Partially hyperbolic diffeomorphisms with 2-dimensional center

Marcelo Viana
(with A. Avila)

Instituto de Matemática Pura e Aplicada
Invariance Principle

This lecture is an advertisement for the following ‘statement’:

Invariance Principle

For the Lyapunov exponents to vanish, it is necessary that the fibers carry a lot of (transversely) invariant structure.
Invariance Principle

This lecture is an advertisement for the following ‘statement’:

Invariance Principle

For the Lyapunov exponents to vanish, it is necessary that the fibers carry a lot of (transversely) invariant structure.

Bonatti, Gomez-Mont, V: linear version, with hyperbolic base map
Avila, V: non-linear extension, with hyperbolic base map
Avila, Santamaria, V: non-linear, partially hyperbolic volume preserving base map
This lecture is an advertisement for the following ‘statement’:

For the Lyapunov exponents to vanish, it is necessary that the fibers carry a lot of (transversely) invariant structure.

Bonatti, Gomez-Mont, V: linear version, with hyperbolic base map
Avila, V: non-linear extension, with hyperbolic base map
Avila, Santamaria, V: non-linear, partially hyperbolic volume preserving base map

Used by: Wilkinson (Livsič theory of partially hyperbolic maps), Yang, V (SRB measures), Hertz, Hertz, Tahzibi, Ures (measures of maximal entropy), Kocsard, Potrie (Livsič theory of smooth cocycles)
Let $A : \mathbb{T}^4 \to \mathbb{T}^4$ be a linear automorphism with two eigenvalues in the unit circle.

Then A is a partially hyperbolic diffeomorphism of the torus, with 2-dimensional center direction.
Let $A : \mathbb{T}^4 \to \mathbb{T}^4$ be a linear automorphism with two eigenvalues in the unit circle.

Then A is a partially hyperbolic diffeomorphism of the torus, with 2-dimensional center direction.

Assume that no eigenvalue is a root of unity. Then A is ergodic relative to the volume (Haar) measure.

Federico Rodriguez Hertz proved that A is stably ergodic: every volume preserving diffeomorphism in a neighborhood is ergodic.
Fix any symplectic form ω on \mathbb{T}^4 invariant under A. Then

Theorem (Artur Avila, MV)

Every ω-symplectic diffeomorphism $f : \mathbb{T}^4 \to \mathbb{T}^4$ in a neighborhood of A is ergodically equivalent to a Bernoulli shift. In fact,

- either f is non-uniformly hyperbolic (all Lyapunov exponents are different from zero)
- or else f is conjugate to A by some volume preserving diffeomorphism.
Some extensions

We consider C^∞ diffeomorphisms. The theorem extends to finite differentiability (C^k with $k \geq 22$, say).

The theorem also remains true for any symplectic pseudo-Anosov $A : \mathbb{T}^d \to \mathbb{T}^d$ in any (even) dimension $d \geq 4$, with $\dim E^c = 2$. But the conjugacy is only a volume preserving homeomorphism.
Every nearby diffeomorphism \(f : \mathbb{T}^4 \to \mathbb{T}^4 \) is partially hyperbolic, with invariant splitting \(E^u \oplus E^c \oplus E^s \) having \(\dim E^c = 2 \).

All the iterates of \(f \) are ergodic, by F. Rodriguez Hertz.

Let \(\lambda^u > \lambda_1^c \geq \lambda_2^c > \lambda^s \) be the Lyapunov exponents. Symplecticity implies that \(\lambda^u + \lambda^s = \lambda_1^c + \lambda_2^c = 0 \).
Every nearby diffeomorphism $f : \mathbb{T}^4 \rightarrow \mathbb{T}^4$ is partially hyperbolic, with invariant splitting $E^u \oplus E^c \oplus E^s$ having $\dim E^c = 2$.

All the iterates of f are ergodic, by F. Rodriguez Hertz.

Let $\lambda^u > \lambda_1^c \geq \lambda_2^c > \lambda^s$ be the Lyapunov exponents. Symplecticity implies that $\lambda^u + \lambda^s = \lambda_1^c + \lambda_2^c = 0$.

Case 1: $\lambda_1^c > 0 > \lambda_2^c$

Then f is non-uniformly hyperbolic and so, by Ornstein, Weiss, it is equivalent to a Bernoulli shift.
Case 2: $\lambda_1^c = \lambda_2^c = 0$

The hard case. To prove conjugacy to the linear automorphism we must recover an Abelian group structure on the torus compatible with the dynamics of f.

In the hardest (accessible) case, this is produced from an invariant translation structure on the center leaves, which is itself an upgrade of an invariant conformal structure on the center leaves.
Stable and unstable holonomies

Every f close to A is partially hyperbolic, dynamically coherent, and center bunched: for some choice of the norm,

$$
\| D^c_x f \| \| (D^c_x f)^{-1} \| < \min \left\{ \frac{1}{\| D^s_x f \|}, \frac{1}{\| (D^u_x f)^{-1} \|} \right\}.
$$
Stable and unstable holonomies

Every f close to A is partially hyperbolic, dynamically coherent, and center bunched: for some choice of the norm,

$$\| D^c_x f \| \| (D^c_x f)^{-1} \| < \min \{ \frac{1}{\| D^s_x f \|}, \frac{1}{\| (D^u_x f)^{-1} \|} \}.$$

Given x, y in the same strong stable leaf, the strong stable leaf of any $z \in W^c_x$ intersects W^c_y in exactly one point $H^s_{x,y}(z)$.
Stable and unstable holonomies

Every f close to A is partially hyperbolic, dynamically coherent, and center bunched: for some choice of the norm,

$$\|D^c_x f\| \| (D^c_x f)^{-1}\| < \min\left\{ \frac{1}{\|D^s_x f\|}, \frac{1}{\|D^u_x f\|^{-1}} \right\}.$$

Given x, y in the same strong stable leaf, the strong stable leaf of any $z \in W^c_x$ intersects W^c_y in exactly one point $H^s_{x,y}(z)$.

The map $H^s_{x,y} : W^c_x \to W^c_y$ is a C^1 diffeomorphism. Consider the stable holonomies

$$h^s_{x,y} = \mathbb{P}(DH^s_{x,y}) : \mathbb{P}(E^c_x) \to \mathbb{P}(E^c_y)$$

Unstable holonomies are defined analogously.
Invariance Principle

Remember that we are dealing with the case $\lambda_c^1 = \lambda_c^2 = 0$. The main step is to prove that f can not be accessible.

Theorem

If f is accessible then there exists a family $\{m_x : x \in M\}$ satisfying

1. Each m_x is a probability measure on projective space $\mathbb{P}(E^c_x)$.
2. $\mathbb{P}(D^c_x f) \ast m_x = m_{f(x)}$ for every x.
3. $(h^s_{x,y}) \ast m_x = m_y$ for all x, y in the same strong stable leaf.
4. $(h^u_{x,y}) \ast m_x = m_y$ for all x, y in the same strong unstable leaf.
5. $x \mapsto m_x$ is continuous, with respect to weak* topology.
Let 0 be a fixed point of f. The derivative $D_{0}^{c}f$ is close to $A \mid E_{A}^{c}$, which is an irrational rotation (no eigenvalue is a root of unity).

Then, m_{0} has no atom of mass $\geq 1/2$ on $\mathbb{P}(E_{0}^{c})$. The same is true for every m_{x}, by accessibility and holonomy invariance.
Let 0 be a fixed point of f. The derivative $D_0^c f$ is close to $A \mid E_A^c$, which is an irrational rotation (no eigenvalue is a root of unity).

Then, m_0 has no atom of mass $\geq 1/2$ on $\mathbb{P}(E_0^c)$. The same is true for every m_x, by accessibility and holonomy invariance.

Then, by the barycenter construction of Douady, Earle, each m_x determines a conformal structure on E_x^c. This provides each \mathcal{W}_x^c with the conformal structure of the complex plane \mathbb{C}.

This structure is continuous and is invariant under the dynamics, the stable holonomies and the unstable holonomies.
From conformal structure to translation structure

Fix any uniformization $\mathbb{C} \rightarrow W_0^c$. This also chooses a translation structure on W_0^c. Push this structure to all the other center leaves by stable/unstable holonomy, using accessibility.
From conformal structure to translation structure

Fix any uniformization $\mathbb{C} \to \mathcal{W}_0^c$. This also chooses a translation structure on \mathcal{W}_0^c. Push this structure to all the other center leaves by stable/unstable holonomy, using accessibility.

We need to check that the composite holonomy H_γ along any su-path γ returning to \mathcal{W}_0^c preserves the translation structure.
From conformal structure to translation structure

Fix any uniformization $\mathbb{C} \to W_0^c$. This also chooses a translation structure on W_0^c. Push this structure to all the other center leaves by stable/unstable holonomy, using accessibility.

We need to check that the composite holonomy H_γ along any su-path γ returning to W_0^c preserves the translation structure.

As $H_\gamma : W_0^c \to W_0^c$ is a conformal automorphism, $H_\gamma(z) = az + b$.
From conformal structure to translation structure

Fix any uniformization $\mathbb{C} \to W_0^c$. This also chooses a translation structure on W_0^c. Push this structure to all the other center leaves by stable/unstable holonomy, using accessibility.

We need to check that the composite holonomy H_γ along any su-path γ returning to W_0^c preserves the translation structure.

As $H_\gamma : W_0^c \to W_0^c$ is a conformal automorphism, $H_\gamma(z) = az + b$. We prove that there is $C(\gamma) > 0$ such that $d(H_\gamma(z), z) \leq C(\gamma)$ for every $z \in W_0^c$. This uses that center leaves W_x^c are at uniformly bounded distance from the center spaces E_x^c (F. Rodriguez Hertz).
From conformal structure to translation structure

Fix any uniformization \(\mathbb{C} \to W_0^c \). This also chooses a translation structure on \(W_0^c \). Push this structure to all the other center leaves by stable/unstable holonomy, using accessibility.

We need to check that the composite holonomy \(H_\gamma \) along any \(su \)-path \(\gamma \) returning to \(W_0^c \) preserves the translation structure.

As \(H_\gamma : W_0^c \to W_0^c \) is a conformal automorphism, \(H_\gamma(z) = az + b \).

We prove that there is \(C(\gamma) > 0 \) such that \(d(H_\gamma(z), z) \leq C(\gamma) \) for every \(z \in W_0^c \). This uses that center leaves \(W_x^c \) are at uniformly bounded distance from the center spaces \(E_x^c \) (F. Rodriguez Hertz).

Then we deduce that \(a = 1 \).
From translation structure to algebraic model

The translation structure on central leaves defines an \mathbb{R}^2 action

$$\mathbb{R}^2 \times \mathbb{T}^4 \to \mathbb{T}^4, \quad (\nu, x) \mapsto \tau_\nu(x)$$

where τ_ν is the translation by ν along each center leaf.
From translation structure to algebraic model

The translation structure on central leaves defines an \(\mathbb{R}^2 \) action

\[
\mathbb{R}^2 \times \mathbb{T}^4 \to \mathbb{T}^4, \quad (v, x) \mapsto \tau_v(x)
\]

where \(\tau_v \) is the translation by \(v \) along each center leaf.

\(G = \{ \tau_v : v \in \mathbb{R}^2 \} \) is a compact group of homeomorphisms of \(\mathbb{T}^4 \).
Its action on \(\mathbb{T}^4 \) is Abelian, transitive and free.

So, \(\phi : G \to \mathbb{T}^4, \ g \mapsto g(0) \) is a homeomorphism from \(G \) to \(\mathbb{T}^4 \).
\(\tilde{f} = \phi^{-1} \circ f \circ \phi \) is a group automorphism, and it is conjugate to \(A \).
From translation structure to algebraic model

The translation structure on central leaves defines an \mathbb{R}^2 action

$$\mathbb{R}^2 \times \mathbb{T}^4 \rightarrow \mathbb{T}^4, \quad (v, x) \mapsto \tau_v(x)$$

where τ_v is the translation by v along each center leaf.

$G = \{\tau_v : v \in \mathbb{R}^2\}$ is a compact group of homeomorphisms of \mathbb{T}^4. Its action on \mathbb{T}^4 is Abelian, transitive and free.

So, $\phi : G \rightarrow \mathbb{T}^4, \ g \mapsto g(0)$ is a homeomorphism from G to \mathbb{T}^4.

$\tilde{f} = \phi^{-1} \circ f \circ \phi$ is a group automorphism, and it is conjugate to A.

This proves that f is conjugate to A. This conjugacy preserves the strong stable, strong unstable and center foliations.

Since A is not accessible, it follows that f is not accessible.
The non-accessible case

By F. Rodriguez Hertz, $E^u \oplus E^s$ is integrable and the su-foliation is smooth. Moreover, f is topologically conjugate to A.
The non-accessible case

By F. Rodriguez Hertz, $E^u \oplus E^s$ is integrable and the su-foliation is smooth. Moreover, f is topologically conjugate to A.

Using that E^c is symplectic orthogonal to $E^u \oplus E^s$, we show that the center foliation is also smooth.
By F. Rodriguez Hertz, $E^u \oplus E^s$ is integrable and the su-foliation is smooth. Moreover, f is topologically conjugate to A.

Using that E^c is symplectic orthogonal to $E^u \oplus E^s$, we show that the center foliation is also smooth.

The su-holonomy (respectively, center holonomy) preserves the area measure defined by the symplectic form ω on the center leaves (respectively, su-leaves).

We deduce that the conjugacy preserves volume. Katznelson has shown that A is Bernoulli, so f is Bernoulli.
By F. Rodriguez Hertz, $E^u \oplus E^s$ is integrable and the su-foliation is smooth. Moreover, f is topologically conjugate to A.

Using that E^c is symplectic orthogonal to $E^u \oplus E^s$, we show that the center foliation is also smooth.

The su-holonomy (respectively, center holonomy) preserves the area measure defined by the symplectic form ω on the center leaves (respectively, su-leaves).

We deduce that the conjugacy preserves volume. Katznelson has shown that A is Bernoulli, so f is Bernoulli.

When $d = 4$ (hence $\dim E^u = \dim E^s = 1$), we can use methods of Avila, V, Wilkinson to show that the conjugacy is C^∞.
Consider $F : M \times N \to M \times N$, $(x, y) \mapsto (f(x), g(x, y))$, where N is a surface and f is Anosov.

Assume: F is volume preserving, partially hyperbolic with $E^c = \text{vertical bundle}$, center bunched and accessible (hence, ergodic).
Consider $F : M \times N \to M \times N$, $(x, y) \mapsto (f(x), g(x, y))$, where N is a surface and f is Anosov.

Assume: F is volume preserving, partially hyperbolic with $E^c = \text{vertical bundle}$, center bunched and accessible (hence, ergodic).

Consider the Lyapunov exponents

$$
\lambda_+(F) = \lim_{n} \frac{1}{n} \log \| \partial_y g^n(x, y) \|
$$

$$
\lambda_-(F) = \lim_{n} -\frac{1}{n} \log \| \partial_y g^n(x, y)^{-1} \|
$$
Consider $F : M \times N \to M \times N$, $(x, y) \mapsto (f(x), g(x, y))$, where N is a surface and f is Anosov.

Assume: F is volume preserving, partially hyperbolic with $E^c =$ vertical bundle, center bunched and accessible (hence, ergodic).

Consider the Lyapunov exponents

$$\lambda_+(F) = \lim_{n \to \infty} \frac{1}{n} \log \| \partial_y g^n(x, y) \|$$

$$\lambda_-(F) = \lim_{n \to \infty} -\frac{1}{n} \log \| \partial_y g^n(x, y)^{-1} \|$$

($M \times N$ may be replaced by any fiber bundle over M whose fiber is a surface)
Theorem

If $\text{genus}(N) \geq 2$ then $\lambda_+ > 0 > \lambda_-$ and F is a continuity point for the Lyapunov exponents.
Theorem

If $\text{genus}(N) \geq 2$ then $\lambda_+ > 0 > \lambda_-$ and F is a continuity point for the Lyapunov exponents.

Rough idea: By an application of the Invariance Principle, for the Lyapunov exponents to vanish there must exist either an invariant continuous line field, or an invariant pair of transverse continuous line fields, on N.

Either alternative is incompatible with $\text{genus}(N) \geq 2$.