly Cr-close to the leaves of the centre foliation
{{x} × S : x ∈ M} of the unperturbed diffeomorphism f0. Moreover (see [40,
Theorems 7.1 and 7.4]), the two centre foliations are conjugate, in the sense
that there exists a homeomorphism Hf : M × S → M × S that sends each
{x} × S to a centre leaf Fc

x of f , in such a way that

f (Hf ({x} × S)) = Hf (f0({x} × S)) . (10)

The leaf conjugacy Hf is not unique, but the correspondence x 7→ Fc
x defined

in this way does not depend on the choice of Hf . Moreover, the restriction of
Hf to each {x}×S is a C1 diffeomorphism onto Fc

x, and these leaf derivatives
vary continuously on M × S. See [59]. In particular, the leaves of Fc are the
fibres of a continuous fibre bundle π : M × S → M . Since centre-bunching is
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a C1-open condition, we also have that every diffeomorphism f close to f0 is
centre-bunched. This proves the claim.

Related remarks were made in [10, Section 3.2], [6, Example 2.7], and
[52, Section 3]. We also point out that, by [8, Theorem 6.1], stably accessible
diffeomorphisms are dense in a neighbourhood of f0.

Theorem A If µ is a measure in the Lebesgue class of N then every accessible
f ∈ Fr

µ(N,S), r ≥ 2 satisfies at least one of the following conditions:

(1) the centre Lyapunov exponents of f are distinct, and they are continuous
at f as functions of the dynamical system;

(2) S = T2 and the centre bundle Ec of f contains an invariant continuous
line field or an invariant pair of transverse continuous line fields;

(3) S = S2 or S = T2 and there exists a continuous conformal structure
on the centre leaves invariant under f and under its stable and unstable
holonomies.

A few comments are in order concerning the three alternatives in the con-
clusion of the theorem. Firstly, under additional assumptions (pinching, exis-
tence of periodic points) one can ensure that every diffeomorphism in Fr

µ(N,S)
or Fr

ω(N,S) is Cr-approximated by one that satisfies condition (1). This fol-
lows from the methods developed in [52, Theorems A and B] and [47, Corol-
lary 1] but we shall not detail the arguments here.

Our next main goal will be to characterise the third alternative in the
theorem more precisely. Indeed, we shall see in Sections 2.4 and 2.5 that dif-
feomorphisms as in (3) are quite rigid. For that we shall restrict our setting
somewhat in each of the two cases S = S2 and S = T2. Example 3 below shows
that alternative (2) may also occur. At this point, it is not clear whether a
rigidity statement holds in that setting as well. But in Section 7 we show how
this alternative can be excluded in some cases.

Theorem A applies, in particular, to the volume measure vol associated to
any given symplectic form ω. Besides, in the symplectic case the conclusions
are a bit stronger:

Corollary B If f ∈ Fr
ω(N,S), r ≥ 2 for some symplectic form ω, alternative

(1) in Theorem A implies that f is non-uniformly hyperbolic for the invariant
measure vol, and alternative (3) implies that there exists a continuous Rie-
mannian metric on the centre leaves invariant under f and under the stable
and unstable holonomies.

2.4 Rigidity - the torus case

Initially, we deal with the case S = T2. Let f0 : M × T2 → M × T2 be an
elliptic affine extension of an Anosov diffeomorphism g0 : M → M , as defined
in (4). We speak of an L0-affine extension instead when we want to specify
the choice of the elliptic element L0 of SL(2,Z). In Section 5 we observe that
stable accessibility is dense among the diffeomorphisms of the form (4).
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Remark 1 Every elliptic L0 ∈ SL(2,Z) has finite order, which must be 1, 2,
3, 4 or 6. Indeed, let e±iθ be the eigenvalues. The characteristic equation
x2 − trace(L0)x + 1 = 0 gives that trace(L0) = 2 cos θ. As the trace is an
integer, it follows that cos θ ∈ {−1,−1/2, 0, 1/2, 1}, which implies the claim.

We also assume that f0 preserves a given measure µ in the Lebesgue class
of M × T2. That is the case, for example, if f preserves a symplectic form ω
on M × T2 and, more specifically, when the Anosov diffeomorphism g0 itself
preserves a symplectic form ωM on M : then it suffices to take ω = ωM × ωS ,
where ωS is the standard area form on T2.

Theorem C There exists a neighbourhood UT of f0 in the space of Cr, r ≥ 2
diffeomorphisms of M × T2 such that every accessible µ-preserving f ∈ UT

satisfies at least one of the following conditions:

(1) the centre Lyapunov exponents of f are distinct, and they are continuous
at f as functions of the dynamical system;

(2) the centre bundle Ec contains an invariant continuous line field or an in-
variant pair of transverse continuous line fields;

(3) f is topologically conjugate to an L0-affine extension (x, v) 7→ (g0(x), L0v+
w(x)) of g0.

In the symplectic case, the alternative (1) implies that f non-uniformly
hyperbolic. Note that the L0-elliptic extension in the alternative (3) is only
claimed to be a homeomorphism, as our methods can only prove that w is
continuous (Hölder regularity of the solutions of the Beltrami equation, cf. [3,
Theorem 8], can probably be used to prove that w is Hölder). It would be
interesting to know whether this can be upgraded to differentiability.

Another interesting open question concerning alternative (3) of the theorem
is whether the conjugacy may be taken to be differentiable, at least when M is
a surface. That would imply that the L0-elliptic extension is differentiable, of
course. The ideas in [9, Section 7.3] suggest that progress is perhaps possible
also on the way of the converse.

In the corollary that follows it is assumed that g0 has some fixed point. By
a result of Sondow [64] (see also Franks [33], Hirsch [38] and Manning [50,51]),
that is automatic if M is the quotient G/F of a compact, connected Lie group
G by any finite subgroup F . In particular, the assumption is automatically
satisfied if M = Td for any d ≥ 2.

Corollary D In the setting of Theorem C, assume that g0 has a fixed point
and the order of L0 is greater than 2. Then, up to reducing the neighbourhood
UT if necessary, every accessible µ-preserving f ∈ UT satisfies that either the
two centre Lyapunov exponents are distinct, or f is topologically conjugate to
an L0-affine extension (x, v) 7→ (g0(x), L0v + w(x)) of g0.

In other words, alternative (2) of Theorem C may be excluded when the
order of L0 is greater than 2. Example 3 shows that this need no longer be
true when L0 = ± Id.
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2.5 Rigidity - the sphere case

Now let us consider the case S = S2. Take f0 : M×S2 → M×S2 to be a Möbius
extension of a transitive Anosov diffeomorphism g0 : M → M , as defined in
(5). It is assumed that f0 preserves a given measure µ in the Lebesgue class
of M × S2.

Theorem E There exists a neighbourhood US of f0 in the space of Cr, r ≥ 2
diffeomorphisms of M × S2 such that every accessible µ-preserving f ∈ US

satisfies one of the following conditions:

(1) the centre Lyapunov exponents of f are distinct, and they are continuous
at f as functions of the dynamical system;

(2) f is topologically conjugate to some Möbius extension of g0.

It is an interesting question, raised by the anonymous reviewer, whether in
the alternative (2) the Möbius transformations are necessarily rotations. The
next example addresses that kind of question under stronger symplecticity
assumptions. We also point out that in the symplectic case the alternative (1)
implies that f is non-uniformly hyperbolic.

Example 2 Let g0 : M → M be an Anosov diffeomorphism preserving some
symplectic form ωM on M . Let ω = ωM × ωS , where ωS is the standard area
form on the sphere, induced by the Euclidean volume form in R3 through

ωS,p(u, v) = (dx1 ∧ dx2 ∧ dx3)
(
u, v, p

)
for any p ∈ S2 and u, v ∈ TpS2. It is clear that a map f0 as in (5) preserves ω
if and only if every ζx preserves ωS . We claim that the latter happens if and
only if ζx is a rotation, that is, the restriction of a rigid motion of R3 that
preserves the unit sphere. Since the ‘if’ part is obvious, we only have to check
that if ζx preserves ωS then it is a rotation. That can be done as follows.

Let P : S2 → C ∪ {∞} be the stereographic projection. As observed by
Arnold, Rogness [4] and Siliciano [63], for every Möbius transformation ζ :
S2 → S2 there exists a unique rigid motion T : R3 → R3 mapping S2 to a
sphere T (S2) whose “north pole” lies in the upper half-space – this ensures
that the steorographic projection Q : T (S2) → C ∪ {∞} is well-defined – such
that

ζ = P−1 ◦Q ◦ T : S2 → S2.

It follows that ζ is area-preserving if and only if the map P−1 ◦Q : T (S2) → S2
is area-preserving, meaning that its Jacobian J(P−1 ◦Q) with respect to the
standard area-forms on the two spheres is constant equal to 1.

The Jacobian of P−1 : C ∪ {∞} → S2 with respect to the standard area
forms on the plane and the sphere is

JP−1(z) =
4

(1 + |z|2)2
.
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Thus the level sets of JP−1 are the circles about the origin, and the level sets
of JP are the parallels of S2, that is, the intersections of the sphere with the
horizontal planes. Analogously, the level sets of JQ−1 are the circles about the
point x0 + iy0 ∈ C, where (x0, y0, z0) = T (0, 0, 0) is the centre of T (S2) (keep
in mind that z0 > −1). For the Jacobian of P−1 ◦Q to be constant, the level
sets must coincide, and so we must have x0 = y0 = 0. Observing that

JP−1(0) = 4 and JQ−1(0) =
4

(1 + z0)2
,

we see that we must also have z0 = 0. Then T (S2) = S2 and so Q = P , showing
that ζ = T is a rotation.

3 Preliminaries

In this section we collect a few tools from the literature that will be used in
our arguments.

3.1 Conformal barycentres

Recall that a conformal structure on a vector space V is an inner product up
to multiplication by a positive scalar or, more formally, a projective class of
inner products on V . We consider only real vector spaces and linear maps. We
call canonical the conformal structure on C = R2 associated to the Euclidean
inner product.

Let H ⊂ C be the Poincaré upper half-plane. A construction of Douady,
Earle [29, Section 2] associates to each probability measure m on the boundary
∂H with no atom of mass 1/2 or greater a conformal barycentre B(m) ∈ H
which is invariant with respect to the conformal automorphisms of the half-
plane:

B(ϕ∗m) = ϕ(B(m)) for every ϕ ∈ PSL(2,R). (11)

We associate to m the unique conformal structure on C which is preserved
by the stabiliser Stab(B(m)) of the conformal barycentre, that is, which is
invariant under every linear isomorphism

A =

(
a b
c d

)
: C → C

such that ϕA(B(m)) = B(m) for the automorphism ϕA ∈ PSL(2,R) defined
by

ϕA(z) =
az + b

cz + d
.
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Remark 2 The stabiliser of the imaginary unit i is the subgroup of automor-
phisms ϕ ∈ PSL(2,R) of the form

ϕ(z) =
az + b

cz + d
with a = d and b = −c.

The corresponding linear isomorphisms A : C → C preserve the standard
conformal structure on C and, moreover, that is the only conformal structure
on the plane invariant under every linear isomorphism A such that ϕA ∈
Stab(i). The stabiliser of any other w ∈ H coincides with ϕw Stab(i)ϕ−1

w , where
ϕw ∈ PSL(2,R),

ϕw(z) =
awz + bw
cwz + dw

,

is such that ϕw(i) = w. Hence Stab(w) also preserves a unique conformal
structure on C, namely, the push-forward of the standard conformal structure
under the linear isomorphism(

aw bw
cw dw

)
: C → C.

Remark 3 It follows from the construction in [29, Section 2] that the conformal
barycentre varies continuously with the probability measure relative to the
weak∗ topology. Indeed, for each m, consider the vector field ξm : H → R
defined by

ξm(w) =
1

ϕ′
w(w)

∫
∂H

ϕw(z) dm(z)

where ϕw is the conformal automorphism of the half-plane such that ϕw(w) =
i. It is clear that ξm is real-analytic and varies continuously with m relative
to the weak∗ topology. By construction, the conformal barycentre B(m) is
the only zero of ξm, and it has index 1, meaning that the winding number
of ξm along any small simple closed curve c around B(m) is equal to 1. Fix
an arbitrarily small c. The winding number of ξm′ along c remains 1 for any
m′ close to m, and that implies that ξm′ has some zero in the inside of c. By
uniqueness, this means that B(m′) is in the inside of c, for any m′ close to m,
which proves the claim.

3.2 Measurable Riemann mapping theorem

We quote a few useful facts from conformal mapping theory. See Ahlfors,
Bers [3] and Ahlfors [1,2] for more details and references.

A map f on a Riemannian manifold is said to be conformal if the derivative
at (almost) every point preserves angles, relative to the given Riemannian
metric. For any domain U of the plane, the Riemannian metric may always be
written as ds = λ|dz+µdz̄| where λ = λ(z) is a positive number and µ = µ(z)
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is a complex number with |µ| < 1. Then conformality with respect to this
metric (called µ-conformality) is expressed by the Beltrami equation

∂z̄f = µ∂zf, (12)

where
∂zf =

1

2
(∂xf − i∂yf) and ∂z̄f =

1

2
(∂xf + i∂yf)

The measurable Riemann mapping theorem asserts that if µ is measurable
and sup |µ| < 1 then a µ-conformal map f does exist. More precisely, we shall
use the following existence and uniqueness result, which is contained in [3,
Theorem 6]:

Theorem 1 Let µ : C → C be a measurable function such that sup |µ| < 1.
Then there exists a unique homeomorphism f : C → C which is µ-conformal
and fixes the points 0, 1 and ∞.

We shall also need the fact that the homeomorphism f depends contin-
uously on µ in the sense of the following result, which is contained in [3,
Theorem 8]:

Theorem 2 Let k < 1 be fixed. Then for any compact set K ⊂ C there exists
C(K) > 0 such that

sup
z∈K

|f1(z)− f2(z)| ≤ C(K) sup |µ1 − µ2|

for any measurable functions µ1, µ2 : C → C with sup |µi| < k for i = 1, 2,
where fi : C → C denotes the µi-conformal homemorphism that fixes the points
0, 1, and ∞ (given by Theorem 1).

3.3 Invariance Principle

Next we recall a few useful ideas from Ledrappier [45], Bonatti, Gomez-Mont,
Viana [20], Avila, Viana [7] and Avila, Santamaria, Viana [6]. Additional re-
lated information can be found in Viana [65].

3.3.1 Cocycles and exponents

Let f : M → M be a partially hyperbolic diffeomorphism on a compact
manifold and π : V → M be a continuous finite-dimensional vector bundle. A
linear cocycle over f is a continuous map F : V → V such that π ◦ F = f ◦ π
and F acts on the fibres by linear isomorphisms Fx : Vx → Vf(x). A theorem
of Furstenberg, Kesten [34] asserts that the extremal Lyapunov exponents

λ+(F, x) = lim
n

1

n
log ∥Fn

x ∥ and λ−(F, x) = lim
n

− 1

n
log ∥(Fn

x )
−1∥
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exist at µ-almost every point x ∈ M , relative to any f -invariant probability
measure µ. Note that λ−(F, x) ≤ λ+(F, x) whenever they are defined. If the
system (f, µ) is ergodic then the functions x 7→ λ±(F, x) are constant on a full
µ-measure set.

The projectivisation of π : V → M is the continuous fibre bundle π :
PV → M whose fibres are the projective quotients of the fibres of V. Note
that the fibres are smooth manifolds modelled after some projective space
PRk. The projective cocycle associated to F : V → V is the smooth cocycle
PF : PV → PV whose action PFx : PVx → PVf(x) on the fibres is given by
the projectivisation of Fx. The extremal Lyapunov exponents of PF are the
numbers

λ+(PF, x, ξ) = lim
n

1

n
log ∥D(PF )nx(ξ)∥ and

λ−(F, x, ξ) = lim
n

− 1

n
log ∥D(PF )nx(ξ)

−1∥.

They are defined at m-almost every point (x, ξ) ∈ PV, for any PF -invariant
measure m. Moreover,

λ+(F, x)− λ−(F, x) ≥ λ+(PF, x, ξ)
≥ λ−(PF, x, ξ) ≥ λ−(F, x)− λ+(F, x)

whenever they are defined.

3.3.2 Invariant holonomies

We call a stable holonomy for the projective cocycle PF a family of homeo-
morphisms Hs

x,y : PVx → PVy defined for all x and y in the same stable leaf
of f and satisfying (cf. Definition 2.4 in Avila, Santamaria, Viana [6]),

(a) Hs
y,z ◦Hs

x,y = Hs
x,z and Hs

x,x = id;
(b) PFy ◦Hs

x,y = Hs
f(x),f(y) ◦ PFx;

(c) (x, y, ξ) 7→ Hs
x,y(ξ) is continuous when (x, y) varies in the set of pairs of

points in the same local stable leaf;
(d) there are C > 0 and η > 0 such that Hs

x,y is (C, η)-Hölder for every x and
y in the same local stable leaf.

The concept of unstable holonomy for PF is analogous, replacing (local) stable
leaves with (local) unstable leaves.

Let us assume that the linear cocycle F is α-Hölder for some α ∈ (0, 1].
Then, by Propositions 3.2 and 3.3 in Avila, Santamaria, Viana [6], stable and
unstable holonomies for PF do exist if F is fibre-bunched, meaning that for
some choice of a norm ∥ · ∥ on V we have

∥Fx∥∥(Fx)
−1∥ν(x)α < 1 and ∥Fx∥∥(Fx)

−1∥ν̂(x)α < 1, (13)

where ν(·) and ν̂(·) are as in (6). See also Section 3 in Marín [52].
We shall apply these ideas to the centre derivative cocycle F = Dcf of a C2

partially hyperbolic diffeomorphism f as in the statement of our results. Note
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that F is indeed Hölder since, as we recalled in Section 2.1, the centre bundle
Ec is α-Hölder for some α ∈ (0, 1]. Moreover, it is clear from the definitions
(8) and (13) that F is fibre-bunched if and only if f is centre-bunched. Then,
by the previous remarks, F admits stable holonomy and unstable holonomy.

3.3.3 Invariant disintegrations

Since PF is continuous and the base space M is compact, for any f -invariant
measure µ there exist PF -invariant measures m with π∗m = µ. Fix any such
measure m. By the Rokhlin disintegration theorem (see [66, Chapter 5]), there
exists a disintegration of m into conditional probabilities along the fibres, that
is, a measurable family {mx : x ∈ M} of probability measures such that
mx(PVx) = 1 for µ-almost every x and

m(U) =

∫
M

mx(U ∩ PVx) dµ(x)

for every measurable set U ⊂ PV. The disintegration is essentially unique,
meaning that any two coincide on some full µ-measure subset.

A disintegration is said to be s-invariant if(
Hs

x,y

)
∗ mx = my for every x and y in the same stable leaf.

The notion of u-invariance is analogous, using u-holonomy instead. We say
that the disintegration is bi-invariant it is both s-invariant and u-invariant.
A PF -invariant probability measure m is called an su-state if it admits a
bi-invariant disintegration.

3.3.4 Invariance Principle

A subset of M is s-saturated if it consists of entire stable leaves, and u-saturated
if it consists of entire unstable leaves. Moreover, we call it bi-saturated if it is
both s-saturated and u-saturated.

Assuming accessibility, if the Lyapunov exponents λ±(F, ·) coincide then
every PF -invariant measure that projects down to µ is an su-state. That is
a consequence of the following version of the Invariance Principle, which is
contained in Theorems B and C of [6]:

Theorem 3 Let f : M → M be a C2 partially hyperbolic centre-bunched
diffeomorphism preserving a measureµ in the Lebesgue class of M . Let F :
V → V be a linear cocycle over f admitting invariant stable and unstable
holonomies, and suppose that λ−(F, x) = λ+(F, x) at µ-almost every point.

Then every PF -invariant probability m on PV with π∗m = µ admits a
disintegration {mx : x ∈ M} such that

(a) the disintegration is bi-invariant over a full-measure bi-saturated subset MF

of M ;
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(b) if f is accessible then MF = M and the conditional probabilities mx depend
continuously on the base point x ∈ M , relative to the weak∗ topology.

Continuity dependence of the conditional probabilities is actually a conse-
quence of bi-invariance, when the diffeomorphism is accessible, as shown in [6,
Section 7].

4 Proof of Theorem A

The assumption that f ∈ Fr
µ(M,S) includes that f is partially hyperbolic,

centre-bunched, and dynamically coherent. Since f is also taken to be acces-
sible, it follows from [57, Theorem A] that the system (f, µ) is ergodic. In
particular, the Lyapunov exponents are constant on a full measure subset.

4.1 Invariant holonomies

The hypothesis that f is a fibred partially hyperbolic system also ensures (see
[10, Section 3.2]) that it has global stable and unstable holonomies: for any
x, y ∈ M such that Fc

x and Fc
y are contained in the same centre-stable leaf

there exists a homeomorphism (stable holonomy map)

hs
x,y : Fc

x → Fc
y such that hs

x,y(p) ∈ Fs(p) ∩ Fc
y for all p ∈ Fc

x, (14)

and for any x, y ∈ M such that Fc
x and Fc

y are contained in the same centre-
unstable leaf there exists a homeomorphism (unstable holonomy map)

hu
x,y : Fc

x → Fc
y such that hu

x,y(p) ∈ Fu(p) ∩ Fc
y for all p ∈ Fc

x. (15)

See also [6, Example 2.7] and [52, Section 3]. It is worth pointing out that
these holonomy maps are C1, by [58, Theorem B].

As observed in Section 3.3.2, under our assumptions the projective deriva-
tive cocycle P(Dcf) admits stable holonomies

Hs
p,q : PEc

p → PEc
q , (16)

defined for p ∈ Fc
x, q = hs

x,y(p), and any x, y ∈ M such that Fc
x and Fc

y are
contained in the same centre-stable leaf, and unstable holonomies

Hu
p,q : PEc

p → PEc
q , (17)

defined for p ∈ Fc
x, q = hu

x,y(p), and any x, y ∈ M such that Fc
x and Fc

y are
contained in the same centre-unstable leaf.

Recall that we call su-state any P(Dcf)-invariant measure m on PEc that
projects down to µ on M × S and admits a disintegration {mq : q ∈ M × S}
along the fibres of PEc which is bi-invariant, that is, which satisfies(

Hs
p,q

)
∗ mp = mq and

(
Hu

p,q

)
∗ mp = mq, (18)
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respectively, for any p and q as in (16), and for any p and q as in (17).
Initially, let us assume that f has no su-state. Then, by the Invariance

Principle (Theorem 3(b)), the two centre Lyapunov exponents must be dis-
tinct. Non-existence of su-states also implies that f is a continuity point for
the centre Lyapunov exponents. That follows from [47, Proposition 4.8], which
is itself a version of [7, Proposition 6.3]. In this way we get alternative (1) in
the theorem.

4.2 Invariant disintegrations

From now on, assume that there does exist some su-state m, and let {mq : q ∈
M × S} be a bi-invariant disintegration along the fibres of PEc. As observed
previously (see also [6, Section 7]), the conditional probabilities mq depend
continuously on the base point q relative to the weak∗ topology. Since m is
P(Dcf)-invariant, we have that

P(Dcf)∗mq = mf(q) for µ-almost every point q.

This, together with continuity and the fact that µ is supported on the whole
M × S, ensures that

P(Dcf)∗mq = mf(q) for every q ∈ M × S. (19)

Suppose that there exists a point p ∈ M ×S such that mp admits an atom
with largest mass, and this mass is greater than or equal to 1/2. Then, since
f is accessible and the disintegration is su-invariant, the same is true at every
point q ∈ M × S. Let vq denote the corresponding atom. The map q 7→ vq
defines a continuous line bundle on M × S tangent to the centre leaves at
every point. By the Poincaré–Hopf theorem this implies that the centre leaves
are tori, and so S = T2. Moreover, the properties (18) and (19) give that
this line bundle is Df -invariant and invariant under the stable and unstable
holonomies.

Similarly, suppose that some mp admits a pair of atoms {up, vp} with
masses equal to 1/2. Then, just as before, the same must hold at every point
q ∈ M × S: let {uq, vq} denote the corresponding pair of atoms. The map
q 7→ {uq, vq} defines a pair of transverse continuous line fields. Again by the
Poincaré–Hopf theorem, existence of such a pair implies that S = T2. Finally,
the properties (18) and (19) ensure that this pair of transverse continuous line
fields is Df -invariant and invariant under the stable and unstable holonomies.

The situations in the previous couple of paragraphs correspond to alterna-
tive (2) in the theorem.

4.3 Invariant conformal structures

We are left to consider the case when the conditional probability measures mq

have no atoms of mass greater than or equal to 1/2. We are going to show that,
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via the conformal barycentre construction in Section 3.1, each mq determines
a unique conformal structure on the corresponding centre subspace Ec

q . In that
way, the leaves of the centre foliation Fc are endowed with Riemann surface
structures which are invariant under stable and unstable holonomies and the
diffeomorphism itself. This goes as follows.

The boundary ∂H is naturally identified with the real projective space
P(C) = P(R2) through the map x 7→ [x : 1]. Consider any linear isomorphism
L : Ec

q → C and its projectivisation PL : PEq
c → P(C). Let M be the push-

forward of mq under PL. Consider the conformal structure defined on C by the
conformal barycentre B(M), and transport it to Ec

q through L. The fact that
the barycentre is conformally invariant ensures that the conformal structure
thus defined on Ec

q does not depend on the choice of L, as we are going to
explain.

Given any other linear isomorphism L′ : Ec
q → C, consider

A = L′ ◦ L−1 =

(
a b
c d

)
: C → C.

The projectivisation PA : P(C) → P(C) is given in homogeneous coordinates
by

[x : 1] 7→ [ϕA(x) : 1],

and so the probability measure M′ on ∂H associated to L′ coincides with
(ϕA)∗M. By conformal invariance, it follows that B(M′) = ϕA(B(M)) and
so A maps the conformal structure defined by B(M) to the one defined by
B(M′). Thus, the conformal structures defined on Ec

q through L and through
L′ coincide.

This completes the explanation of why the probability measure mq defines
a conformal structure on the vector space Ec

q , for each q ∈ M × S. Remark 3
ensures that this conformal structure varies continuously with q ∈ M × S.
The fact that the disintegration {mq : q ∈ M × S} is invariant under f
and under the holonomies hs and hu, ensures that the conformal structures
obtained in this way are invariant under the centre derivative Dcf , as well as
under the holonomies Hs and Hu. In this way, every leaf of Fc is endowed
with a Riemann surface structure, and these Riemann surface structures are
preserved by the dynamical system f and its holonomies hs and hu.

In particular, since f is accessible, the group of conformal automorphisms
acts transitively on every centre leaf Fc

x. According to [31, Theorem V.4], the
only compact Riemann surfaces with that property are the sphere S2 and the
torus T2. This gives alternative (3) in the theorem.

The proof of Theorem A is now complete.

4.4 Proof of Corollary B

Assume that f ∈ Fr
ω(M,S) for some symplectic form ω on M × S. Then

dimEu = dimEs, and we may use the symmetry property (9) to conclude
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that the two centre Lyapunov exponents are symmetric to each other. Thus,
the fact they are distinct, cf. alternative (1) in Theorem A, implies that they
are non-zero, and so f is non-uniformly hyperbolic.

As observed in Section 2.2, the restriction ωc = ω|Ec defines a symplectic
form on the centre leaves which is, clearly, preserved by the restriction of f to
the leaves. Together with the conformal structure, this symplectic form defines
an inner product on each centre space Ec

q , varying continuously with q. Thus
one gets a continuous Riemannian metric on each centre leaf.

It is clear that this Riemannian metric is invariant under f , because both
the conformal structure and the symplectic form are. We have also seen that
the conformal structure is invariant under the stable and unstable holonomies
of f . The next lemma asserts that the same is true for the symplectic form
ωc. So, the Riemannian metric is also invariant under the stable and unstable
holonomies of f , as claimed.

This means that we have reduced the proof of Corollary B to

Lemma 1 For any x, y ∈ M such that Fc
x and Fc

y are contained in the same
centre-stable leaf and p ∈ Fc

x,

ωc
p(u, v) = ωc

q

(
(Dhs

x,y)pu, (Dhs
x,y)pv

)
, q = hs

x,y(p)

for any u, v ∈ Ec
p. A dual statement holds for the unstable holonomy hu

x,y when
x and y are such that Fc

x and Fc
y are contained in the same centre-unstable

leaf.

Proof Using local charts, for instance, we may identify the tangent spaces
Tp(M × S) and Tq(M × S) at nearby points p, q ∈ M × S through linear
isomorphisms that vary continuously with the points. Then, since the partially
hyperbolic splitting Eu⊕Ec⊕Es is continuous, the projection along Eu

q ⊕Es
q

induces a linear isomorphism Πp.q : Ec
p → Ec

q uniformly close to the identity
if the distance dist(p, q) is small. We denote by ∆p,q the determinant of Πp.q

with respect to the symplectic form, characterised by

ωc
q(Πp,qu,Πp,qv) = ∆p,q ω

c
p(u, v) for any u, v ∈ Ec

p. (20)

Since ωc is continuous, ∆p.q is uniformly close to 1 if dist(p, q) is small.
Given any x, y ∈ M such that Fc

x and Fc
y are in the same centre-stable

leaf, and given p ∈ Fc
x and q = hs

x,y(p), we have that (compare [52, Section 3])

(
Dhs

x,y

)
p
= lim

n
(Dcf−n)fn(q) ◦Πfn(p),fn(q) ◦ (Dcfn)p (21)
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Thus, recalling that the centre derivative Dcf preserves the symplectic form
ωc,

ωc
q

(
(Dhs

x,y)pu, (Dhs
x,y)pv

)
= lim

n
ωc
q

(
(Dcf−n)fn(q) ◦Πfn(p),fn(q) ◦ (Dcfn)pu,

(Dcf−n)fn(q) ◦Πfn(p),fn(q) ◦ (Dcfn)pv
)

= lim
n

ωc
fn(q)

(
Πfn(p),fn(q) ◦ (Dcfn)pu,Πfn(p),fn(q) ◦ (Dcfn)pv

)
= lim

n
∆fn(p),fn(q)ω

c
fn(p)

(
(Dcfn)pu, (D

cfn)pv
)
= lim

n
∆fn(p),fn(q) ω

c
p

(
u, v

)
for any u, v ∈ Ec

p. Since dist(fn(p), fn(q)) converges to zero as n → ∞, because
p and q are in the same stable leaf, the limit on the right hand side is equal
to ωc

p(u, v), and so the proof is complete.

5 Density of stable accessibility

A volume-preserving partially hyperbolic Cr, r ≥ 2 diffeomorphism is said
to be stably accessible if every volume-preserving Cr diffeomorphism in a C1-
neighbourhood is accessible. In this section, we check that stable accessibility
is dense among maps of the form (4) and so the accessibility assumption in
Theorem C is quite mild. The proof of the theorem does not depend on this
fact.

Theorem 4 Every skew-product (4) may be approximated by another skew-
product over g which is stably accessible in the space of volume-preserving
maps.

The special case of rotation extensions (that is, L = Id) was proved in [25],
using also ideas from [23,21,22], and our arguments here are an adaptation.
We outline how to deal with the presence of the elliptic coefficient L, referring
the reader to the previous papers for more details. It is worth mentioning that
for circle rotation extensions in dimension 3 any perturbation is accessible
unless it (or some finite-order quotient) is smoothly conjugate to the product
of an Anosov diffeomorphism with a rotation [24]. Another related result is [8,
Theorem 6.1].

To better highlight the analogy to the previous papers, in this section we
refer to a slightly more general setting. Namely, we consider maps of the form

fw : M ×G → M ×G, fw(x, θ) = (g(x), w(x)L(θ)), (22)

where g is a (transitive) Anosov diffeomorphism on a compact manifold, G is
a compact connected Lie group (the case we are most interested in is G = T2),
and L : G → G is an elliptic group isomorphism: by elliptic we mean that
∥DLn∥ is bounded uniformly over all n ∈ Z. We are going to explain that fw
is accessible for an open and dense subset of Cr maps w : M → G.

functions w.
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5.1 Holonomy maps

Let Wu and Ws denote, respectively, the unstable foliation and the stable
foliation of the Anosov diffeomorphism g. The assumption on L ensures that
fw is partially hyperbolic and centre-bunched. It is also dynamically coherent:
the leaves of the centre-unstable foliation Fcu are the products Wu(x) × G,
x ∈ M and, analogously, the leaves of the centre-stable foliation Fcs are the
products Ws(x) × G, x ∈ M . Then the centre foliation Fc coincides with
the vertical fibration {{x} × G : x ∈ M}. It also follows that the leaves of
the unstable foliation Fu are graphs over the unstable manifolds Wu(x) of
the Anosov diffeomorphism g, and a corresponding fact holds for the stable
foliation Fs.

Given points x and y in the same leaf of Wu, the projection along the
leaves of Fu defines a continuous map

hu
x,y : {x} ×G → {y} ×G.

Similarly, the projection along the leaves of Fs defines a continuous map

hs
z,w : {z} ×G → {w} ×G

for any z and w in the same leaf of Ws. These are, respectively, unstable and
stable holonomies for f .

In what follows we sometimes identify a fibre {x}×G to the group G itself,
in the obvious way. Thus we also view the hu

x,y and hs
w,z as transformations in

G.

Lemma 2 Every hu
x,y and hs

z,w is given by a left-translation on G.

Proof For n ∈ Z, let us write fn
w(x, θ) = (gn(x),Gn

x (θ)). Then (compare [6,
Proposition 3.2]),

hu
x,y = lim

n
Gn
g−n(y) ◦ G

−n
x . (23)

An induction argument gives that, for any n ≥ 1 and a, b ∈ M ,

Gn
a = w

(
gn−1(a)

)
L
(
w
(
gn−2(a)

))
· · ·Ln−2 (w (g(a)))Ln−1 (w (a))Ln

G−n
b = L−1

(
w
(
g−n(b)

)−1
)
L−2

(
w
(
g−n+1(b)

)−1
)
· · ·

· · ·L−n+1
(
w
(
g−2(b)

)−1
)
L−n

(
w
(
g−1(b)

)−1
)
L−n.

Taking a = g−n(y) and b = x, we see that

Gn
g−n(y) ◦ G

−n
x (θ) = w

(
g−1(y)

)
L
(
w
(
g−2(y)

))
· · ·

· · ·Ln−2
(
w
(
g−n+1(y)

))
Ln−1

(
w
(
g−n(y)

))
·

· Ln−1
(
w
(
g−n(x)

)−1
)
Ln−2

(
w
(
g−n+1(x)

)−1
)
· · ·

· · ·L1
(
w
(
g−2(b)

)−1
)
w
(
g−1(b)

)−1
θ

is a left-translation for every n ≥ 1, and then so is the limit hu
x,y. The argument

for hs
z,w is analogous.
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Next, for each τ ∈ G, define the right-translation maps

Rτ : M ×G → M ×G, Rτ (x, θ) = (x, θτ).

Lemma 2 implies that the invariant holonomies commute with the right-
translation maps:

Rτ ◦ hu
x,y = hu

x,y ◦ Rτ and Rτ ◦ hs
z,w = hs

z,w ◦ Rτ (24)

for every x, y, z, w and τ . This means that the unstable foliation Fu and the
stable foliation Fs are both preserved by every right-translation map Rτ .

5.2 Holonomy groups

Let γ be any su-path in M , that is, any piecewise differentiable oriented curve
such that each leg is contained in a leaf of either Wu or Ws. Denote by hγ the
composition of the unstable holonomies and the stable holonomies associated
to the legs of γ, in the natural order. Clearly, hγ is a left-translation and

Rτ ◦ hγ = hγ ◦ Rτ (25)

for every τ and γ.
Let e denote the neutral element of the group G. For each x ∈ M , define

H0
x = {hσ(e) : σ is a homotopically null su-loop at x} .

Note that H0
x is a subgroup of G. Indeed, given any θ1 = hσ1

(e) and θ2 =
hσ2

(θ) in H0
x, it follows from (25) that

θ1θ2 = hσ1
(e)θ2 = hσ1

(θ2) = hσ1
(hσ2

(θ)) = hσ2∗σ1
(θ)

where σ2 ∗σ1 is the loop obtained by concatenating σ2 with σ1 (in this order).
Since the concatenation is still homotopically null, this proves that θ1θ2 ∈ H0

x.
Similarly, given any θ = hσ(e) denote by −σ the loop obtained by reversing
the orientation of σ. It is clear that hσ◦h−σ = Id. Since hγ is a left-translation,
this means that

hσ(e)
−1 = h−σ(e). (26)

It is clear that −σ is homotopically null, so this implies that hσ(e)
−1 ∈ H0

x.
That completes the proof that H0

x is a subgroup of G.
The holonomy groups H0

x and H0
y corresponding to two different points x

and y in M are conjugate: there exists τ ∈ G such that

H0
y = τH0

xτ
−1. (27)

To see this, fix an su-path β from x to y in M and denote τ = hβ(e). The
relation (26) gives that h−β(e) = τ−1. For any θ ∈ H0

x, consider a homotopi-
cally null loop σ at x such that θ = hσ(e), and let σ′ = β ∗ σ ∗ (−β). Since the
holonomy maps are left-translations:

hσ′(e) = hβ (hσ (h−β(e))) = hβ

(
hσ

(
τ−1

))
= hβ

(
hσ (e) τ

−1
)
= hβ

(
θτ−1

)
= τθτ−1.
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It is clear that σ′ is a homotopically null loop at y, and so hσ′(e) ∈ H0
y . Thus

this proves that τH0
xτ

−1 is contained in H0
y . Reversing the roles of x and y,

we get the other inequality, and thus (27) follows.

5.3 Stable accessibility

In particular, the following condition is independent of x ∈ M :

H0
x = G. (28)

This is relevant because (28) implies that f is accessible: it clearly implies that
every point in the fibre {x} ×G is connected to the unit element (x, e) by an
su-path in M × G; for any other fibre {y} × G, consider an su-path β from
x to y in M and observe that (x, e) is connected to hγ(e) ∈ {y} ×G by some
su-path in M ×G.

In fact, we have a much stronger fact (see [25, Theorem 9.1]): (28) implies
that f is stably accessible. The main step is to show that if (28) holds then (x, e)
is centrally engulfed from (x, e): there exist a continuous map Ψ : Z × [0, 1] →
M ×G and a constant N ≥ 1 such that

– Z is a compact, connected, orientable dimEc-manifold with boundary;
– each curve Ψ(z, ·) is an su-path on M × G with no more than N legs

satisfying
Ψ(z, 0) = (x, e) and Ψ(z, 1) ∈ {x} ×G;

– Ψ(z, 1) ̸= (x, e) for every z ∈ ∂Z, and the map

(Z, ∂Z) → ({x} ×G, {x} × (G \ {e})) , z 7→ Ψ(z, 1)

has positive degree.

Then, a degree argument ensures that the accessibility property is stable
under perturbations of the dynamical system. The arguments in Theorem 9.1
(see also Corollary 5.3) of [25] remain valid in our setting, so we refer the reader
to that paper. Then, to prove our claim it suffices to check that (28) is a dense
property among the maps of the form (4). This is given by [21, Proposition 2.3],
whose proof can be outlined as follows (see [25, Theorem 9.8]).

In view of the observations, it is no restriction to assume that x is a periodic
point. Recall that the periodic points of a (transitive) Anosov diffeomorphism
are dense in the ambient manifold. Let m = dimEc and then choose periodic
points x1, . . . , xm close to x and such that they are all in distinct orbits.
The local unstable manifold Wu

loc(x) of x intersects the local stable manifold
W s

loc(xi) of xi at a point z0i , and the local unstable manifold Wu
loc(xi) of xi

intersects the local stable manifold W s
loc(x) of x at a point z1i . The assumption

that x, x1, . . . , xm are all in distinct orbits ensures that the orbits of the z0i and
z1i are all distinct as well. Fix a neighbourhood Ui of each z0i , small enough that
none of the periodic points x, x1, . . . , xm is in Ui and, moreover, fk(zaj ) ∈ Ui

if and only if j = i, k = 0 and a = 0.
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Let σi be the su-loop consisting of 4 short legs from x to z0i , to xi, to z1i , and
back to x. It is clear that σi is homotopically null. We denote the associated
holonomy map as hσi,w, to highlight the dependence on w. By construction,
if w̃ : M → G coincides with w outside Ui then

hσj ,w̃(x, e) = hσj ,w(x, e)

for every j ̸= i. It is not difficult to find such perturbations w̃ so that the point
hσj ,w̃(x, e) moves in any prescribed direction inside the fibre {x} × G ≈ G.
Thus, by modifying w suitably inside each U1, . . . , Um, we can ensure that{

hσj ,w̃(x, e) : i = 1, . . . ,m
}

is not contained in any subgroup of G with dimension less than m. Since this
set is contained in the holonomy group H0

x,w̃, that implies that H0
x,w̃ = G.

6 Proof of Theorem C

Let f0 : M × T2 → M × T2 be a Cr, r ≥ 2 elliptic affine extension of a
transitive Anosov diffeomorphism g0 : M → M , as defined in (5). Assume that
f0 preserves a given measure µ in the Lebesgue class of M×T2. It is clear that
f0 is a partially hyperbolic skew-product. In particular (cf. Example 1), every
µ-preserving diffeomorphism f in a Cr-neighbourhood belongs to Fr

µ(M,T2)
and, thus, satisfies some of the three alternatives in Theorem A.

The first two alternatives correspond precisely to claims (1) and (2) in the
present Theorem C; the second one will be further discussed in Section 7. So,
we just need to upgrade the alternative (3) in Theorem A to the statement
in claim (3) of Theorem C. In what follows we assume that the two centre
Lyapunov exponents of f : M × T2 → M × T2 coincide, and the centre leaves
are endowed with Riemann surface structures that vary continuously on M×T2

and are invariant under both the dynamics and the invariant holonomies of f .

6.1 Uniformisation

Given any τ ∈ H, let T2
τ = C/L(1, τ) be the quotient of the complex plane C

by the sub-lattice L(1, τ) generated by 1 and τ . Since every centre leaf Fc(q)
is a topological torus, the corresponding Riemann surface is a complex torus,
and so it admits a Riemann surface automorphism Tτ(q) → Fc(q), for some
τ(q) ∈ H. See [30, pp. 86–90]. The Riemann surfaces Fc(q) are all conformally
equivalent, as they are mapped to one another by the stable and unstable
holonomies, which preserve the Riemann surface structure. This implies that
the different values of τ(p) all belong to the same orbit of the modular group
PSL(2,Z). See [36, Section 2]. The following more precise statement will be
useful in what follows:
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Proposition 1 There exist τ ∈ H and a homeomorphism Ψ : M × T2
τ →

M ×T2 whose restriction to each fibre {x}×T2
τ , x ∈ M is a Riemann surface

automorphism onto a leaf Fc
x of the centre foliation of f .

Proof The first step is to reduce the problem to the case of the unperturbed
map f0. Let Hf : M × T2 → M × T2 be a leaf conjugacy as mentioned in
Example 1. Thus Hf is a homeomorphism that maps each centre leaf {x}×T2

of f0 onto a centre leaf Fc
x of f . Moreover, each restriction Hx

f : {x}×T2 → Fc
x

of the leaf conjugacy is a C1 diffeomorphism, and the (leaf) derivatives vary
continuously on M × T2. Endow each {x} × T2 with the Riemann surface
structure that turns Hx

f into a Riemann surface automorphism.
These Riemann surfaces are all conformally equivalent and, also by con-

struction, their conformal structures vary continuously on M × T2. Now to
prove the proposition we only have to find a homeomorphism

Φ : M × T2
τ → M × T2, (x, v) 7→ (x, Φx(v))

such that each Φx : T2
τ → T2 is a Riemann surface automorphism: then it

suffices to take Ψ = Hf ◦ Φ.
Let dz = dx+ idy and dz̄ = dx− idy be the canonical 1-forms on the torus

T2 = C/(Z + iZ) inherited from the complex plane C through the canonical
projection C → T2. Then let µxdz̄/dz be the Beltrami differential of the
Riemann surface structure on {x} × T2 discussed in the previous paragraphs.
In other words, µx : T2 → D is such that the metric ds = |dz + µx(v)dz̄|
belongs to the conformal structure at each point (x, v) ∈ {x} × T2. The fact
that these conformal structures vary continuously on M × T2 ensures that

µ : M × T2 → D, (x, v) 7→ µx(v)

is a continuous function. By compactness, it follows that k = sup |µ| is strictly
smaller than 1.

Via the canonical projection C → T2, we may view each µx as a continuous
Z+ iZ-periodic function on the complex plane, with

sup |µx| ≤ k < 1 for every x ∈ M.

Then, by the measurable Riemann mapping theorem (Theorem 1), there exists
a unique homeomorphism wx : C̄ → C̄ that fixes 0, 1, and ∞ and satisfies the
Beltrami equation

∂z̄w
x = µx∂zw

x, (29)

which means that wx maps the conformal structure defined by µx to the stan-
dard conformal structure on C. Any other solution of (29) is obtained from wx

through post-composition with a Möbius automorphism of the complex plane.
Moreover, using Theorem 2, the homeomorphism wx depends continuously on
the function µx in the sense that for any compact set K ⊂ C there exists
C(K) > 0 such that

sup
z∈K

|wx(z)− wy(z)| ≤ C(K) sup |µx − µy| for any x, y ∈ M . (30)
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Consequently, wx depends continuously on x ∈ M , uniformly on each compact
subset of C.

We claim that

wx(z + 1) = wx(z) + 1 and wx(z + i) = wx(z) + τ(x) for every z ∈ C, (31)

where τ(x) = wx(i). Keep in mind that wx(1) = 1. Indeed, since µx is Z+ iZ-
periodic, both z 7→ wx(z+1) and z 7→ wx(z+ i) are solutions of the Beltrami
equation that fix ∞. Thus, there exist Möbius automorphisms M1(z) = a1z+b1
and Mi(z) = aiz + bi such that

wx(z + 1) = M1 ◦ wx(z) and wx(z + i) = Mi ◦ wx(z)

for every z. It is clear that b1 = wx(1) = 1 and bi = wx(i) = τ(x). If a1 ̸= 1
then M1 has a finite fixed point p1 = b1/(1− a1). Let z1 = (wx)−1(p1). Then

wx(z1 + n) = Mn
1 (w

x(z1)) = p1 for every n.

This contradicts the fact that wx is injective, and that contradiction proves
that a1 = 1. The same argument proves that ai = 1 and so the claim (31) is
proved.

Now, (31) ensures that wx(Z+ iZ) = L(1, τ(x)), and so wx descends to a
homeomorphism

W x : T2 → Tτ(x).

Since the conformal structures defined by the µx are all conformally equivalent,
as pointed out before, we have that the different values of τ(x) all belong to
the same orbit of the modular group SL(2,Z). See [36, Section 2]. It is also
clear from the definition τ(x) = wx(i) that τ(x) depends continuously on x.
Since the modular group is discrete, it follows that the function x 7→ τ(x) is
constant. Denote by τ that constant.

Now just take Φx : T2
τ → T2 to be the inverse of W x, for every x ∈ M .

6.2 Translation structures

The Riemann surface T2
τ also carries a canonical structure of a translation

surface, inherited from the complex plane C. In what follows we consider on
each centre leaf Fc

x the translation structure transported from {x}×T2
τ through

the uniformisation map Ψ .

Lemma 3 The stable and unstable holonomies of f are translations with
respect to the translation structures on the centre leaves.

Proof For any p and q in the same stable leaf of f , let hs
p,q : Fc(p) → Fc(q)

be the stable holonomy and

hs
p,q : T2

τ → T2
τ , hs

p,q = Ψ−1
q ◦ hs

p,q ◦ Ψp
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be its expression under the uniformisation provided by Proposition 1. This is a
conformal homeomorphism of T2

τ and so it lifts to a conformal automorphism
ĥs
p,q : C → C, that is, a map of the form

ĥs
p,q(z) = αp,qz + βp,q

for some complex numbers αp,q and βp,q. Since the uniformisation map Ψ is a
homeomorphism, hs

p,q(z) is a continuous function of p, q and z. That implies
that αp,q depends continuously on p and q. According to [36, Theorem 7], the
set of all possible values of αp,q is discrete. This implies that αp,q is actually
independent of p and q. On the other hand, as d(p, q) → 0 the stable holonomy
map hs

p,q converges to the identity, and then so does its lift ĥs
p,q. This means

that αp,q → 1 as d(p, q) → 0, and so αp,q = 1 for every p and q. This proves
that the stable holonomy map is a translation for any p and q in the same
stable leaf.

The same argument applies to the unstable holonomies.

Let g be the map induced by f on the space of centre leaves, which we may
view as the homeomorphism g : M → M defined by

f(Fc
x) = Fc

g(x). (32)

Since the leaf conjugacy Hf : M × T2 → M × T2 maps centre leaves of f0
to centre leaves of f , it descends to a homeomorphism hf : M → M . The
invariance property (10) means that this hf conjugates g to g0:

g ◦ hf = hf ◦ g0. (33)

Recall that the uniformisation Ψ in Proposition 1 maps each fibre {x}×T2
τ

to the centre leaf Fc
x. Thus,

Ψ−1 ◦ f ◦ Ψ : M × T2
τ → M × T2

τ , (x, z) 7→ (g(x), fx(z))

where fx : T2
τ → T2

τ is given by

fx = (Ψ |{g(x)}×T2
τ
)−1 ◦ f ◦

(
Ψ |{x}×T2

τ

)
.

This is an invertible conformal map, and so its lift ϕx : C → C is a conformal
automorphism of the plane. It follows that ϕx(z) = axz+ bx for some ax, bx ∈
C. In particular, the Jacobian of ϕx relative to the standard area form on C
is constant equal to |ax|2, and then so is the Jacobian of fx relative to the
standard area form on T2

τ (inherited from the complex plane). Since the torus
has finite area, this implies that |ax| = 1.

Next, consider the homeomorphism Λ = hf ×λ : M ×T2 → M ×T2
τ where

λ : T2 → T2
τ is the map induced by the R-linear isomorphism C → C that fixes

1 and sends i to τ (and which we also denote as λ). Then, denoting Y = Ψ ◦Λ,

Y −1 ◦ f ◦ Y : M × T2 → M × T2, (x, v) 7→ (g0(x), λ
−1(axλ(v) + bx)). (34)
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The fact that the affine map C → C, v 7→ λ−1(axλ(v) + bx) descends to a
homeomorphism of the torus means that the linear part

Lx : C → C, u 7→ λ−1(axλ(u))

preserves the lattice Z2, and that means that Lx ∈ SL(2,Z). Since the latter
is a discrete group, and the map x 7→ Lx is continuous, it follows that x 7→ Lx

is actually constant, and then so is x 7→ ax. The spectrum of L = Lx consists
of a = ax and its conjugate, and so L is elliptic. By Remark 1, it follows that
Ln = Id or, equivalently, an = 1 for some n ∈ {1, 2, 3, 4, 6}. Finally, we may
write (34) as

Y −1 ◦ f ◦ Y : M × T2 → M × T2, (x, v) 7→ (g0(x), Lv + w′(x)) (35)

for some continuous function w′ : M → T2. Now, to complete the proof of
claim (3) in the theorem we only need to explain why L may be taken equal
to L0.

On the one hand, it is clear that the restriction

{x} × T2 → {g0(x)} × T2, (x, v) 7→ (g0(x), L0v + w0(x)) (36)

of f0 to each centre leaf is isotopic to the linear automorphism L0 : T2 → T2.
The leaves Fc

x of the centre foliation of f are uniformly close to the vertical
fibres {x} × T2, and so each may be identified with T2 via the horizontal
projection (x, v) 7→ v. In this way, every restriction

(f | Fc
x) : Fc

x → Fc
g(x)

may be viewed as a map fx : T2 → T2. By construction, these maps are
uniformly close to (36), and so they are all isotopic to L0 : T2 → T2. In
particular, the action of every fx on the homology of the torus is given by L0.

On the other hand, (35) gives that fx is topologically conjugate to a map of
the form v 7→ Lv+w(x), and so their actions on the homology of the torus are
linearly conjugate. The latter map is isotopic to L : T2 → T2, and so its action
on the homology of the torus is given by L. This shows that L and L0 are
linearly conjugate, that is, there exists P ∈ SL(2,Z) such that L = P−1L0P .
Then, denoting Z = (Id×P ) ◦ Y ,

Z−1 ◦ f ◦ Z : M × T2 → M × T2, (x, v) 7→ (g0(x), L0v + w(x)), (37)

with w(x) = P−1w′(x). This finishes the proof of Theorem C.

7 Invariant line fields

We begin by proving Corollary D. Then we present a simple example where
invariant line fields as in alternative (2) in Theorem C do occur.
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Let x0 ∈ M be a fixed point of g0. The transformation T2 → T2, v 7→
L0(v) + w0(x0) lifts to a map

R2 → R2, v 7→ L0(v) +W0

where W0 ∈ R2 is any vector that projects to w0(x0) under the covering map
R2 → T2. Our assumptions ensure that 1 is not an eigenvalue of L0, that is,
the linear map Id−L is invertible. Let v0 be the projection to the torus T2 of
the vector (Id−L0)

−1(W0). Then p0 = (x0, v0) is a fixed point of f0, and it is
easy to see that this fixed point is simple: the spectrum of

Df0(p0) =

(
Dg0(x0) 0
Dw0(x0) L0

)
is the union of the spectra of Dg0(x0) and L0, and thus does not contain 1.
Consequently, every diffeomorphism f in a neighbourhood of f0 has a unique
fixed point p close to p0, and this fixed point is still simple. We refer to p as
the continuation of the fixed point p0 of f .

Let f ∈ UT be an accessible µ-preserving diffeomorphism, and suppose
that its centre Lyapunov exponents coincide. Let m be any P(Dcf)-invariant
measure m on PEc projecting down to µ on M × T2. By the Invariance Prin-
ciple (Theorem 3), m admits a continuous disintegration {mq : q ∈ M × T2}
invariant under the dynamics and under the stable and unstable holonomies,
that is, satisfying (18) and (19).

Lemma 4 Assuming f is close enough to f0, the conditional probabilities mq

can have no atoms of mass greater than or equal to 1/2.

Proof Clearly, the number of atoms of each mq with mass greater than or equal
to 1/2 is at most 2. Moreover, that number does not depend on q, because
the disintegration is holonomy invariant and f is assumed to be accessible.
Let p be the continuation of the fixed point p0 for f . Since, by (19), the
probability measure mp is invariant under P((Dcf)p), any atoms with mass
greater than or equal to 1/2 must be periodic points of period 1 or 2. However,
such periodic points cannot exist if f is close to f0, because then P((Dcf)p)
is close to P((Dcf0)p0

) = P(L0) which, by assumption, has no periodic points
with period less than 3.

This means that the alternative (2) in Theorem C cannot occur in the
present setting. Thus f must be satisfy alternative (3), that is, it must be
topologically conjugate to an L0-affine extension of g0. This proves Corol-
lary D.

On the other hand, the alternative (2) may occur for volume-preserving,
and even symplectic, diffeomorphisms arbitrarily close to f0 when L0 = Id :

Example 3 Consider f0 : M × T2 → M × T2 given by f0(x, v) = (g0(x), v).
Assume that g preserves some symplectic form ωM on M and let ωS be the
standard area form on T2. Then f0 preserves the symplectic form ω = ωM×ωS
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on M × T2. By Theorem 4, for any r ≥ 2 there exist functions w : M → T2

arbitrarily Cr-close to zero such that the diffeomorphism

fw : M × T2 → M × T2, fw(x, v) = (g(x), v + w(x))

is stably accessible. Observe that fw is ω-symplectic. Next, define

f : M × T2 → M × T2, f (x, (v1, v2)) = (g(x), w(x) + (v1 + α(v2), v2)) ,

where α : S1 → R is a smooth function. Assuming that α is Cr-close to
zero, f is Cr close to fw and, hence, it is accessible. It is clear that f can
be made arbitrarily close to f0 by picking both α and w sufficiently small. In
particular, f is partially hyperbolic, centre-bunched and dynamically coherent.
Moreover, f is itself a skew-product, and the vertical fibration {x}×T2 is the
centre foliation. It is also clear that f is ω-symplectic. By construction, the
centre derivative of f is idempotent:

Dcfx,v =

(
1 α′(v2)
0 1

)
. (38)

In particular, the horizontal line bundle Hx,v ≡ (1, 0) is invariant under Dcf .
Observe that m = vol×δHx,v is a P(Dcf)-invariant probability measure on
PEc that projects down to the volume measure on M × T2.

8 Proof of Theorem E

Take f0 : M ×S2 → M ×S2 to be a Cr, r ≥ 2 Möbius extension of a transitive
Anosov diffeomorphism g0 : M → M , as defined in (5). Assume that f0
preserves a given measure µ in the Lebesgue class of M×S2. It is clear that f0
is a partially hyperbolic skew-product. In particular (cf. Example 1), every µ-
preserving diffeomorphism in a Cr-neighbourhood belongs to Fr

µ(M,S2) and,
thus, satisfies some of the three alternatives in Theorem A.

The first alternative corresponds precisely to the claim (1) in the present
Theorem E. The second one is excluded here, because the sphere S2 supports
neither continuous line fields nor continuous pairs of line fields. In the third
one, the centre leaves are endowed with continuous Riemann surface structures
invariant under f and under the stable and unstable holonomies. We are left
to checking that this yields the claim (2) of Theorem E.

Proposition 2 There exists a homeomorphism Ψ : M × S2 → M × S2 whose
restriction to each fibre {x}× S2, x ∈ M is a Riemann surface automorphism
onto the centre leaf Fc

x of f .

Proof Let Hf : M × S2 → M × S2 be a leaf conjugacy as mentioned in
Example 1. Thus Hf is a homeomorphism that maps each centre leaf {x}×S2
of f0 onto a centre leaf Fc

x of f . Moreover, each restriction Hx
f : {x}×S2 → Fc

x

of the leaf conjugacy is a C1 diffeomorphism, and the leaf derivatives vary
continuously on M × S2. Endow {x}× S2 with the Riemann surface structure
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that turns Hx
f into a Riemann surface automorphism. This structure may be

represented by a function µx : S2 → D, such that the metric ds = |dz+µx(v)dz̄|
belongs to the conformal structure at each point (x, v) ∈ {x} × S2. The fact
that these conformal structures vary continuously on M × S2 ensures that the
function

µ : M × S2 → D, (x, v) 7→ µx(v)

is continuous.
By the measurable Riemannian mapping theorem (Theorem 1), for each

x ∈ M there is a unique homeomorphism wx : S̄2 → S̄2 that fixes 0, 1, and ∞
and satisfies the Beltrami equation

∂z̄w
x = µx∂zw

x, (39)

which means that wx maps the conformal structure defined on S2 by µx to
the standard conformal structure on S2. Any other solution of (39) is obtained
from wx through post-composition with a Möbius automorphism of the sphere.
Moreover, by Theorem 2, wx depends continuously on the function µx, uni-
formly on S2. Consequently, wx depends continuously on x ∈ M , uniformly
on the sphere, and so the map

W : M × S2 → M × S2, (x, v) 7→ (x,wx(v))

is a homeomorphism. To complete the proof, define Ψ = Hf ◦ W−1 : M ×
S2 → M × S2. By construction, Ψ maps each {x} × S2 conformally to the
corresponding centre leaf Fc

x.

It follows from Proposition 2 that we may write

Ψ−1 ◦ f ◦ Ψ : M × S2 → M × S2, (x, v) 7→ (g(x), ζ̃x(v))

where g : M → M is the Anosov homemorphism in (32), and each ζ̃x : S2 → S2
is a conformal automorphism of the sphere, that is, a Möbius transformation.
Let hf : M → M be the conjugacy between g and g0, as in (33). Then

(hf×Id)−1◦Ψ−1◦f ◦Ψ ◦(hf×Id) : M×S2 → M×S2, (x, v) 7→ (g0(x), ζx(v))

with ζx = ζ̃hf (x). This completes the proof of Theorem E.
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