DISCONTINUITY OF THE HAUSDORFF
DIMENSION OF HYPERBOLIC SETS
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ABSTRACT. We prove that the Hausdorff dimension of a hyperbolic basic set may
vary discontinuously with the dynamics if the dimension of the ambient manifold is
bigger than two. This loss of continuity is associated to the occurrence of intersections
between the stable (resp. unstable) manifold and the strong unstable (resp. strong
stable) manifold of some periodic point.

1. INTRODUCTION

We begin by recalling a few basic facts concerning hyperbolicity and Hausdorff
dimension, see e.g. [HP] and [F] for details.

Given a C"-diffeomorphism f: M — M, 1 < r < oo, we say that a compact
f-invariant set Ay C M is hyperbolic if there is a splitting Eif EBEXf of the tangent
bundle T, M and there are constants C' > 0, A < 1, such that

1D f* (0)|] < CA™[Jo]]| and || Dg f~"(w)|| < CA™[|wl]

forall v € Ej, w € E}, x € Ay and n > 1. We call Ay a basic set if it is
transitive (i.e. there is a dense orbit of f in Ay) and isolated (i.e. A = Nz f4(U)
for some neighbourhood U of Af) and contains a dense subset of periodic points.

An important feature of basic sets is their persistence under perturbation of the
dynamics: there is a neighbourhood V" of f in Diff" (M) such that for all g € V"

Ay = ﬂ g"(U) (the continuation of Ay)
1EZL

is a basic set of g and, moreover, g|A, is conjugate to f|Ay: there is a homeomor-
phism h: Ay — A, such that (g|Ag) oh = ho (f|Af).
Given a > 0, the Hausdorff a-measure of a compact metric space X is

me(X) = el—i>I(I)l+ inf % diam(U)?,

where the infimum is taken over all finite coverings U of X by sets with diameter
less than e. Then there is a unique d € [0,00] such that my(X) = oo if @ < d
and mq(X) = 0 if @ > d. One calls d the Hausdorff dimension of X and writes
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d = HD(X). Here we make use of the (easy) fact that the Hausdorff dimension is
non-increasing under Lipschitz maps.

The Hausdorff dimension of basic sets of surface diffeomorphisms depends in a
quite regular way on the diffeomorphism: the function

V' 5 g HD(A,)

is continuous, McCluskey-Manning [MM] (see also [PV1]), and even of class C"~1,
Mané [M].

The purpose of this article is to prove that such a regularity of the Hausdorff
dimension breaks down in higher dimensional manifolds:

Theorem. Suppose M is an m-manifold, m > 3. Then, for any 1 < r < oo, the
function
V"3 g~ HD(Ay)

introduced above is, in general, not continuous.

Let us give a brief sketch of the proof of this result, details being provided in the
next section. Clearly, it is no restriction to consider M = R**! n > 2, and we do
so from now on. We begin by taking a C"-diffeomorphism F' of R® with a basic set
Y (a horseshoe) such that F'|Y is conjugate to the full shift on two symbols. We
assume that HD(X) < 1. Next, we let 1 < A < 2 and consider the diffeomorphism

FiR" xR R xR, (X,z) s (F(X),\z).

Note that f also has a horseshoe Ay =3 x {0} and HD(Ay) = HD(X) < 1. Let P
be some fixed point of F' in ¥. Then (P,0) is a hyperbolic fixed point of f and

W*((P,0), f) = W*(P, F) x {0} and W*((P,0), f) = W*(P,F) x R.

For simplicity, we assume that every expanding eigenvalue of DF(P) is larger than
2 and then the strong unstable manifold of (P, 0) is

WU ((P,0), f) = W*(P, F) x {0}.

Since W*(P, F) and W"*(P, F) meet transversely at some ) € R", the manifolds
We((P,0),F) and W"*((P,0), F) have a quasi-transverse intersection at (Q,0).
Now we consider arcs of C"-diffeomorphisms {f;}e[—1,1, with fo = f, unfolding
generically this intersection and we prove that the continuation A; of Ag = Ay

satisfies
HD(A¢) > 1 for every small t # 0

(actually, the strict inequality holds). Clearly this implies the Theorem.

It is interesting to contrast this construction with some of the results in [PV2],
where geometric invariants of hyperbolic basic sets in any dimension were consid-
ered, in a context of bifurcations of diffeomorphisms. Indeed, by Section 4 in that
paper, invariants such as the Hausdorff dimension, the limit capacity or the thick-
ness of basic sets, do vary continuously with the dynamics, if one avoids homoclinic
trajectories in strong stable or strong unstable manifolds (such as we are making
use of here). On the other hand, our present arguments, see also the construction
of cs-blenders in [BD, Section 2|, suggest that explosion of the Hausdorff dimen-
sion is a fairly general phenomenon in situations involving such strong homoclinic
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Conjecture. Given any m-dimensional manifold M, m > 3, and 1 < r < oo,
there is a codimension 1 submanifold W™ of Diff" (M) such that every f € W' has
a hyperbolic basic set Ay containing some strong homoclinic intersection and f is a
point of upper semi-discontinuity of the Hausdorff dimension of (the continuation

Of ) A f-
We close this section by posing the following natural question:

Question. Is the Hausdorff dimension of basic sets always a lower semi-continuous
function of the dynamics?

2. PROOF OF THE THEOREM

Now we fill-in the details of our argument. In order to keep the exposition as
transparent as possible we deal with a fairly simple example even if, clearly, the
present construction has a rather more general scope. As we already said, we start
with a diffeomorphism F' of R”, n > 2, exhibiting a horseshoe ¥

S =(Fi(R), with R=[-1,1]"say,
i€Z
and F~'(R) N R consisting of two connected components Dy, Dy. We take F to be
affine on each of these components: there are s, u > 1, with s + u = n, and linear
maps S;: R®* — R*, U;: R* — R, such that

Si 0

) and ||S;||, [|U7Y] < 1 fori =1, 2.

In particular, D; = [—1,1]* x D;, D; C [-1,1]*, for i = 1, 2. In what follows
(z%,x2*) are the usual coordinates in R = [—1,1]° x [—1,1]* and we suppose the
fixed point P of F in D, to be located at (0°,0%).

Define the smooth arc {f;}1e[—1,1] of diffeomorphisms of R*** by
(F(2%,2"), \x) if 2% € Dy,

fe(z®, 2", x) = { (F(z®,z%),\x — t) if z* € Ds.

We let 1 < A < 2 and ||U; || < 1/2 so that the fixed point @ = (0%, 0%,0) of f; has
10c(O, fr) = {0} x [=1,1]* x {0} and Wi,.(O, fi) = [-1,1]° x {0} x {0}.
On the other hand, given any z* € [—1,1]° there are =5, 25 € [—1, 1]° such that
0 fi{2®} x [-1,1]" x{z}) 5
D ({1} x [=L 1] x {Az}) U ({23} x [-1,1]* x {Az — 1})
for every z € R. Hence,

FiWige(O; fi)) 5 {03} x [-1,1]* x {—t}

(note that 0f = 0°) and so the arc {f;};c[—1,1] unfolds generically the quasi-
transverse intersection of W*(O, fo) and W"*(O, fo) at (03,0%,0).

Denote by A; the continuation for f;, small ¢, of the basic set Ag = X x {0} of
fo- Observe that A; coincides with the closure of the set H(O, f;) = W*(O, f;) N

YxX7n /(YN £\ —~ D € 11 Fo.. . N1 Yt e N e )
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Lemma. Lett > 0 (resp. t < 0) be close to zero and J C [0,t] (resp. J C [t,0])
be an open interval. Then there are x° € [—1,1]° and j > 0 such that

FE0°} x [=1,1]" x J) D {2} x [-1,1]* x {A"'t}.
As a consequence, ({0°} x [—1,1]* x J) N H(O, f;) # 0.
This Lemma gives,
x (m) 51[0,¢], where 7: [-1,1]° x [-1,1]* x R = R, n(a*, 2%, z) = .
Since 7 is a Lipschitz map, it follows that
HD(A¢) > HD(m(At)) > 1,
which proves the Theorem. We are left to give the

Proof of the Lemma. We suppose t > 0, the case ¢ < 0 being completely analogous.
Consider the affine functions

T [0, A7) — [0,8], 714(y) = Ay,
Taet AT, 8]) = [0,1], ma(y) = Ay — ¢
Note that my; is well defined since 1 < A < 2. By (1)

fil{z®} x [=1,1]" x {z}) D {21} x [-1,1]" x {m4(z)} if 2 €[0,A7H],
fi({z®} x [-1,1]% x {x}) D {25} x [=1,1]* x {ma4(x)} ifz € [A\"'1,1].
Write Iy = J and zy = 0°. If I, contains A=t then there is nothing to prove.
Hence, we may assume that either Iy C (0, \7'¢) or Iy C (A", t). We let i =1 in

the first case and ¢ = 2 in the second one and we write Iy = m; +(lp) and z; = 0.
Then, by (2),

(2)

ft({Os} X [—1, 1]u X I()) D) {21} X [—1, 1]” X Il

As above, if I; contains A\~'¢ then we are done. Otherwise we apply the previous
procedure inductively: for each j > 1, if A1t ¢ I;_; then we construct an open
interval I; C [0,¢] and a point z; € [—1,1]® so that

I = m(Ij—1) if Ly C[0,A7"] and I; = mo4(L;—1) if Ij—1 C (A"t 1]
and

fillzj—} x [=1,1]* x Ij—1) D ({2} x [=1,1]" x Ij).

Since length (I;) = A -length (I;_1) and A > 1 there must be a first j such that
A7t € I;. This ends the proof of the first part of the Lemma.
As for the second one, it is now a direct consequence. Observe that

fel{z"} x D2 x AT} N Wi, (O, fi) # 0

and so {z®} x[—1, 1]* x {\"'t} intersects W*(O, f;) at some point Q;. Then, taking
7 >0 as above,

F79(Q) € ({0°) x [=1,1]* x J) C W™(O, f4),

which alan mmoana that £=I(O ) c (O £\ Thic cnmnloatoc e oo mont 1
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